

MASSACHUSETTS AIR NATIONAL GUARD 104TH FIGHTER WING BARNES AIR NATIONAL GUARD BASE WESTFIELD, MASSACHUSETTS

Contract #: W9133L-14-D-0002

Delivery Order 0006

Amec Foster Wheeler Project #: 2-9133-0006

March 13, 2018

Final Report FY16 Phase 1 Regional Site Inspections For Perfluorinated Compounds

Massachusetts Air National Guard – 104th Fighter Wing Barnes Air National Guard Base Westfield, Massachusetts

Prepared for:
National Guard Bureau
Operations Division, Restoration Branch
Joint Base Andrews, MD 20762-5157

Prepared by:
Amec Foster Wheeler
Environment & Infrastructure, Inc.
511 Congress St.
Portland, ME 04101

Project No.: 291330006.010 March 13, 2018

Prepared by: Reviewed by:

Craig Keating

Base Task Manager

Kerry Tull, LSP Project Manager

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

1.0	INTRODUCTION Background	1-1
1.2	Purpose and Scope	1-2
2.0 2.1	INSTALLATION DESCRIPTIONLocation	
2.2	Organization and History	2-1
3.0 3.1	ENVIRONMENTAL SETTING	
3.2	Topography	3-1
3.3	Geology	3-1
3.4	Soils	3-1
3.5	Surface Water Hydrology	3-2
3.6	Hydrogeology	3-2
3.7	Critical Habitat and Threatened/Endangered Species	3-3
3.8	City of Westfield Water Supply	3-4
4.0 4.1	PRELIMINARY ASSESSMENTPRL 1: Former FTA-01	
4.2	PRL 3: Stormwater Drainage Basin (IRP Site 4)	4-1
4.3	PRL 4: Hangars 27A and 27B	4-2
4.4	PRL 5: Former Fire Station [Building (Bldg. 004]	4-2
4.5	PRL 6: Current Fire Station (Bldg. 040)	4-2
4.6	PRL 7: Hush House	4-3
4.7	PRL 8: Fire Department Equipment Test Area	4-3
	FIELD PROGRAM METHODS	5-1 5-1
5.2	Permits	5-1
5.3	Soil Boring Installation	5-2
5.4	Soil Sampling	5-2
5.5	Soil Boring Abandonment	5-3
5.6	Temporary Monitoring Well Installation and Development	5-3
5.7	Water Level Measurements	5-4
5.8	Groundwater Sampling	5-4

5.9 Tei	mporary Monitoring Well Abandonment	5-5
	diment Sampling	
	contamination	
	restigation Derived Waste Management	
	boratory	
	eld Quality Assurance/Quality Control Sample Results	
	ta Validation and Usability	
	TE INVESTIGATIONS	
	eld Activities Summary	
6.2 Ge	neral Work Plan Deviations	6-1
6.3 PR	L 1: Former FTA-01 (IRP Site 1)	6-2
6.3.1	Site Deviations	6-2
6.3.2	Soil Sampling	6-2
6.3.3	Groundwater Sampling	6-3
6.4 PR	L 3: Stormwater Drainage Basin (IRP Site 4)	6-3
6.4.1	Site Deviations	6-3
6.4.2	Sediment Sampling	6-3
6.4.3	Groundwater Sampling	6-3
6.5 PR	L 4: Hangars 27A and 27 B	6-3
6.5.1	Site Deviations	6-3
6.5.2	Soil Sampling	6-3
6.5.3	Groundwater Sampling	6-4
6.6 PR	L 5: Former Fire Station (Bldg. 004)	6-4
6.6.1	Site Deviations	6-4
6.6.2	Soil Sampling	6-4
6.7 PR	L 6: Current Fire Station (Bldg. 040)	6-4
6.7.1	Site Deviations	6-4
6.7.2	Soil Sampling	6-5
6.7.3	Groundwater Sampling	6-5
6.8 PR	L 7: Hush House	6-5
6.8.1	Site Deviations	6-5
6.8.2	Soil Sampling	6-5
6.8.3	Groundwater Sampling	6-6

6.9 F	PRL 8: Fire Department Equipment Test Area	6-6
6.9.	1 Site Deviations	6-6
6.9.	2 Soil Sampling	6-6
6.9.	3 Groundwater Sampling	6-6
	Soil and Groundwater Standards	
	SITE INVESTIGATION RESULTS PRL 1: Former FTA-01 (IRP Site 1)	
8.1.		
8.1.	2 PRL 1 Groundwater Analytical Results	8-1
8.2 F	PRL 3: Stormwater Drainage Basin (IRP Site 4)	
8.2.		
8.2.		
8.3 F	PRL 4: Hangars 27A and 27B	
8.3.	1 PRL 4 Soil Analytical Results	8-2
8.3.	2 PRL 4 Groundwater Analytical Results	8-2
8.4 F	PRL 5: Former Fire Station (Bldg. 004)	8-3
8.4.	1 PRL 5 Soil Analytical Results	8-3
8.5 F	PRL 6: Current Fire Station (Bldg. 040)	8-3
8.5.	1 PRL 6 Soil Analytical Results	8-3
8.5.	2 PRL 6 Groundwater Analytical Results	8-3
8.6 F	PRL 7: Hush House	8-4
8.6.	1 PRL 7 Soil Analytical Results	8-4
8.6.	2 PRL 7 Groundwater Analytical Results	8-4
8.7 F	PRL 8: Fire Department Equipment Test Area	8-4
8.7.	1 PRL 8 Soil Analytical Results	8-4
8.7.	2 PRL 8 Groundwater Analytical Results	8-4
	CONCLUSIONS/RECOMMENDATIONSPRL 1: Former FTA-01 (IRP Site 1)	
9.2 F	PRL 3: Stormwater Drainage Basin (IRP Site 4)	9-1
9.3 F	PRL 4: Hangars 27A and 27B	9-2
9.4 F	PRL 5: Former Fire Station (Bldg. 004)	9-2
	PRL 6: Current Fire Station (Bldg. 040)	
	PRL 7: Hush House	
	PRL 8: Fire Department Equipment Test Area	

9.8	PRL Sites Summary	.9-4
10.0	REFERENCES	10-1

LIST OF TABLES

Table 1	Preliminary Assessment Recommendations
Table 2	Summary of Site Inspection Activities
Table 3	Summary of Soil Analytical Testing Results
Table 4	Summary of Groundwater Analytical Testing Results
Table 5	Summary of Sediment Analytical Testing Results
Table 6	SI Screening Criteria

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site & Area Features
Figure 3	PRL Sample Locations
Figure 4	Critical Habitat Map
Figure 5	PRLs 3 & 4 Sample Locations
Figure 6	PRLs 1, 5 & 6 Sample Locations
Figure 7	PRLs 7 & 8 Sample Locations
Figure 8	PRLs 3 & 4 Sample Results
Figure 9	PRLs 1, 5 & 6 Sample Results
Figure 10	PRLs 7 & 8 Sample Results

LIST OF APPENDICES

Appendix A	Soil Boring and Monitoring Well Construction Logs
Appendix B	Well Development Logs
Appendix C	Groundwater Sampling Logs
Appendix D	Water Quality Sampling Instrument Calibration Logs
Appendix E	Sediment Sampling Logs
Appendix F	Data Validation Reports
Appendix G	Laboratory Analytical Reports

ACRONYMS & ABBREVIATIONS

A4OR Operations Restoration Branch

AF Air Force

AFFF Aqueous Film Forming Foam

Amec Foster Wheeler
Amec Foster Wheeler Environment & Infrastructure, Inc.

AMSL Above Mean Sea Level
ANG Air National Guard
AVGAS Aviation gasoline
104th FW 104th Fighter Wing

BANGB Barnes Air National Guard Base

BGS Below Ground Surface

BRAC Base Realignment and Closure

CE Civil Engineer

CED Civil Engineering Department

CERCLA Comprehensive Environmental Response, Compensation,

and Liability Act

Corbuilt Corbuilt LLC

°F Degrees Fahrenheit DO Delivery Order

DoD Department of Defense
DPT Direct Push Technology
Drilex Drilex Environmental
DQO Data Quality Objective

ELAP Environmental Laboratory Accreditation Program

EMI Electromagnetic Induction

ERP Environmental Restoration Program
FAA Federal Aviation Administration

Ft. Feet/foot

FD Fire Department
FSP Field Sampling Plan
FSS Fire Suppression System

FTA Fire Training Area

GPR Ground Penetrating Radar

GW Groundwater
HA Health Advisory
HEF High-Expansion Foam

IRP Installation Restoration Program IDW Investigation Derived Waste

JP-4 Jet Propellant

LCS Laboratory Control Samples
MAANG Massachusetts Air National Guard

MassDEP Massachusetts Department of Environmental Protection

MCP Massachusetts Contingency Plan

MS Matrix Spike

MSD Matrix Spike Duplicate

µg/kg Micrograms per Kilogram

µg/L Micrograms per Liter

mL/min Milliliter per Minute

March 2018

mV Millivolts

NELAP National Environmental Laboratory Accreditation Program

NFA No Further Action
NGB National Guard Bureau

NRCS National Resources Conservation Service

NTU Nephelometric Turbidity Units

OWS Oil-Water Separator

ORP Oxidation Reduction Potential PA Preliminary Assessment PFBS Perfluorobutanesulfonic Acid PFC Perfluorinated Compound PFOA Perfluoroctanoic Acid Perfluoroctanesulfonic Acid Perfluoroctanesulfonic Acid

POC Point of Contact

PRL Potential Release Location

PVC Polyvinyl Chloride QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

RAPS Response Action Performance Standards

RI Remedial Investigation
RSL Regional Screening Level
SB Soil Boring (designation)

SD Sediment (sample designation)
SHSP Site Health and Safety Plan

SI Site Inspection

SOP Standard Operating Procedure SWMP Stormwater Management Plan

TOC Top of Casing TW Temporary Well

UCMR3 Third Unregulated Contaminant Monitoring Rule

USAF United States Air Force

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

Vista Analytical Laboratories, Inc.

THIS PAGE INTENTIONALLY LEFT BLANK.

EXECUTIVE SUMMARY

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) was contracted by the National Guard Bureau (NGB) Operations Restoration Branch (A4OR) under Contract # W9133L-14-D-0002, Delivery Order (DO) 0006 to conduct Phase 1 Regional Site Inspections (SIs) for Perfluorinated Compounds (PFCs) at multiple Air National Guard (ANG) Installations. This report has been prepared for SIs conducted at on-Base Potential Release Locations (PRLs) identified on the 104th Fighter Wing (104th FW), Massachusetts Air National Guard, Barnes Air National Guard Base (BANGB), in the city of Westfield, Massachusetts. This Report presents the results and recommendations from the 2017 SI field activities conducted in June 2017 at BANGB. The objectives of the SI were to determine the presence or absence of PFCs at each PRL and the Base boundary, and based on the findings:

- 1) Determine if PRL is eligible for a decision of No Further Action (NFA);
- 2) Assess if PFCs are migrating off-Base; and
- 3) Develop Data Quality Objectives (DQOs) if further investigations are recommended.

To meet the objectives, Amec Foster Wheeler performed SIs at the following seven PRLs:

- PRL 1: Former Fire Training Area (FTA) (IRP Site 1);
- PRL 3: Stormwater Drainage Basin;
- PRL 4: Hangars 27A & 27B;
- PRL 5: Former Fire Station, Building (Bldg.) 004;
- PRL 6: Current Fire Station, Bldg. 040;
- PRL 7: Hush House; and
- PRL 8: Fire Department Equipment Test Area.

Based on recommendations from the Preliminary Assessment (PA) conducted by BB&E, Inc. (BB&E) in August 2015, soil, groundwater, and sediment samples were collected and analyzed for the PFCs listed on the United States Environmental Protection Agency's (USEPA) Third Unregulated Contaminant Monitoring Rule (UCMR3) list (USEPA, 2012); The detected PFC concentrations were compared against screening criteria for perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorobutane sulfonate (PFBS) including: the USEPA lifetime drinking water Health Advisory (HA) for PFOS (USEPA, May 2016a) and HA for PFOA (USEPA, May 2016b); the USEPA Regional Screening Level (RSL) table for PFBS in

residential soil (USEPA, 2017); the USEPA RSL for PFBS in tap water; and calculated screening levels using the USEPA screening level calculator for PFOA and PFOS in soil and sediment. These screening criteria are presented below:

Parameter	Chemical Abstract	EPA Regional Screening Level Table (June 2017) ^a		Air Force Guidance for Soils and	EPA Health Advisory Drinking Water	
, aramoto	Number	Residential Soil (μg/kg)	Tap Water (µg/L)	Sediments ^b (µg/kg)	(Surface Water or Groundwater) (μg/L) ^c	
Perfluorobutane sulfonate (PFBS)	375-73-5	1,300,000 ^d	400 ^e	NL	NL	
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.07*	
Perfluorooctane sulfonate (PFOS)	1763-23- 1	NL	NL	1,260	3.31	

^a EPA Regional Screening Levels (USEPA, 2017).

EPA = U.S. Environmental Protection Agency

NL = not listed

Based on comparison of analytical data to the screening criteria in the table above, Amec Foster Wheeler recommends NFA for one PRL (PRL3), and further investigations at six PRLs (PRL 1, PRL 4, PRL 5, PRL 6, PRL 7, and PRL 8). An overview of conclusions from SI activities and recommended DQOs for future investigations, includes the following:

^b Screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]. The toxicity value input for the calculator is the Tier 3 value reference dose of 0.00002 mg/kg/day derived by USEPA in their Drinking Water Health Advisories for both PFOS (USEPA, 2016a) and PFOA (USEPA, 2016b).

^c USEPA, 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) and USEPA, 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS).

^d PFBS RSL for Residential Soil concentration presented in the SI Work Plan (Amec, 2017) was 1,600,000 μg/kg based on the May 2016 RSL values. This table has been updated to include the more recent RSL values published in June 2017.

^e PFBS RSL for Tap Water presented in the SI Work Plan (Amec, 2017) was 380 μg/L based on the May 2016 RSL values. This table has been updated to include the more recent RSL values published in June 2017.

^{*} Note: When PFOA and PFOS are both present, the combined detected concentrations of the compounds are compared with the 0.07 µg/L health advisory value. Only groundwater was sampled during the SI, but analytical results have been compared to the tap water screening levels.

PRL	Screening Criteria Exceedance		Recommendation		
	Soil	GW			
PRL 1: Former FTA (IRP Site 1);	Inc.	Х	Soil investigation to determine if PFCs exceed screening criteria off-Base. Groundwater (GW) investigation to determine the nature and extent of the confirmed release.		
PRL 3: Stormwater Drainage Basin;			NFA		
PRL 4: Hangars 27A & 27B;		X	GW investigation to determine the nature and extent of the confirmed PFC release.		
PRL 5: Former Fire Station, Bldg. 004;		X	GW investigation to determine the nature and extent of the confirmed PFC release.		
PRL 6: Current Fire Station, Bldg. 040;		X	GW investigation to determine the nature and extent of the confirmed PFC release.		
PRL 7: Hush House		Х	GW investigation to determine the nature and extent of the confirmed PFC release.		
PRL 8: Fire Department Equipment Test Area.	Inc.	Inc.	Soil and GW investigation to determine if PFCs exceed screening criteria off-Base.		

Notes:

Inc. - Inconclusive based on results of SI

X – Screening criteria exceedance

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) was contracted by the National Guard Bureau (NGB) Operations Restoration Branch (A4OR) under Contract # W9133L-14-D-0002, Delivery Order (DO) 0006 to conduct Phase 1 Regional Site Inspections (SIs) for Perfluorinated Compounds (PFCs) at multiple Air National Guard (ANG) Installations. The scope of the Contract includes performance of an SI at on-Base Potential Release Locations (PRLs) identified at the 104th Fighter Wing (104th FW), Massachusetts Air National Guard, Barnes Air National Guard Base (BANGB), in the city of Westfield, Massachusetts.

This SI Report describes the objectives, procedures, and activities which were completed, and presents Amec Foster Wheeler's findings and recommendations. The Base location is shown in **Figure 1**, and the Base and area features are shown on **Figure 2**.

The SI was conducted in general accordance with the standards and practices prescribed by the Massachusetts Contingency Plan (the MCP- 310 CMR 40.0000) Response Action Performance Standard (RAPS), specifically, 310 CMR 40.0191 (MassDEP, 2014).

1.1 Background

The Department of Defense (DoD) began investigations at military bases under the Installation Restoration Program (IRP) with the goal of identifying, evaluating, and remediating areas of contamination (the program is now referred to as the Environmental Restoration Program or ERP). Under this program, investigations began at the BANGB in 1987. These investigations included Preliminary Assessments (PAs), SIs, removal action investigations, and RIs. The investigations and subsequent remedial activities initiated under the IRP have been conducted and reported in accordance with the MCP, 310 CMR 40.0000. Prior to the PFC PA prepared by BB&E Inc. (BB&E, 2016), potential releases of PFC from use and storage of aqueous film forming foam (AFFF) had not been evaluated at BANGB.

According to Base personnel, 3% AFFF was used at BANGB from approximately 1970 to 2016. Most of the AFFF fire suppression systems were retrofitted for high-expansion foam (HEF) use in the early 2000s; however, the Fire Department continued to use AFFF until 2016 in emergency response vehicles.

In 2015, BB&E conducted a PA to identify potential sites of historic environmental releases of

PFC related to AFFF usage and storage. BB&E researched the potential existence of any

documented Fire Training Areas (FTAs) in operation since 1970 or any other use or release of

AFFF. BB&E interviewed available installation personnel as part of the PA.

Based on past use and storage of AFFF at BANGB, the PA identified eight PRLs where releases

of PFC might have occurred, including FTAs, hangars, drainage basins, firefighting equipment

testing areas, fire department equipment storage areas, etc. Seven of the eight PRLs were

recommended for further inspection, and one PRL warranted No Further Action (NFA) (Table 1).

Two PRLs (PRL 1 and PRL 8) are located primarily off-Base; SI activities were limited to on-Base

locations at these PRLs. Three notable off-Base releases were also identified, including:

• A 2013 civilian aircraft fire near runways 02 and 15, approximately 1,500 ft. southeast

of the current Base fire station. Five gallons of 3% AFFF mixed with water were

discharged.

A 2001 civilian aircraft crash at the HFP Sprinkler Corporation approximately 0.5 miles

northeast of the Base. At that crash 50 to 60 gallons of 3% AFF was used during fire-

fighting activities.

A late-1990's accidental release of five gallons of 3% AFFF at a community soccer

field located approximately 0.5 miles north of the Base.

Investigations of these off-Base releases were not included in the scope of the SI, and are not

identified on the figures.

1.2 Purpose and Scope

The purpose of the SI was to determine the presence/absence of PFC in soil, sediment, surface

water, and groundwater where applicable at each of the PRLs, and in the groundwater at or near

the Base boundary. This data has been used to develop recommendations for appropriate paths

forward to either provide an NFA conclusion or recommended Data Quality Objectives (DQOs)

for further investigations. SI investigative tasks included:

Advancing direct-push technology (DPT) soil borings at the PRLs (14 DPT borings) up to

a maximum depth of 15 feet (ft.) below ground surface (bgs) and collect one or more soil

sample(s) from each boring;

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base

March 2018

1-2

- Installing five temporary monitoring wells (TWs);
- Collecting six groundwater samples; five from the temporary monitoring wells, and one from an existing permanent monitoring well; and
- Collecting two sediment samples from the Stormwater Drainage Basin Detention Pond (PRL 3).

Based on locations where AFFF was potentially used or stored, eight PRLs were identified at the Base in the PA Site Visit Report. Due to findings of no known AFFF release at PRL 2 [former FTA-06 (IRP Site 6)] documented in the PA, NFA was recommended for this area (BB&E, 2016). The PRLs are illustrated on **Figure 3**, and the SI summary is presented as **Table 2**.

All field activities were conducted in accordance with the Final SI Work Plan, Quality Assurance Project Plan (QAPP), Field Sampling Plan (FSP), and Site Health and Safety Plan (SHSP) (Amec, 2017). The scope of the SI is outlined in the following sections.

2.0 INSTALLATION DESCRIPTION

Section 2.1 describes the location and environs of BANGB. A brief history of BANGB is provided in **Section 2.2**.

2.1 Location

The BANGB is located at the Westfield-Barnes Regional Airport (formerly Barnes Municipal Airport), approximately 3 miles northeast of the city of Westfield, Hampden County, Massachusetts (**Figure 1**). BANGB is the home of the 104th FW, and occupies approximately 182 acres on land leased from the city of Westfield. The Base is divided into two separate parcels of land in the northern portion of the airport, bisected by Runway 2-20 that trends north/south (**Figure 2**). The western parcel encompasses approximately 112 acres, and contains most of the facilities buildings, hangars, flight line, and fire station. PRLs 3, 4, 5, and 6 are located within this portion of the Base. The eastern parcel encompasses approximately 70 acres, and contains the hush house, a small-arms firing range, a former FTA, and other facilities. PRLs 2 and 7 are in this portion of the Base. PRLs 1 and 8 are located primarily south of the Base, on land not leased or maintained by BANGB. The PRLs are illustrated on **Figure 3**.

Westfield-Barnes Regional Airport, including BANGB, is zoned for airport district usage. The airport is surrounded by properties zoned for industrial, residential, and business use.

2.2 Organization and History

The Site was originally known as Camp Bartlett, a training facility used by the Massachusetts Army National Guard from 1905 until approximately 1918. During World War I, Camp Bartlett was expanded to a 1,000-acre mobilization camp which housed 13,000 people (AECOM, 2010). After World War I, the land was donated by Vincent E. Barnes to some private businessmen for development of the Westfield Aviation Field, later named the Barnes Municipal Airport, then finally the Westfield-Barnes Regional Airport. In 1946, Barnes Municipal Airport was selected as the home of the 131st Fighter Squadron, flying the P-47 Thunderbolt. The current Base mission is the 104th FW, an operational flying unit equipped with the F-15 Eagle (AECOM, 2014). Since 1946, the unit has flown operational missions in nine different aircraft (ANG, 2016), with the 104th FW providing combat units during the Berlin Airlift Crisis in 1961, Operation Deliberate Force in 1995, Operation Allied Force in 1999, the Air Expeditionary Force deployed to Kuwait in 2000,

Operations Noble Eagle and Enduring Freedom in 2001, and Operation Iraqi Freedom in 2003 (AECOM, 2010).

Activities at the Base have been typical of those at most airports and military air bases, including fueling and maintenance operations. These activities include the usage, handling, storage, and disposal of various products, including potentially hazardous materials.

3.0 ENVIRONMENTAL SETTING

The following sections provide information on the environmental setting at BANGB. This information is summarized from reports prepared during previous environmental evaluations at

BANGB, as referenced in the following subsections.

3.1 Climate

The climate in Westfield is defined as having warm and humid summers and cool winters with

considerable snowfall. Average temperatures range between 24 and 72 degrees Fahrenheit (°F),

with extreme temperatures as low as -22 °F, and as high as 102 °F. Annual precipitation averages

43 inches of rain, and 51 inches of snow (AECOM, 2010).

3.2 Topography

The BANGB is generally flat, with elevations between approximately 260 to 270 feet above mean

sea level (AMSL) in the western portion of the Base, and between approximately 230 feet and

260 feet AMSL feet in the eastern portion of the Base (Figure 1). The eastern and western

parcels are separated by Runway 2-20, which trends north to south, and is a topographic high.

3.3 Geology

The BANGB is located in the Mesozoic-era Hartford Basin, characterized by Quaternary-aged

glacial material underlain by Jurassic- and Triassic-age sedimentary and igneous bedrock

(Aneptek, 2003). According to the Bedrock Geologic Map of Massachusetts (Zen, 1983), the

bedrock near the Base is described as New Haven Arkose Formation of the Upper Triassic Period

primarily consisting of red, pink and gray coarse-grained locally conglomeratic arkose interbedded

with brick-red shaley siltstone and fine-grained arkosic sandstone. Depth to bedrock at the Base

is not known; however, surficial glacial outwash sand and gravel deposits are typically 100 to 150

feet (ft.) thick in this region.

3.4 Soils

According to the National Resources Conservation Service Web Soil Survey (NRCS, 2017), soils

in the vicinity of Former FTA-01 (PRL 1) and the Current Fire Station (PRL 6) are mapped as

Hinckley loamy sand (0 to 3 percent slopes). Hinckley loamy sands are derived from sandy and

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base 3-1

gravelly glaciofluvial deposits originating from gneiss, granite, and/or schist parent material. Soils

at the other six PRLs are mapped as Urban Land.

Soils observed during the SI activities generally consisted of fill material over alternating layers of

poorly graded and well-graded sand strata. Occasional layers of finer material (silty sand) and

coarser material (gravelly sand) were encountered. Native material appeared to be of glaciofluvial

origin, which agrees with regionally mapped NRCS soil classifications. Soil boring logs are

included in **Appendix A**.

3.5 Surface Water Hydrology

The BANGB and the Westfield-Barnes Municipal Airport lie across a watershed divide that trends

north-south, generally along Runway 2-20. According to the Stormwater Management Plan

(SWMP; MAANG, 2010), surface water flow west of Runway 2-20 flows regionally westward

towards Arm Brook, and surface water east of the divide flows eastward towards Pond Brook

(Figure 1).

Stormwater west of Runway 2-20, including near the fire stations, hangars, and flight line, is

conveyed through a series of subsurface drainage pipes to multiple detention basins located

throughout the Base. The detention basins percolate stormwater to the subsurface through highly

transmissive glacial outwash sand gravel deposits. According to Base personnel, the basins are

typically dry except immediately following precipitation or snowmelt events. As illustrated on

Figure 4, there are no surface water features present in the western portion of the Base.

East of Runway 2-20, stormwater flows through surface drainage ditches and as overland sheet

flow to the east or southeast (MAANG, 2010). As shown on Figures 1 and 4, some wetlands are

present in the northeast quadrant of the eastern parcel. According to the SWMP, some of the

stormwater flows overland to the wetlands; however, the wetlands do not discharge into waters

of the United States.

3.6 Hydrogeology

Based on the Final Comprehensive Site Evaluation Phase II Report (AECOM, 2010), the area

surrounding BANGB and the Westfield-Barnes Municipal Airport are underlain by Barnes Aguifer.

The Barnes Aquifer is a distinct portion of the sand and gravel outwash aquifer that extends in a

north-south direction from the Connecticut River to the Westfield River, and is bound in the east

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base

west direction by the geologic contact between the outwash and till/bedrock. Groundwater in the vicinity of the Base generally flows in a south or southeasterly direction, with localized observations of southwest flow. (**Figure 2**). Groundwater flow directions illustrated on **Figure 2** were obtained from Appendix C of the PA, which includes relevant information from previous environmental investigations at the Base. Depth to groundwater at the Base has been reported to be in the range of 20 to 45 ft. bgs during previous investigations. During SI field activities, groundwater was observed at various depths ranging from approximately 24 ft. bgs at MW-6 to approximately 47 ft. bgs at TW-05.

According to the EDR Radius Report® presented in the PA, BANGB is in a Massachusetts Department of Environmental Protection (MassDEP) approved zone II aguifer¹.

3.7 Critical Habitat and Threatened/Endangered Species

Massachusetts Geographic Information System data layers were plotted in relation to the installation boundaries, and reviewed for critical habitats and threatened or endangered species. The following summarizes the findings of the review, which are illustrated on **Figure 4**. Stated directions are relative to BANGB.

- An area of Rare Wetland Wildlife Habitat is present to the west;
- Areas of Protected Open Space are present to the southwest, northeast, and southeast;
- Freshwater Wetlands are found to the northwest, northeast, east, and southeast;
- Two Freshwater Wetland areas are present in the eastern BANGB parcel;
- Two Certified Vernal Pools and one Potential Vernal Pool are located on-Base, in the eastern parcel. Additionally, one Potential and one Certified Vernal Pool are located to the east; and
- Portions of the Base, and the area immediately surrounding the Base contain Priority Habitats of Rare Species.

_

¹ Zone II means that area of an aquifer which contributes water to a well under the most severe pumping and recharge conditions that can be realistically anticipated, as approved by the Department's (MassDEP) Division of water supply pursuant to 310 CMR 22.00: *Drinking Water*.

3.8 City of Westfield Water Supply

The city of Westfield supplies water to 11,000 residential and commercial customers from two reservoirs and eight groundwater extraction wells. The city also owns and operates more than 220 miles of underground piping, two drinking water treatment facilities, four booster pumping stations, and seven dams (Westfield, 2016).

Two of the city's water supply wellfields, PWS Well #8 and PWS Well #7, are located approximately ½ mile southeast from the BANGB. Two additional public water supply wells, PWS Well #1 and PWS Well #2, are located south of BANGB, approximately 1.75 miles and 2.5 miles respectively (**Figure 2**). The city of Westfield has reportedly conducted sampling and analysis for PFC at these four wells. Amec Foster Wheeler understands that varying concentrations of PFC compounds have been detected by the city in these supply wells, and that one or more supply wells have been taken out of service due to elevated PFC concentrations.

4.0 PRELIMINARY ASSESSMENT

BB&E was contracted by the NGB to perform a PA at the Base with the objective of collecting and reviewing available information about any known or suspected releases of PFC due to the use, handling, release or on-Base disposal of AFFF at BANGB. The PA process included a review of documented FTAs in operation since 1970, and any other use or release of AFFF, and the completion of a Base reconnaissance. The Base reconnaissance included an inspection of potential sites of historical environmental releases, interviews with Base personnel, and a review of available on-Base documentation.

Based on past use and storage of AFFF at BANGB, the PA identified eight PRLs where releases of PFC might have occurred, including FTAs, hangars, drainage basins, firefighting equipment testing areas, fire department equipment storage areas, etc. Seven of the eight PRLs were recommended for further inspection, and one PRL warranted no further action (PRL 2). Two PRLs (PRL 1 and PRL 8) are located primarily off-Base.

The findings of AFFF use and storage at each of the seven PRLs recommended for inclusion in the SI, as documented in the PA Site Visit Report, are summarized below. The PA recommended NFA at PRL 2, and is not included in the ensuing text. A summary of recommendations is presented in **Table 1**.

4.1 PRL 1: Former FTA-01

Former FTA-01 is located primarily off-Base, immediately south of the western parcel. According to the PA, former FTA-01 was used from approximately 1950 through 1987, and aviation gasoline (AVGAS), waste oils, solvents, and jet propellant #4 (JP-4) were used as accelerants during training exercises. In spring of 2000, 3,334.03 tons of soil were excavated from FTA-01, and transported off-Base for use in asphalt batching. Groundwater quality was assessed during IRP activities, and was determined not to have been impacted by fuel and chlorinated constituents used during fire training activities. The site achieved closure in 2002, and portions of the Base have since been improved by the Army National Guard. Because FTA-01 abuts the property, activities at this PRL may have impacted the BANGB.

4.2 PRL 3: Stormwater Drainage Basin (IRP Site 4)

According to the PA, the retention basin is approximately 100 ft. wide by 200 ft. long, and designed

to percolate stormwater to the subsurface. In the 1980s and early 1990s, the Base converted from septic systems to the city's sanitary sewer system. Prior to the conversion, floor drains in buildings and hangars on the flight line discharged to the stormwater drainage basin. Although there are no known releases of AFFF to the stormwater drainage basin, AFFF releases had the potential to impact the basin. The floor drains currently discharge to the sanitary sewer system. The site was investigated under the IRP program and closed in 1998 with a NFA decision (BB&E, 2016).

4.3 PRL 4: Hangars 27A and 27B

The fire suppression system (FSS) in Hangars 27A and 27B were converted from AFFF to HEF in the early 2000s. Two 50-gallon deck guns with AFFF remained in use after the FSS was converted to HEF. According to the PA, the hangars have floor drains that discharge to the city's sanitary sewer system through an oil/water separator (OWS). Prior to the early 1990s, the floor drains would have discharged to the stormwater drainage basin at PRL 3. There are no documented releases of AFFF at Hangars 27A and 27B.

4.4 PRL 5: Former Fire Station [Building (Bldg. 004]

The former BANGB fire station was in use from the 1940s until approximately 1992 when the new fire station was built (BB&E, 2016). There was no record of a release found during the PA; however, AFFF was likely used and stored given the timeframe that the fire station was in operation. Floor drains were present, which according to the PA discharged to the sanitary sewer system through an OWS. However, prior to connection to the city's sanitary sewer system, the floor drains likely discharged to a dry well.

4.5 PRL 6: Current Fire Station (Bldg. 040)

The current fire station was built in 1992 and houses three fire department (FD) crash trucks. At the time of the PA, the crash trucks contained a combined 320 gallons of 3% AFFF, and an additional 250 gallons of 3% AFFF was stored in 5-gallon totes. When needed, the totes were used to manually refill the reservoirs in the crash trucks. As of late 2016, AFFF is no longer used at Bldg. 040. There were no floor drains present during the PA site visit; however, the fire station originally contained floor drains which discharged to the sanitary sewer via an oil/water separator. The floor drains were eliminated as part of a facility upgrade in 2010. There have been no known

releases of AFFF.

4.6 PRL 7: Hush House

The hush house was initially constructed in 1995, and is located on the eastern parcel, near Sierra Taxiway. The FSS contained AFFF from 1995 until the early 2000s when it was converted to HEF. Floor drains are present which discharge to the sanitary sewer system through an OWS. There have been three known discharges (two tests and one accidental release); however, most of the foam release was likely captured in the floor drains. At least one of the discharges likely released AFFF; however, it is not known if the other two releases were AFFF or HEF.

4.7 PRL 8: Fire Department Equipment Test Area

FD equipment testing occurred primarily off-Base at the eastern end of Sierra Taxiway, immediately south of the eastern parcel. Three known foam tests or AFFF releases have occurred, all in the mid-1990s; however, testing practices prior to 1993 are unclear (BB&E, 2016). The amount of AFFF used is unknown, and use of foam for equipment testing purposes ceased at least 15 years ago. Because the Fire Department Equipment Test Area abuts BANGB, activities at this PRL may have impacted the Base.

5.0 FIELD PROGRAM METHODS

The following subsections summarize utility clearance and permitting activities; soil boring

installation, sampling, and abandonment; temporary groundwater monitoring well construction,

development, and sampling; and sediment sampling. SI activities were conducted in accordance

with the Work Plan and the ANG Investigation Guidance (ANG, 2009). The SI field activities were

conducted during 26 through 30 June 2017.

5.1 Utility Location and Clearance

Prior to commencement of SI activities, drilling locations were pre-marked, and details of the

proposed borehole locations were provided to the Massachusetts one call utility notification

center, "DigSafe." DigSafe assigned ticket No. 20171917341 on 12 May 2017, then ticket No.

2017503551 on 19 June 2017 when the original ticket was renewed. Prior to initiating subsurface

activities, Amec Foster Wheeler met with On-Target, a utility locator for members of the Dig Safe

system, to review the proposed sampling areas. No locations were moved as a result of this

meeting.

The 104th civil engineering department (CED) accompanied Amec Foster Wheeler during the pre-

marking to verify the placement of each drilling location. An AF-103 Base Civil Engineering Work

Clearance Request was submitted to the Base CED, and the completed/signed form was returned

to Amec Foster Wheeler on 26 June 2017.

On 8 June 2017, Corbuilt, LLC of Canterbury, CT (Corbuilt) cleared Base utilities at each of the

17-proposed soil boring and TW locations using geophysical techniques. Equipment employed

by Corbuilt included ground-penetrating radar (GPR) and electro-magnetic induction (EMI)

locating equipment.

Between 26 June and 27 June 2017, Drilex Environmental of Auburn, Massachusetts (Drilex)

used vacuum excavation techniques to pre-clear each of the drilling locations to an approximate

depth of five feet bgs.

Utility clearance activities were performed at the direction and oversight of Amec Foster Wheeler,

with the BANGB POC accompanying as an escort.

5.2 Permits

As described in **Section 5.1**, Amec Foster Wheeler obtained utility clearance permits for the SI

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base

activities, including Dig Safe Clearance with One Call, and AF Form 103 with the 104th FW Base CED. It was determined by the airport manager, Mr. Erick Billowitz, that Federal Aviation Administration (FAA) permits were not required for performance of SI activities. No other permits were required or obtained.

5.3 Soil Boring Installation

Between 26 June and 29 June 2017, 17 soil borings were advanced with five temporary monitoring wells installed to investigate potential PFC impacts in soil and groundwater at BANGB. The borings were advanced by Drilex using vacuum excavation and DPT drilling techniques. Soil borings advanced solely for soil sample collection were completed at 15 ft. bgs. Soil borings advanced for installation of temporary monitoring wells were completed below the water table, at depths ranging from 35 to 54 ft. bgs. Individual borehole depths are provided in the soil boring logs included in **Appendix A**.

Soil boring locations were selected based on PRL use and physical characteristics to target the most probable AFFF release areas. Seventeen soil borings were advanced in and around the seven PRLs using DPT drilling methods (12 borings for soil sampling only, 3 borings for TW installation, and 2 borings for combined TW installation and soil sampling). Soil cores were collected continuously for field screening at 4- to 5-ft. intervals in new, dedicated acetate liners. Drilling rods/tools were decontaminated between borings in accordance with protocol described in the Work Plan.

5.4 Soil Sampling

Shallow soil samples (0-2 ft. bgs) were collected from the sidewall of the open vacuum excavation hole during utility clearance. A clean trowel was used to remove approximately one to two inches of soil on the sidewall, then a second clean trowel was used to collect the sidewall sample. Deep soil samples (13-15 ft. bgs) were collected from the acetate sleeves from within the DPT core barrel. Each sleeve was opened lengthwise and the soil was examined. Soil characteristics were logged in accordance with the Unified Soil Classification System (USCS). Soil was visually inspected for potential impacts.

Shallow samples were generally collected from the upper two feet of soil, directly beneath asphalt or pavement, if present. Deep soil samples were collected from 13 to 15 ft. bgs at every location, since the water table was not encountered in the upper 15 ft. of the soil boring.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

5.5 Soil Boring Abandonment

Following the completion of drilling activities, each boring was backfilled with cuttings. Surface completions were patched with like materials (topsoil/seed, asphalt, or concrete) in accordance with ANG specifications.

5.6 Temporary Monitoring Well Installation and Development

Five TWs were installed to investigate potential groundwater impacts at the seven BANGB PRLs and at the Base boundaries. Because of the proximity of several PRLs to other PRLs, and to the Base boundaries, the wells were considered dual-purpose. Dual purpose wells are intended to assess groundwater quality downgradient from each PRL and at the Base boundary.

The primary purpose of installing the temporary monitoring wells was to assess groundwater quality downgradient of the PRLs. Although well elevation surveys were not part of this project scope, temporary well locations were determined based on historical groundwater data and topographic contours, historical indications of possible impact, and Base features such as buildings and the Base boundary. In general, TWs were installed at locations with the greatest potential to intercept PFCs dissolved in groundwater based on available data, and might not represent the highest concentrations at each PRL.

Soil cores were collected continuously to verify soil lithology, then inspected, logged, and field screened in accordance with the FSP. Temporary monitoring wells were installed in accordance with Amec Foster Wheeler's PFC-specific Standard Operating Procedure (SOP) for installation of monitoring wells (AFW-04).

The TW borings were advanced with DPT tools. TWs were constructed within borings using a two-inch diameter, schedule 40 polyvinyl chloride (PVC) riser with a 10-ft., 0.010-inch slot screened interval with the water table bisecting the well screen. New dedicated well materials were used at each TW location. The annulus surrounding each well screen and riser was backfilled with No.1 filter sand, which was placed from the bottom of the borehole to the ground surface. No annular seals were installed.

The temporary monitoring wells were developed using a pump to purge the screened interval and remove fine particles that had accumulated. Water quality parameters were monitored and recorded at periodic intervals. Monitoring wells were considered adequately developed when water quality parameters had stabilized and turbidity was low (i.e., <50 Nephelometric Turbidity Units (ntu) where feasible).

Consistent with MCP at 310 CMR 40.0045(7), well development water was discharged to the ground surface at the point of withdrawal. Equipment and pumps inserted into the well were decontaminated following each use. TW development logs are included in **Appendix B**.

5.7 Water Level Measurements

Prior to well purging, static water levels measurements were collected with an electronic water level meter. Water levels were measured as a distance below the top of the PVC riser and recorded on field data sheets.

5.8 Groundwater Sampling

Six groundwater samples were collected, five from TWs and one from an existing permanent well. Wells were purged with either a submersible pump or peristaltic pump, and United States Environmental Protection Agency (USEPA) sampling methodology was followed to collect groundwater samples. The initial water level was recorded using an electronic water level meter prior to purging and sampling activities. The submersible pump or tubing was inserted into the monitoring well to the depth recorded in the sampling logs above the bottom of the well to prevent disturbances and re-suspension of sediment present in the bottom of the well. In general, the pump intake was placed in the middle of the saturated interval. The pump discharge tubing was connected to a flow-through cell containing a multi-parameter Sonde Instrument to record water parameters. The pump rate during purging was maintained between 100 and 300 milliliters per minute (mL/min) with a steady flow rate maintained, such that drawdown of the water level within the well did not exceed a maximum allowable drawdown of 0.3 ft. The following parameters were monitored during purging: temperature, pH, oxidation-reduction potential (ORP), dissolved oxygen, turbidity, temperature, and specific conductivity on approximately five-minute intervals. The water level was monitored during this same time interval.

The well was considered stabilized after three consecutive readings as follows:

- +/-0.1 for pH,
- +/-3% for specific conductance (conductivity),
- +/-10 millivolts (mV) for ORP,
- +/-10% for dissolved oxygen, and
- +/-10% for turbidity.

Groundwater sampling logs and water quality instrument calibration logs are included in

Appendix C and Appendix D respectively.

5.9 Temporary Monitoring Well Abandonment

Following the completion of sampling activities, each temporary well was pulled from the ground allowing the formation to collapse into the borehole. Surface completions were patched with like

materials (topsoil/seed, asphalt, or concrete) in accordance with ANG specifications.

5.10 Sediment Sampling

Two sediment samples were collected at PRL 3 from the floor of the dry stormwater drainage basin. Samples were collected from the upper two feet of sediment utilizing a clean shovel and stainless-steel trowel. The shovel was used to dig a two-foot deep hole, then a clean trowel was used to collect a sample from the sidewall of the hole. After retrieval, sediment was transferred to a clean stainless-steel bowl, homogenized, and then placed in laboratory-supplied containers. Samples were immediately cooled with ice to less than 4°C. Re-usable sampling equipment was decontaminated in accordance with the Work Plan.

Sediment sampling logs are included in **Appendix E**.

5.11 Decontamination

Field sampling equipment (e.g. water level indicators, pumps, bowls, trowels, shovels, and other downhole equipment) was decontaminated prior to initial use, and between samples. Liquinox® soap diluted with PFC-free bottled water was used to wash sampling equipment with a clean high-density polyethylene brush used to remove debris and particulates. PFC-free bottled water was used to rinse soapy water from the sampling equipment. The PFC-free water was distilled water obtained from a local water bottling company. Prior to use, a sample of the water was submitted to Vista for analysis of the six PFC compounds on the Third Unregulated Contaminant Monitoring Rule (UCMR3) list. Concentrations were reviewed to ensure Amec Foster Wheeler's internal PFC-free criteria were met.

To avoid possible cross contamination from potential PFC-containing items, field personnel and subcontractors adhered strictly to the SOPs developed by Amec Foster Wheeler for sampling at sites where PFCs are potentially present. SOPs and precautions to prevent cross-contamination are included in the SI Work Plan (Amec, 2017), and include information on permissible and prohibited field equipment and supplies, personal protective equipment, sample containers, clothing, personal hygiene products, and food.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

5.12 Investigation Derived Waste Management

Soil cuttings were used to backfill soil borings; no excess soil was generated during drilling activities. Purge water generated during monitoring well development and groundwater sampling activities and rinse water were returned to the ground surface at the point of generation. Disposable sampling equipment (i.e. gloves, tubing, etc.) was disposed of as general waste, in

on-base refuse containers. No investigation-derived waste was generated during SI field

activities.

5.13 Laboratory

PFC samples were submitted to Vista Analytical Laboratories, Inc. (Vista), in El Dorado Hills, California. Vista is accredited under the Department of Defense Environmental Laboratory Accreditation Program (ELAP) and maintains a National Environmental Laboratory Accreditation Program (NELAP) certification via reciprocity in the Commonwealth of Massachusetts.

5.14 Field Quality Assurance/Quality Control Sample Results

Quality Assurance and Quality Control (QA/QC) samples, including field duplicates, matrix spike/matrix spike duplicates (MS/MSD), equipment rinsate samples, and field blanks were analyzed for the same PFC parameters as the associated project samples. The analytical results

for the field duplicates are presented in **Table 3** through **Table 5**.

5.15 Data Validation and Usability

Amec Foster Wheeler performed a data quality review of samples collected during field activities and submitted to Vista for analysis of PFCs, consisting of: 26 soil samples (including two field duplicates); three sediment samples (including 1 field duplicate); and 12 aqueous samples (including six primary groundwater samples, one field duplicate, five equipment rinsate blanks,

and one decontamination source water sample).

The laboratory analytical data generated during the SI were reviewed by a qualified analytical chemist for conformance with the project DQOs specified in the QAPP (Amec 2017). Amec Foster Wheeler performed EPA Stage 4 validation on 10 percent (%) of the field samples and EPA Stage 2B validation on the remaining field samples associated with this sampling event. The Stage 4 validation includes review of the quality control (QC) results in the laboratory's analytical report and reported on QC summary forms as well as recalculation checks and review of the instrument raw data outputs. The Stage 2B validation includes review of the QC results in the

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018 5-6

laboratory's analytical report and reported on QC summary forms with no review of the associated raw data. Data from equipment and field blanks did not undergo validation because results from these samples are only used to assess data usability for field samples. The validation was performed in general accordance with: Amec Foster Wheeler Final QAPP (Amec 2017); Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories (DOD, 2017); and USEPA Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (USEPA, 2009).

Amec Foster Wheeler evaluated 216 data records from field samples during the validation. Amec Foster Wheeler J qualified² 39 records (18.1%) as estimated values because of low MS/MSD recoveries, field duplicate imprecision, and/or analyte concentrations outside the instrument's calibration range. The Data Validation Report, including qualified data, is included as **Appendix F**. Laboratory analytical reports and chains of custody forms are provided in **Appendix G**.

-

² The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

6.0 SITE INVESTIGATIONS

This SI field program was designed to collect data needed to evaluate the presence/absence of PFC compounds at each of the seven PRLs. The scope of the SI was designed using recommendations presented in the PA prepared by BB&E. The following sections describe the investigation approach that was used to fulfill the objectives of the SI. The work was conducted in accordance with the QAPP, SHSP, and FSP presented in the approved Work Plan.

6.1 Field Activities Summary

The following SI field activities were completed:

PRL Name	Analyzed Parameters	Soil Borings	Soil Samples	Groundwater Samples Existing Wells	Groundwater Samples Temporary Wells	Surface Water Samples	Sediment Samples
1. Former FTA-01 (IRP Site 1)	PFCs	2	2	0	1	0	0
3. SW Drainage Basin (IRP Site 4)	PFCs	0	0	1	0	0	2
4. Hangars 27A and 27 B	PFCs	3	6	0	1	0	0
5. Former Fire Station (bldg. 004)	PFCs	2	4	0	0	0	0
6. Current Fire Station (Bldg. 040 S)	PFCs	3	6	0	1	0	0
7. Hush House	PFCs	2	4	0	1	0	0
8. Fire Department Equipment Test Area	PFCs	2	2	0	1	0	0

Individual sampling locations are shown on **Figure 5** through **Figure 7**. Soil boring and monitoring well construction, well development, groundwater sampling, and sediment sampling logs are included in **Appendices A**, **B**, **C**, and **E**, respectively.

6.2 General Work Plan Deviations

Deviations from the general work plan included one or more of the following conditions:

• Use of cameras to document field activities was prohibited at BANGB. No photographs

were taken and therefore a photolog is not included in this SI.

- Well purge water was returned to the ground surface at the point of generation to minimize investigation-derived waste (IDW) as allowed by the MassDEP³.
- Down-hole equipment and sampling devices were decontaminated utilizing PFC-free bottled water and this IDW water was allowed to infiltrate the pervious ground surface at the sampling location.
- The June 2017 USEPA residential soil RSL value for PFBS (1,300,000 μg/kg) was used as the screening value in place of the May 2016 USEPA residential soil RSL value for PFBS (1,600,000 μg/kg). The updated RSL value was not published at the time the Work Plan was finalized.
- The June 2017 USEPA Tap Water RSL value for PFBS (400 μg/L) was used as the screening value in place of the May 2016 USEPA Tap Water RSL value for PFBS (380 μg/L). The updated RSL value was not published at the time the Work Plan was finalized.

Work Plan deviations specific to an individual PRL are discussed in the following sub sections.

6.3 PRL 1: Former FTA-01 (IRP Site 1)

6.3.1 Site Deviations

A deviation from the Work Plan occurred at this PRL. During groundwater sampling at TW-03, three consecutive turbidity readings within 10% were not obtained; however, groundwater samples obtained were below 50 ntu (final reading was 4.98 ntu). No other deviations, apart from the general Work Plan deviations (see **Section 6.2**), occurred at this PRL.

6.3.2 Soil Sampling

Two soil borings (01SB01 and 01SB02) were advanced at PRL 1 on 26 June 2017, and shallow soil samples (0-2 ft. bgs) were collected from each boring. As agreed upon in the Final Work Plan, only shallow soil samples were collected at this PRL. Because deep samples were not collected, 01SB02 was completed at two-feet bgs using vacuum excavation methods only.

³ Pursuant to 310 CMR 40.0045(7) of the Massachusetts Contingency Plan "Any person performing response actions at a Disposal Site in accordance with M.G.L. c. 21E and 310 CMR 40.0000 may discharge Remedial Wastewater, groundwater collected during development, purging, or sampling of groundwater monitoring wells provided the Remedial Wastewater or groundwater is discharged as follows: 1) at the point of withdrawal; or 2) at a point upgradient of the point of withdrawal…"

Location 01SB01 was co-located with TW-03, and therefore DPT was used to install the TW. Two

soil samples were collected at this PRL.

6.3.3 Groundwater Sampling

Temporary monitoring well TW-03 was drilled to a depth of 38 ft. bgs on 28 June 2017, and a well

screen was installed from 28 ft. bgs to 38 ft. bgs. TW-03 was co-located with soil boring 01SB01. Groundwater was measured at a depth of 32.02 ft. below top of casing (TOC) in TW03 prior to

purging and sampling. One groundwater sample was collected on 29 June 2017 as per the Work

Plan.

Soil boring and permanent monitoring well locations are illustrated on Figure 6.

6.4 PRL 3: Stormwater Drainage Basin (IRP Site 4)

6.4.1 Site Deviations

No deviations, other than general Work Plan deviations occurred at this PRL.

6.4.2 Sediment Sampling

Two sediment samples (03SD01 and 03SD02) were collected at PRL 3 on 27 June 2017. Sediment samples were collected using hand tools from the upper two feet of sediment in the

stormwater drainage basin. Two sediment samples were collected.

6.4.3 Groundwater Sampling

One groundwater sample was collected on 30 June 2017 from existing permanent groundwater monitoring well MW-6. Groundwater was measured at a depth of 23.79 ft. below TOC prior to purging and sampling. Based on historical records, TW-06 is screened from 17.25 ft. bgs to 27.25

ft. bgs; the bottom of the well screen was measured at a depth of 27.25 ft. (measured from TOC).

Sediment and permanent monitoring well locations are illustrated on **Figure 5**.

6.5 PRL 4: Hangars 27A and 27 B

6.5.1 Site Deviations

No deviations, other than general Work Plan deviations occurred at this PRL.

6.5.2 Soil Sampling

Three soil borings (04SB01 through 04SB03) were advanced at the PRL. Borings were pre-

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

cleared using vacuum extraction and shallow (0-2 ft. bgs) samples were collected on 26 June

2017. The borings were completed on 29 June 2017 using DPT drilling techniques, and deep

samples (13-15 ft. bgs) were collected from the bottom two feet of each boring. Six soil samples

were collected at this PRL.

6.5.3 Groundwater Sampling

Temporary monitoring well TW-02 was drilled to a depth of 35 ft. bgs on 27 June 2017, and a well

screen was installed from 25 ft. bgs to 35 ft. bgs. TW-02 was a stand-alone location, not co-

located with a soil boring. Groundwater was measured at a depth of 24.91 ft. below TOC in TW-

02 prior to purging and sampling. One groundwater sample was collected on 28 June 2017 as

per the Work Plan.

Soil boring and permanent monitoring well locations are illustrated on Figure 5.

6.6 PRL 5: Former Fire Station (Bldg. 004)

6.6.1 Site Deviations

A deviation from the Work Plan occurred at this PRL; soil borings 05SB01 and 05SB02 were

relocated to the northeast. The relocation was needed because the PRL footprint illustrated in

the Work Plan was not located over the former fire station's footprint. This relocation was

recommended by the Barnes POC during the initial Base walk, and the location verified using

historical aerial images which were overlain on the current maps.

6.6.2 Soil Sampling

Two soil borings (05SB01 and 05SB02) were advanced at the PRL. Borings were pre-cleared

using vacuum extraction and shallow samples were collected on 27 June 2017. The borings were

completed on 29 June 2017 using DPT drilling techniques, and deep samples were collected from

the bottom two feet of each boring. Four soil samples were collected at this PRL.

Soil boring locations are illustrated on **Figure 6**.

6.7 PRL 6: Current Fire Station (Bldg. 040)

6.7.1 Site Deviations

Two deviations from the Work Plan occurred at this PRL:

• 35 feet of drill rods were left in the ground at TW-01. The rods were lost down hole while

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

drilling and were unable to be retrieved. The top of the rods is believed to be located 10

ft. bgs. The Barnes POC and Airfield Management were immediately alerted, and

approval to leave the rods in place was given that day (27 June 2017) by the Chief of

Airfield Management.

• Turbidity in the groundwater sample was stable, but above 50 ntu at the time of sample

collection. Based on the elevated turbidity, Amec Foster Wheeler instructed Vista to

centrifuge the sample prior to extraction.

No other deviations, apart from the general Work Plan deviations occurred at this PRL.

6.7.2 Soil Sampling

Three soil borings (06SB01 through 06SB03) were advanced at the PRL. Borings were pre-

cleared using vacuum extraction and shallow samples were collected on 26 June 2017. The

borings were completed on 29 June 2017 using DPT drilling techniques, and deep samples were

collected from the bottom two feet of each boring. Six soil samples were collected at this PRL.

6.7.3 Groundwater Sampling

Temporary monitoring well TW-01 was drilled to a depth of 38 ft. bgs on 28 June 2017, and a well

screen was installed from 28 ft. bgs to 38 ft. bgs. TW-01 was a stand-alone location, not co-

located with a soil boring. Groundwater was measured at a depth of 35.54 ft. below TOC in TW-

01 prior to purging and sampling. One groundwater sample was collected on 28 June 2017 as

per the Work Plan.

Soil boring and monitoring well locations are illustrated on Figure 6.

6.8 PRL 7: Hush House

6.8.1 Site Deviations

No deviations, other than general Work Plan deviations occurred at this PRL.

6.8.2 Soil Sampling

Two soil borings (07SB01 and 07SB02) were advanced at the PRL. Borings were pre-cleared

using vacuum extraction and shallow samples were collected on 26 June 2017. The borings were

completed on 28 June 2017 (07SB02) and 29 June 2017 (07SB01) using DPT drilling techniques,

and deep samples were collected from the bottom two feet of each boring. Four soil samples

were collected at this PRL.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base 6-5

Delivery Order 0006

6.8.3 Groundwater Sampling

Temporary monitoring well TW-05 was drilled to a depth of 54 ft. bgs on 28 June 2017, and a well screen was installed from 44 ft. bgs to 54 ft. bgs. TW-05 was a stand-alone location, not colocated with a soil boring. Groundwater was measured at a depth of 46.75 ft. below TOC in TW-01 prior to purging and sampling. One groundwater sample was collected on 29 June 2017 as

per the Work Plan.

Soil boring and permanent monitoring well locations are illustrated on **Figure 7**.

6.9 PRL 8: Fire Department Equipment Test Area

6.9.1 Site Deviations

A deviation from the Work Plan occurred at this PRL; turbidity in the groundwater sample was below 50 ntu (10.8 ntu final reading), but did not have three consecutive readings within 10%.

No other deviations, apart from the general Work Plan deviations occurred at this PRL.

6.9.2 Soil Sampling

Two soil borings (08SB01 and 08SB02) were advanced at PRL 8 on 26 June 2017, and shallow soil samples (0-2 ft. bgs) were collected from each boring. As agreed upon in the Final Work Plan, only shallow soil samples were collected at this PRL. As previously agreed with the ANG, deep samples were not collected and 08SB02 was completed at two-feet bgs using vacuum excavation methods only. Location 08SB01 was co-located with TW-04, and therefore DPT was used to install the TW. Two shallow soil samples were collected at this PRL.

6.9.3 Groundwater Sampling

Temporary monitoring well TW-04 was drilled to a depth of 43 ft. bgs on 28 June 2017, and a well screen was installed from 33 ft. bgs to 43 ft. bgs. TW-04 was co-located with soil boring 08SB01. Groundwater was measured at a depth of 32.88 ft. below TOC in TW-04 prior to purging and sampling. One groundwater sample was collected on 30 June 2017 as per the Work Plan.

Soil boring and permanent monitoring well locations are illustrated on Figure 7.

7.0 SOIL AND GROUNDWATER STANDARDS

A soil or groundwater standard is an environmental and/or public health statute or rule used in identifying Base contamination that may pose a risk to human health or the environment. Soil and groundwater standards are federal and state human health and environment-based regulations used to:

- Determine the appropriate levels of Base clean-up;
- Define and formulate remedial action alternatives; and,
- Govern implementation and operation of the selected remedial action.

Currently no promulgated Standards exist for these compounds.

In accordance with *Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and Base Realignment and Closure (BRAC) Installations* [United States Air Force (USAF), August 2012] and EPA lifetime drinking water Health Advisories (HAs) for Perfluorooctanesulfonic Acid (PFOS; USEPA, May 2016a) and Perfluorooctanoic Acid (PFOA; USEPA, May 2016b), a release is considered confirmed if the following concentrations are exceeded:

PFOS:

- 0.07 micrograms per liter (µg/L) in groundwater/surface water that is used as or contributes to a drinking water source (combined with PFOA value).
- 1,260 micrograms per kilogram (μg/kg) in soil (calculated in the absence of RSL values⁴).
- 1,260 μg/kg in sediment (calculated in the absence of RSL values).

PFOA:

- 0.07 µg/L in groundwater/surface water (combined with PFOS value).
- 1,260 µg/kg in soil (calculated in the absence of RSL values).
- 1,260 µg/kg in sediment (calculated in the absence of RSL values).

EPA has also derived RSL values for PFBS, for which there is a Tier 2 toxicity value (USEPA, June 2017). The USAF will also consider a release to be confirmed if the following concentrations

⁴ Air Force Guidance screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]. The toxicity value input for the calculator is the Tier 3 value reference dose of 0.00002 mg/kg/day derived by USEPA in their Drinking Water Health Advisories for both PFOS (USEPA, 2016a) and PFOA (USEPA, 2016b).

are exceeded:

PFBS:

- 400 μg/L in groundwater/surface water.
- 1,300,000 μg/kg in soil.

The HA, RSLs and Air Force (AF) Guidance values are collectively referred to as screening criteria in this Report. **Table 6** presents the screening criteria for comparing the analytical results for PFBS, PFOA, and PFOS.

8.0 SITE INVESTIGATION RESULTS

This section presents the soil, groundwater, and sediment data collected during the SI activities and a comparison of detections. Detections of PFBS, PFOA and PFOS are compared to the screening criteria as defined in the Work Plan, and presented in **Table 6**. Locations of detected analytes are shown on **Figure 8** through **Figure 10**.

8.1 PRL 1: Former FTA-01 (IRP Site 1)

8.1.1 PRL 1 Soil Analytical Results

Two soil samples were collected and analyzed as described in **Section 6.3.2**, 01SB01 from 0-2 ft. bgs and 01SB02 from 0-2 ft. bgs. Analytical results from soil samples indicate some PFCs were detected above the laboratory reporting limit; however, no compounds exceeded the screening criteria in either of the two samples collected from PRL 1.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The soil boring locations showing detected compounds are depicted on **Figure 9**.

8.1.2 PRL 1 Groundwater Analytical Results

One groundwater sample was collected from TW-03 and analyzed as described in **Section 6.3.3**. Analytical results from the groundwater sample indicates that six PFC compounds were detected at concentrations above the laboratory detection limit, with one compound exceeding the groundwater screening criterion. PFOS was detected in TW-03 above the 0.07 micrograms per liter (μ g/L) US EPA Drinking Water Health Advisory (HA; USEPA, 2016a), at a concentration of 0.101 μ g/L. The combined PFOS and PFOA concentration is 0.1465 μ g/L at this location.

Comparisons of analytical results to applicable screening criteria are presented on **Table 4**. The temporary monitoring well location showing detected compounds is illustrated on **Figure 9**.

8.2 PRL 3: Stormwater Drainage Basin (IRP Site 4)

8.2.1 PRL 3 Sediment Analytical Results

Two sediment samples were collected and analyzed as described in **Section 6.4.2**, 03SD01 from 0-2 ft. bgs and 03SD02 from 0-2 ft. bgs. Analytical results from soil samples indicate some PFCs were detected above the laboratory reporting limit; however, no compounds exceeded the screening criteria in either of the two samples collected from PRL 3.

Comparisons of analytical results, including field duplicate results, to applicable criteria are presented on **Table 5**. Sediment sample locations showing detected compounds are depicted on

Figure 8.

8.2.2 PRL 3 Groundwater Analytical Results

One groundwater sample was collected from MW-6 and analyzed as described in **Section 6.4.3**. Analytical results from the groundwater sample indicates that some PFCs were detected at concentrations above the laboratory detection limit; however, no compounds exceeded the

screening criteria.

Comparisons of analytical results to applicable groundwater screening criteria are presented on

Table 4. The monitoring well location showing detected compounds is illustrated on **Figure 8**.

8.3 PRL 4: Hangars 27A and 27B

8.3.1 PRL 4 Soil Analytical Results

Six soil samples were collected and analyzed from three soil borings as described in **Section 6.5.2**: 04SB01 from 0-2 ft. bgs and 13-15 ft. bgs; 04SB02 from 0-2 ft. bgs and 13-15 ft. bgs; and 04SB03 from 0-2 ft. bgs and 13-15 ft. bgs. Analytical results from soil samples indicate PFOS is the only PFC present above the laboratory reporting limit in four of the six samples collected.

There were no exceedances of the screening criteria in the six samples collected from PRL 4.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The

soil boring locations showing detected compounds are depicted on Figure 8.

8.3.2 PRL 4 Groundwater Analytical Results

One groundwater sample was collected from TW-02 and analyzed as described in **Section 6.5.3**.

Analytical results from the groundwater sample indicates that the six PFCs were detected at concentrations above the laboratory detection limit, with one compound exceeding the USEPA Drinking Water HA of 0.07 μ g/L. PFOS was detected at a concentration of 0.0994 μ g/L in TW-

02. The combined PFOS and PFOA concentration is 0.1046 μg/L at this location.

Comparisons of analytical results to applicable criteria are presented on **Table 4**. The temporary

monitoring well location showing detected compounds is illustrated on Figure 8.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

8.4 PRL 5: Former Fire Station (Bldg. 004)

8.4.1 PRL 5 Soil Analytical Results

Four soil samples were collected and analyzed from two soil borings as described in **Section 6.6.2**: 05SB01 from 0-2 ft. bgs and 13-15 ft. bgs; and 05SB02 from 0-2 ft. bgs and 13-15 ft. bgs. Analytical results from soil samples indicate some compounds were detected above the laboratory reporting limit; however, no compounds exceeded the screening criteria in either of the four samples collected from PRL 5.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The soil boring locations showing detected compounds are depicted on **Figure 9**.

8.5 PRL 6: Current Fire Station (Bldg. 040)

8.5.1 PRL 6 Soil Analytical Results

Six soil samples from three soil borings were collected and analyzed as described in **Section 6.7.2**: 06SB01 from 0-2 ft. bgs and 13-15 ft. bgs; 06SB02 from 0-2 ft. bgs and 13-15 ft. bgs; and 06SB03 from 0-2 ft. bgs and 13-15 ft. bgs. Analytical results from soil samples indicate some PFCs were detected above the laboratory reporting limit; however, no compounds exceeded the screening criteria in the six samples collected from PRL 6.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The soil boring locations showing detected compounds are depicted on **Figure 9**.

8.5.2 PRL 6 Groundwater Analytical Results

One groundwater sample was collected from TW-01 and analyzed as described in **Section 6.7.3**. A field duplicate was collected at this location. Analytical results from the groundwater sample indicates that five of six PFCs were detected at concentrations above the laboratory detection limit, with two compounds exceeding USEPA Drinking Water HA. In the primary sample, PFOS was detected at an estimated concentration of 0.609 μ g/L. The combined PFOS and PFOA concentration in the primary sample is 0.6789 μ g/L. In the field duplicate sample, PFOS and PFOA were detected at estimated concentrations of 0.95 μ g/L and 0.0793 μ g/L respectively. The combined PFOS and PFOA concentration in the field duplicate sample is 1.0293 μ g/L.

Comparisons of analytical results to applicable criteria are presented on **Table 4**. The temporary monitoring well location showing detected compounds is illustrated on **Figure 9**.

8.6 PRL 7: Hush House

8.6.1 PRL 7 Soil Analytical Results

Four soil samples were collected and analyzed from two borings as described in **Section 6.8.2**: 07SB01 from 0-2 ft. bgs and 13-15 ft. bgs; and 07SB02 from 0-2 ft. bgs and 13-15 ft. bgs. Analytical results from soil samples indicate that PFOS was detected above the laboratory reporting limit in the 0-2 ft. sample at both locations; however, the other five PFCs were non-detect. PFCs were non-detect in the 13-15 ft. sample at locations 07SB01 and 07SB02. No compounds exceeded the screening criteria in the four samples collected from PRL 7.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The soil boring locations showing detected compounds are depicted on **Figure 10**.

8.6.2 PRL 7 Groundwater Analytical Results

One groundwater sample was collected from TW-05 and analyzed as described in **Section 6.8.3**. Analytical results from the groundwater sample indicates that five of six PFCs were detected at concentrations above the laboratory detection limit, with one compound exceeding the USEPA Drinking Water HA of 0.07 μ g/L. PFOS was detected at a concentration of 0.634 μ g/L in TW-05. The combined PFOS and PFOA concentration is 0.6937 μ g/L at this location.

Comparisons of analytical results to applicable screening criteria are presented on **Table 4**. The temporary monitoring well location showing detected compounds is illustrated on **Figure 10**.

8.7 PRL 8: Fire Department Equipment Test Area

8.7.1 PRL 8 Soil Analytical Results

Two soil samples were collected and analyzed as described in **Section 6.9.2**, 08SB01 from 0-2 ft. bgs and 08SB02 from 0-2 ft. bgs. Analytical results from soil samples indicate that some PFC compounds are present above the laboratory reporting limit; however, no compounds exceeded the screening criteria in either of the two soil samples collected from PRL 8.

Comparisons of analytical results to applicable screening criteria are presented on **Table 3**. The soil boring locations showing detected compounds are depicted on **Figure 10**.

8.7.2 PRL 8 Groundwater Analytical Results

One groundwater sample was collected from TW-04 and analyzed as described in **Section 6.9.3**. Analytical results from the groundwater sample indicates that two PFCs were detected at

concentrations above the laboratory detection limit; however, no compounds exceeded the screening criteria.

Comparisons of analytical results to applicable screening criteria are presented on **Table 4**. The temporary monitoring well location showing detected compounds is illustrated on **Figure 10**.

9.0 CONCLUSIONS/RECOMMENDATIONS

This section presents the SI conclusions and recommendations at each PRL. The recommended

DQOs are based upon data collected by Amec Foster Wheeler during this SI, and an evaluation

of results compared to applicable screening criteria.

9.1 PRL 1: Former FTA-01 (IRP Site 1)

A review of soil analytical data compared to soil screening criteria indicates there are no EPA RSL

exceedances for PFBS, and no Air Force Guidance screening level exceedances for PFOS or

PFOA at on-Base locations near PRL 1. The primary training area abuts the BANGB to the south;

therefore, PFC concentrations may be encountered in soil samples collected off-Base to the

south.

A review of groundwater data compared to screening criteria indicates an exceedance of the

USEPA Drinking Water HA exists at the southern Base boundary for PFOS. Given that

groundwater appears to flow to the south-southeast, groundwater with PFC concentrations above

applicable screening criteria is potentially present off-Base, to the south of PRL 1. PFOA and

PFBA did not exceed their respective screening criteria at this location.

Based on the SI results, the following DQOs are recommended for PRL 1:

Additional investigations to evaluate presence/absence of PFC in soil within the footprint

of the former FTA, beneath the IRP Site 1 excavation area.

Additional investigations to further evaluate concentrations of PFC in groundwater. This

should include a source evaluation and delineation to determine the nature and extent of

the release.

9.2 PRL 3: Stormwater Drainage Basin (IRP Site 4)

A review of sediment analytical data compared to screening criteria indicates there are no AF

Guidance screening level exceedances for PFOS or PFOA within the stormwater drainage basin.

A review of analytical data from MW-6 compared to screening criteria indicates there are no

exceedances of the USEPA Drinking Water HA for PFOS or PFOA, and no exceedances of the

EPA Tap Water RSL for PFBS downgradient from PRL 3, or at the Base boundary.

Based on the SI results, NFA is recommended for PRL 3.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base

March 2018

9.3 PRL 4: Hangars 27A and 27B

A review of soil analytical data compared to screening criteria indicates there are no EPA RSL exceedances for PFBS, and no AF Guidance screening level exceedances for PFOS or PFOA at

PRL 4.

A review of groundwater analytical data compared to screening criteria indicates an exceedance

of the USEPA Drinking Water HA for PFOS exists at the downgradient from PRL 4, at the Base

boundary. Since it appears that groundwater flows to the south-southeast, groundwater with PFC

concentrations above applicable screening criteria is potentially present off-Base, to the southeast

of PRL 4. However, PFOA and PFBA did not exceed their respective screening criteria at this

location.

Based on the SI results, the following DQOs are recommended for PRL 4:

Additional investigations to further evaluate concentrations of PFCs in groundwater. This

should include a source evaluation and delineation to determine the nature and extent of

the release.

9.4 PRL 5: Former Fire Station (Bldg. 004)

A review of soil analytical data compared to screening criteria indicates there are no EPA RSL

exceedances for PFBS, and no AF Guidance screening level exceedances for PFOS or PFOA at

PRL 5.

A review of groundwater data compared to screening criteria indicates an exceedance of the

USEPA Drinking Water HA for PFOS and PFOA exists downgradient from PRL 5, at the Base

boundary. This determination was made based on concentrations observed in TW-01, which was

installed to assess groundwater conditions downgradient from both PRL 5 and PRL 6. Given that

groundwater flows to the south-southeast, groundwater with PFC concentrations above

applicable screening criteria is potentially present off-Base, to the southeast of PRL 5. PFBA did

not exceed its respective screening criteria at this location.

Based on the SI results, the following DQOs are recommended for PRL 5:

Additional investigations to further evaluate concentrations of PFC in groundwater. This

should include a source evaluation and delineation to determine the nature and extent of

the release.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base

9.5 PRL 6: Current Fire Station (Bldg. 040)

A review of soil analytical data compared to screening criteria indicates there are no EPA RSL exceedances for PFBS, and no AF Guidance screening level exceedances for PFOS or PFOA at

PRL 6.

A review of groundwater data compared to screening criteria indicates an exceedance of the

USEPA Drinking Water HA for PFOS and PFOA exists at the downgradient well from PRL 6, at

the Base boundary. This determination was made based on concentrations observed in TW-01,

which was installed to assess groundwater conditions downgradient from both PRL 5 and PRL 6.

Given that groundwater flows to the south-southeast, groundwater with PFC concentrations

above applicable screening criteria is potentially present off-Base, to the southeast of PRL 6.

PFBA did not exceed its respective screening criteria at this location.

Based on the SI results, the following DQOs are recommended for PRL 6:

• Additional investigations to further evaluate concentrations of PFC in groundwater.

This should include a source evaluation and delineation to determine the nature and

extent of the release.

9.6 PRL 7: Hush House

A review of soil analytical data compared to screening criteria indicates there are no EPA RSL

exceedances for PFBS, and no AF Guidance screening level exceedances for PFOS or PFOA at

PRL 7.

A review of groundwater data compared to screening criteria indicates an exceedance of the

USEPA Drinking Water HA for PFOS exists downgradient from PRL 7, at the Base boundary.

Given that groundwater flows to the south-southeast, groundwater with PFC concentrations

above applicable screening criteria is potentially present off-Base, to the south of PRL 7. PFOA

and PFBA did not exceed their respective screening criteria at this location.

Based on the SI results, the following DQOs are recommended for PRL 7:

Additional investigations to further evaluate concentrations of PFC in groundwater. This

should include a source evaluation and delineation to determine the nature and extent of

the release.

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

9.7 PRL 8: Fire Department Equipment Test Area

A review of soil analytical data compared to screening criteria indicates there are no EPA RSL

exceedances for PFBS, and no AF Guidance screening level exceedances for PFOS or PFOA at

on-Base locations near PRL 8. The primary equipment test area abuts the BANGB to the south;

therefore, PFC concentrations in soil may be observed off-Base to the south.

A review of groundwater data compared to screening criteria found no exceedances of the

USEPA Drinking Water HA for PFOS or PFOA, and no exceedances of the EPA Tap Water RSL

for PFBS at the southern Base boundary. Since groundwater appears to flow to the south-

southeast, TW-04 would be hydraulically upgradient from the equipment test area; therefore, PFC

concentrations in groundwater from a potential release may be observed off-Base to the south of

that sample point.

Based on the SI results, the following DQOs are recommended for 8:

• Additional investigations to evaluate presence/absence of PFC in soil within the footprint

of the equipment test area.

· Additional investigations to further evaluate concentrations of PFC in groundwater

downgradient from the fire department equipment test area. This should begin with a

source evaluation, then assess the extent of the release if PFC compounds are detected

above the Screening criteria during the source evaluation.

9.8 PRL Sites Summary

In summary, additional investigations are recommended for six PRLs and NFA is recommended

for one PRL.

SI activities did not encounter PFCs exceeding screening criteria in soil samples collected at on-

base locations; however, two PRLs (PRL 1 and PRL 8) are primarily located off-base. Since

sampling was limited to the northern fringes at these two PRLs, Amec Foster Wheeler cannot

conclusively state whether soil screening criteria were exceeded at PRL 1 and PRL 8. Based on

these findings, Amec Foster Wheeler recommends additional investigations at the following two

PRLs to evaluate soil conditions:

PRL 1

PRL 8

SI activities determined that five PRLs have USEPA Drinking Water HA exceedances at the Base

Final Report, FY16 Site Inspections 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base March 2018

boundary. There were no HA exceedances in groundwater at PRL 8. However, PFC compounds were detected above laboratory detection limits in the sample from PRL 8. Based on these findings Amec Foster Wheeler recommends additional investigations at the following six PRLs to further evaluate groundwater conditions:

- PRL1
- PRL 4
- PRL 5
- PRL 6
- PRL 7
- PRL 8

SI activities determined that one PRL did not have exceedances of applicable screening criteria for any media tested. Based on these findings, Amec Foster Wheeler recommends NFA at the following PRL:

PRL 3

These recommendations are summarized in the following table:

PRL		g Criteria edance	Recommendation
	Soil	GW	
PRL 1: Former FTA (IRP Site 1)	Inc.	Х	Soil investigation to determine if PFCs exceed screening criteria off-Base. Groundwater (GW) investigation to determine the nature and extent of the confirmed release.
PRL 3: Stormwater Drainage Basin			NFA
PRL 4: Hangars 27A & 27B		X	GW investigation to determine the nature and extent of the confirmed PFC release.
PRL 5: Former Fire Station, Bldg. 004		×	GW investigation to determine the nature and extent of the confirmed PFC release.
PRL 6: Current Fire Station, Bldg. 040		×	GW investigation to determine the nature and extent of the confirmed PFC release.
PRL 7: Hush House		X	GW investigation to determine the nature and extent of the confirmed PFC release.
PRL 8: Fire Department Equipment Test Area	Inc.	Inc.	Soil and GW investigation to determine if PFCs exceed screening criteria off-Base.

Notes:

Inc. - Inconclusive based on results of SI

X – Screening criteria exceedance

10.0 REFERENCES

- AECOM, 2010. Military Munitions Response Program, Final Comprehensive Site Evaluation Phase II Report, Barnes Air National Guard Base, Westfield, Massachusetts. AECOM, 2010.
- AECOM, 2014. Work Plan for the Regional Compliance Restoration Program Preliminary Assessment/Site Inspection, Barnes Air National Guard Base, Westfield, Massachusetts. AECOM, 2014.
- Amec, 2017. Final Work Plan, FY16 Phase 1 Regional Site Inspections for Perfluorinated Compounds, 104th Fighter Wing, Massachusetts Air National Guard, Barnes Air National Guard Base, Westfield, Massachusetts. April 2017.
- Aneptek, 2003. Final Installation Restoration Program Phase II Comprehensive Site Assessment FUST Site 1. RTN 1-0288. March 2003.
- ANG, 2009. *Air* National Guard Investigation Guidance, *Environmental Restoration Program.* September 2009.
- ANG, 2016. 104th Fighter Wing Fact Sheet. [http://www.104fw.ang.af.mil/resources/factsheet.asp?id=12228]. December 2016.
- BB&E, 2016. Final Perfluorinated Compounds Preliminary Assessment Site Visit Report, Massachusetts Air National Guard, Barnes Air National Guard Base, Westfield, Massachusetts. January 2016.
- DoD, 2017. DoD Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.1, January 2017
- MAANG, 2010. Stormwater Management Plan. 104th Fighter Wing, Massachusetts Air National Guard, Barnes Municipal Airport, Westfield, Massachusetts. July 2010.
- MassDEP, 2014. Massachusetts Contingency Plan, 310 CMR 40.00. Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup. April 25, 2014.
- NRCS, 2017. Natural Resources Conservation Services Web Soil Survey

- [https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx]. October 2017.
- USAF, 2012. Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations.
- USEPA, 2009. Method 537. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Version 1.1. EPA Document #: EPA/600/R-08/092. September 2009.
- USEPA, 2012. Federal Register, Volume 77, No. 85, Revisions to the Unregulated Contaminant Monitoring Rule (UCMR 3) for Public Water Systems; Final Rule. May 2, 2012.
- USEPA, 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS), EPA 822-R-16-004. United States Environmental Protection Agency, May 2016.
- USEPA, 2016b. *Drinking Water Health Advisory for Perfluotooctanoic Acid (PFOA), EPA 822-R-16-005.* Unites States Environmental Protection Agency, May 2016.
- USEPA, 2017. EPA Regional Screening Levels [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017], June 2017.
- Westfield, 2016. *City of Westfield, Water Resources Webpage.* http://www.cityofwestfield.org/index.aspx?NID=230
- Zen, 1983. Bedrock Geologic Map of Massachusetts.

TABLES

Table 1

Preliminary Assessment Recommendations

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base, Westfield, Massachusetts

	List of PRLs	
PRL	Use	Recommendation
1. Former FTA-01	Off-Base Former Fire Training Area	Soil and Groundwater Inspection
3.Stormwater Drainage Basin (IRP Site 4)	Drainage Basin Receiving Stormwater from Flight Line, Hangars, and Buildings on the Flight Line	Sediment and Groundwater Inspection
4. Hangars 27A and 27B	Hangar with AFFF FSS	Soil and Groundwater Inspection
5. Former Fire Station (Bldg. 004)	Former Fire Station	Soil and Groundwater Inspection
6. Current Fire Station (Bldg. 040)	Fire Station	Soil and Groundwater Inspection
7. Hush House	Hush House with AFFF FSS	Soil and Groundwater Inspection
8. Fire Dept. Equipment Test Area	Off-Base Former Fire Department Equipment Test Area	Soil and Groundwater Inspection

Notes:

Recommendations provided by BB&E, Inc. in the Final Perfluorinated Compounds Preliminary Assessment Site Visit Report (BB&E, 2016)

PRL - Potential Release Location

FTA – Fire Training Area IRP – Installation Restoration Program

AFFF – Aqueous Film Forming Foam

FSS – Fire Suppression System

Bldg. - Building

Table 2 **Summary of Site Inspection Activities**

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base, Westfield, Massachusetts

PRL Name	Analyzed Parameters ¹	Soil Borings	Soil Samples	Groundwater Samples Existing Wells	Groundwater Samples Temporary Wells	Surface Water Samples	Sediment Samples
1. Former FTA-01 (IRP Site 1)	PFCs	2	2	0	1	0	0
3. SW Drainage Basin (IRP Site 4)	PFCs	0	0	1	0	0	2
4. Hangars 27A and 27 B	PFCs	3	6	0	1	0	0
5. Former Fire Station (Bldg. 004)	PFCs	2	4	0	0	0	0
6. Current Fire Station (Bldg. 040 S)	PFCs	3	6	0	1	0	0
7. Hush House	PFCs	2	4	0	1	0	0
8. Fire Department Equipment Test Area	PFCs	2	2	0	1	0	0

Notes:

PRL - Potential Release Location

FTA – Fire Training Area

IRP – Installation Restoration Program PFC – Perfluorinated Compound

Bldg. - Building

¹ Soil, groundwater, and sediment samples were collected and analyzed for the PFCs listed on the USEPA's Third Unregulated Contaminant Monitoring Rule (UCMR3) list

Table 3

Summary of Soil Analytical Testing Results

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds 104th Fighter Wing, Massachusetts Air National Guard Barnes Air National Guard Base, Westfield, Massachusetts

					Analyte:	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (AOT9)	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (AqH79)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)
				Screeni	Screening Level:	1.261	1.261	1300²	NA	NA	AN
PRL	Location	Sample ID	Sample Date	Sample Depth (ft.)	Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
7	BARNS-01-SB01	BARNS-01-SB01-062617-0-2	26-Jun-17	0.0-2.0	z	0.00493	0.000828J	0.00102U	0.000334J	0.000894J	0.00102U
7	BARNS-01-SB02	BARNS-01-SB02-062617-0-2	26-Jun-17	0.0-2.0	z	0.0121	0.000090	O.000099 U	0.000090	0.000314J	0.000090
		BARNS-04-SB01-062617-0-2	26-Jun-17	0.0-2.0	Z	0.000388J	0.000946U	0.000946U	0.000946U	0.000946U	0.000946U
	BARNS-04-SB01	BARNS-04-SB01-062617-Dup	26-Jun-17	0.0-2.0	FD	0.000601J	0.001U	0.001U	0.001U	0.001U	0.001U
		BARNS-04-SB01-062917-13-15	29-Jun-17	13.0-15.0	Z	0.000995U	0.000995U	0.000995U	0.000995 U	0.000995U	0.000995 U
4	COAS NO SINGVA	BARNS-04-SB02-062617-0-2	26-Jun-17	0.0-2.0	Z	0.000325J	0.001U	0.001U	0.001U	0.001U	0.001U
	DANN3-04-3D02	BARNS-04-SB02-062917-13-15	29-Jun-17	13.0-15.0	z	0.000977U	0.000977U	0.000977U	0.000977U	0.0000977U	0.0000977 U
	BABNIC DA CBO2	BARNS-04-SB03-062617-0-2	26-Jun-17	0.0-2.0	Z	0.001991	0.00101U	0.00101U	0.00101U	0.00101U	0.00101U
	DANN3-04-3B03	BARNS-04-SB03-062917-13-15	29-Jun-17	13.0-15.0	Z	0.00327	0.000984U	0.000984U	0.000984U	0.000984U	0.000984U
		BARNS-05-SB01-062717-0-2	27-Jun-17	0.0-2.0	z	0.115J	0.00264	0.000998U	0.000403J	0.0048	0.000998 U
	BARNS-05-SB01	BARNS-05-SB01-062717-DUP	27-Jun-17	0.0-2.0	FD	0.208J	0.00329	0.00107U	0.000425J	0.00556	0.00107U
2		BARNS-05-SB01-062917-13-15	29-Jun-17	13.0-15.0	z	0.427	0.00538	0.000978U	0.000978 U	0.00826	0.000978U
	BABNIC DE CBO3	BARNS-05-SB02-062717-0-2	27-Jun-17	0.0-2.0	Z	0.00719	0.000979 U	0.0000979 U	0.0000979 U	0.000384J	0.0000979
	2095-00-50005	BARNS-05-SB02-062917-13-15	29-Jun-17	13.0-15.0	z	0.000434J	0.000972U	0.000972U	0.000972U	0.000371J	0.000972U
	LOBY OF CRO1	BARNS-06-SB01-062617-0-2	26-Jun-17	0.0-2.0	Z	0.00249	0.000983 U	0.000983U	0.000983 U	0.000983 U	0.000983 U
	DANNS-00-SDOT	BARNS-06-SB01-062917-13-15	29-Jun-17	13.0-15.0	Z	0.0018J	0.000285J	0.000992U	0.000992U	0.00133J	0.000992U
y	COAS 90 SINAVA	BARNS-06-SB02-062617-0-2	26-Jun-17	0.0-2.0	Z	0.0733	0.000518J	0.000949U	0.000949 U	0.00458	0.00056J
o	DANN3-00-3502	BARNS-06-SB02-062917-13-15	29-Jun-17	13.0-15.0	Z	0.118	0.000864J	0.000963 U	0.000963 U	0.00611	0.000963 U
	CUAS 90 SINAVA	BARNS-06-SB03-062617-0-2	26-Jun-17	0.0-2.0	z	0.172	0.000922J	0.000998U	0.000998 U	0.00333	0.00061J
	DANIA 2-00-2003	BARNS-06-SB03-062917-13-15	29-Jun-17	13.0-15.0	Z	0.000304J	0.000982U	0.000982U	0.000982U	0.000982U	0.000982U
7	BARNS-07-SB01	BARNS-07-SB01-062617-0-2	26-Jun-17	0.0-2.0	z	0.000921J	0.000947U	0.000947U	0.000947U	0.000947U	0.000947U

Page 1 of 2 Report Date: 10/12/2017

Report Date: 10/12/2017

Summary of Soil Analytical Testing Results

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds Barnes Air National Guard Base, Westfield, Massachusetts 104th Fighter Wing, Massachusetts Air National Guard

Screening Level: 1.26¹ 1.26¹ 1300² Sample Date Sample Date Cft.) Type mg/kg mg/kg mg/kg BARNS-07-SB01-062917-13-15 29-Jun-17 13.0-15.0 N 0.00102U 0.00102U 0.00101U BARNS-07-SB02-062617-0-2 26-Jun-17 0.0-2.0 N 0.00153J 0.00101U 0.00101U BARNS-08-SB01-062617-0-2 26-Jun-17 13.0-15.0 N 0.00101U 0.00101U 0.00101U BARNS-08-SB01-062617-0-2 26-Jun-17 0.0-2.0 N 0.00913 0.000928U 0.000928U BARNS-08-SB01-062617-0-2 26-Jun-17 0.0-2.0 N 0.00931 0.00091U 0.00091U						Analyte:	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (AqH79)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorononanoic acid (APAQ)
Location Sample Date (ft.) Sample Depth (ft.) Type (ft.) mg/kg mg					Screenir	ng Level:	1.261	1.261	1300^{2}	NA	NA	NA
BARNS-07-SB01 BARNS-07-SB01-062917-13-15 29-Jun-17 13.0-15.0 N 0.00102U 0.00102U 0.00102U BARNS-07-SB02 26-Jun-17 26-Jun-17 0.0-2.0 N 0.00153J 0.00101U 0.00101U BARNS-08-SB01 BARNS-08-SB01-062817-13-15 28-Jun-17 13.0-15.0 N 0.00101U 0.00101U 0.00101U BARNS-08-SB01 BARNS-08-SB01-062617-0-2 26-Jun-17 0.0-2.0 N 0.00933 0.000928U 0.000919U	PRL	Location	Sample ID	Sample Date	Sample Depth (ft.)	Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BARNS-07-SB02 BARNS-07-SB02-062617-0-2 26-Jun-17 0.0-2.0 N 0.00153J 0.00101U 0.00101U BARNS-07-SB02 062817-13-15 28-Jun-17 13.0-15.0 N 0.00101U 0.00101U 0.00101U BARNS-08-SB01 BARNS-08-SB01-062617-0-2 26-Jun-17 0.0-2.0 N 0.00928 U 0.000928 U BARNS-08-SR02 BARNS-08-SR02 BARNS-08-SR02 0.000919 U 0.000919 U 0.000919 U		BARNS-07-SB01	BARNS-07-SB01-062917-13-15	29-Jun-17	13.0-15.0	z	0.00102U	0.00102U	0.00102 U	0.00102U	0.00102 U	0.00102U
BARNS-08-SB01 BARNS-08-SB01-062817-13-15 28-Jun-17 13.0-15.0 N 0.00101U 0.00101U 0.00101U BARNS-08-SB01 BARNS-08-SB01 26-Jun-17 0.0-2.0 N 0.00928 0.000928U BARNS-08-SB02 BARNS-08-SR02 0.006911 0.000919U 0.000919U 0.000919U	7	2002 20 2140 4 0	BARNS-07-SB02-062617-0-2	26-Jun-17	0.0-2.0	z	0.00153	0.00101U	0.00101U	0.00101U	0.00101U	0.00101U
BARNS-08-SB01 BARNS-08-SB01 C62617-0-2 26-Jun-17 0.0-2.0 N 0.00913 0.000928U 0.000928U BARNS-08-SR02 BARNS-08-SR02 BARNS-08-SR02 C6-1111-17		BAKINS-U7-SBUZ	BARNS-07-SB02-062817-13-15	28-Jun-17	13.0-15.0	Z	0.00101U	0.00101U	0.001010	0.00101U	0.00101U	0.00101U
BARNS-08-SR02 BARNS-08-SR02-062617-0-2 26-1111-17 0.0-2 0 N 0.00692 0.00091911 0.00091911	۰	BARNS-08-SB01	BARNS-08-SB01-062617-0-2	26-Jun-17	0.0-2.0	Z	0.00913	0.000928U	0.000928U	0.000928U	0.000928U	0.000928U
	。	BARNS-08-SB02	BARNS-08-SB02-062617-0-2	26-Jun-17	0.0-2.0	z	0.00692	0.000919U	0.000919U	0.000919U	0.00263	0.000919U

Notes: Light Blue Shaded = Exceeds Screening Level

FD = Field Duplicate Sample

ID = Identification

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

N = Normal Field Sample

NA = Not applicable

PRL - Potential Release Location

 $\label{eq:control} U = \mbox{The analyte was analyzed for, but was not detected above the reported limit of detection (LOD).}$

mg/kg = milligrams per kilogram PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

Screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]

*EPA Residential Screening Levels (June 2017) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017]

Page

Summary of Groundwater Analytical Testing Results Table 4

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds Barnes Air National Guard Base, Westfield, Massachusetts 104th Fighter Wing, Massachusetts Air National Guard

					_					$\overline{}$
Perfluorononanoic acid (PFNA)	NA	NA	1/8rl	0.00432 J	0.00517 U	0.00525 J	0.00504 U	0.00504 U	0.005 U	0.00508 U
Perfluorohexanesulfonic acid (PFHxS)	ΝΑ	۷N	7/8rl	0.319	0.0108	0.0305	0.641	0.737	0.694	0.0196
Perfluoroheptanoic acid (PFHpA)	AN	ΥN	7/8n	0.0287	0.00517 U	0.00505 J	0.02	0.0238	0.0275	0.00508 U
Perfluorobutanesulfonic acid (PFBS)	NA	400	7/8n	0.0128	0.00517 U	0.00358J	0.0395	0.0426	0.0535	0.00508 U
AO49+PO4	0.07	VΝ	7/8n	0.1465	9600'0	0.1046	6829.0	1.0293	2869.0	NA
Perfluorooctanoic acid (PFOA)	0.07	NA	hg/L	0.0455	0.00276 J	0.0052 J	0.0699	0.0793	0.0597	0.00508 U
Perfluorooctanesulfonic acid (PFOS)	0.07	NA	hg/L	0.101	0.00684 J	0.0994	0.609 J	0.95 J	0.634	0.0038 J
					0					
Analyte:	dvisory:	pwater¹:	Sample Type	z	0 N	N	N	FD	N	z
Analyte:	Health Advisory:	EPA RSL Tapwater ¹ :	Sample Sample Depth (ft.) Type	37.0-37.0 N			37.0-37.0 N	37.0-37.0 FD	N 0.0-49.0	37.0-37.0 N
Analyte:	Health Advisory:	EPA RSL Tapwater ¹ :		7.0-37.0	.5.0-25.0 N	Z		7.0-37.0	9.0-49.0	7.0-37.0
Analyte:	Health Advisory:	EPA RSL Tapwater ¹ :	Sample Depth (ft.)	37.0-37.0	25.0-25.0 N	30.0-30.0 N	37.0-37.0	37.0-37.0	49.0-49.0	37.0-37.0
Analyte:	Health Advisory:	EPA RSL Tapwater ¹ :	Sample Sample Date Depth (ft.)	29-Jun-17 37.0-37.0	30-Jun-17 25.0-25.0 N	28-Jun-17 30.0-30.0 N	28-Jun-17 37.0-37.0	BARNS-06-GW-TW01-062817-Dup 28-Jun-17 37.0-37.0	29-Jun-17 49.0-49.0	30-Jun-17 37.0-37.0

Notes:

Light Blue Shaded = Exceeds Health Advisory

Underlined results exceed the EPA RSL standard.

FD = Field Duplicate Sample

2. If either PFOA or PFOS is detected at or above the DL and the other is below the DL, then PFOA + PFOS is reported as "NA" representing Not Applicable.

PFOS+PFOA = Co-occurrence of PFOA and PFOS (PFOA + PFOS) in aqueous samples is reported using the following guidelines.

1. If both PFOA and PFOS are detected at or above the detection limit (DL), then the sum of PFOA+ PFOS is reported.

3. If neither PFOA nor PFOS is detected at or above the DL, then PFOA + PFOS is reported as "ND" representing Not Detected.

ID = Identification

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

N = Normal Field Sample NA = Not applicable PRL = Potential Release Location

U = The analyte was analyzed for, but was not detected above the reported limit of detection (LOD). μg/L = micrograms per liter PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

Health Advisory from USEPA Office of Water, 2016a and 2016b, Health Advisories (HAs) for drinking water.

'EPA Regional Screening Levels (June 2017) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-june-2017]

Report Date: 10/12/2017

Summary of Sediment Analytical Testing Results

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds Barnes Air National Guard Base, Westfield, Massachusetts 104th Fighter Wing, Massachusetts Air National Guard

					Analyte:	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (AO79)	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (AqH79)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)
				Scree	Screening Level:	1.261	1.261	NA	NA	NA	NA
PRL	Location	Sample ID	Sample Date	Sample Depth (ft.)	Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	BARNS-03-SD01	BARNS-03-SD01-062717-0-2	27-Jun-17	0.0-2.0	Z	0.00138J	0.000941U	0.000941U	0.000941U	0.000941U	0.000941U
3	COOS CO SING VO	BARNS-03-SD02-062717-0-2	27-Jun-17	0.0-2.0	Z	0.0028	0.00092U	0.00092U	0.00092 U	0.000629J	0.00092U
	DARINS-03-3D02	BARNS-03-SD02-062717-Dup	27-Jun-17	0.0-2.0	FD	0.0029	0.00102U	0.00102U	0.00102 U	0.000501J	0.00102U

Light Blue Shaded = Exceeds Screening Level

FD = Field Duplicate Sample

ID = Identification J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

N = Normal Field Sample

NA = Not applicable
PRL = Potential Release Location
U = The analyte was analyzed for, but was not detected above the reported limit of detection (LOD).

mg/kg = milligrams per kilogram PFAS analysis by Modified USEPA Method 537 using Liquid Chromatography and Tandem Mass Spectrometry

'Screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]

Table 6 SI Screening Criteria

FY16 Phase I Regional Site Inspections for Perfluorinated Compounds
104th Fighter Wing, Massachusetts Air National Guard
Barnes Air National Guard Base, Westfield, Massachusetts

Parameter	Chemical Abstract	EPA Re Screening L (June 2	evel Table	Air Force Guidance for Soils and	EPA Health Advisory Drinking Water
	Number	Residential Soil (μg/kg)	Tap Water ^f (µg/L)	Sediments ^b (µg/kg)	(Surface Water or Groundwater) (μg/L) ^c
Perfluorobutane sulfonate (PFBS)	375-73-5	1,300,000 ^d	400 ^e	NL	NL
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	
Perfluorooctane sulfonate (PFOS)	1763-23- 1	NL	NL	1,260	0.07 ^g

^a EPA Regional Screening Levels (USEPA, 2017).

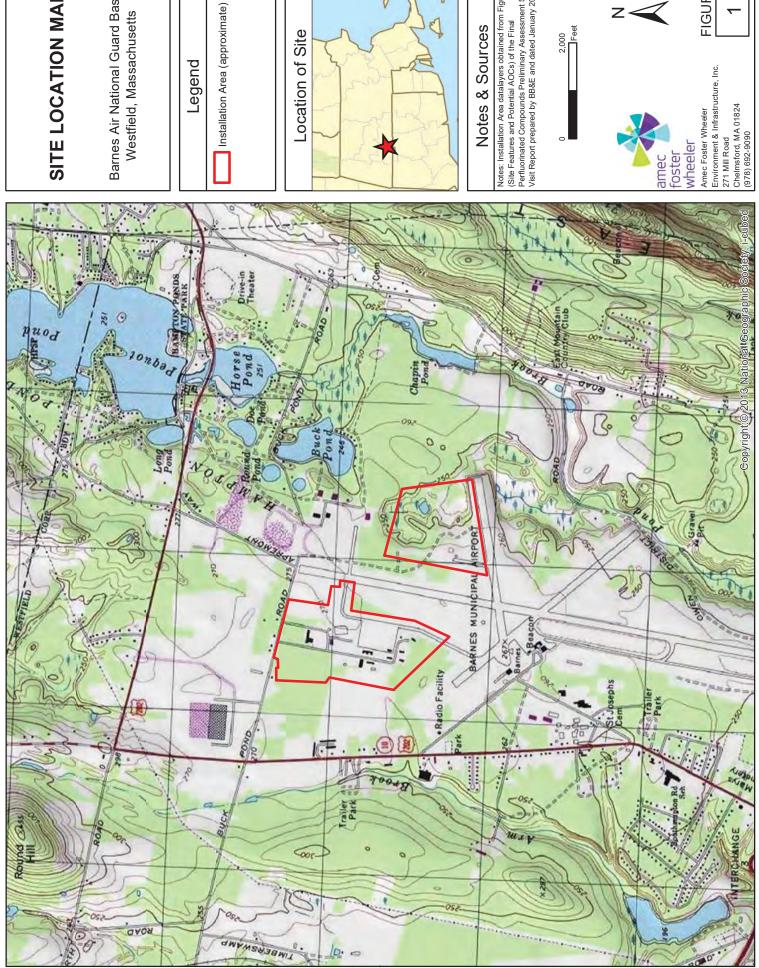
Only groundwater was sampled during the SI, but analytical results have been compared to the tap water screening levels.

EPA = U.S. Environmental Protection Agency

NL = not listed

^b Screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search]. The toxicity value input for the calculator is the Tier 3 value reference dose of 0.00002 mg/kg/day derived by USEPA in their Drinking Water Health Advisories for both PFOS (USEPA, 2016a) and PFOA (USEPA, 2016b).

[°] USEPA, 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) and USEPA, 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS).


^d PFBS RSL for Residential Soil concentration presented in SI Work Plan (Amec, 2017) was 1,600,000 μg/kg based on the May 2016 RSL values. This table has been updated to include the more recent RSL values published in June 2017.

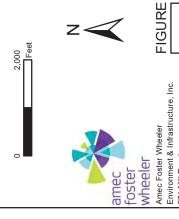
^e PFBS RSL for Tap Water presented in the SI Work Plan (Amec, 2017) was 380 μg/L based on the May 2016 RSL values. This table has been updated to include the more recent RSL values published in June 2017.

Only groundwater was sampled during the SI, but analytical results have been compared to the tap water screening levels.

⁹ Note: When PFOA and PFOS are both present, the combined detected concentrations of the compounds are compared with the 0.07 µg/L health advisory value.

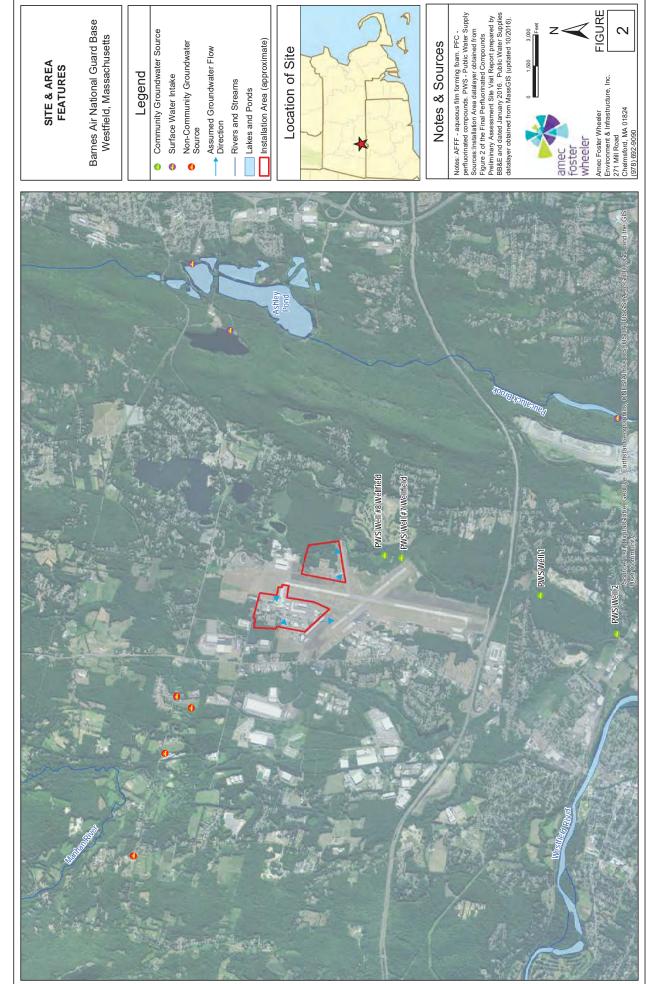
FIGURES

SITE LOCATION MAP


Barnes Air National Guard Base Westfield, Massachusetts

Legend

Location of Site


Notes & Sources

Notes: Installation Area datalayers obtained from Figure ? (Site Features and Potential AOCs) of the Final Perfluorinated Compounds Preliminary Assessment Site Visit Report prepared by BB&E and dated January 2016.

Environment & Infrastructure, Inc. 271 Mill Road Chelmsford, MA 01824 (978) 692-9090

H:VANG\Westfield_MA\Task5\MXD\Report\Fig1_Barnes_SiteLocus.mxd_December 27, 2016_DWN: emily.gardiner CHKD: AKN

H:ANG!Westfield_MA!Task5!WXD\Report\Fig2_Barnes_SiteAreaFeatures.mxd_Odober 13, 2017_DWN: emily.gardiner_CHKD: AKN

PRL SAMPLE LOCATIONS

Barnes Air National Guard Base Westfield, Massachusetts

Legend

- Soil Sample
- Sediment Sample
- Existing Monitoring Well
- Assumed Groundwater Flow Direction

Potential AFFF PFC PRL (approximate) Installation Area (approximate)

Notes & Sources

Notes: AFFF - aqueous film forming foam. PRL - potential release location. PRC - potential release location. PRC - performinated compounds Sources: Potential AFFF PFC PRLs and instillation Area datalayers obtained from Figure 2 of the Final Perflucintated Compounds Preliminary Assessment Site Visit Report prepared by BBSE and dated January 2016.

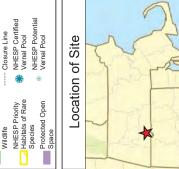
Amec Foster Wheeler Environment & Infrastructure, Inc. 271 Mill Road Chelmsford, MA 01824 (978) 692-9090

H:ANG\Westfield_MA\Task5\MXD\Report\Fig3_Bames_SampleLocations.mxd_October 13, 2017_DWN: emily.gardiner CHKD: CK

NHESP Estimated Habitats of Rare Wildlife Installation Area (approximate) Assumed GW Flow Direction

CRITICAL HABITAT MAP

Barnes Air National Guard Base Westfield, Massachusetts


Marsh/Bog

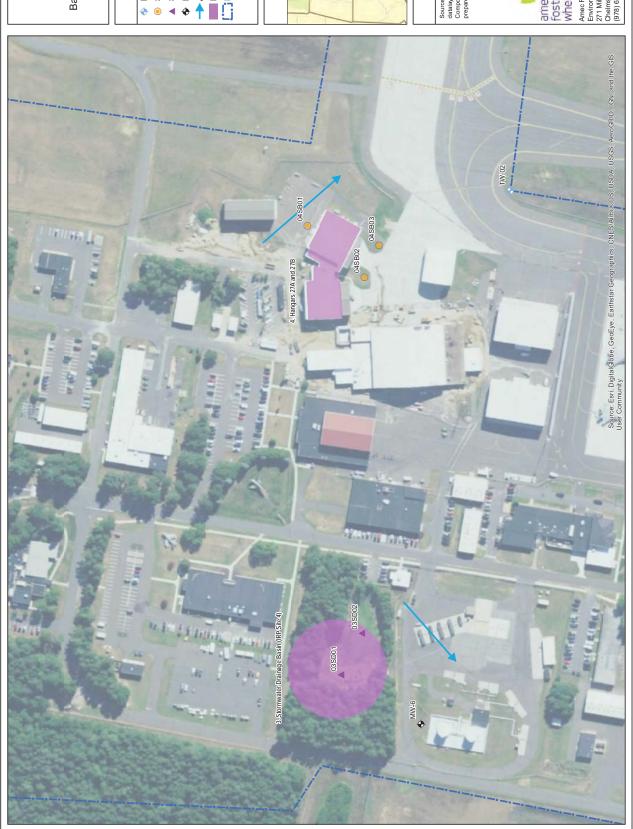
Legend

---- Wetland Limit

Hydrologic Connection

Open Water

Notes & Sources


Perfluorinated Compounds Preliminary Assessment Site Visit Report prepared by BR&E and dated January 2016. NHESP Estimated Hebitat of Rare Wildlife. NHESP Priority Hebitat of Rare Species, Protected Open Space, MassDEP Worlands (polyline & polygon features). NHESP Certified Vernal Pools, & NHESP Potential Vernal Pools datalayers obtained from MassGIS. lease location. PFC - perfluorinated compounds burces: Potential AFFF PFC PRLs and Installation Area ttalayers obtained from Figure 2 of the Final lotes: AFFF - aqueous film forming foam. PRL - potenti

Wheeler Amec Foster Wheeler Environment & Infrastructure, Inc. 271 Mill Road Chelmsford, MA 01824 (978) 692-9090

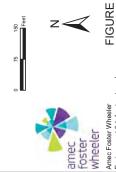
FIGURE

H:\ANG\Westfield_MA\Task5WXD\Report\Fig4_Barnes_CriticalHabitatMap.mxd October 13, 2017 DWN: emily.gardiner CHKD: AKN

PRLs 3 & 4 SAMPLE LOCATIONS

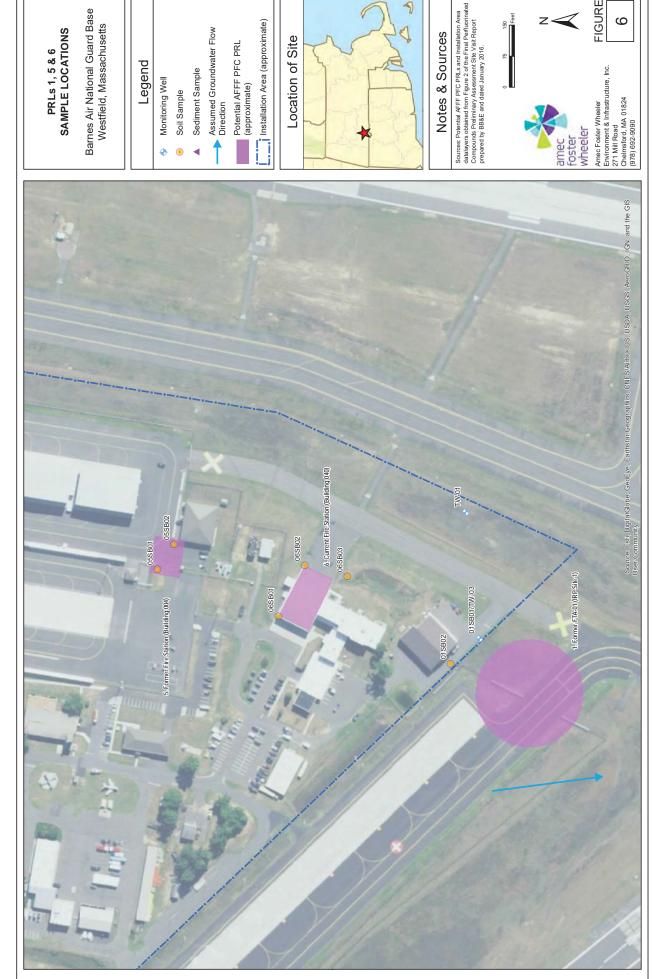
Barnes Air National Guard Base Westfield, Massachusetts

Legend


- Monitoring Well
 - Soil Sample
- Sediment Sample
- Assumed Groundwater Flow Direction Existing Monitoring Well
- Potential AFFF PFC PRL (approximate) [] Installation Area (approximate)

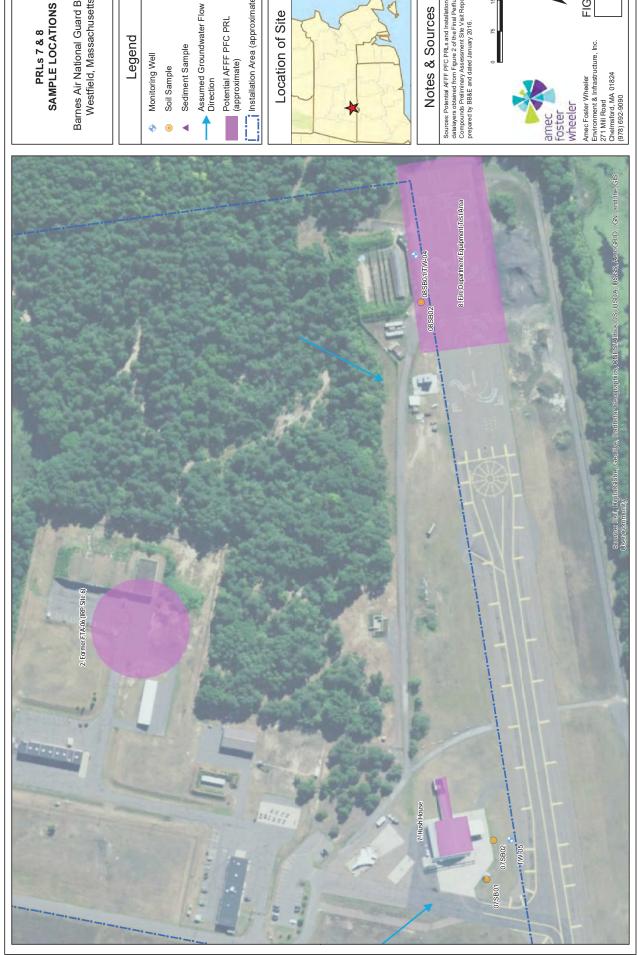
Location of Site

Notes & Sources


Sources: Potential AFFF PFC PRLs and Installation Area datalayers obtained from Egyter 2 of the Final Perflucintal Compounds Preliminary Assessment Sile Visit Report prepared by BB&E and dated January 2016.

Amec Foster Wheeler Environment & Infrastructure, Inc. 271 Mill Road Chelmsford, MA 01824 (978) 692-9090

2


H:\ANG\Westfield_MA\Task5\WXD\Report\Fig5_Bames_PRL-3-4.mxd October 13, 2017 DWN: emily.gardiner CHKD: CK

H:ANG\Westfield_MA\Task5\MXD\Report\Fig6_Bames_PRL-1-5-6.mxd October 13, 2017 DWN: emily.gardiner CHKD: CK

FIGURE

9

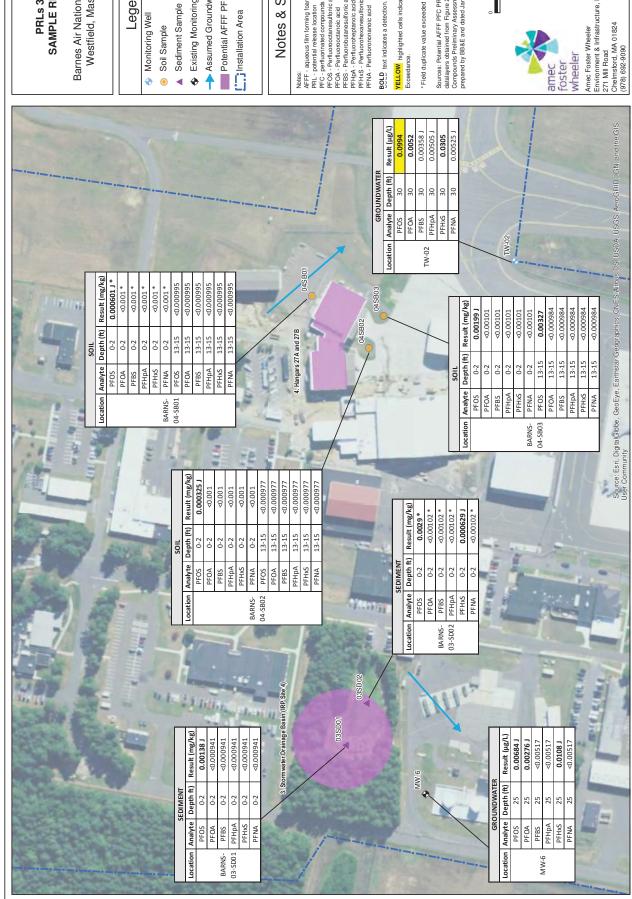
PRLs 7 & 8 SAMPLE LOCATIONS

Barnes Air National Guard Base Westfield, Massachusetts

Legend

Potential AFFF PFC PRL (approximate)

Installation Area (approximate)


Location of Site

Notes & Sources

Sources: Potential AFFF PFC PRLs and installation Area adalates es behaved from Figure 2 of the Final Perfluornated Compounds Preliminary Assessment Sile Visit Report prepared by BB&E and dated January 2016.

FIGURE

H:\ANG\Westfield_MA\Task5\MXD\Report\Fig8_Barnes_PRL-3-4.mxd October 13, 2017 DWN: emily.gardiner CHKD: CK

PRLs 3 & 4 SAMPLE RESULTS

Barnes Air National Guard Base Westfield, Massachusetts

Legend

- Existing Monitoring Well
- Assumed Groundwater Flow Direction
 - Potential AFFF PFC PRL

Installation Area

Notes & Sources

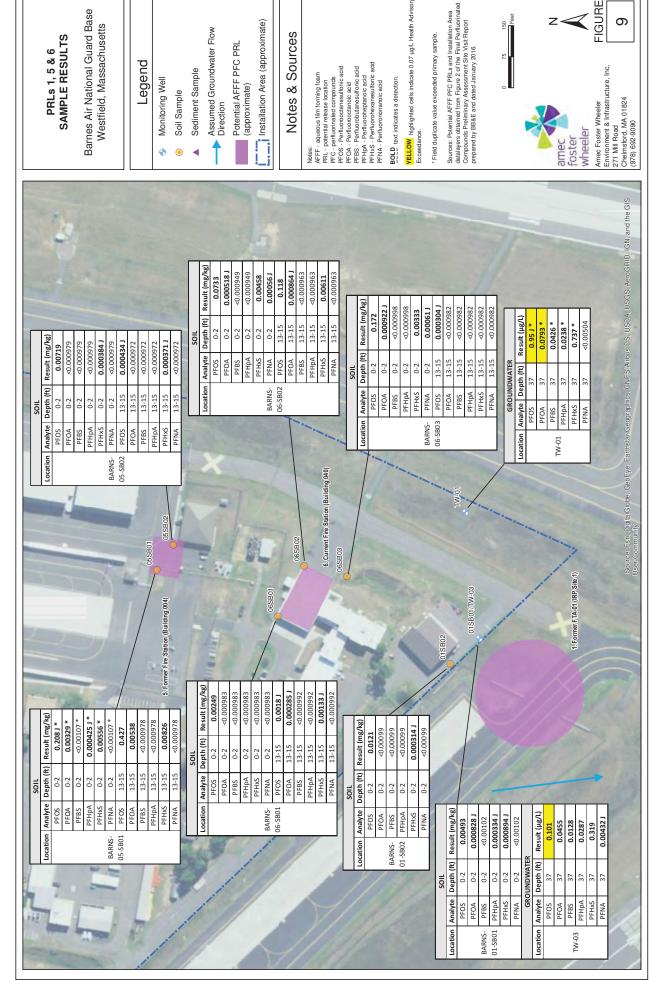
Notes:
AFF - aqueous film forming foam
PRL - potential release location
PRC - perfluorinated compounds
PPCA - Perfluorodatenssulfonic acid
PFCA - Perfluorodatenoic acid
PFBS - Perfluorobutanesulfonic acid

PFHpA - Perfluoroheptanoic acid PFHxS - Perfluorohexanesulfonic acid PFNA - Perfluorononanoic acid

BOLD text indicates a detection

YELLOW highlighted cells indicate 0.07 µg/L Health Advisor

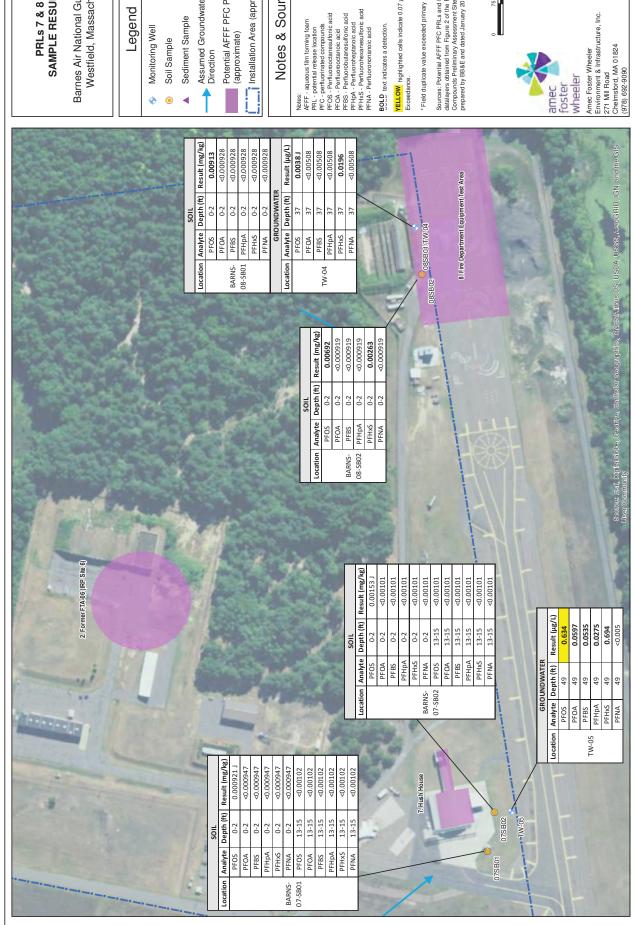
* Field duplicate value exceeded primary sample.


Sources: Potential AFFF PFC PRLs and installation Area datalayers obtained from Figure 2 of the Final Perfluorinated Compounds Preliminary Assessment Site Visit Report prepared by B&Rs and dated January 2016.

wheeler

Amec Foster Wheeler Environment & Infrastructure, Inc. 271 Mill Boad Chelmistord, MA 01824 (978) 692-9090

N ✓ SIGURE ∞



Legend

H:ANG\Westfield_MA\Task5\MXD\Report\Fig9_Barnes_PRL-1-5-6.mxd October 13, 2017 DWN: emily.gardiner CHKD: CK

N FIGURE

0

H:ANG\Westfield_MA\Task5\MXD\Report\Fig10_Bames_PRL-7-8.mxd October 13, 2017 DWN: emily.gardiner OHKD: AKN

PRLs 7 & 8 SAMPLE RESULTS

Barnes Air National Guard Base Westfield, Massachusetts

Legend

Monitoring Well

Soil Sample

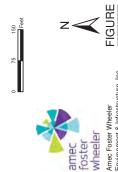
Sediment Sample

Assumed Groundwater Flow Direction

Potential AFFF PFC PRL

(approximate)

Installation Area (approximate)

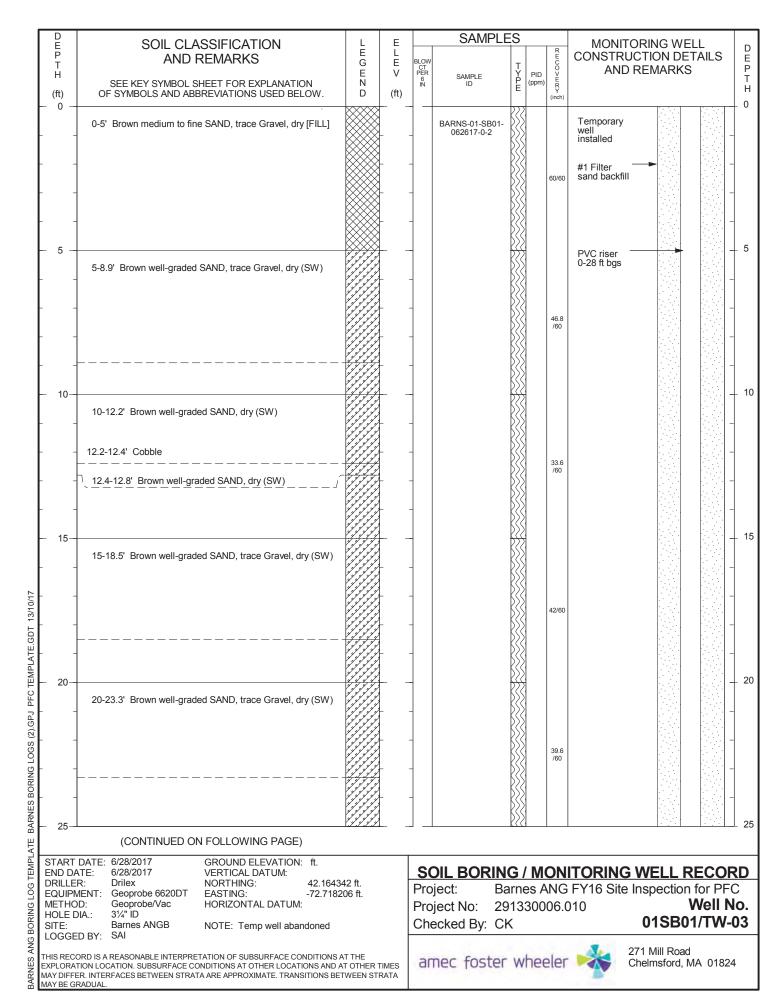

Notes & Sources

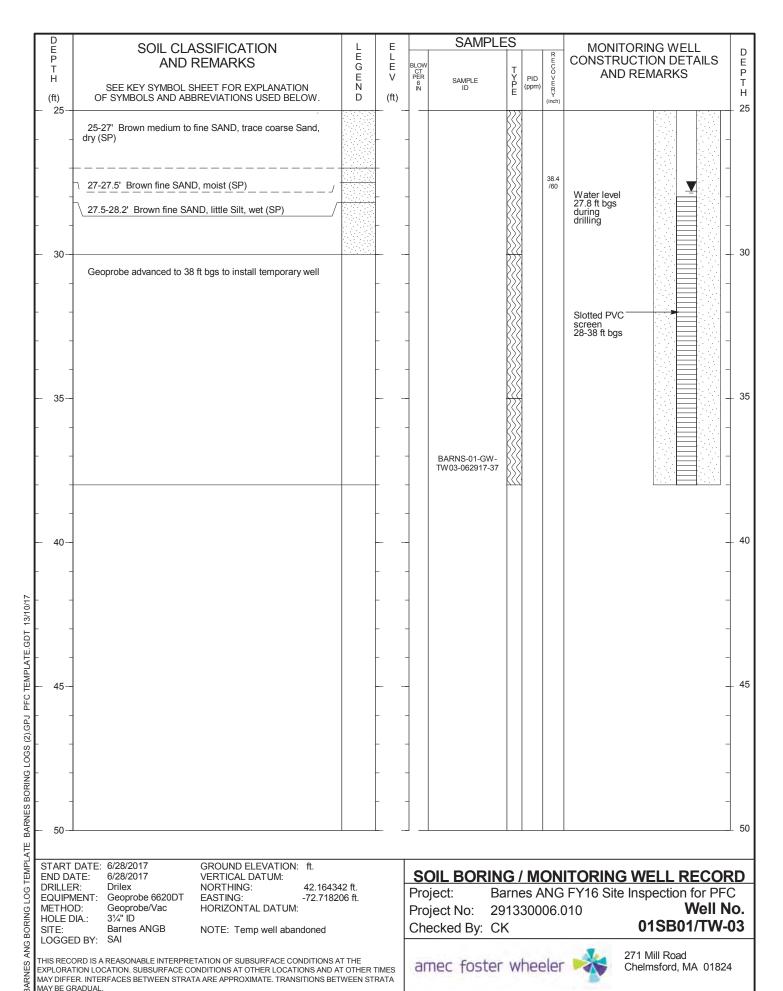
BOLD text indicates a detection

YELLOW highted cells indicate 0.07 µg/L Health Advisor

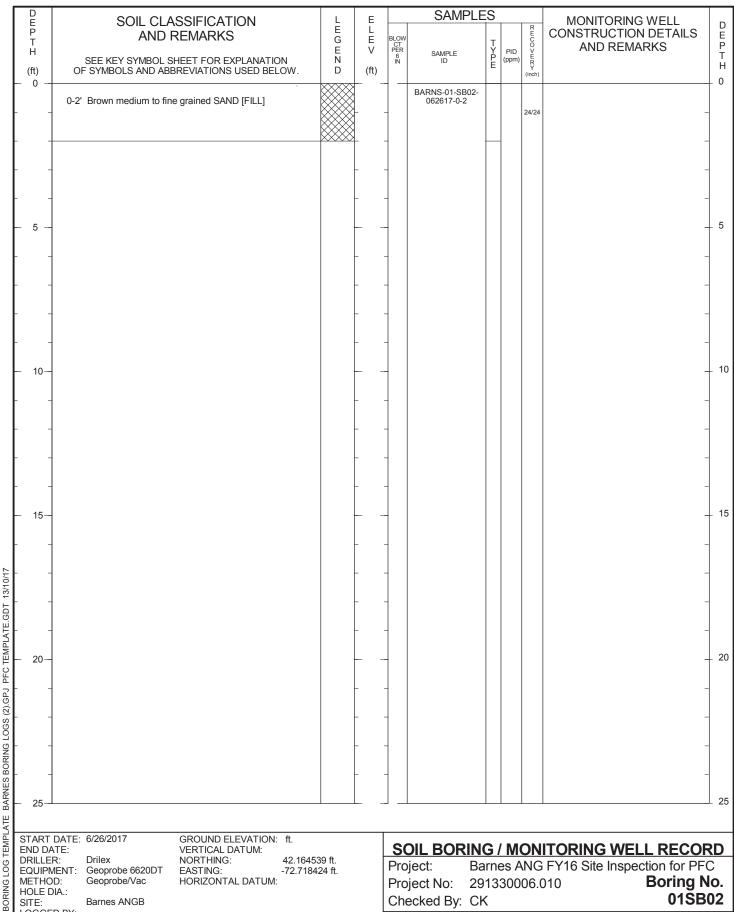
* Field duplicate value exceeded primary sample.

Sources: Potential AFFF PFC PRLs and installation Area datalayers obtained from Figure 2 of the Final Perfluorinated Compounds Preliminary Assessment Site Visit Report prepared by B&Rs and dated January 2016.



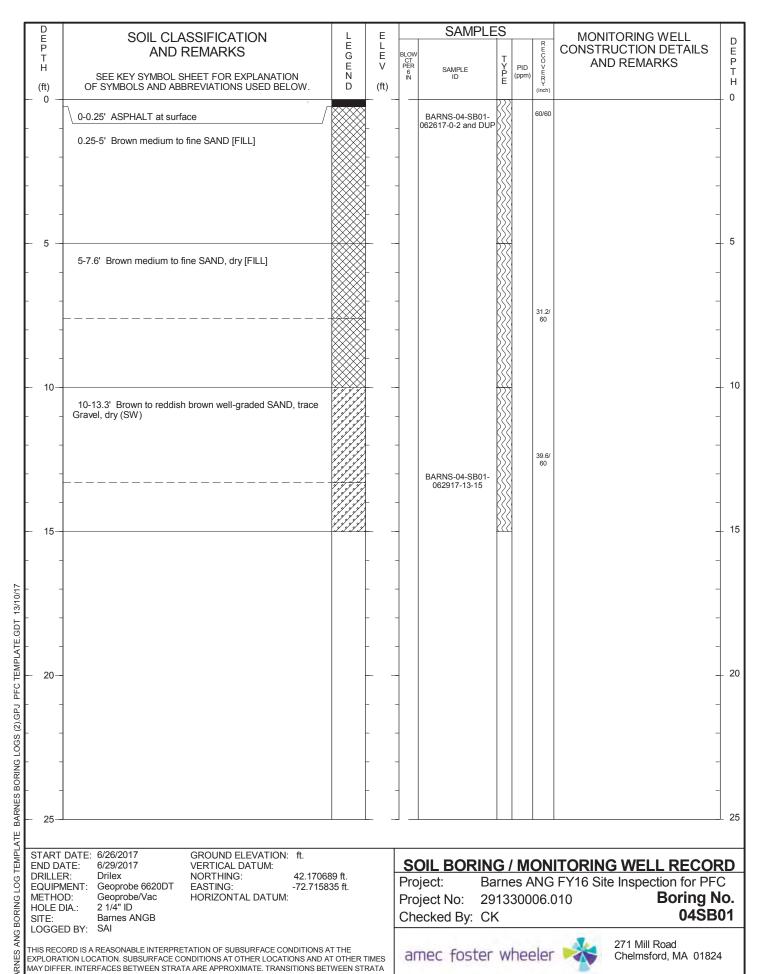

Amec Foster Wheeler Environment & Infrastructure, Inc. 271 Mill Boad Chelmisford, MA 01824 (978) 692-9090

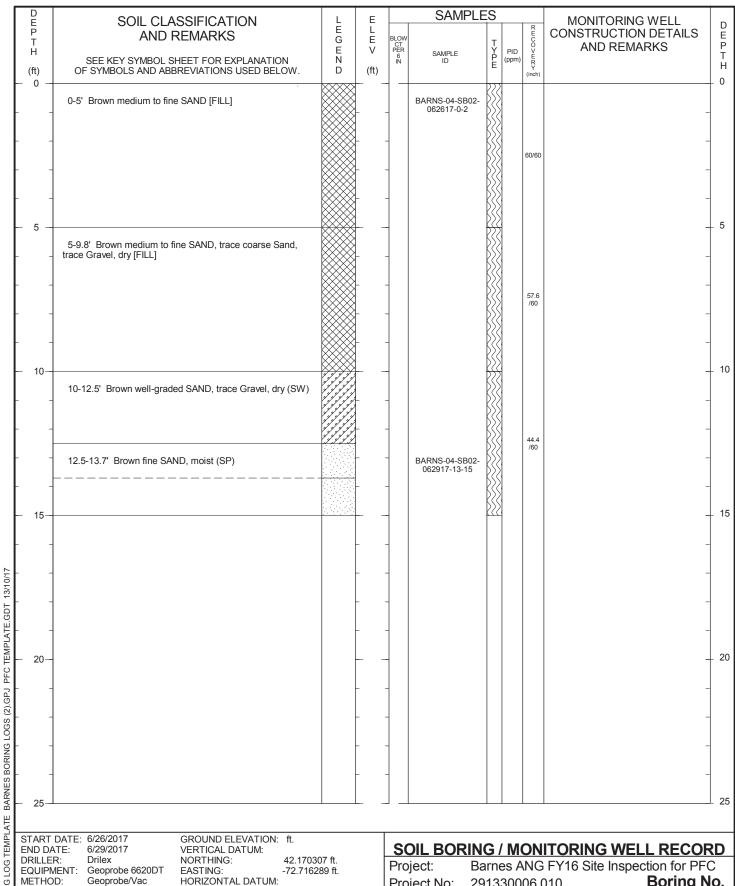
10


APPENDIX A

SOIL BORING AND MONITORING WELL CONSTRUCTION LOGS

Dana O of O




LOGGED BY:

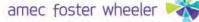
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA

amec foster wheeler

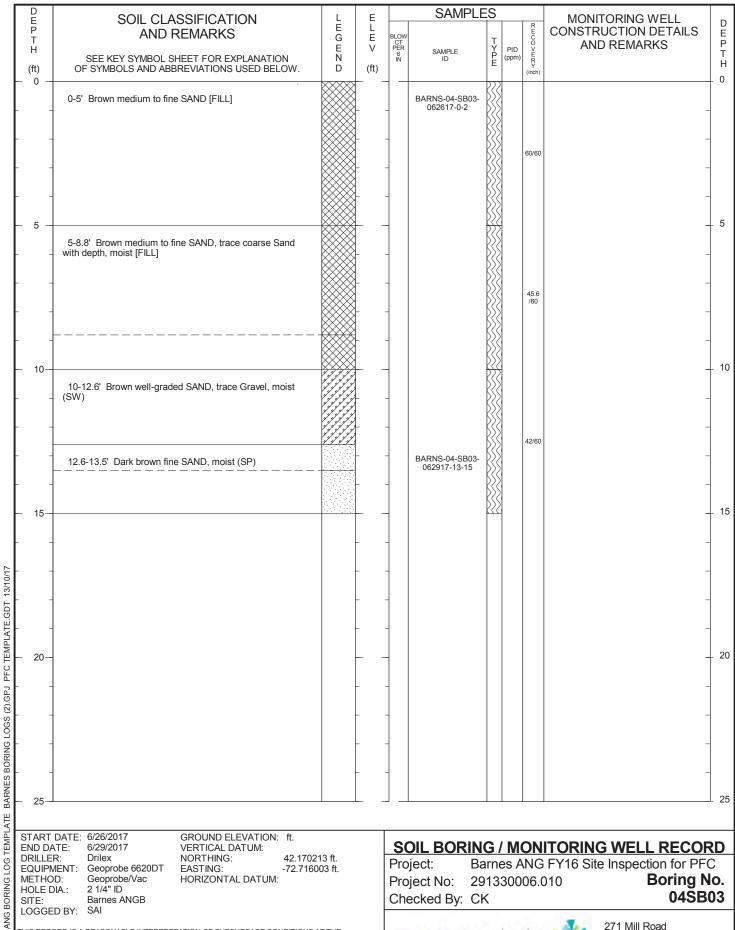
Geoprobe/Vac

2 1/4" ID Barnes ANGB SAI

HOLE DIA.:

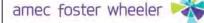

LOGGED BY:

SITE:

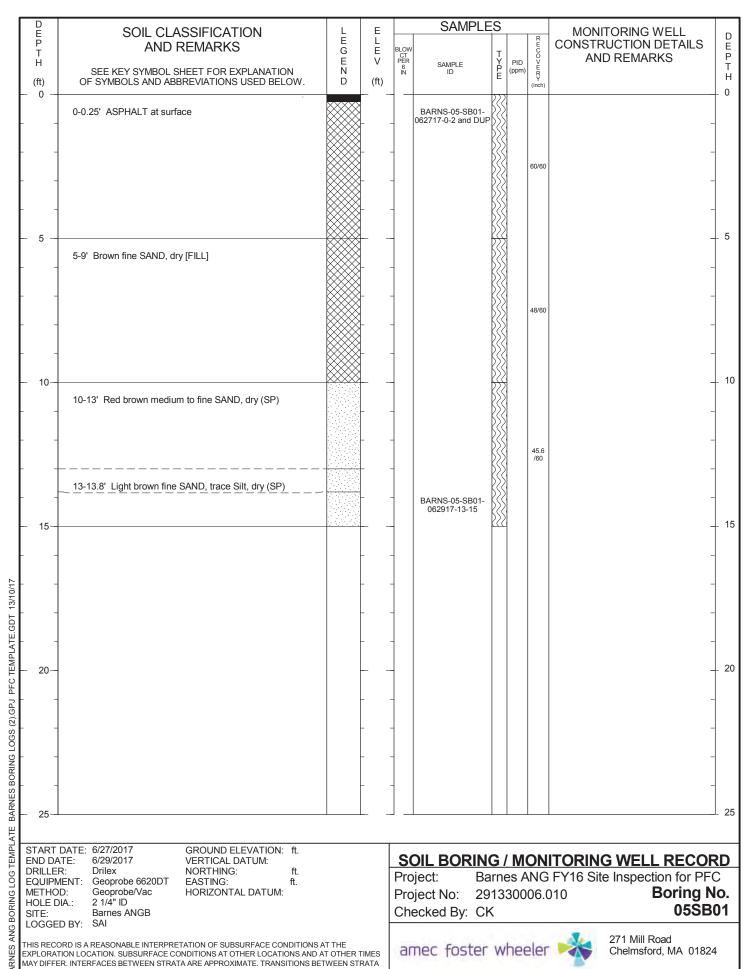

HORIZONTAL DATUM:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA

Boring No. 291330006.010 Project No: 04SB02 Checked By: CK

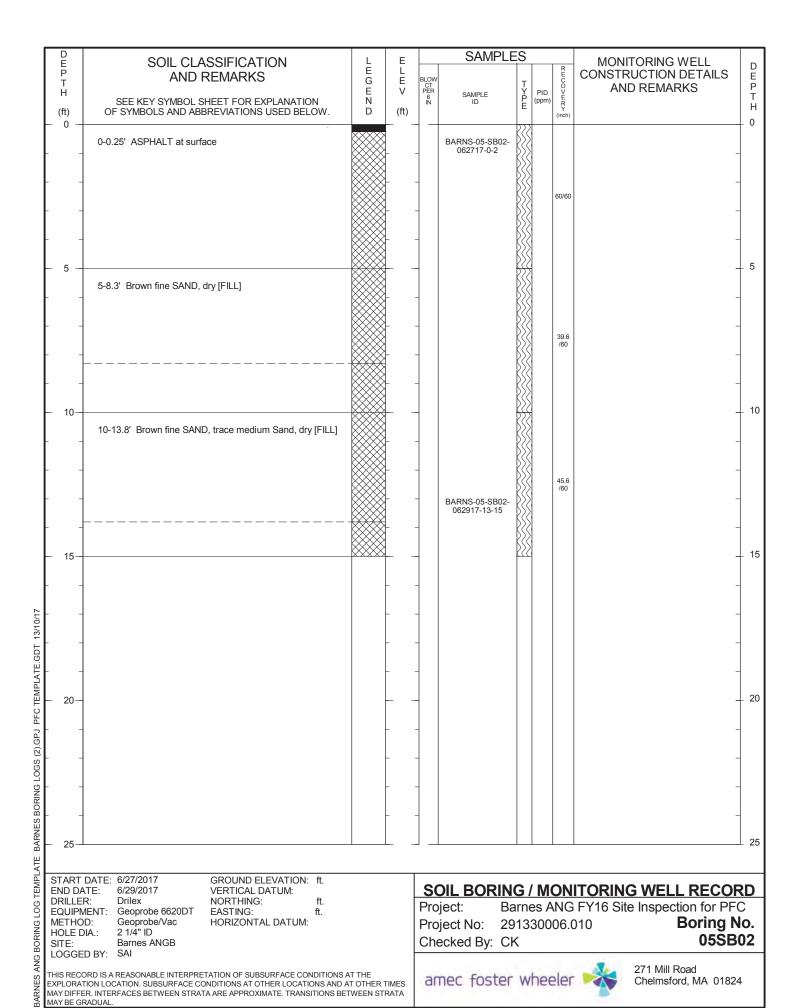


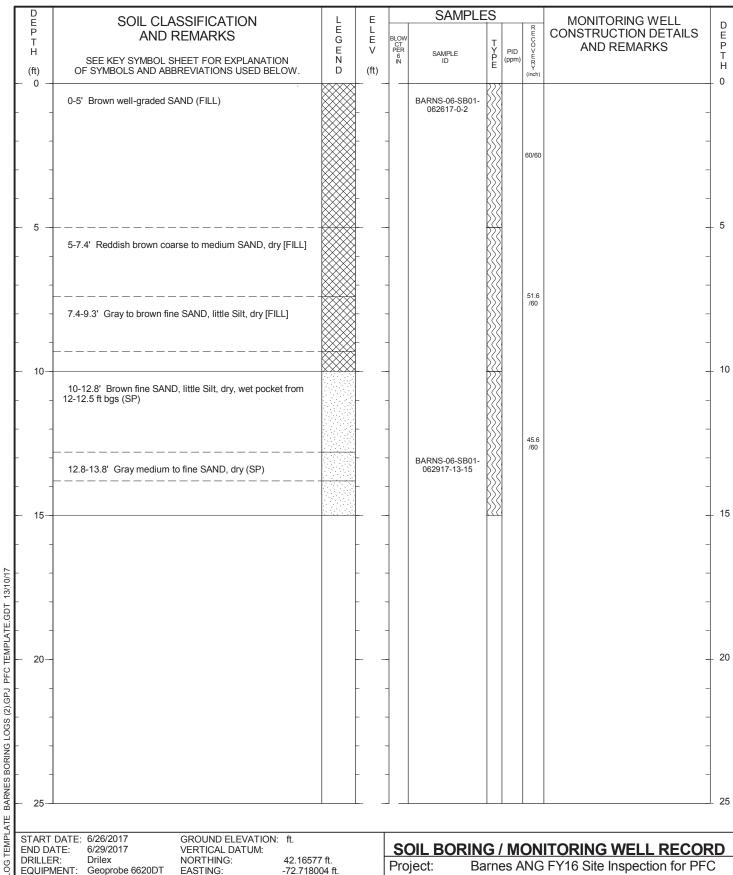
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA


LOGGED BY:

SAI

04SB03 Checked By: CK

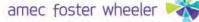




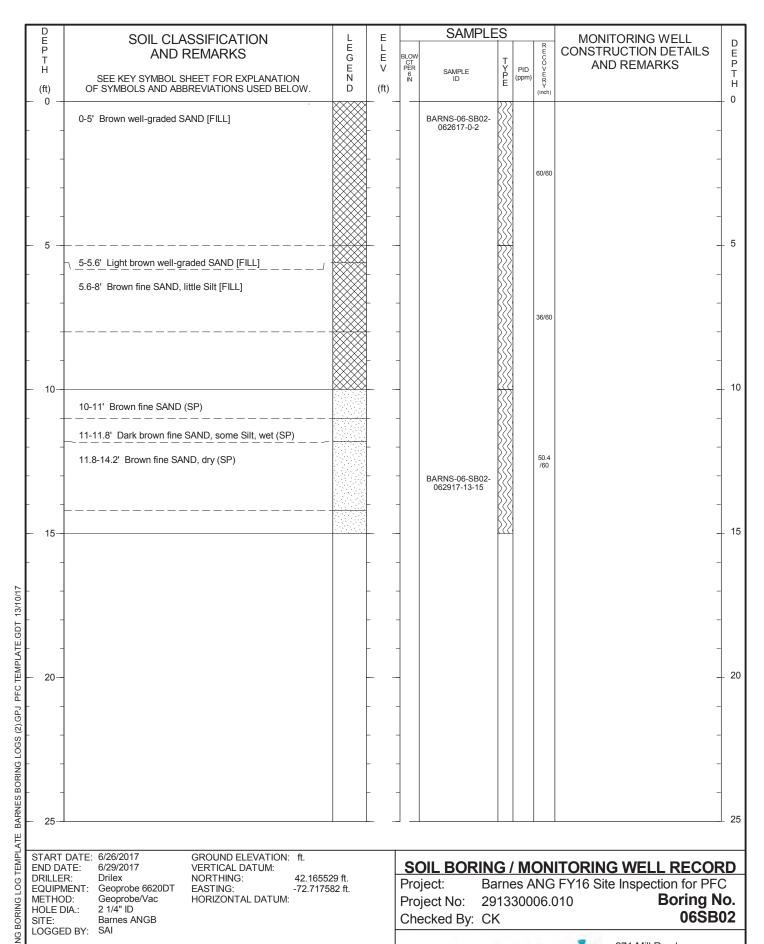
MAY BE GRADUAL

amec foster wheeler Chelmsford, MA 01824

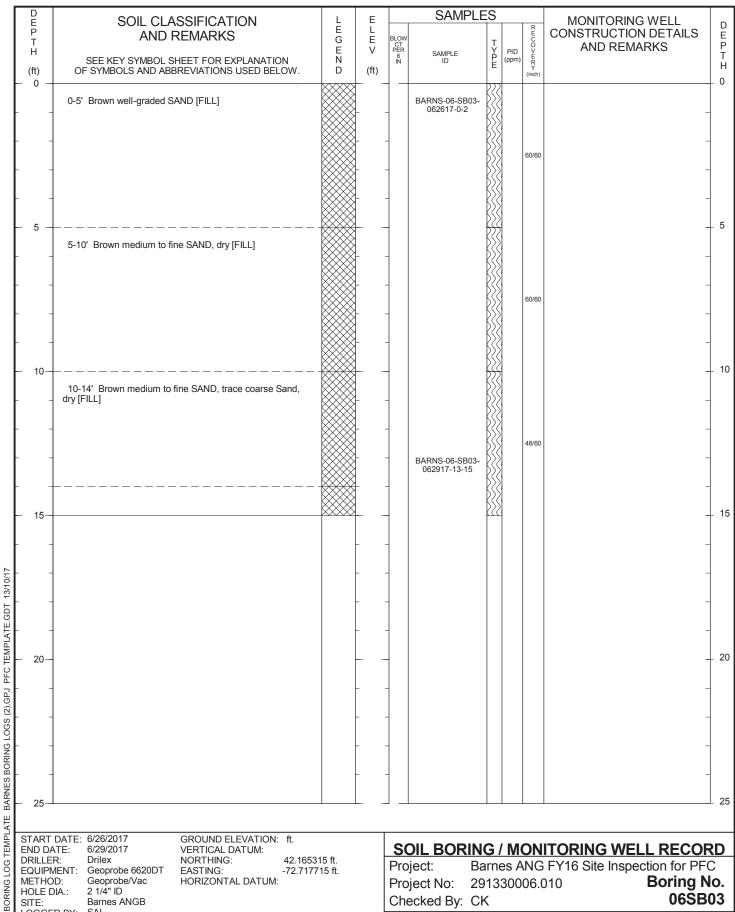
Page 1 of 1



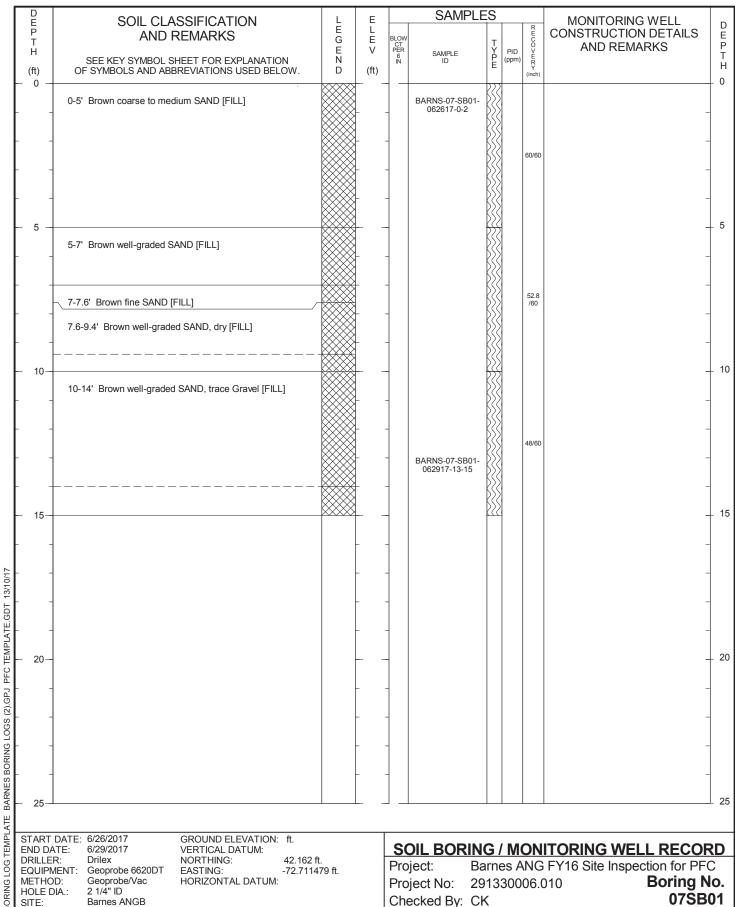
Geoprobe 6620DT Geoprobe/Vac HORIZONTAL DATUM:


METHOD: HOLE DIA.: 2 1/4" ID SITE: Barnes ANGB LOGGED BY: SAI

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL


Barnes ANG FY16 Site Inspection for PFC Project: **Boring No.** 291330006.010 Project No: 06SB01 Checked By: CK

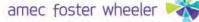
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.



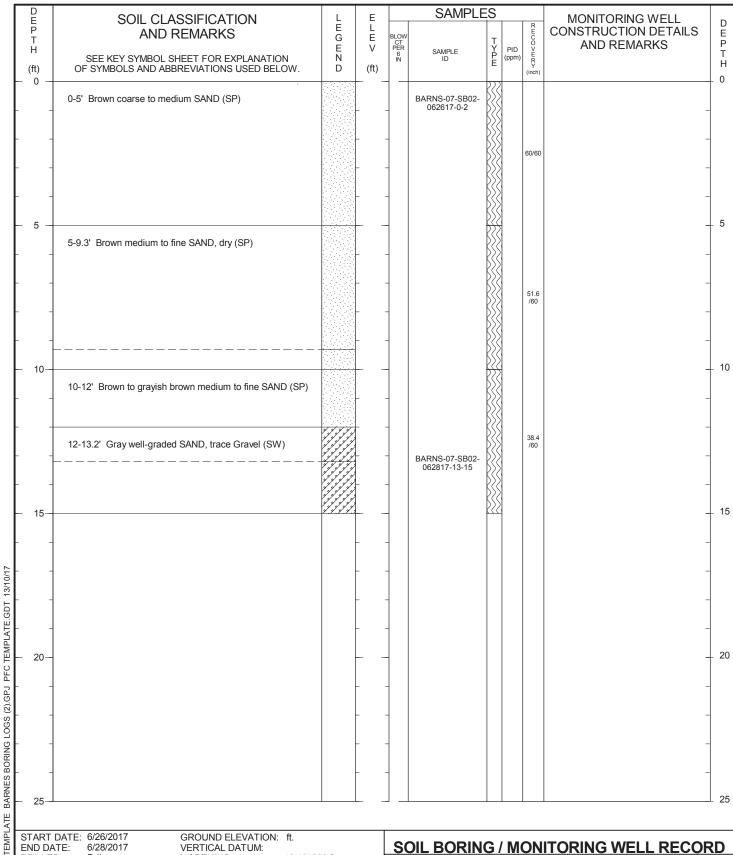
LOGGED BY: SAI

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA

amec foster wheeler



THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA


LOGGED BY:

SAI

07SB01 Checked By: CK

DRILLER: **EQUIPMENT:**

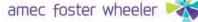
METHOD:

HOLE DIA.:

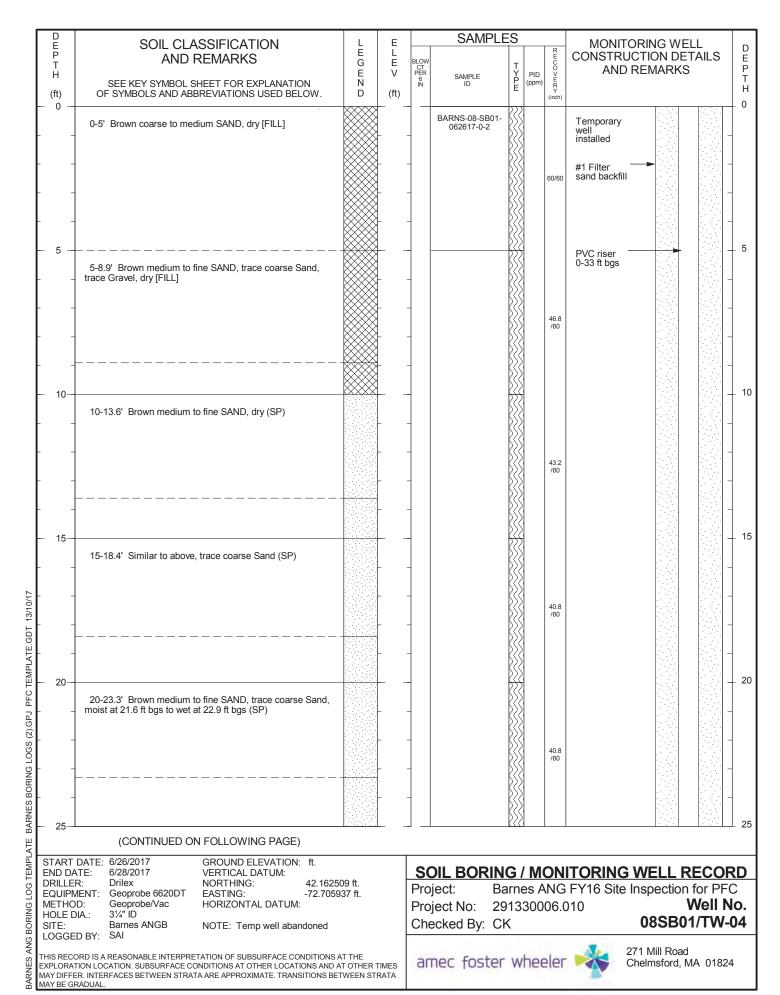
Drilex

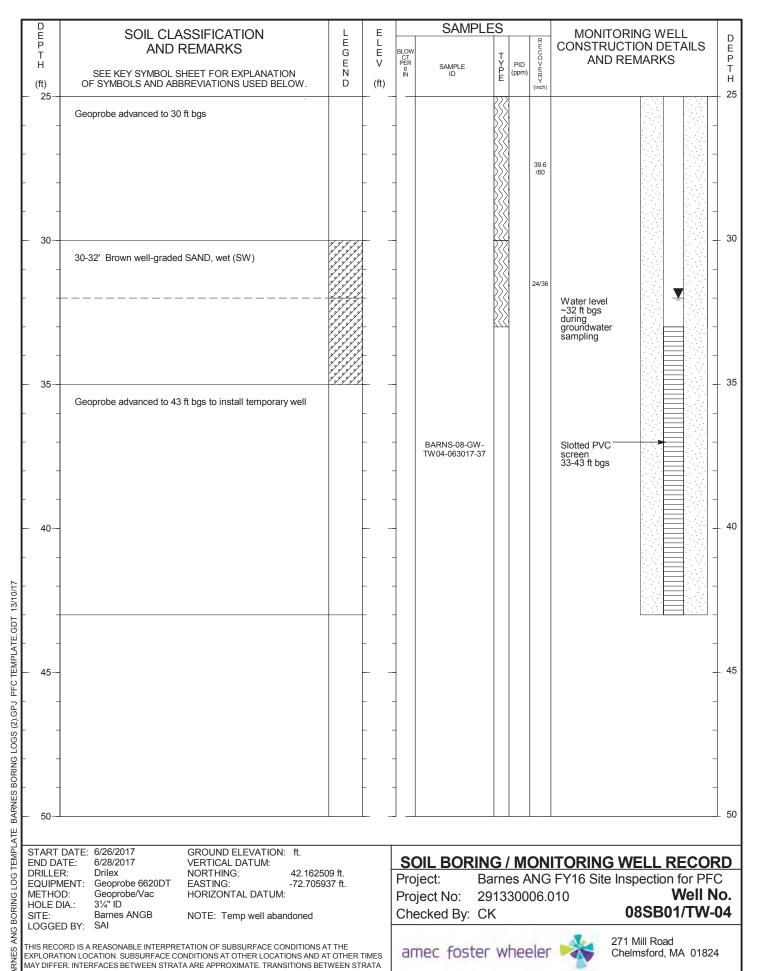
NORTHING:

42.161932 ft. **EASTING:** -72.71114 ft. HORIZONTAL DATUM:

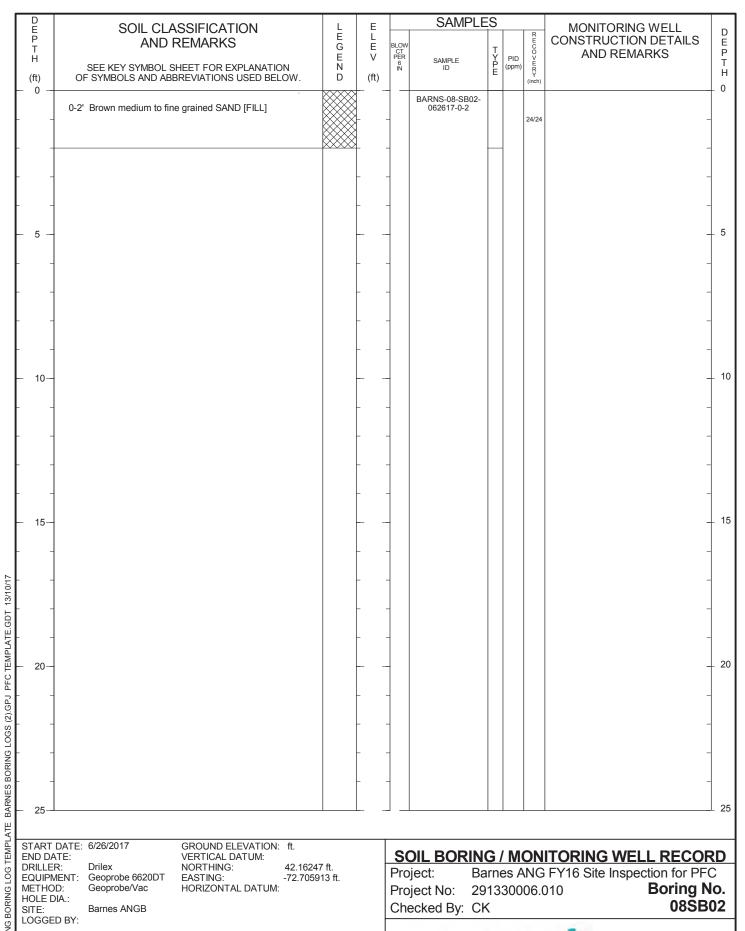

Geoprobe 6620DT Geoprobe/Vac 2 1/4" ID

SITE: Barnes ANGB

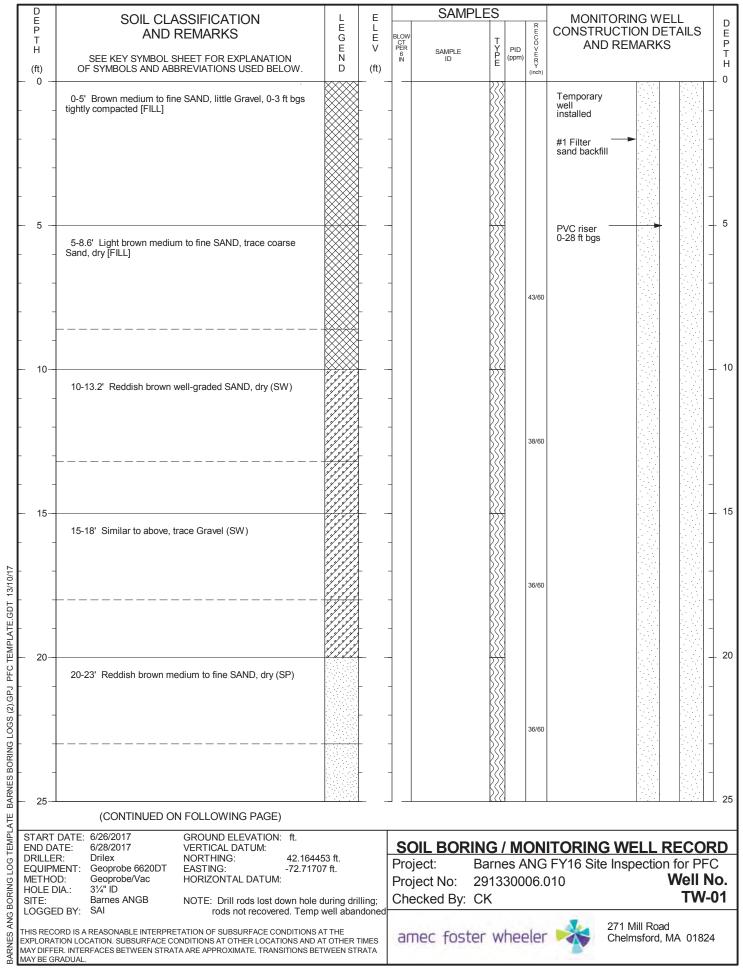

LOGGED BY: SAI

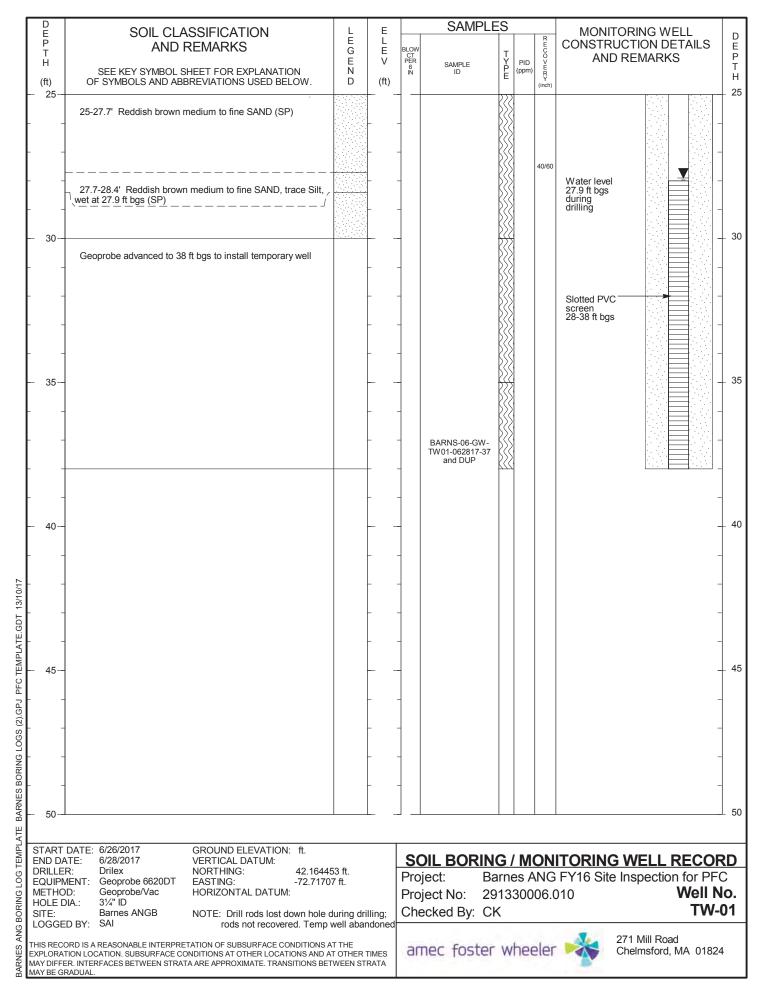

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA

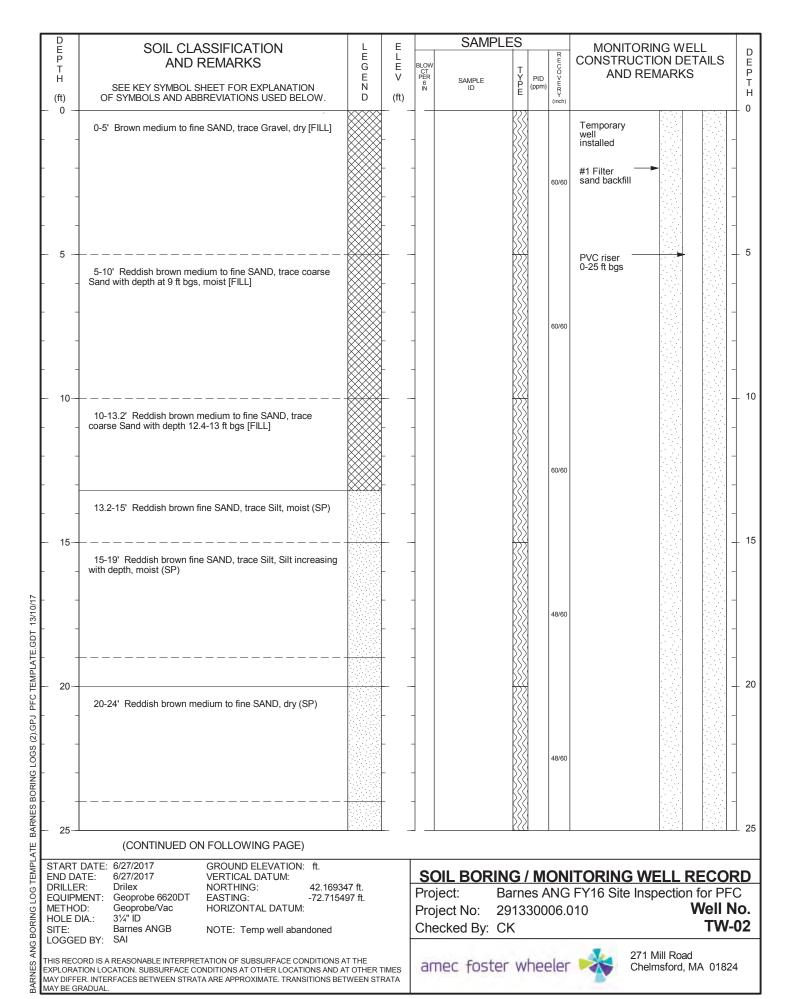
Barnes ANG FY16 Site Inspection for PFC Project: **Boring No.** 291330006.010 Project No: 07SB02 Checked By: CK

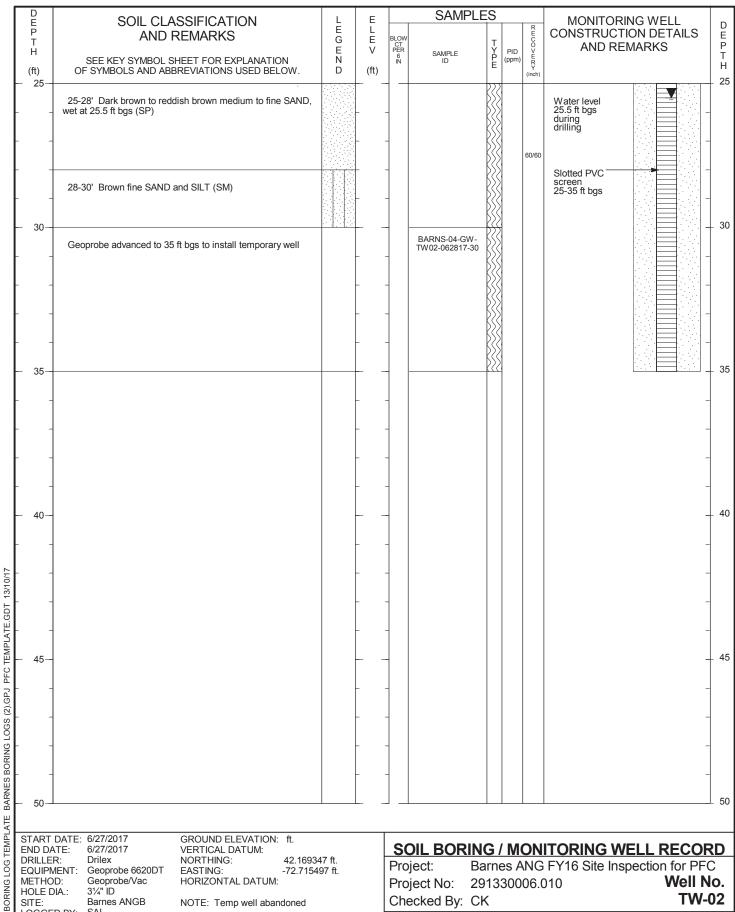


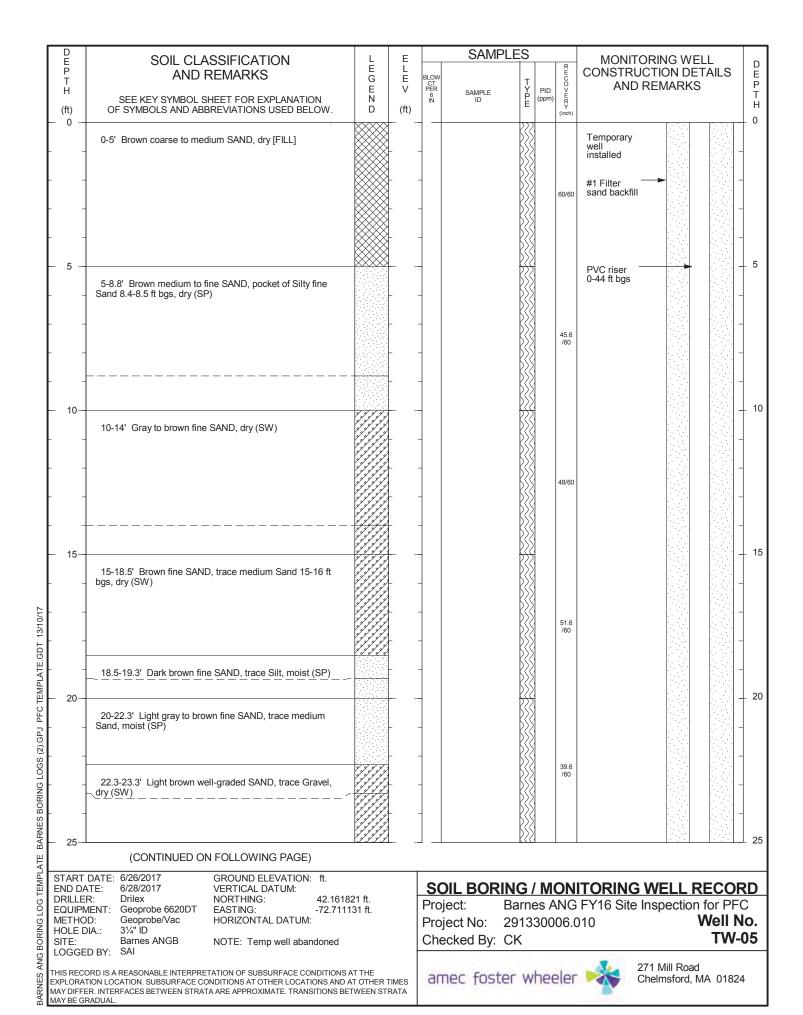
MAY BE GRADUAL

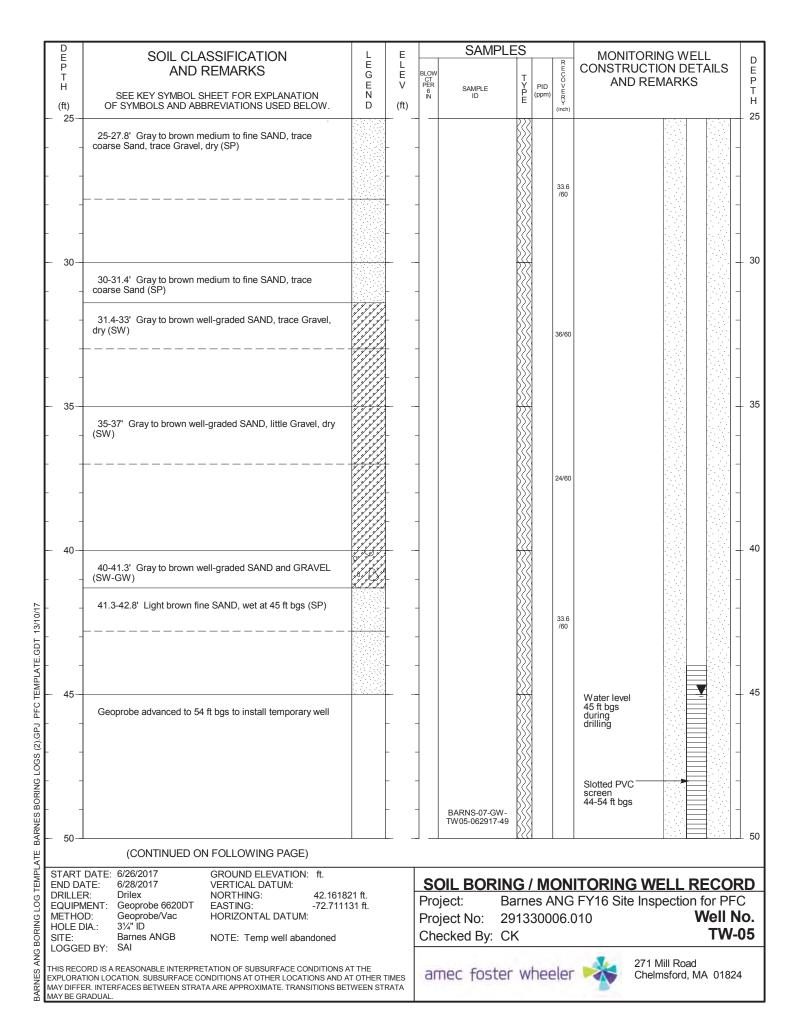

amec foster wheeler Chelmsford, MA 01824

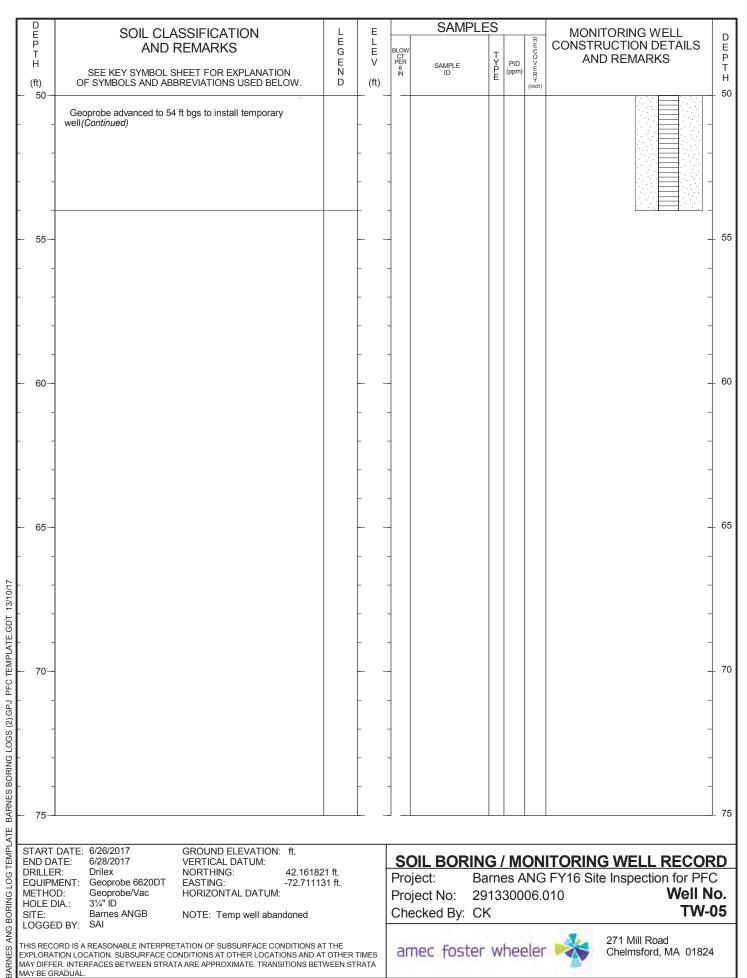



THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

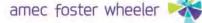

amec foster wheeler


SITE: Barnes ANGB NOTE: Temp well abandoned LOGGED BY: SAI


THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL


Project No: 291330006.010 TW-02 Checked By: CK

amec foster wheeler



THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA

APPENDIX B

WELL DEVELOPMENT LOGS

Muccici												
Project Name:					tions for Perf onal Guard I		Project Number: Task Order:				291330006.010	
Contract:	-		V	/9133L-14-E	0-0002							
Installation:			BARNS	5		Date Started/Date Completed:				06/28/17/06/28/17		
Well ID:			TW-01				oth to Water			34.44		
Measuring Point	-			Top of Ris	ser			th of Well (39.98	
Development Me	_			Pump					Purging (ft):		35.54	
Total Volume Pu			18.0				Volume (ga			0.9		
Technician(s):				Jacob Poiri	er		3 Casing	Volumes (g	al):		2.7	
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (ml/mn)	Temp. (°C)	pH (units)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)	
06/28/17 13:40			800								Pumping Started	
06/28/17 13:57	37	35.27	800	14.69	6.53	215	7.52	57.3	OR	4.0	Brown, high tirbidity	
06/28/17 14:04	37	35.43	800	13.64	7.03	215	7.49	49.8	OR	6.0	Light brown	
06/28/17 14:13	37	35.51	800	13.96	6.89	216	8.22	50.6	506	8.0	Almost clear	
06/28/17 14:20	37	35.52	800	14.78	7.30	117	7.91	53.3	451	10.0	Clear	
06/28/17 14:25	37	35.53	800	14.11	7.45	211	7.92	53.7	194	11.5		
06/28/17 14:31	37 37	35.53 35.54	800 800	14.17 14.15	7.42 7.51	203 210	8.11 7.92	55.0 54.8	139 88.7	12.5 14		
06/28/17 14:38 06/28/17 14:43	37	35.54	800	14.13	7.50	206	7.95	55.2	78.7	15.5		
06/28/17 14:48	37	35.54	800	14.13	7.52	208	7.94	55.7	79.3	17.5		
00/20/17 14.40	37	33.34	000	14.10	7.02	200	7.54	33.1	7 5.5	17.0		
					-							
					-		+					
Instruments (M Equipment Calibrate		Model, a		l No.):		Calibrated Within	Criteria (Y/N):				Yes	
	-		Т	urbidity Mete		- ality Meter, Water Hach 2100Q 11090 YSI 556 MPS 14F	C012300,	Geosubmersib	ole Pump			
Calculations:											Signature:	
Saturated well c	asing volume:	V= Π(R^	2)H*7.48 g	al/ft^3								
V = Volume (gal/ft) Π = 3.14 R = well radius (ft) = H = height of water of		າ)/12 (in/ft))	(2)			=∏ * (2.	0 (in)/12 (in/ft)	!)H*7.48 gal/ft/))/2)^2 * 5.54 * 0.9 gal.			Mm Fire	
Notes:											Name (print):	
					None						Jacob Poirier	
QA/QC'd by:	cjk							C	QA/QC Date:		10/12/2017	

Project Name:					tions for Perf onal Guard I		Project N	umber:			291330006.010	
Contract:	-		W	/9133L-14-E	0-0002	_	Task Order: Date Started/Date Completed:				0006	
Installation:	-			BARNS							06/28/17/06/28/17	
Well ID:	-			TW-02				th to Water			24.95	
Measuring Point			Top of Cas	sing			th of Well (f			34.71 24.92		
Development Me	_			Pump 9.0			•		Purging (ft):		1.6	
Total Volume Pu Technician(s):	rged (gai):			Jacob Poir	ier			Volume (gal Volumes (ga			4.8	
recimician(s).				Jacob i oii		Specific	3 Casing	voiuilles (ga	ai).			
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (MI/mn)	Temp. (°C)	pH (units)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)	
06/28/17 09:48			1800								Pumping Started	
06/28/17 09:53	30	25.2	1800	20.48	6.79	116	5.96	70.5	OR	5	Brown high turbidity	
06/28/17 10:02	30	25.1 24.9	1800 1800	16.10	5.66 6.22	115 121	5.63	67.1	Or	7.0	Brown high turbidity Light brown	
06/28/17 10:24 06/28/17 10:28	30 30	24.92	1800	15.26 14.88	5.81	124	6.23 6.08	77.8 78.3	61.1 14.9	7.3	Clear	
06/28/17 10:34	30	24.92	1500	15.57	5.56	120	5.77	78.2	5.82	7.9	Olda .	
06/28/17 10:38	30	24.92	1500	15.08	5.65	120	5.48	75.8	2.69	8.2		
06/28/17 10:42	30	24.92	1500	15.07	5.66	121	5.52	74.2	2.57	8.5		
06/28/17 10:50	30	24.92	1500	15.08	5.65	120	5.54	74.6	2.48	8.9		
							1					
			-				+					
							+					
			 									
							_					
							+					
Instruments (M Equipment Calibrate	,	Model, a		l No.): es	•	Calibrated Within	Criteria (Y/N):	:			Yes	
			Т	urbidity Mete		ality Meter, Water Hach 2100Q 11090 YSI 556 MPS 14F	C012300,	Geosubmersib	le Pump			
Calculations:											Signature:	
Saturated well control of the second version of the second versio	-			al/ft^3		=Π * (2.	0 (in)/12 (in/ft))H*7.48 gal/ft^))/2)^2 * 9.76 * 1.6 gal.			Mr Pom	
H = height of water		. , "	-								Nome (asint)	
Notes:					None						Name (print): Jacob Poirier	
QA/QC'd by:	cik							0	A/QC Date:		10/12/2017	

MILECTEL												
Project Name:					tions for Perf onal Guard I		Project Number: Task Order:				291330006.010	
Contract:	-		V	/9133L-14-E	0-0002							
Installation:			BARNS	5		Date Started/Date Completed:				06/29/17/06/29/17		
Well ID:	_			TW-03			Initial Dep	oth to Water	r (ft):		31.98	
Measuring Point			Top of Cas	sing			th of Well (1			39.83		
Development Me			Pump					Purging (ft):		32.02		
Total Volume Pu	rged (gal):			24.0				Volume (ga			1.3	
Technician(s):				Jacob Poir	ier	T	3 Casing	Volumes (g	al):		3.9	
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (ml/mn)	Temp. (°C)	pH (units)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)	
06/29/17 12:00			1800								Pumping Started	
06/29/17 12:14	37	32.01	1800	15.17	6.74	283	4.57	33.2	181	4.0	Light brown	
06/29/17 12:22	37	32.02	1800	15.11	6.10	289	3.99	28.0	141	6.0	Clear	
06/29/17 12:52	37	32.02	1800	14.22	6.68	282	4.54	36.5	21.8	10.0	Pump stopped for about 10 min	
06/29/17 13:06	37	32.01	1800	14.48	6.32	281	4.56	37.4	173	13.0	Pump temp. Shut off	
06/29/17 13:13	37	32.02	1800	14.48	6.36	280	4.42	39.1	92.3	15.0		
06/29/17 13:19	37	32.02	1800	14.30	6.37	278 277	4.45	40.1	17.7	18.0		
06/29/17 13:25	37	32.02	1800	14.32	6.37		4.43	40.7	6.51	20.0		
06/29/17 13:30	37	32.02	1800	14.32	6.36	279	4.42	40.5	5.57	23.0		
	 				 		+					
Instruments (M Equipment Calibrate		Model, a		l No.): es		Calibrated Within	Criteria (Y/N):	1			Yes	
			Т	urbidity Met		ality Meter, Water Hach 2100Q 11090 YSI 556 MPS 14F	C012300,	Geosubmersib	ole Pump			
Calculations:											Signature:	
Saturated well ca	asing volume:	V= Π(R^	2)H*7.48 g	al/ft^3								
V = Volume (gal/ft) Π = 3.14 R = well radius (ft) = H = height of water of		າ)/12 (in/ft)).	(2)			=∏ * (2.	0 (in)/12 (in/ft))H*7.48 gal/ft/))/2)^2 * 7.85 * 1.3 gal.			Me Poir	
Notes:											Name (print):	
					None						Jacob Poirier	
QA/QC'd by:	cjk								QA/QC Date:		10/12/2017	

Project Name: Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations								Project Number: 291330006.010					
Contract:	•		V	/9133L-14-D	0-0002		Task Order: Date Started/Date Completed:				0006 06/30/17 - 06/30/17		
Installation:				BARNS									
Well ID:				TW-04				oth to Water			32.74		
Measuring Point				Top of Cas	sing			th of Well (1			41.4		
Development Me				Pump			Depth to Water After Purging (ft): 1 Casing Volume (gal):				33.25		
Total Volume Pu	rgea (gai):			33.0 Jacob Poirie	r			volume (ga Volumes (g			1.4 4.3		
Technician(s):				Jacob Polite	I	Specific	3 Casing	volumes (g	ai):		4.5		
Date/Time	Intake Depth (feet)	Water Level (feet)	Rate (ml/mn)	Temp. (°C)	pH (units)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume (gal.)	Comments/Observations During Purging (color, sediment, etc.)		
06/30/17 10:08			2000								Pumping Started		
06/30/17 10:14	36	32.99	2000	11.78	8.30	143	0.82	-62.7	OR	3.0	Brown, high turbidity		
06/30/17 10:24	36	33.18	2000	11.10	6.43	120	1.73	-52.4	593	7.0	Light brown		
06/30/17 10:32	36	33.24	2000 2000	10.65	6.20 6.14	115 113	2.20	-32.6	286	12.0 17.0			
06/30/17 10:43	36 36	33.25 33.26	2000	11.18 11.29	6.14	112	1.81 1.73	-22.8 -8.1	154 98.6	20.0	Clear		
06/30/17 10:50 06/30/17 10:58	36	33.26	2000	11.29	6.38	111	2.08	0.7	69.6	24.0	Clear		
06/30/17 10:58	36	33.25	2000	11.01	6.22	111	2.06	3.5	35.3	28.0			
06/30/17 11:16	36	33.25	2000	11.07	6.21	111	2.10	4.1	22.0	31.0			
06/30/17 11:10	36	33.25	2000	11.06	6.22	111	2.14	3.9	23.2	33.0			
							1						
							+						
							+						
							+ -						
							+ +						
							1						
							†						
Instruments (M Equipment Calibrate		Model, a		l No.): es	•	Calibrated Within	Criteria (Y/N):				Yes		
			Т	urbidity Mete		ality Meter, Water lach 2100Q 11090 YSI 556 MPS 14F	C012300,	Geosubmersib	le Pump				
Calculations:											Signature:		
Saturated well casing volume: V= $\Pi(R^2)H^*7.48 \text{ gal/ft}^3$										John Pon			
Notes:											Name (print):		
					None						Jacob Poirier		
QA/QC'd by:	cik								A/QC Date:		10/12/2017		

Project Name: Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations							Project Number: 291330006.010					
Contract:	-		W	/9133L-14-E	0-0002	_	Task Order:				0006	
Installation:			BARNS			Date Started/Date Completed:				06/29/17 - 06/29/17		
Well ID:			TW-05				oth to Water			46.62 53.41		
Measuring Point				Top of Cas Pump	aing	-		th of Well (f	τ): Purging (ft):		46.74	
Development Method: Total Volume Purged (gal):				23.0		·	•	Volume (gal			1.1	
Technician(s):	. gou (gui).	-						Volumes (ga			3.3	
Date/Time	Intake Depth (feet)	Water Level	Rate (ml/min)	Temp.	pH (units)	Specific Electrical Conductance	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Cum. Volume	Comments/Observations During Purging	
	(1114)	(feet)		(- /	()	(mS/cm)	(9/	()	(******)	(gal.)	(color, sediment, etc.)	
06/29/17 08:40			2000		0.04	000					Pumping Started	
06/29/17 08:45	49	46.69	2000	14.19	8.31 7.60	363 351	8.05	30.1	OR 424	6.0	Brown, high turbidity Light brown	
06/29/17 08:51 06/29/17 08:59	49 49	46.70 46.73	2000	14.19 13.86	7.00	353	8.08 8.37	34.7	131 12.0	9.0	Clear	
06/29/17 09:04	49	46.74	2000	13.90	6.98	350	8.01	40.7	7.16	13.0	Olcai	
06/29/17 09:10	49	46.74	2000	13.47	6.88	347	8.94	43.3	4.34	16.0		
06/29/17 09:15	49	46.74	2000	13.50	6.87	349	8.89	44.7	3.83	19.0		
06/29/17 09:22	49	46.74	2000	13.51	6.87	351	8.92	44.3	3.88	22.0		
			-				-					
							1					
							+					
							+					
Instruments (N	anufacturar	Model (and Caria	Mo V								
Equipment Calibrate	,	wouei, a		es		Calibrated Within	Criteria (Y/N):				Yes	
	- (····)·					ality Meter, Water lach 2100Q 11090	Level Meter, (C012300,		le Pump			
						YSI 556 MPS 14F	-100064				•	
Calculations:											Signature:	
Saturated well c V = Volume (gal/ft) Π = 3.14 R = well radius (ft) = H = height of water ((well diameter (ir	·	, -	al/ft^3		=∏ * (2.	0 (in)/12 (in/ft))H*7.48 gal/ft^))/2)^2 * 6.79 * 1.1 gal.			John Portin	
Notes:											Name (print):	
					None						Jacob Poirier	
QA/QC'd by:	oik								A/QC Date:		10/12/2017	
CAMULTO DV'	CIK							(.)	MINITE.		10/12/2017	

APPENDIX C

GROUNDWATER SAMPLING LOGS

GROUNDWATER SAMPLING RECORD

OA/OC'd by:	cik								QA/QC Date:	10/12/2017	
			Sai	mple centrifug	ged at lab due	to elevated turbidi	ty			Jacob Poirier	
NOTES:										name (print):	
Notes:										Name (print):	
V=Volume (gal/ft) Π = 3.14 R = well radius (ft) H = height of wate		r (in)/12 (in/ft))	//2)			= ∏ * (2	2.0 (in)/12 (in/ft	?)H*7.48 gal/t t))/2)^2 * 4.40 0.7 gal.	ft^3 0 * 7.48 gal/ft^3	M Pin	
Saturated well	casing volum	ie: V= Π(R^2	2)H*7.48 ga	al/ft^3							
Calculations:					2 1000		555 Mil 6 P			Signature:	
						uality Meter, Water 11090C012300, Y			ible Pump		
Equipment Calibra		a, wouel, a		NO.): es		Calibrated Within	Criteria (Y/N):			Yes	
Analysis/Metho Instruments (I		er. Model a	and Serial	UCMR3 Lis	st		Depth to V	Vater After	Sampling (ft):	34.69	
Preservative(s)	:			Ice (4 °C)			Sample De	epth (ft):	_	37	
Duplicate ID: Sample Contain	ner Type(s)		BARNS-0	6-GW-TW01- Plastic	-062817-DUP		Sample Co Total Volu		_	.8 15:30	
QA/QC Samples	s (Yes/No):			Yes DUP	ı		Sample Da	ate:	-	06/28/17	
Sample ID:		Final	Values: BARNS-	18.21 06-GW-TW01	7.68 1-062817-37	204	7.37 Method of	57.2 Sampling:	62.4	Low flow, submersible pump	
Stability Reach	ed (Y/N):			Yes		If No, Provide E	<u> </u>			NA	
							1				
				<u> </u>	1		1				
					-		+				
							+				
							+				
							<u> </u>				
					-		1				
					1		+				
15:22	34.69	240	.6	18.21	7.68	202	7.40	57.5 57.2	62.4		
15:17 15:22	34.70 34.69	240 240	.4 .5	18.19 18.22	7.70 7.68	199 202	7.38 7.40	57.7 57.5	63.6 58.6		
15:11	34.70	240	.3	17.80	7.49	204	7.33	56.8	59.3		
14:59 15:06	34.90 34.72	240 240	.1	15.95 16.55	7.42 7.36	215 215	7.98 7.16	61.4 59.0	104 113		
14:53	24.00	240	1	15.05	7.40	215	7.00	61.4	104	Pumping/Purging Started	
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	NTU		
Time	(feet)	(mL/min)	Volume (gal.)	(°C)	(SU)	Conductance (mS/cm)	(mg/L) (mV)	(NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)		
	Water Level	Flow Rate	Cum.	Temp.	рН	Specific Electrical	DO	ORP	Turbidity		
Measuring Poir		c.):		Top of Casir			Pump Intal		-	37	
Total Depth of \ Method of Purg				Geosub pun	np		1 Casing V 3 Casing V		-	2.2	
Initial Depth to	` '			35.54 39.94			Well Diame	. ,		2.0 0.7	
Well ID:	•			TW-01			Date:		_	06/28/17	
Installation:				BARNS	0002		Technician		_	Jacob Poirier	
Contract:	,			V9133L-14-D-			Task Orde	r.	-	0006	
Project Name:	Project Name: Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations									291330006.010	
wheeler											

wheeler										
Project Name:		Phase 1 Reg			Perfluorinated rd Installation	Compounds at s	Project Nu	ımber:		291330006.010
Contract:			V	/9133L-14-D-	0002		Task Orde	r:		0006
Installation:				BARNS			Technician		•	Jacob Poirier
Well ID:				TW-02			Date:			06/28/17
Initial Depth to	٠,,			24.91			Well Diame			2.0
Total Depth of				34.71			1 Casing V		· .	1.6
Method of Purg				Peristaltic			3 Casing V			4.8
Measuring Poir	nt (toc, tor, etc	c.):	ı	Top of Casir	ng T	0 15	Pump Inta	ke Depth (feet):	30
Time	Water Level (feet)	Flow Rate (mL/min)	Cum. Volume (gal.)	Temp. (°C)	pH (SU)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	±10% and <10 NTU	
10:55		150	0.4		5.70					Pumping/Purging Started
10:57	24.91	150	0.1	17.80	5.73	114 117	4.94	69.2	1.46	
11:02	24.91	150 150	0.2	16.85 17.52	5.83 5.63	117	5.09 4.97	67.0	1.38 1.29	
11:06 11:10	24.91 24.91	150	0.4	17.52	5.65	113	4.97	67.6 67.3	1.29	
11:14	24.91	150	0.8	17.52	5.64	113	5.01	67.1	1.13	
11:18	24.91	150	1.0	17.53	5.66	111	4.99	66.9	1.08	
							1			
	-									
	-				-					
	-				-					
	+									
Stability Reach	ed (Y/N):			Yes		If No, Provide E	xplanation			NA
		Final	Values:	17.53	5.66	111	4.99	66.9	1.08	
Sample ID:			BARNS-	04-GW-TW02	2-062817-30		Method of	Sampling	:	Low flow
QA/QC Sample:	s (Yes/No):			No			Sample Da			06/28/17
Duplicate ID:				NA			Sample Co			11:25
Sample Container Type(s): Preservative(s): Ice (4 °C)					Total Volu	-	d (gal):	1.1 30 24.91		
					Sample De		• " (E)			
Analysis/Method(s): UCMR3 List Instruments (Manufacturer, Model, and Serial No.): Equipment Calibrated (Y/N): Yes Calibrat						Depth to v	vater After	Sampling (ft):	24.91	
					Calibrated Within	Criteria (Y/N):		Yes		
				Turbidity		Quality Meter, Wa 11090C012300, Ya			Pump	
Calculations:										Signature:
Saturated well of V=Volume (gal/ft) Π = 3.14 R = well radius (ft) H = height of water	= (well diameter			al/ft^3		= ∏ * (2	2.0 (in)/12 (in/ft	?)H*7.48 gal/ !))/2)^2 * 9.8 1.6 gal.	ft^3 0 * 7.48 gal/ft^3	Jul Phi
Notes:										Name (print):
					None					Jacob Poirier
OA/OCid but	oik								OA/OC Data:	40/42/2047

wheeler										
Project Name:		Phase 1 Reg			Perfluorinated ard Installation	Compounds at s	Project Nu	ımber:		291330006.010
Contract:			V	/9133L-14-D-	0002		Task Orde	r:	-	0006
Installation:				BARNS		•	Technicia		-	Jacob Poirier
Well ID:				TW-03			Date:			06/29/17
Initial Depth to	٠,,			32.02			Well Diame		_	2.0
Total Depth of				37.71			1 Casing V		-	0.9
Method of Purg				Submersible p			3 Casing V			2.8
Measuring Poir	nt (toc, tor, etc	c.):		Top of Casi	ng	0 15	Pump Inta	ke Depth (feet):	37
Time	Water Level (feet)	Flow Rate (mL/min)	Cum. Volume (gal.)	Temp. (°C)	pH (SU)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	±10% and <10 NTU	
13:45	00.00	280	2	45.44	6.05	202	4.00	40.0	20.4	Pumping/Purging Started
13:50 13:55	33.02 33.02	280 280	.2 .4	15.11 15.20	6.25 6.31	283 282	4.36 4.30	46.2 45.2	29.4 19.7	
14:02	33.02	280	.7	15.21	6.35	279	4.30	45.2	8.64	
14:09	33.02	280	.9	15.21	6.35	281	4.20	45.2	5.93	
14:14	33.02	280	1.1	15.22	6.35	282	4.30	45.5	4.98	
						_				
	+									
	1									
	+									
Stability Reach	ed (Y/N):			Yes		If No, Provide E	-			NA
		Final	Values:	15.22	6.35	282	4.30	45.5	4.98	
Sample ID:			BARNS-	01-GW-TW0	3-062917-37		Method of			Low flow submersible pump
QA/QC Sample:	s (Yes/No):			No NA			Sample Da		<u>-</u>	06/29/17 14:15
Duplicate ID:	nor Type(s):						Sample Co Total Volu			1.2
Sample Container Type(s): Plastic Preservative(s): Ice (4 °C) Analysis/Method(s): UCMR3 List					Sample De	_		1.2 37		
				-	-		Sampling (ft):	37 33.02		
Instruments (I	struments (Manufacturer, Model, and Serial No.):					Calibrated Within	-		ounipining (14)	Yes
Equipment Galibra			·		eter. Water Qu	uality Meter, Water	,	Geosubmers	ible Pump	100
						11090C012300, Y				
Calculations:										Signature:
Saturated well (V=Volume (gal/ft)	casing volum	e: V= ∏(R^2	∠)H*7.48 ga	ai/tt^3			V= Π(R^2	?)H*7.48 gal/	ft^3	1-11 7-
Π = 3.14 R = well radius (ft) H = height of wate		r (in)/12 (in/ft))	/2)			= ∏ * (2		t))/2)^2 * 5.69 0.9 gal.	9 * 7.48 gal/ft^3	John Fran
Notes:										Name (print):
					None					Jacob Poirier
OA/OCid by	cik								OA/OC Data:	40/42/2047

wheeler												
Project Name:		Phase 1 Reg		spections for l National Gua		Compounds at	Project Nu	ımber:		291330006.010		
Contract:			V	/9133L-14-D-	0002		Task Orde	r:	-	0006		
Installation:	•			BARNS			Technicia		-	Jacob Poirier		
Well ID:	•			TW-04			Date:		•	06/30/17		
Initial Depth to	٠,			32.88			Well Diame	eter (in):		2.0		
Total Depth of \				42.3			1 Casing V	olume (ga	al):	1.5		
Method of Purg			Lo	ow flow sub. I			3 Casing V			4.6		
Measuring Poir	nt (toc, tor, et	c.):		Top of Casir	ig		Pump Inta	ke Depth (feet):	36		
Time	Water Level (feet)	Flow Rate (mL/min)	Cum. Volume (gal.)	Temp. (°C)	pH (SU)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)		
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	±10% and <10 NTU			
11:26		280			5.00					Pumping/Purging Started		
11:26	33.88	280	.2	11.74	5.88	111	5.88	8.0	25.9			
11:38	33.88	280	.5 .7	11.05	5.83 5.84	105 107	2.23	15.5	22.6			
11:42 11:47	33.88 33.88	280 280	.7	11.04	5.85	107	2.21	15.9 16.1	11.6 10.8	_		
11.47	33.00	200	.5	11.03	3.00	100	2.22	10.1	10.0			
	1											
					-							
	 					-						
Stability Reach	ed (Y/N):			Yes		If No, Provide E	xplanation			NA		
		Final	Values:	11.05	5.85	106	2.22	16.1	10.8			
Sample ID:				08-GW-TW0	1-063017-36		Method of			Low flow		
QA/QC Samples	s (Yes/No):			No			Sample Da		•	6/30/2017		
Duplicate ID:	` ′ .			NA		-	Sample Co		ime:	11:55		
Sample Contair	ner Type(s):			Plastic			Total Volu		-	1.1		
Preservative(s): lce (4 °C)						Sample De	epth (ft):		36			
Analysis/Method(s): UCMR3 List					_	Depth to V	Vater After	Sampling (ft):	33.88			
•	truments (Manufacturer, Model, and Serial No.):					O - lile A d NASSAL i	т					
Equipment Calibra							thin Criteria (Y/N): Yes					
				Turbidity Me		uality Meter, Water 11090C012300, Y			sible Pump			
Calculations:							Signature:					
Saturated well	casing volum	e: V= Π(R^2	2)H*7.48 as	al/ft^3						j		
V=Volume (gal/ft) Π = 3.14 R = well radius (ft) H = height of wate	= (well diameter	,	, ,			= N * (2	2.0 (in)/12 (in/ft	!)H*7.48 gal/ !))/2)^2 * 9.4: 1.5 gal.	ft^3 2 * 7.48 gal/ft^3	My form		
Notes:	• • • • • • • • • • • • • • • • • • • •									Name (print):		
		Difficul	ties with nur	nn resulted in	one sample l	naving higher turbio	dity than the of	her		Jacob Poirier		
		Dillicul	ace water pur	np resulted III	one sample l	iaving inglier tulbic	any man me ot	.101				
ON/OCIA bur	cik								OA/OC Data:	40/42/2047		

wheeler										
Project Name:		Phase 1 Reg		pections for F National Gua		Compounds at	Project Nu	ımber:		291330006.010
Contract:			V	/9133L-14-D-	0002		Task Orde	r:	-	0006
Installation:	•			BARNS			Technicia	n(s):		Jacob Poirier
Well ID:				TW-05			Date:		-	06/29/17
Initial Depth to				46.75			Well Diam			2.0
Total Depth of				53.71			1 Casing V		-	1.1 3.4
Method of Purg Measuring Poir		٠ ١٠		Geosub pun Top of Cas			3 Casing V Pump Inta			49
weasuring Poli	it (toc, tor, etc	U.).	1	Top of Cas	ling	Specific	Fullip Ilita	ke Deptii (leet):	40
Time	Water Level (feet)	Flow Rate (mL/min)	Cum. Volume (gal.)	Temp. (°C)	pH (SU)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	±10% and <10 NTU	
09:25	40.04	240	4	44.55	0.74	240	0.07	50.0	0.70	Pumping/Purging Started
09:32 09:39	46.64 46.64	240 240	.1 .3	14.55 15.31	6.71 6.37	348 347	9.37 9.18	53.8 54.7	6.78 6.68	
09:39	46.64	240	.5	15.62	6.39	347	9.18	54.7	6.72	
09:49	46.64	240	.6	15.62	6.38	344	9.19	54.4	6.69	
09:54	46.64	240	.8	15.61	6.38	342	9.19	54.1	6.65	
	12.2									
						ļ				
	1									
						ļ				
	+									
	†									
Stability Reach	ed (Y/N):			Yes		If No, Provide E	xplanation			NA
		Final	Values:	15.61	6.38	342	9.19	54.1	6.65	
Sample ID:			BARN	S-07-TW05-0	62917-49		Method of	Sampling	:	Low flow
QA/QC Sample:	s (Yes/No):			No			Sample Da		-	06/29/17
Duplicate ID:				NA			Sample Co			09:55
Sample Container Type(s): Plastic Preservative(s): Ice (4 °C)					Total Volu	-	d (gal):	.8 49 46.64		
				-	Sample De		Compling (ft):			
	Analysis/Method(s): UCMR3 List						Deptil to v	vater Arter	Sampling (ft):	40.04
•	Astruments (Manufacturer, Model, and Serial No.): Quipment Calibrated (Y/N): Yes Calibrate					_Calibrated Within	Criteria (Y/N):			Yes
						, Water Quality Me 11090C012300, Y				
Calculations:										Signature:
Saturated well of V=Volume (gal/ft) Π = 3.14 R = well radius (ft) H = height of wate	= (well diameter	,	, ,	ıl/ft^3		= ∏ * (2	2.0 (in)/12 (in/ft	t)H*7.48 gal/ t))/2)^2 * 6.9 1.1 gal.	ft^3 6 * 7.48 gal/ft^3	Mr Dan
Notes:										Name (print):
					None					Jacob Poirier
OA/OCid by	cik								OA/OC Data:	40/42/2047

wheeler										
Project Name:		Phase 1 Reg		spections for F National Gua		d Compounds at	Project Nu	ımber:		291330006.010
Contract:			V	V9133L-14-D-	0002		Task Orde	ır.	•	0006
Installation:			•	BARNS	0002	<u> </u>	Technicia		,	Shawna lacozzi
Well ID:				MW-6			Date:	(-/-		06/30/17
Initial Depth to	Water (ft):			23.79			Well Diame	eter (in):	•	2.0
Total Depth of	, ,			27.25			1 Casing V		ıl):	0.6
Method of Purg	. ,			Peristaltic		-	3 Casing V			1.7
Measuring Poir		c.):		Top of Casir	ng		Pump Inta			25
		ĺ	0			Specific	1	. `	, , , , , , , , , , , , , , , , , , ,	
Time	Water Level (feet)	Flow Rate (mL/min)	Cum. Volume (gal.)	Temp. (°C)	pH (SU)	Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, odor, etc.)
		Stabilizatio	n Criteria	±0.5°C	±0.1	±3%	±10%	±10%	±10% and <10 NTU	
09:02		120								Pumping/Purging Started
09:08	23.81	120	0.16	15.3	7.31	383.6	9.50	71.7	10.74	Clear no odor
09:13	23.81	120	0.32	14.6	5.76	239.8	8.76	90.8	85.85	Tubing slid to bottom of well
09:18	23.80	120	0.48	14.7	5.84	183.0	8.97	180.1	4.70	Pulled tubing up and secured it
09:23	23.80	120	0.64	14.7	6.17	64.4	9.19	222.4	3.40	
09:28	23.80	120	0.80	14.7	6.10	75.2	9.09	256.4	4.07	
09:33	23.80	120	0.96	15.2	6.08	87.8	8.93	280.7	2.43	
09:38	23.80	120	1.12	15.5	6.06	95.5	8.90	294.8	1.01	
09:43	23.80	120	1.28	15.9	6.04	101.6	9.01	302.1	1.70	
09:48	23.80	120	1.44	15.4	6.03	105.1	8.78	305.7	0.63	
09:53	23.80	120	1.60	15.4	6.03	106.2	8.80	308.9	0.42	
09:58	23.80	120	1.76	15.4	6.03	106.0	8.85	309.9	0.23	
							-			
							-			
							-			
							-			
							-			
							ļ			
Stability Reach	ed (Y/N):			Yes		If No, Provide E	xplanation			NA
		Final	Valuesi	45.4	6.02	406.0	0.05	200.0	0.00	
		Filiai	Values:	15.4	6.03	106.0	8.85	309.9	0.23	
Sample ID:				MW-06-06301		-	Method of			Low flow
QA/QC Sample	s (Yes/No):			Yes MS/MS	SD		Sample Da			06/30/17
Duplicate ID:				NA			Sample Co			10:08
Sample Contain			-	Plastic unprese			Total Volu	_	d (gal):	2
Preservative(s)				Ice (4 °C)			Sample De	,		25
Analysis/Metho	. ,			UCMR3 Lis	St		Depth to v	vater After	Sampling (ft):	23.77
Instruments (er, Model, a								
Equipment Calibra	ited (Y/N):		Y	'es		_Calibrated Within	Criteria (Y/N):			Yes
				Turbidity		er Quality Meter, Wa 2000 201605531, Y			Pump	
Calculations:										Signature:
		\/ =/5::	NI 1+7 40	-1/640						~
Saturated well V=Volume (gal/ft) Π = 3.14 R = well radius (ft) H = height of wate	= (well diamete			аис э		= ∏ * (2	2.0 (in)/12 (in/ft	2)H*7.48 gal/ t))/2)^2 * 3.4 0.6 gal.	ft^3 6 * 7.48 gal/ft^3	Munghed
Notes:										Name (print):
										ı '
					None					Shawna lacozzi
OA/OCid by	oik								OA/OC Data:	40/42/2047

APPENDIX D

WATER QUALITY SAMPLING INSTRUMENT CALIBRATION LOGS

WATER QUALITY SAMPLING INSTRUMENT CALIBRATION FORM

Project Name:		Phase 1 Regic	nal Site Ins	pections for Perfl	Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations	Multiple Air Na	ational Guard	Project Number:	mber:	29133	291330006.010
Contract:		W9	W9133L-14-D-0002	.0002	Task Order:	9000		Date:		90	06/28/17
Installation:					BARNS			Calibration	Calibration Start Time:)	08:54
Sample Technician(s):	ian(s):			3L	Jacob Poirier			Calibration	Calibration End Time:	0	09:12
					Readings	Readings Before Calibration	alibration				
Date	Time (24hr)	Temperature (°C)	Hd (SU)	Turbidity (NTUS)	Specific Electrical Conductance (mS/cm)	D.O. (%)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure (mm Hg)	Con	Comments
06/28/17	08:54	21.64	4.00 4.82 Na	9.8 Na Na	.991	96.4	Na	107.3	Na		Na
					Reading	Readings After Calibration	ibration				
Date	Time (24hr)	Temperature (°C)	pH (SU)	Turbidity (NTUS)	Specific Electrical Conductance (mS/cm)	D.O. (%)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure (mm Hg)	Con	Comments
06/28/17	09:12	20.97	4.00 7.01	Pass Na Na Na	1.010	99.7	N	100.4	S S		Na
Calibration Materials Record:	terials Recon	d:									
	전	pH Calibration Standards	rds		Specific Electrical Conductance, Salinity, Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP) Calibration Standards	uctance, Salini n Potential (Ol	ity, Dissolved O	xygen (DO) and Ox Standards	idation	Turbidity Standards	ndards
Standard	Cal. Star	Cal. Standard Lot #	Exp	Expiration Date	Standard	Cal. Stan	Cal. Standard Lot #	Expiration Date	Sta	Cal. Sta	Expiration Date
pH (4)	99	6GD684 6GG371		07/01/18	Spec. Conductance Salinity)599 	0,656870 NA	07/01/17	10	AN AN	71/10/70
pH (10)		NA		07/07/17	D.O.		NA	07/07/17	100	AN	07/07/17
					ORP	7G(7GC992	09/01/17	800	NA	07/07/17
Instruments (I	Manufacturer,	Instruments (Manufacturer, Mode, and Serial No.): Manufacturer/Model	ial No.): :r/Model	Serial No	Notes:				Signature:		7
Water Quality Meter: Turbidity Meter:	leter:	YSI 556 MPS Hach 2100Q	APS 000	14F100064 11090C012300							
Calibrated Within Acceptance Criteria (Y/N):	ר Acceptance Cr	iteria (Y/N):		Yes			Na				
If No, Provide Explanation:	planation:		Y V						Name (print):	orint):	Jacob Poirier
QA/QC'd by: gk	gk								QA/QC Date:		10/12/2017

WATER QUALITY SAMPLING INSTRUMENT CALIBRATION FORM

Project Name:		Phase 1 Regic	onal Site Ins	pections for Perfl	Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations	Multiple Air Na	ational Guard	Project Number:	umber:	29133	291330006.010
Contract:		W9	W9133L-14-D-0002	.0002	Task Order:	9000		Date:		90	06/29/17
Installation:					BARNS			Calibratio	Calibration Start Time:		07:55
Sample Technician(s):	ian(s):			غال 1	Jacob Poirier			Calibratio	Calibration End Time:		08:17
					Readings	Readings Before Calibration	alibration .				
Date	Time (24hr)	Temperature (°C)	hd (SU)	Turbidity (NTUs)	Specific Electrical Conductance (mS/cm)	D.O. (%)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure (mm Hg)	100	Comments
06/29/17	07:55	18.13	4.11 7.01 Na	9.73 Na Na	.944	104.4	Na	113.7	Na		Na
					Reading	Readings After Calibration	ibration				
Date	Time (24hr)	Temperature (°C)	Hd (US)	Turbidity (NTUs)	Specific Electrical Conductance	D.O. (%)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure	00	Comments
06/29/17	08:17	19.20	4.00 7.00 Na	Pass Na Na	1.000	100.0	N	6.69	Na		Na
Calibration Materials Record:	aterials Recor	d :									
	전	pH Calibration Standards	ırds		Specific Electrical Conductance, Salinity, Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP) Calibration Standards	uctance, Salini n Potential (Ol	ity, Dissolved O	xygen (DO) and O: Standards	kidation	Turbidity Standards	andards
Standard	Cal. Star	Cal. Standard Lot #	Exp	Expiration Date	Standard	Cal. Stan	Cal. Standard Lot #	Expiration Date	Sta	Cal. Sta	Expiration Date
pH (4)	99	6GD684 6GG371		07/01/18	Spec. Conductance	599	Na	07/01/1/	10	Na Na	71/70/70
pH (10)		Na		06/29/17	D.O.	_	Na	07/07/17	100	Na	07/07/17
					ORP	7G(7GC992	09/01/17	800	Na	07/07/17
Instruments (A	Manufacturer,	Instruments (Manufacturer, Model, and Serial No.): Manufacturer/Model	ial No.): :r/Model	Serial No	Notes:				Signature:		M Rain
Water Quality Meter: Turbidity Meter:	leter:	YSI 556 MPS Hach 2100Q	MPS 30Q	14F100064 11090C012300		z	enoN				med mil
Calibrated Within Acceptance Criteria (Y/N):	n Acceptance Cr	iteria (Y/N):		Yes	<u> </u>						
If No, Provide Explanation:	planation:		NA						Name (print):	orint):	Jacob Poirier
QA/QC'd by: gk	gk								QA/QC Date:		10/12/2017

WATER QUALITY SAMPLING INSTRUMENT CALIBRATION FORM

Project Name:		Phase 1 Regic	onal Site Ins	pections for Perflu	Phase 1 Regional Site Inspections for Perfluorinated Compounds at Multiple Air National Guard Installations	Multiple Air Na	itional Guard	Project Number:	mber:	291	291330006.010
Contract:		6M	W9133L-14-D-0002		Task Order:	9000		Date:			06/30/17
Installation:					BARNS			Calibration	Calibration Start Time:		08:30
Sample Technician(s):	ian(s):			Ja	Jacob Poirier			Calibration	Calibration End Time:		08:47
					Readings	Readings Before Calibration	libration				
Date	Time (24hr)	Temperature (°C)	hd (SU)	Turbidity (NTUs)	Specific Electrical Conductance (mS/cm)	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure (mm Hg)	0	Comments
06/30/17	08:30	22.27	3.98 7.04 NA	9.96 Na Na	1.196	99.0	N	98.6	N		Na
					Reading	Readings After Calibration	ibration				
Date	Time (24hr)	Temperature (°C)	Hd (S)	Turbidity (NTUs)	Specific Electrical Conductance	D.O. (mg/L)	Salinity (%)	ORP/Eh (mV)	Barometric Pressure (mm Ha)	0	Comments
06/30/17	08:47	22.64	4.00 7.00	Pass Na	1.000	8. 6	Na	100.1	Na		Na
Motorio Docoud				אמ							
	D Hd	pH Calibration Standards	ırds		Specific Electrical Conductance, Salinity, Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP) Calibration Standards	uctance, Salini n Potential (OF	ty, Dissolved O	xygen (DO) and Ox Standards	idation	Turbidity Standards	tandards
Standard	Cal. Star	Cal. Standard Lot #	Expi	Expiration Date	Standard	Cal. Stan	Cal. Standard Lot #	Expiration Date	ite Standard	lard Cal. Standard Lot #	Expiration Date
pH (4)	199	6GD684	_	04/01/18	Spec. Conductance)99	6GG870	07/01/17	10	Na	07/07/17
(Z) Hd	99	6GG371)	07/01/18	Salinity	4	Na	07/07/17	20	Na	07/07/17
pH (10)	_	Na		07/07/17	D.O.	~	Na	07/07/17	100	Na Na	07/07/17
					ORP	7GC	7GC992	09/01/17	800	0 Na	07/07/17
Instruments (A	Manufacturer,	Instruments (Manufacturer, Model, and Serial No.): Manufacturer/Model	ial No.):	Serial No	Notes:				Signa	Signature:	10
Water Quality Meter:	eter:	YSI 556 MPS	MPS	14F100064							182
Turbidity Meter:		Hach 2100Q	30Q	11090C012300		2				7	<u> </u>
Calibrated Within Acceptance Criteria (Y/N):	Acceptance Cr.	iteria (Y/N):		Yes		<					
If No, Provide Explanation:	planation:		N A						Name	Name (print):	Jacob Poirier
QA/QC'd by: gk	ojk								QA/QC Date:		10/12/2017

APPENDIX E

SEDIMENT SAMPLING LOGS

SAMPLE COLLECTION LOG SEDIMENT / SURFACE SOIL / SURFACE WATER

wrieelei									
Project Name:	Phase 1 Region Compounds at	onal Site Inspec Multiple Air Nati			Project Nu	mber:		29	1330006.010
Contract:		W9133L-14-E	0-0002		Task Orde	r:	-		0006
Installation:		BARNS			Date:		-		6/27/2017
Location ID:	-	03SD0 ⁻			Northing/E	asting:	-		289, -72.719834
Technician(s):		Jacob Poirier			-	•	-		·
				SEDIMENT	SAMPLE				
				Descri					
	NAME (USCS Symbol)	: color, moist	ure, % by wt, plas		y, toughnes	s, dry strength	h,consistency	
		Brown, dr	y, fine to me	edium sand. Tra	ace gravel, s	ilt and org	anic materia	ıl.	
Sample Depth (ft):		0-2 ft			Sample ID			BARNS-0	3-SD01-062717-0-2
MS/MSD Collected:		No			Sample Da		-		6/27/2017
Duplicate ID:		NA			Sample Co		ime:		11:30
Sample Container Typ	pe(s):	Р	lastic		Sample Co	llection N	lethods:	Hand-Dug	pit, composite 0-2 ft
Preservative(s):	-	Ice (4 °0	C)		Analysis/N	lethod(s):	_	l	JCMR3 List
				SURFACE SO	OIL SAMPI	.E			
	NAME (USCS Symbol)	: color. moist	Descri ure, % by wt, plas		v. toughnes	s. drv strenath	h.consistencv	
				N.	A				
Sample Depth (ft):		NA			Sample ID	:	_		NA
MS/MSD Collected:		NA			Sample Da	ite:	_		NA
Duplicate ID:		NA			Sample Co		_		NA
Sample Container Typ	pe(s):		NA		Sample Co		_		NA
Preservative(s):		NA			Analysis/N				NA
			S	URFACE WA	TER SAMI	PLE			
Time	Intake Depth (in)	Temp. (°C)	pH (units)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Dui	nts/Observations ring Purging , sediment, etc.)
NA	NA	NA	NA	NA	NA	NA	NA		NA
Sample Depth (ft):	•	NA	•		Sample Da	ite:			NA
Sample ID:		NA			Sample Co	llection T		NA	
MS/MSD Collected:		NA			Sample Co	llection N	NA		
Duplicate ID:		NA			Surface W	NA			
Sample Container Typ	pe(s):		NA		Water Boo	y and Wat	ter Quality C	Characteristics:	
Preservative(s):		NA						NA	
Analysis/Method(s):		NA						TVA	
Location Sketch:					Instrume Equipment (•		Model, and Seria	al No.): NA
					Calibrated V		NA		
	35001	Storm Water Grange Storm United Storings	N N		Notes: Sediment w	as collected		mwater drainage basi	Signature:
		DINDEZ					at PRL 3.	, and the second	Mame (print):
									Jacob Poirier
QA/QC'd by:			cik			04/	QC Date:	1	0/12/2017

SAMPLE COLLECTION LOG SEDIMENT / SURFACE SOIL / SURFACE WATER

wheeler								
Project Name:		nal Site Inspect Multiple Air Nat			Project Nu	mber:		291330006.010
Contract:		W9133L-14-[D-0002		Task Orde	r:	-	0006
Installation:		BARNS			Date:		_	6/27/2017
Location ID:		03SD02	2		Northing/E	asting:	-	42.170289, -72.719459
Technician(s):		Jacob Poirie	er		_	•	_	
				SEDIMENT	SAMPLE			
				Descr	iption			
	NAME (USCS Symbol)	: color, moist	ure, % by wt, plas	sticity, dilatano	y, toughnes	s, dry strength	n,consistency
		Brown, dr	y, fine to m	edium sand. Tra	ace gravel, s	ilt and org	anic materia	l.
Sample Depth (ft):		0-2 ft			Sample ID	:		BARNS-03-SD02-062717-0-2
MS/MSD Collected:		Yes			Sample Da	ite:	_	6/27/2017
Duplicate ID:	BAI	RNS-03-SD02-0	062717-DUP		Sample Co	ollection T	ime:	12:05
Sample Container Typ	pe(s):	P	lastic		Sample Co	ollection N	lethods:	Hand-Dug pit, composite 0-2 ft
Preservative(s):		Ice (4 °0	C)		Analysis/N			UCMR3 List
				SURFACE SO	OIL SAMPI	.E		
				Descr	iption			
	NAME (USCS Symbol)	: color, moist	ure, % by wt, plas	sticity, dilatano	y, toughnes	s, dry strength	n,consistency
				N.	A			
Sample Depth (ft):		NA			Sample ID	:	_	NA
MS/MSD Collected:		NA			Sample Da	ate:	_	NA
Duplicate ID:		NA			Sample Co		-	NA
Sample Container Typ	pe(s):		NA		Sample Co		_	NA
Preservative(s):		NA			Analysis/N			NA
				URFACE WA	TER SAMI	PLE		
Time	Intake Depth (in)	Temp. (°C)	pH (units)	Specific Electrical Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments/Observations During Purging (color, sediment, etc.)
NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample Depth (ft):		NA			Sample Da	ate:		NA
Sample ID:		NA			Sample Co	ollection T	ime:	NA
MS/MSD Collected:		NA			Sample Co	ollection N	lethods:	NA
Duplicate ID:		NA			Surface W	ater Depth	ո (ft)։	NA
Sample Container Typ	pe(s):		NA		Water Boo	ly and Wat	ter Quality C	Characteristics:
Preservative(s):		NA						NA
Analysis/Method(s):		NA						NA .
Location Sketch:					Instrume Equipment (,	,	Model, and Serial No.): NA
		er Catch Basin			Calibrated W		_	NA
	35001	Storm Water from the Storm Sto	2		Notes: Sediment w	as collected	from dry storn at PRL 3.	Signature: Mame (print): Jacob Poirier
QA/QC'd by:			cjk		<u> </u>	OA	QC Date:	10/12/2017
			~, ~			O(M)	a Dute.	10/12/2011

APPENDIX F

DATA VALIDATION REPORTS

DATA VALIDATION REPORT

FY16 Phase 1 Regional Site Inspections for Perfluorinated Compounds
Multiple Air National Guard Installations
Samples Collected 20 through 30 June 2017
Barnes Municipal Airport

Prepared for:

National Guard Bureau

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.

7376 SW Durham Road Portland, Oregon 97224 (503) 639-3400

September 2017

Project No. 291330006.010.****

Copyright © 2017 by Amec Foster Wheeler Environment & Infrastructure, Inc. All rights reserved.

TABLE OF CONTENTS

ACRO	NYMS AND ABBREVIATIONS	. ii
1.0	INTRODUCTION	. 1
2.0	DATA VALIDATION METHODOLOGY	. 1
3.0	EXPLANATION OF DATA QUALITY INDICATORS 3.1 Laboratory Control Sample Recoveries 3.2 Matrix Spike Recoveries 3.3 Blank Concentrations 3.4 Laboratory and Field Duplicates	3 3
4.0	DEFINITIONS OF QUALIFIERS THAT MAY BE USED DURING DATA VALIDATION	4
5.0	QUALIFICATION REASON CODES	4
6.0	CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION	5
7.0	SPECIFIC DATA VALIDATION FINDINGS 7.1 Per- and Polyfluoroalkyl Substances by EPA Method 537 7.1.1 Holding Times 7.1.2 Initial Calibrations 7.1.3 Initial Calibration Verification 7.1.4 Continuing Calibration Verification 7.1.5 Laboratory Blanks 7.1.6 Equipment and Field Blanks 7.1.7 Laboratory Control Sample Accuracy 7.1.8 Matrix Spikes/ Matrix Spike Duplicates 7.1.9 Surrogate Recoveries 7.1.10 Internal Standard Recoveries 7.1.11 Data Reporting and Analytical Procedures	5 5 5 6 6 6 6 6 6 6
8.0	FIELD DUPLICATE RESULTS	7
9.0	SUMMARY AND CONCLUSIONS	7
REFE	RENCES	8

LIST OF TABLES

Table 1	Field Samples Submitted Vista Analytical Laboratory
Table 2	Field Duplicate Detections
Table 3	Qualifiers Added During Validation

ACRONYMS AND ABBREVIATIONS

% percent

CCV Continuing Calibration Verification

CLP Contract Laboratory Program

COC Chain Of Custody

DoD Department Of Defense

EPA United States Environmental Protection Agency

ICAL Initial Calibration

ICV Initial Calibration Verification

ID Identification

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOQ Limit of Quantification

MS Matrix Spike

MSD Matrix Spike Duplicate

PFAS Per- and Polyfluoroalkyl substance

PFBS Perfluorobutanesulfonic Acid

PFCs Perfluorinated Compounds

PFHpA Perfluoroheptanoic Acid

PFHxS Perfluorohexanesulfonic Acid

PFNA Perfluorononanoic Acid

PFOA Perfluorooctanoic Acid

PFOS Perfluorooctanesulfonic Acid

QAPP Quality Assurance Project Plan

QC Quality Control

RPD Relative Percent Difference

Vista Analytical Laboratory

DATA VALIDATION REPORT FY16 PHASE 1 REGIONAL SITE INSPECTIONS FOR PERFLUORINATED COMPOUNDS

Multiple Air National Guard Installations Samples Collected 20 through 30 June 2017 Barnes Municipal Airport, Westfield, Massachusetts

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) collected 12 water samples (including one field duplicate, five equipment blanks, and one decontamination source water blank) and 29 soil samples (including three field duplicates) between 20 and 30 June 2017, from Barnes Municipal Airport Base located in Westfield, Massachusetts. Amec Foster Wheeler submitted the samples to Vista Analytical Laboratory (Vista), located in El Dorado Hills, California, where they were received between 21 June and 6 July 2017. Vista assigned the samples to sample delivery groups 1700749, 1700830, 1700831, 1700832, and 1700833. Vista analyzed the samples for per- and polyfluoroalkyl substances (PFASs) by modified United States Environmental Protection Agency (EPA) Method 537. A list of these samples by field sample identification (ID), sample collection date, sample matrix, and laboratory sample ID is presented in Table 1.

2.0 DATA VALIDATION METHODOLOGY

Amec Foster Wheeler performed EPA Stage 4 validation on 10 percent (%) of the field samples and EPA Stage 2B validation on the remaining field samples associated with this sampling event, as indicated on Table 1. The Stage 4 validation includes review of the quality control (QC) results in the laboratory's analytical report and reported on QC summary forms as well as recalculation checks and review of the instrument raw data outputs. The Stage 2B validation includes review of the QC results in the laboratory's analytical report and reported on QC summary forms with no review of the associated raw data. Data from equipment and field blanks did not undergo validation because results from these samples are only used to assess data usability for field samples. This data validation has been performed in general accordance with:

 Amec Foster Wheeler, 2017. Final Quality Assurance Project Plan (QAPP), Revision 01.
 FY16 Phase 1 Regional Site Inspections for Perfluorinated Compounds, Multiple Air National Guard Installations. Contract #: W9133L-14-D-002, Delivery Order 0006, July 2017.

Data Validation Report FY16 Phase 1 Regional Site Inspections for PFCs Samples Collected June 2017 | Barnes Municipal Airport

- Department of Defense (DOD), 2017. DoD Quality Systems Manual for Environmental Laboratories, Version 5.1. January 2017.
- EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

The data were reviewed following Amec Foster Wheeler's general data validation guidelines and using QAPP-specified QC requirements.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package and electronic data deliverable completeness;
- Laboratory case narrative review;
- Chain of custody (COC) compliance;
- Holding time compliance;
- QC sample frequency;
- Initial calibration (ICAL), initial calibration verification (ICV), and continuing calibration verification (CCV) compliance with method-specified criteria;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;
- Accuracy and bias as demonstrated by recovery of surrogate spikes, laboratory control sample (LCS), and matrix spike (MS) samples;
- Internal standard recoveries;
- Analytical precision as relative percent difference (RPD) of analyte concentration between laboratory duplicates or MS/MS duplicate (MSD);
- Sampling and analytical precision as RPD of analyte concentration between field duplicates;
- Assessment of field contamination as demonstrated by field and trip blanks;
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

Amec Foster Wheeler Environment & Infrastructure, Inc.

Project No.: 291330006.010 September 25, 2017 \PLD2-FS1\Project\Project\Project\ANG Phase I-291330006\3.0_Site_Data\3.4_Test_Results\Validation_Files\Barnes\Final Barnes ANG DVR_Aug 2017.Docx

3.0 EXPLANATION OF DATA QUALITY INDICATORS

Summary explanations of the specific data quality indicators reviewed during this data quality review are presented below.

3.1 LABORATORY CONTROL SAMPLE RECOVERIES

LCSs and LCS duplicates (LCSDs) are aliquots of analyte-free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery is an indication of a laboratory's ability to successfully perform an analytical method in an interference-free matrix.

3.2 MATRIX SPIKE RECOVERIES

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 BLANK CONCENTRATIONS

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Equipment blanks are prepared by passing analyte-free water through or over sample collection equipment and collecting the water in sample containers. Equipment blanks are analyzed for the analytical suite required for the project. Equipment blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.

Field blanks are prepared by pouring an aliquot of analyte-free water into a sample container in the field. Field blanks are analyzed for the analytical suite required for the project. Field blanks are

Data Validation Report FY16 Phase 1 Regional Site Inspections for PFCs Samples Collected June 2017 | Barnes Municipal Airport

used to monitor for possible sample contamination originating from the water used for equipment decontamination.

Laboratory, equipment, and field blanks are processed by the laboratory using exactly the same procedures as the field samples. Target analytes should not be found in laboratory blanks.

When target analytes are detected in blanks, analyte concentrations in the associated samples less than 10 times the concentration detected in the blank will be B qualified.

3.4 LABORATORY AND FIELD DUPLICATES

Laboratory and field duplicate analysis verifies acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

4.0 DEFINITIONS OF QUALIFIERS THAT MAY BE USED DURING DATA VALIDATION

- **B** The analyte was detected in the sample and an associated blank and the concentration detected in the sample was less than 10 times the concentration detected in the blank.
- **U** The analyte was analyzed for, but was not detected.
- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- Q The analyte was B qualified because of a detection in an associated blank and additionally J qualified because of an additional QC issue.
- R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

5.0 QUALIFICATION REASON CODES

Amec Foster Wheeler applied the following reason code to the data during validation:

Data Validation Report FY16 Phase 1 Regional Site Inspections for PFCs Samples Collected June 2017 | Barnes Municipal Airport

- FDD Field duplicate imprecision.
- MSL Low MS/MSD recovery. Analytical result may be biased low.
- TR Detected concentration is less than the limit of quantification (LOQ).

6.0 CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION

The samples were received at the laboratories under proper COC, intact, properly preserved, and at temperatures less than the QAPP-specified maximum of 10 degrees Celsius.

7.0 SPECIFIC DATA VALIDATION FINDINGS

Results from these samples may be considered usable with the limitations and exceptions described Sections 7.1 through 7.11.

7.1 PER- AND POLYFLUOROALKYL SUBSTANCES BY EPA METHOD 537

PFASs results generated by Vista are usable with the limitations described in Sections 7.1.1 through 7.1.11.

7.1.1 Holding Times

The aqueous samples were extracted for PFASs within the QAPP-specified maximum holding time of 14 days from sample collection and the extracts were analyzed within the QAPP-specified maximum hold time of 28 days from extraction. The soil samples were extracted for PFASs within the QAPP-specified maximum holding time of 60 days from sample collection and the extracts were analyzed within the QAPP-specified maximum holding time of 30 days from extraction.

7.1.2 Initial Calibrations

The ICALs associated with the analysis of these samples met the QAPP-specified criteria of regression factors greater than or equal to 0.96, relative standard deviations for internal standards less than 35%, the lowest calibration standards calculates to 70 to 130% of its true concentration, and the remaining calibration points calculate to 75 to 125% of their true concentrations.

7.1.3 Initial Calibration Verification

ICV recoveries were within the method specified 70% to 130% limits.

7.1.4 Continuing Calibration Verification

CCV recoveries were within the method specified 70% to 130% limits.

7.1.5 Laboratory Blanks

PFASs were not detected in the laboratory blanks associated with these.

7.1.6 Equipment and Field Blanks

PFASs were not detected in the equipment blanks associated with these samples.

7.1.7 Laboratory Control Sample Accuracy

LCS recoveries were within the QAPP-specified limits of: 60 to 130 % for perfluorobutanesulfonic acid (PFBS); 70 to 130% for perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS); and 50 to 130% for perfluorononanoic acid (PFNA).

7.1.8 Matrix Spikes/ Matrix Spike Duplicates

Vista performed MS and MSD analyses on samples BARNS-03-SD01-062717-0-2, MW-6-063017-25, and BARNS-07-SB01-062917-13-15. Recoveries were within the QAPP-specified limits of: 60 to 130 % for PFBS; 70 to 130% for PFHpA, PFHxS, PFOA, and PFOS; and 50 to 130% for PFNA, and precision values were less than the QAPP-specified maximum of 30%, with the following exception:

 PFOS recoveries were low at 67.0% and 64.4% in the MS and MSD, respectively, performed on sample MW-6-063017-25. Amec Foster Wheeler J qualified the detected PFOS result from this sample because of the potential low analytical bias. (Qualifier and reason code: J-MSL)

7.1.9 Surrogate Recoveries

Vista used labeled internal standards, which are added before extraction to quantify their analytical results and do not add surrogates to the samples.

7.1.10 Internal Standard Recoveries

Internal standard areas were within the QAPP-specified limits of 50 to 150% of the average area counts measured during the initial calibration.

7.1.11 Data Reporting and Analytical Procedures

Vista J qualified analytes with concentrations between the detection limit (DL) and the LOQ. Amec Foster Wheeler agrees that these results are quantitatively uncertain and has maintained Vista's J qualifiers. (Qualifier and reason code: J-TR)

8.0 FIELD DUPLICATE RESULTS

Amec Foster Wheeler collected field duplicates with samples:

- BARNS-03-SD02-062717-0-2 (BARNS-03-SD02-062717-Dup)
- BARNS-04-SB01-062617-0-2 (BARNS-04-SB01-062617-Dup)
- BARNS-06-GW-TW01-062817-37 (BARNS-06-GW-TW01-062817-Dup)
- BARNS-05-SB01-062717-0-2 (BARNS-05-SB01-062717-DUP)

Detected results and RPDs for the field duplicates are summarized in Table 2. Precision values were within the QAPP-specified limits of less than 30% RPD or the difference between analytical results less than the LOQ, with the following exceptions:

- The RPD for PFOS was high at 43.7% between sample BARNS-06-GW-TW01-062817-37
 and its field duplicate BARNS-06-GW-TW01-062817-Dup. Amec Foster Wheeler J qualified
 the detected PFOS results from these samples because of the potential sampling or
 analytical imprecision. (Qualifier and reason code: J-FDD)
- The RPD for PFOS was high at 57.6% between sample BARNS-05-SB01-062717-0-2 and its field duplicate BARNS-05-SB01-062717-DUP. Amec Foster Wheeler J qualified the detected PFOS results from these samples because of the potential sampling or analytical imprecision. (Qualifier and reason code: J-FDD)

9.0 SUMMARY AND CONCLUSIONS

Amec Foster Wheeler evaluated a total of 216 data records from field samples during the validation. Amec Foster Wheeler J qualified 39 records (18.1%) as estimated values because of low MS/MSD recoveries, field duplicate imprecision, and/or analyte concentrations outside the instrument's calibration range. Qualified data are summarized in Table 3.

REFERENCES

- Amec Foster Wheeler, 2017. Final Quality Assurance Project Plan (QAPP), Revision 01. FY16 Phase 1 Regional Site Inspections for Perfluorinated Compounds, Multiple Air National Guard Installations. Contract #: W9133L-14-D-002, Delivery Order 0006, July 2017.
- Department of Defense (DOD), 2017. DoD Quality Systems Manual for Environmental Laboratories, Version 5.1. January 2017.
- EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

TABLES

Table 1 Field Samples Submitted to Vista Analytical Laboratory Barnes Municipal Airport, Massachusetts FY16 Phase 1 Regional Site Inspection for Per-Fluorinated Compounds

Sample Identification	Collection Date	Sample Matrix	SDG	Lab Sample ID	Notes
BARNS SWATER MSW 062017	20-Jun-17	QC Water	1700749	1700749-01	Decontamination Source Water
BARNS-04-SB01-062617-0-2	26-Jun-17	Soil	1700830	1700830-01	
BARNS-06-SB01-062617-0-2	26-Jun-17	Soil	1700830	1700830-02	
BARNS-06-SB02-062617-0-2	26-Jun-17	Soil	1700830	1700830-03	Stage 4
BARNS-06-SB03-062617-0-2	26-Jun-17	Soil	1700830	1700830-04	Stage 4
BARNS-08-SB01-062617-0-2	26-Jun-17	Soil	1700830	1700830-05	Stage 4
BARNS-08-SB02-062617-0-2	26-Jun-17	Soil	1700830	1700830-06	
MW-6-063017-25	30-Jun-17	Groundwater	1700830	1700830-07	MS/MSD
BARNS-03-SD01-062717-0-2	27-Jun-17	Soil	1700830	1700830-08	MS/MSD
BARNS-03-SD02-062717-0-2	27-Jun-17	Soil	1700830	1700830-09	
BARNS-03-SD02-062717-Dup	27-Jun-17	Soil	1700830	1700830-10	Field Duplicate of BARNS-03-SD02-062717-0-2
BARNS-04-GW-TW02-062817-30	28-Jun-17	Groundwater	1700830	1700830-11	
BARNS-04-SB01-062617-Dup	26-Jun-17	Soil	1700830	1700830-12	Field Duplicate of BARNS-04-SB01-062617-0-2
BARNS-05-SB02-062717-0-2	27-Jun-17	Soil	1700831	1700831-01	·
BARNS-06-GW-TW01-062817-37	28-Jun-17	Groundwater	1700831	1700831-02	Stage 4
BARNS-07-SB01-062617-0-2	26-Jun-17	Soil	1700831	1700831-03	J
BARNS-07-SB02-062817-13-15	28-Jun-17	Soil	1700831	1700831-04	
BARNS-EB-01	26-Jun-17	QC Water	1700831	1700831-05	Equipment Blank
BARNS-EB-02	26-Jun-17	QC Water	1700831	1700831-06	Equipment Blank
BARNS-01-GW-TW03-062917-37	29-Jun-17	Groundwater	1700831	1700831-07	_ -
BARNS-04-SB01-062917-13-15	29-Jun-17	Soil	1700831	1700831-08	
BARNS-04-SB03-062917-13-15	29-Jun-17	Soil	1700831	1700831-09	
BARNS-05-SB01-062917-13-15	29-Jun-17	Soil	1700831	1700831-10	
BARNS-05-SB02-062917-13-15	29-Jun-17	Soil	1700831	1700831-11	
BARNS-06-GW-TW01-062817-Dup	28-Jun-17	Groundwater	1700831	1700831-12	Field Duplicate of BARNS-06-GW-TW01-062817-37
BARNS-06-SB01-062917-13-15	29-Jun-17	Soil	1700832	1700832-01	
BARNS-06-SB02-062917-13-15	29-Jun-17	Soil	1700832	1700832-02	
BARNS-06-SB03-062917-13-15	29-Jun-17	Soil	1700832	1700832-03	
BARNS-07-GW-TW05-062917-49	29-Jun-17	Groundwater	1700832	1700832-04	
BARNS-07-SB01-062917-13-15	29-Jun-17	Soil	1700832	1700832-05	MS/MSD
BARNS-05-SB01-062717-DUP	27-Jun-17	Soil	1700832	1700832-06	Field Duplicate of BARNS-05-SB01-062717-0-2
BARNS-EB-03-063017	30-Jun-17	QC Water	1700832	1700832-07	Equipment Blank
BARNS-EB-04-063017	30-Jun-17	QC Water	1700832	1700832-08	Equipment Blank
BARNS-EB-05-063017	30-Jun-17	QC Water	1700832	1700832-09	Equipment Blank
BARNS-08-GW-TW04-063017-36	30-Jun-17	Groundwater	1700832	1700832-10	— 1
BARNS-05-SB01-062717-0-2	27-Jun-17	Soil	1700833	1700833-01	
BARNS-04-SB02-062917-13-15	29-Jun-17	Soil	1700833	1700833-02	
BARNS-04-SB02-062617-0-2	26-Jun-17	Soil	1700833	1700833-03	
BARNS-01-SB02-062617-0-2	26-Jun-17	Soil	1700833	1700833-04	
BARNS-01-SB01-062617-0-2	26-Jun-17	Soil	1700833	1700833-05	
BARNS-04-SB03-062617-0-2	26-Jun-17	Soil	1700833	1700833-06	
BARNS-07-SB02-062617-0-2	26-Jun-17	Soil	1700833	1700833-07	

Notes:

ID = identification MS/MSD = matrix spike/matrix spike duplicate

Table 2 Field Duplicate Detections Barnes Municipal Airport, Massachusetts FY16 Phase 1 Regional Site Inspection for Per-Fluorinated Compounds

Analyte	LOQ	Primary Sample	Field Duplicate	Units	RPD	Notes					
Samples BARNS-03-SD02-062717-0-2 and BARNS-03-SD02-062717-Dup											
PFHxS	0.00184	0.000629 J	0.000501 J	mg/kg	22.7%						
PFOS	0.00184	0.00280	0.00290	mg/kg	3.5%						
Samples BARNS-04-SB01-062617-0-2 and BARNS-04-SB01-062617-Dup											
PFOS	0.00189	0.000388 J	0.000601 J	mg/kg	43.1%	± LOQ					
Samples BAF	RNS-06-GW-T	W01-062817-37 and	BARNS-06-GW-TW)1-062817-E	Dup	_					
PFBS	0.00803	0.0395	0.0426	μg/L	7.6%						
PFHpA	0.00803	0.0200	0.0238	μg/L	17.4%						
PFHxS	0.00803	0.641	0.737	μg/L	13.9%						
PFOA	0.00803	0.0699	0.0793	μg/L	12.6%						
PFOS	0.00803	0.609	0.950	μg/L	43.7%	J-FDD					
Samples	BARNS-05-S	B01-062717-0-2 and	BARNS-05-SB01-06	2717-DUP							
PFHpA	0.00200	0.000403 J	0.000425 J	mg/kg	5.3%						
PFHxS	0.00200	0.00480	0.00556	mg/kg	14.7%						
PFOA	0.00200	0.00264	0.00329	mg/kg	21.9%						
PFOS	0.00200	0.115	0.208	mg/kg	57.6%	J-FDD					

Notes:

μg/L = micrograms per liter

LOQ = limit of quantification

PFBS = perfluorobutanesulfonic acid

PFHpA = perfluoroheptanoic acid

PFHxS = perfluorohexanesulfonic acid

PFOA = perfluorooctanoic acid

PFOS = perfluorooctanesulfonic acid

RPD = relative percent difference

Qualifier Definitions:

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the reported limit of detection.

Reason Codes:

± LOQ = The difference between analyte concentrations is less than the LOW, indicating acceptable analytical precision.

FDD = Field duplicate imprecision.

Table 3 Qualifiers Added During Validation Barnes Municipal Airport, Massachusetts FY16 Phase 1 Regional Site Inspection for Per-Fluorinated Compounds

	1	1				
Sample Identification	Analyte Results		Validation Qualifiers and Reason Codes			
BARNS-01-GW-TW03-062917-37	PFNA	0.00432 µg/L	J TR			
BARNS-01-SB01-062617-0-2	PFHpA	0.000334 mg/kg	J TR			
BARNS-01-SB01-062617-0-2	PFHxS	0.000894 mg/kg	J TR			
BARNS-01-SB01-062617-0-2	PFOA	0.000828 mg/kg	J TR			
BARNS-01-SB02-062617-0-2	PFHxS	0.000314 mg/kg	J TR			
BARNS-03-SD01-062717-0-2	PFOS	0.00138 mg/kg	J TR			
BARNS-03-SD02-062717-0-2	PFHxS	0.000629 mg/kg	J TR			
BARNS-03-SD02-062717-Dup	PFHxS	0.000501 mg/kg	J TR			
BARNS-04-GW-TW02-062817-30	PFBS	0.00358 µg/L	J TR			
BARNS-04-GW-TW02-062817-30	PFHpA	0.00505 µg/L	J TR			
BARNS-04-GW-TW02-062817-30	PFNA	0.00525 µg/L	J TR			
BARNS-04-GW-TW02-062817-30	PFOA	0.00520 µg/L	J TR			
BARNS-04-SB01-062617-0-2	PFOS	0.000388 mg/kg	J TR			
BARNS-04-SB01-062617-Dup	PFOS	0.000601 mg/kg	J TR			
BARNS-04-SB02-062617-0-2	PFOS	0.000325 mg/kg	J TR			
BARNS-04-SB03-062617-0-2	PFOS	0.00199 mg/kg	J TR			
BARNS-05-SB01-062717-0-2	PFHpA	0.000403 mg/kg	J TR			
BARNS-05-SB01-062717-0-2	PFOS	0.115 mg/kg	J FDD			
BARNS-05-SB01-062717-DUP	PFHpA	0.000425 mg/kg	J TR			
BARNS-05-SB01-062717-DUP	PFOS	0.208 mg/kg	J FDD			
BARNS-05-SB02-062717-0-2	PFHxS	0.000384 mg/kg	J TR			
BARNS-05-SB02-062917-13-15	PFHxS	0.000371 mg/kg	J TR			
BARNS-05-SB02-062917-13-15	PFOS	0.000434 mg/kg	J TR			
BARNS-06-GW-TW01-062817-37	PFOS	0.609 µg/L	J FDD			
BARNS-06-GW-TW01-062817-Dup	PFOS	0.950 µg/L	J FDD			
BARNS-06-SB01-062917-13-15	PFHxS	0.00133 mg/kg	J TR			
BARNS-06-SB01-062917-13-15	PFOA	0.000285 mg/kg	J TR			
BARNS-06-SB01-062917-13-15	PFOS	0.00180 mg/kg	J TR			
BARNS-06-SB02-062617-0-2	PFNA	0.000560 mg/kg	J TR			
BARNS-06-SB02-062617-0-2	PFOA	0.000518 mg/kg	J TR			
BARNS-06-SB02-062917-13-15	PFOA	0.000864 mg/kg	J TR			
BARNS-06-SB03-062617-0-2	PFNA	0.000610 mg/kg	J TR			
BARNS-06-SB03-062617-0-2	PFOA	0.000922 mg/kg	J TR			
BARNS-06-SB03-062917-13-15	PFOS	0.000304 mg/kg	J TR			
BARNS-07-SB01-062617-0-2	PFOS	0.000921 mg/kg	J TR			
BARNS-07-SB02-062617-0-2	PFOS	0.00153 mg/kg	J TR			
BARNS-08-GW-TW04-063017-36	PFOS	0.00380 µg/L	J TR			
MW-6-063017-25	PFOA	0.00276 µg/L	J TR			
MW-6-063017-25	PFOS	0.00684 µg/L	J MSL, TR			

Notes:

µg/L = micrograms per literPFHxS = perfluorohexanesulfonic acidmg/kg = milligrams per kilogramPFNA = perfluorononanoic acidPFBS = perfluorobutanesulfonic acidPFOA = perfluoroctanoic acidPFHpA = perfluoroheptanoic acidPFOS = perfluoroctanesulfonic acid

Qualifier Definitions:

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Reason Code Definitions:

FDD = Field duplicate imprecision.

MSL = Low matrix spike recovery. Analytical result may be biased low.

TR = Detected concentration is less than the limit of quantification.

APPENDIX G

LABORATORY ANALYTICAL REPORTS

July 21, 2017

Vista Work Order No. 1700830

Ms. Denise King AMEC Foster Wheeler 271 Mill Road Chelmsford, MA 01824

Dear Ms. King,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 06, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'Phase I Regional SI- Barnes / 291330006'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1700830 Page 1 of 32

Vista Work Order No. 1700830 Case Narrative

Sample Condition on Receipt:

Seven soil samples, three sediment samples, and two groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample ID discrepancies were confirmed by the client. The correct collection date for sample "MW-6-063017-25" is June 30, 2017. A revised Chain of Custody was received on July 11, 2017 to reflect this information.

Analytical Notes:

Modified EPA Method 537

The aqueous samples were extracted and analyzed for a selected list of 6 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

As requested, an MS/MSD was performed on sample "MW-6-063017-25".

VAL-PFAS

The solid samples were extracted and analyzed for a selected list of 6 PFAS using VAL Method PFAS.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries

Work Order 1700830 Page 2 of 32

were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

As requested, an MS/MSD was performed on sample "BARNS-03-SD01-062717-0-02".

Work Order 1700830 Page 3 of 32

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	25
Certifications	26
Sample Receipt	29

Work Order 1700830 Page 4 of 32

Sample Inventory Report

Vista Sample ID	Client Sample ID		Sampled	Received	Components/Containers
1700830-01	BARNS-04-SB01-062617-0-2		26-Jun-17 10:20	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-02	BARNS-06-SB01-062617-0-2		26-Jun-17 09:58	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-03	BARNS-06-SB02-062617-0-2		26-Jun-17 09:10	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-04	BARNS-06-SB03-062617-0-2		26-Jun-17 08:55	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-05	BARNS-08-SB01-062617-0-2		26-Jun-17 11:35	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-06	BARNS-08-SB02-062617-0-2		26-Jun-17 11:25	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-07	MW-6-063017-25	MS/MSD	30-Jun-17 10:08	06-Jul-17 09:46	HDPE Bottle, 125 mL
		MS/MSD			HDPE Bottle, 125 mL
		MS/MSD			HDPE Bottle, 125 mL
		MS/MSD			HDPE Bottle, 125 mL
		MS/MSD			HDPE Bottle, 125 mL
		MS/MSD			HDPE Bottle, 125 mL
1700830-08	BARNS-03-SD01-062717-0-2	MS/MSD	27-Jun-17 11:30	06-Jul-17 09:46	HDPE Jar, 6 oz
		MS/MSD			HDPE Jar, 6 oz
		MS/MSD			HDPE Jar, 6 oz
1700830-09	BARNS-03-SD02-062717-0-2		27-Jun-17 12:05	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-10	BARNS-03-SD02-062717-Dup		27-Jun-17 00:00	06-Jul-17 09:46	HDPE Jar, 6 oz
1700830-11	BARNS-04-GW-TW02-062817-	30	28-Jun-17 11:25	06-Jul-17 09:46	HDPE Bottle, 125 mL
					HDPE Bottle, 125 mL
1700830-12	BARNS-04-SB01-062617-Dup		26-Jun-17 00:00	06-Jul-17 09:46	HDPE Jar, 6 oz

Vista Project: 1700830 Client Project: Phase I Regional SI- Barnes / 291330006

Work Order 1700830 Page 5 of 32

ANALYTICAL RESULTS

Work Order 1700830 Page 6 of 32

VAL - PFAS		Qualifiers							
VAL	8	LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
	Column: BEH CI	%R	86.7	81.6	6.08	83.9	74.5	58.7	
	Lab Sample: B7G0050-BLK1 Date Analyzed: 12-Jul-17 20:36 Column: BEH C18	Labeled Standard	3 13C3-PFBS	3 13C4-PFHpA	s 1802-PFH _x S	3 13C2-PFOA	3 13C8-PFOS	3 13C5-PFNA	
		Qualifiers	SI	SI	IS	SI	SI	SI	
) 00T	2.00	2.00	2.00	2.00	2.00	2.00	
	B7G0050 11-Jul-2017 14:53	LOD	1.00	1.00	1.00	1.00	1.00	1.00	
	QC Batch: Date Extracted:	DL	0.285	0.285	0.285	0.285	0.285	0.285	
Method Blank		Conc. (ng/g)	ND	ND	N	N	N	ND	
Sample ID: Metl	Matrix: Solid Sample Size: 1.00 g	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size: 1.00 g	QC Batch: Date Extracted:	B7G0050 : 11-Jul-2017 14:53	14:53		Lab Sample: Date Analyzed:	Lab Sample: B7G0050-BS1 Date Analyzed: 12-Jul-17 19:58 Column: BEH C18	H C18	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	TCL-UCL
PFBS	8.82	10.0	88.2	70 - 130	IS	13C3-PFBS	80.4	50 - 150
PFHpA	8.74	10.0	87.4	70 - 130	SI	13C4-PFHpA	82.7	50 - 150
PFHxS	8.83	10.0	88.3	70 - 130	IS	1802-PFH _x S	84.0	50 - 150
PFOA	8.91	10.0	89.1	70 - 130	SI	13C2-PFOA	91.2	50 - 150
PFOS	10.2	10.0	102	70 - 130	IS	13C8-PFOS	6.62	50 - 150
PFNA	9.46	10.0	94.6	70 - 130	IS	13C5-PFNA	84.7	50 - 150

LCL-UCL - Lower control limit - upper control limit

VAL - PFAS		16	53		alifiers							
VAL-		Date Received: 06-Jul-2017 9:46	11-Jul-2017 14:53		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		/ed: 06				5(5(2(2(2(5(
		Date Receiv	Date Extracted:	ın: BEH C18	%R	85.6	85.6	83.7	85.3	78.4	9.62	
	ata	1700830-01	B7G0050	Date Analyzed: 12-Jul-17 20:48 Column: BEH C18	Labeled Standard	13C3-PFBS	13C4-PFHpA	18O2-PFHxS	13C2-PFOA	13C8-PFOS	13C5-PFNA	
	Laboratory Data	Lab Sample:	QC Batch:	e Analyze	I	IS 1	IS 1	IS 1	IS 1	IS 1	IS 1	
	Labo	Lab	OC	Date	Qualifiers					ŗ		
		Soil	1.32 g	80.1	T00	1.89	1.89	1.89	1.89	1.89	1.89	
	Sample Data	Matrix:	Sample Size:	% Solids:	TOD	0.946	0.946	0.946	0.946	0.946	0.946	
7-0-2			330006		DI	0.270	0.270	0.270	0.270	0.270	0.270	
Sample ID: BARNS-04-SB01-062617-0-2		AMEC Foster Wheeler	Phase I Regional SI- Barnes / 291330006	26-Jun-2017 10:20	Conc. (ng/g)	ND	ND	ND	ND	0.388	QN	
Sample ID:	Client Data	Name:	Project:	Date Collected: Location:	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

AS					ers							
VAL - PFAS		9:46	14:53		Qualifi							
VAI		06-Jul-2017	11-Jul-2017 14:53		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted:	ın: BEo C1H	%R	92.6	H7.6	HD.7	IH.0	77.H	7НН	
	Data	le: 1700HB0-02	B7G0050	Date Analyzed: 12-Jul-1721:01 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	1HD2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	
	Laboratory Data	Lab Sample:	QC Batch:	te Analy		SI	IS	IS	IS	IS	IS	10,1
	Labo	Lat	% —	Dai	Qualifiers							_
		S8il	1.05 g	H.96	T00	1.97	1.97	1.97	1.97	1.97	1.97	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.9HB	0.9FB	0.9FB	0.9HB	0.9HB	0.9HB	
7-0-2			330006		DF	0.2HD	0.2HD	0.2HD	0.2HD	0.2HD	0.2HD	
Sample ID: BARNS-06-SB01-062617-0-2		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	26-Jun-2017 9:5H	Conc. (ng/g)	ND	QN	QN	QN	2.49	QN	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFopA	PFoxS	PFOA	PFOS	PFNA	

VAL - PFAS			3		lifiers							
AL-I		17 9:46	17 14:5		Qua							
\mathbf{V}_{L}		06-Jul-201	11-Jul-201		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted: 11-Jul-2017 14:53	umn: BEo C1H	%R	6.66	I#.1	7H3	H.H	75.9	77.3	1 Limit
	ta	1700HB0-03	B7G0050	Date Analyzed: 12-Jul-1721:13 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	IHO2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	timil 102400 20000 timil 102400 2000 1 1011 101
	Laboratory Data	mple:	tch:	nalyzed	La	3 13	3 13	S 1H	3 13	3 13		9 1 1711
	aborat	Lab Sample:	QC Batch:	Date A	srs	SI	31	31	12	IS	IS	51
					Qualifiers				Ŀ		-	
		S8il	1.13 g	93.2	00	1.90	1.90	1.90	1.90	1.90	1.90	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.949	0.949	0.949	0.949	0.949	0.949	
-0-1			330006		DT	0.271	0.271	0.271	0.271	0.271	0.271	
Sample ID: BARNS-06-SB01-061627-0-1		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	26-Jun-2017 9:10	Conc. (ng/g)	ND	ND	4.5H	0.51H	73.3	0.560	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFo pA	PFoxS	PFOA	PFOS	PFNA	

VAL - PFAS		48	:53			ıalifiers					О		
VAL-		38-Jul-2017 9:	11-Jul-2017 14:53			LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date v ecei6ed: 08-Jul-2017 9:48	Date Extracted:	: BEH C1R	BEH CIR	%R L	R5.5	RI.1	R8.4	93.5	97.0	R3.7	
	data	: 1700R30-04	B7G0050	ed: 12-Jul-1721:28 Column: BEH C1R	13-Jul-17 14:04 Column: BEH C1R	Labeled Standard	13C3-PFBS	13C4-PFHpA	IRO2-PFHxS	13C2-PFOA	13CR-PFOS	13C5-PFNA	
	Laboratory Data	Lab Sample:	QC Batch:	Date Analyzed:			IS 1	IS	IS	IS	IS	IS	
	Lab	Lal	~ —	Da		Qualifiers				ſ	О	J	
		Soil	1.0Rg	92.R		COO	2.00	2.00	2.00	2.00	9.9R	2.00	
	Sample Data	Matrix:	Sample Size:	% Solids:		TOD	0.99R	0.99R	0.99R	0.99R	4.99	0.99R	
7-0-2			330008			DF	0.2R4	0.2R4	0.2R4	0.2R4	1.42	0.2R4	
Sample ID: BARNS-06-SB03-062617-0-2		AMEC Foster Wheeler	Phase I v egional SI- Barnes / 291330008	28-Jun-2017 R:55		Conc. (ng/g)	ND	ND	3.33	0.922	172	0.810	
Sample ID:	Client Data	Name:	Project:	Date Collected:	Location:	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

Sample ID:	Sample ID: BARNS-08-SB01-062617-0-2	-2							VA	VAL - PFAS
Client Data			Sample Data		Γ_{δ}	Laboratory Data	Data			
Name:	AMEC Foster Wheeler		Matrix:	Soil	_	Lab Sample:	le: 1700830-05	Date Received:	Date Received: 06-Jul-2017 9:46	9:46
Project:	Phase I Regional SI- Barnes / 291330006	900	Sample Size:	1.18 g	_	QC Batch:	B7G0050	Date Extracted:	: 11-Jul-2017 14:53	14:53
Date Collected: Location:	26-Jun-2017 11:35		% Solids:	91.3		Date Anal	Date Analyzed: 12-Jul-1721:38 Column: BEH C18	olumn: BEH C18		
Analyte	Conc. (ng/g)	DF	TOD	T00	Qualifiers	s	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	QN	0.265	0.928	1.86		SI	13C3-PFBS	6.66	50 - 150	
PFHpA	QN	0.265	0.928	1.86		IS	13C4-PFHpA	85.9	50 - 150	
PFHxS	ND	0.265	0.928	1.86		IS	1802-PFHxS	97.1	50 - 150	
PFOA	QN	0.265	0.928	1.86		IS	13C2-PFOA	81.5	50 - 150	
PFOS	9.13	0.265	0.928	1.86		IS	13C8-PFOS	6.62	50 - 150	
PFNA	QN	0.265	0.928	1.86		IS	13C5-PFNA	78.8	50 - 150	
						1011				

AS					iers							
VAL - PFAS		9:46	14:53		Qualif							
VA		06-Jul-2017	11-Jul-2017 14:53		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted:	ın: BEo C1H	%R	H5.0	H.H	H6.3	HD.9	66.1	HI.7	
	ıta	1700HB0-06	B7G0050	Date Analyzed: 12-Jul-1721:51 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	IHO2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	
	tory Da	Lab Sample:	ıtch:	snalyze.	L.	S 13	S 13	S 11F	S 13	S 13	IS 13	x xoxx
	Laboratory Data	Lab Sa	QC Batch:	Date A	ers	1		11	<u> </u>	Ĭ	<u></u>	ì
					Qualifiers							
		S8i1	1.30 g	HB.7	T00	1.14	1.田	1.用	1.田	日.日	1.14	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.919	0.919	0.919	0.919	0.919	0.919	
7-0-1			330006		DF	0.262	0.262	0.262	0.262	0.262	0.262	
Sample ID: BARNS-08-SB01-061627-0-1		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	26-Jun-2017 11:25	Conc. (ng/g)	ND	ND	2.63	ND	6.92	QN	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFo pA	PFoxS	PFOA	PFOS	PFNA	

FAS					fiers							
VAL - PFAS		9:46	14:53		Quali							
VA		06-Jul-2017	11-Jul-2017 14:53		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted:	nn: BEo C1H	%R	НН6	94.2	H9.4	95.4	7H4	6.IH	
	ıta	1700FB0-0H	B7G0050	Date Analyzed: 12-Jul-17 22:03 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	IHD2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	
	Laboratory Data	Lab Sample:	atch:	\nalyze	L.	S 13	S 13	S 1H	S 13	S 13	IS 13	
	Labora	Lab Sa	QC Batch:	Date A	ers	I						ì
					Qualifiers					J		
		Sediment	1.34 g	79.3	T00	1.HH	1.IHI	1.IHI	1.IHI	1.HH	1.HH	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.941	0.941	0.941	0.941	0.941	0.941	
7-0-1			330006		DF	0.26H	0.26H	0.26H	0.26H	0.26H	0.26H	
Sample ID: BARNS-06-SD03-021737-0-1		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	27-Jun-2017 11:30	Conc. (ng/g)	QN	ND	ND	ND	1.3H	ND	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFo pA	PFoxS	PFOA	PFOS	PFNA	

Matrix Spike Results	sults												VAL - PFAS	PFAS
Source Client ID: Source LabNumber: Matrix: Sample Size:	BARNS-03-SD01-062717-0-2 1700830-08 Solid 1.26/1.33 g	62717-0-	2	QC Batch: Date Extra	ch: tracted:	QC Batch: B7G0050 Date Extracted: 11-Jul-2017 14:53	7 14:53		Lab Sample: Date Analyzed:		B7G0050-MS1/B7G0050-MSD1 12-Jul-17 22:17 Column: BEH C18 12-Jul-17 22:30 Column: BEH C18	8 8		
	Spike	-MS M	SW S	Spike-MS MS MS Spike-MSD MSI	MSD	MSD		%RPD	,		WS	MS	MSD	MS
Analyte	/gu)	(ng/g) %	R Qual.	%R Qual. (ng/g)	%R	RPD Qual. Limit		Limit	Lab	Labeled Standard	%R	Qualifiers	%R	Qual.
PFBS	10.0		83.9	9.48	85.4	1.77	70 - 130	25	IS	13C3-PFBS	84.4		89.4	
PFHpA	10.0		92.0	9.48	94.4	2.58	70 - 130	25	IS	13C4-PFHpA	78.3		81.2	
PFHxS	10.0		85.9	9.48	94.7	9.75	70 - 130	25	IS 18	1802-PFH _x S	78.4		84.7	
PFOA	10.0		6.68	9.48	9.76	8.21	70 - 130	25	IS 1	13C2-PFOA	82.9		6.68	
PFOS	10.0		72.2	9.48	85.1	16.4	70 - 130	25	IS 13	13C8-PFOS	89.5		77.0	
PFNA	10.0		105	9.48	8.06	14.5	70 - 130	25	IS 13	13C5-PFNA	65.7		85.5	

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

FAS					fiers							
VAL - PFAS		9:46	14:53		Quali							
VA		06-Jul-2017	11-Jul-2017		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted: 11-Jul-2017 14:53	nn: BEo C1H	%R	109	6.66	9.66	91.3	72.6	92.H	imit
	Data	: 1700HB0-09	B7G0050	Date Analyzed: 12-Jul-1722:42 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	1HD2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	timil 1944 80 rease timil 1944 80 rems 1 101 101
	Laboratory Data	Lab Sample:	QC Batch:	Analyz		SI	IS	IS	IS	IS	IS	1711 1
	Labor	Lab	OC.]	Date	Qualifiers							
					Qual			J				
		Sediment	1.33 g	Н.Н	Γ OO	1.14	1.14	1.H	1.14	1.F4	1.14	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.920	0.920	0.920	0.920	0.920	0.920	
1-0-3			1330006		DF	0.262	0.262	0.262	0.262	0.262	0.262	
Sample ID: BARNS-06-SD03-023171-0-3		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	27-Jun-2017 12:05	Conc. (ng/g)	ND	ND	0.629	ND	2.HD	QN	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFo pA	PFoxS	PFOA	PFOS	PFNA	

Sample ID:	Sample ID: BARNS-06-SD03-023171-Dup	dn([VA]	VAL - PFAS
Client Data			Sample Data		La	Laboratory Data	ata			
Name:	AMEC F8ster Wheeler		Matrix:	Sediment		Lab Sample:	1700HB0-10	Date Received:	Date Received: 06-Jul-2017 9:46	9:46
Pr8ject:	Phase I Regi8nal SI- Barnes / 291330006	900	Sample Size:	1.27 g	_	QC Batch:	B7G0050	Date Extracted:	: 11-Jul-2017 14:53	14:53
Date C8llected: L8cati8n:	27-Jun-2017 0:00		% S8lids:	76.9	<u>п</u>)ate Analyze	Date Analyzed: 12-Jul-1722:54 C8lumn: BEo C1H	lumn: BEo C1H		
Analyte	Conc. (ng/g)	DF	TOD	COO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.292	1.02	2.05		IS 1	13C3-PFBS	91.9	50 - 150	
PFo pA	ND	0.292	1.02	2.05		IS 1	13C4-PFo pA	0H6	50 - 150	
PFoxS	0.501	0.292	1.02	2.05	Г	IS 1	IHO2-PFo xS	HH2	50 - 150	
PFOA	ND	0.292	1.02	2.05		IS 1	3C2-PFOA	H9.4	50 - 150	
PFOS	2.90	0.292	1.02	2.05		IS 1	13CHPFOS	9'III'	50 - 150	
PFNA	QN	0.292	1.02	2.05		IS	13C5-PFNA	7H9	50 - 150	
						1011				

Sample ID:	Sample ID: BARNS-04-SB01-062617-Dup	Dup							VA	VAL - PFAS
Client Data			Sample Data		Γ_{δ}	Laboratory Data	ata			
Name:	AMEC F8ster Wheeler		Matrix:	S8il		Lab Sample:	1700FB0-12	Date Received:	Date Received: 06-Jul-2017 9:46	9:46
Pr8ject:	Phase I Regi8nal SI- Barnes / 291330006	9000	Sample Size:	1.09 g	_	QC Batch:	B7G0050	Date Extracted:	: 11-Jul-2017 14:53	14:53
Date C8llected: L8cati8n:	26-Jun-2017 0:00		% S8lids:	91.4		ate Analyzo	Date Analyzed: 12-Jul-17 23:07 C8lumn: BEo C1H	mn: BEo C1H		
Analyte	Conc. (ng/g)	DF	TOD	TOO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.2HS	1.00	2.01		IS 1	13C3-PFBS	9.92	50 - 150	
PFo pA	ND	0.2H6	1.00	2.01		IS 1	13C4-PFo pA	75.4	50 - 150	
PFo xS	ND	0.2H6	1.00	2.01		IS 1	IHO2-PFo xS	FH.4	50 - 150	
PFOA	ND	0.2H6	1.00	2.01		IS 1	3C2-PFOA	H9.6	50 - 150	
PFOS	0.601	0.2HS	1.00	2.01	J	IS 1	3CHPF0S	HE.9	50 - 150	
PFNA	ND	0.2H6	1.00	2.01		IS 1	3C5-PFNA	H.1	50 - 150	
						I TOTT TO I	*;::1 18+8 *;::1 18+881 1:O-1	1:::4		

7									T
ethod 53		Qualifiers							
Modified EPA Method 537	318	LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
Modifi	Column: BEH C	%R	95.5	94.7	118	104	103	96.2	
	Lab Sample: B7G0031-BLK1 Date Analyzed: 11-Jul-17 20:12 Column: BEH C18	Labeled Standard	13C3-PFBS	13C4-PFHpA	18O2-PFHxS	13C2-PFOA	13C8-PFOS	13C5-PFNA	
	L,		SI	IS	IS	IS	IS	IS	
		Qualifiers							
	38	00	0.00800	0.00800	0.00800	0.00800	0.00800	0.00800	
	B7G0031 10-Jul-2017 7:38	TOD	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	
	QC Batch: Date Extracted:	DF	0.00218	0.00218	0.00218	0.00218	0.00218	0.00218	
Sample ID: Method Blank	Aqueous 0.125 L	Conc. (ug/L)	ND	ND	QN	ND	QN	ON	
Sample ID:	Matrix: Aqu Sample Size: 0.1.7	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR							Modified I	Modified EPA Method 537
Matrix: Aqueous Sample Size: 0.125 L	QC Batch: Date Extracted:	B7G0031 10-Jul-2017 7:38	7:38		Lab Sample: Date Analyzed:	Lab Sample: B7G0031-BS1 Date Analyzed: 11-Jul-17 19:47 Column: BEH C18	C18	
Analyte	Amt Found (ug/L)	Spike Amt	%R	Limits		Labeled Standard	%R	TCL-UCL
PFBS	0.0601	0.0800	75.2	70 - 130	IS	13C3-PFBS	108	50 - 150
PFHpA	0.0637	0.0800	79.7	70 - 130	IS	13C4-PFHpA	103	50 - 150
PFHxS	0.0655	0.0800	81.9	70 - 130	IS	18O2-PFHxS	111	50 - 150
PFOA	0.0719	0.0800	8.68	70 - 130	IS	13C2-PFOA	95.2	50 - 150
PFOS	0.0564	0.0800	9.07	70 - 130	IS	13C8-PFOS	102	50 - 150
PFNA	0.0564	0.0800	70.5	70 - 130	SI	13C5-PFNA	102	50 - 150

LCL-UCL - Lower control limit - upper control limit

)-9-MW	Sample ID: MW-6-063017-25							Modifi	Modified EPA Method 537	thod 537
			Sample Data		La	Laboratory Data	ata			
AMEC Foster Wheeler			Matrix:	Groundwater		Lab Sample:	1700830-07	Date Received	Date Received: 06-Jul-2017 9:46	9:46
Phase I Regional SI- Barnes / 291330006	330008		Sample Size:	0.121 L	_	QC Batch:	B7G0031	Date Extracted:	l: 10-Jul-2017 7:38	7:38
30-Jun-2017 10:08						Oate Analyze	Date Analyzed: 11-Jul-17 20:25 Column: BEH C18	olumn: BEH C18		
Conc. (ug/L) DL	DF		TOD	TOO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
ND 0.00225	0.0022	5	0.00517	0.00827		IS 1	13C3-PFBS	109	50 - 150	
ND 0.00225	0.00225		0.00517	0.00827		IS 1	13C4-PFHpA	96.5	50 - 150	
0.0108 0.00225	0.00225		0.00517	0.00827		IS 1	18O2-PFHxS	9.86	50 - 150	
0.00276 0.00225	0.00225		0.00517	0.00827	Ь	IS 1	13C2-PFOA	102	50 - 150	
0.00684 0.00225	0.00225		0.00517	0.00827	ſ	IS 1	13C8-PFOS	102	50 - 150	
ND 0.00225	0.00225		0.00517	0.00827		IS 1	13C5-PFNA	103	50 - 150	

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

od 537		MS Qual.						
Meth		MSD %R	113	107	121	96.1	100	96.5
Modified EPA Method 537	80 80	MS Qualifiers						
Modi	:0031-MSD1 .mn: BEH C1 .mn: BEH C1	MS %R	102	103	108	102	98.4	113
	B7G0031-MS1/B7G0031-MSD1 11-Jul-17 20:38 Column: BEH C18 11-Jul-17 20:50 Column: BEH C18	ırd		A	S			
	Lab Sample: B Date Analyzed: 11	Labeled Standard	13C3-PFBS	13C4-PFHpA	18O2-PFHxS	13C2-PFOA	13C8-PFOS	13C5-PFNA
	Lab Date		IS	IS	IS	IS	IS	IS
		%RPD Limit	25	25	25	25	25	25
	B7G0031 10-Jul-2017 7:38	MSD MSD %R 688 %R 788 %R RPD Qual. Limit	70 - 130	70 - 130	70 - 130	70 - 130	70 - 130	70 - 130
	0031 11-2017	MSD Qual.					Н	
	B7G0031 10-Jul-20	RPD	15.2	3.48	0.770	10.5	3.96	15.6
	th: tracted:	MSD %R	80.6 15.2	76.1	78.2	83.1	64.4	76.5
	QC Batch: Date Extracted:	Spike-MS MS Spike-MSD MSD (ug/L) %R Qual. (ug/L) %R	0.0824	0.0824	0.0824	0.0824	0.0824	0.0824
		MS Qual.	Н				Н	Н
		MS %R	69.2 Н	73.5	77.6	74.8	67.0	65.4
	.7-25 	Spike-MS (ug/L)	0.0829	0.0829	0.0829	0.0829	0.0829	0.0829
saults	MW-6-063017-25 1700830-07 Aqueous 0.121/0.121 L							
Matrix Spike Results	Source Client ID: Source LabNumber: Matrix: Sample Size:	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID:	Sample ID: BARNS-04-GW-TW02-062817-30	062817-30						Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data		La	Laboratory Data	Data			
Name:	AMEC Foster Wheeler		Matrix:	Aqueous		Lab Sample:	le: 1700830-11	Date Received:	Date Received: 06-Jul-2017 9:46	9:46
Project:	Phase I Regional SI- Barnes / 291330006	330008	Sample Size:	0.120 L		QC Batch:	B7G0031	Date Extracted:	: 10-Jul-2017 7:38	7:38
Date Collected: Location:	28-Jun-2017 11:25				<u> </u>	Date Analyzed:	yzed: 11-Jul-17 21:02 Column: BEH C18	olumn: BEH C18		
Analyte	Conc. (ug/L)	DF	TOD	TOQ	Qualifiers	S	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	0.00358	0.00227	0.00521	0.00832	J	SI	13C3-PFBS	101	50 - 150	
PFHpA	0.00505	0.00227	0.00521	0.00832	F	IS	13C4-PFHpA	101	50 - 150	
PFHxS	0.0305	0.00227	0.00521	0.00832		IS	1802-PFHxS	108	50 - 150	
PFOA	0.00520	0.00227	0.00521	0.00832	J	IS	13C2-PFOA	98.5	50 - 150	
PFOS	0.0994	0.00227	0.00521	0.00832		IS	13C8-PFOS	99.1	50 - 150	
PFNA	0.00525	0.00227	0.00521	0.00832	ſ	IS	13C5-PFNA	97.3	50 - 150	

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700830 Page 25 of 32

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700830 Page 26 of 32

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700830 Page 27 of 32

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700830 Page 28 of 32

1700830 0.5°C

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way El Dorado Hills, CA 95762 Atten; Martha Maier Lab Phone# (916) 673-1520

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 1 OF 3

Project Name:	Phase I Regional SI - Barne	s Project Contac	t: Denise King	1. 911	Contract of		SDA	Bill To	Arne	c Foster,	Wheele	Environ	ment &	Infrastruc	ture	Disposal Instructions: LAB			10			
	291330006		r: (978) 392-5339		()	W. 337		5 856	9210	Sky Par	k Court	Suite 20	0	SALUH)		Shipment Method. FEDEX			R.			
Project Manager:	Kerry Tull	Project Phase:	.010	1 - 4		60,000	The Late	SYS	San	Diego, C	A 9212	3	THUSEN	ACT (55/4)	(W)	Way	bill Num	ber.		WA		87
Sample Information		weeks and		-	+					Meth	ods far	Analys	is						RUS	Н	1	-
	1	T			m	TI	11	TI	TI			ΤĖ	II	TT	TI	TI	TI	一個	I WIT	20 30		
												1 1						100				-
	Ì				UCMR		1	11							11			18	IA.			1
					17			11								1.1		137				S
No. Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Method 537.1													24 Hour	48 Hour	72 Hour 6 Days	TOTAL BOTTLES	HOLD All Analysa:
1 BARNS-04-SB01-062617-0-2	06/26/17 10:20	50	N	N	X						1							18		異數	1	7
2 BARNS-06-SB01-062617-0-2	06/26/17 09:58	50	N	N	X													18		题 部	1	
3 BARNS-06-5B02-062617-0-2	06/26/17 09:10	50	N	N	X					11								100	188	國智	1	
4 BARNS-06-SB03-062617-0-2	06/26/17 08:55	50	N	N	X	11														经额	1	
5 BARNS-08-5801-062617-0-2	06/26/17 11:35	50	N	N	X		11											18		4 4	1	
6 BARNS-08-SB02-062617-0-2	06/26/17 11:25	50	N	N	X													13		湿 調	1	
7 MW-6-063017-25 06/30/1	7 06/20/17 10:08	WG	N	У	X													_ BV			6	
B BARNS-03-SD01-062717-0-2	06/27/17 11:30) SE	N	У	X X																3	
9 BARNS-03-SD02-062717-0-2	06/27/17 12:05	SE	N	N					3 08											2 1	1	
10 BARNS-03-SD02-062717-Dup	06/27/17 00:00	SE	FD	N	X																1	
11 BARNS-04-GW-TW02-062817-30	06/28/17 11:25	WG	N	N	X													1		B	2	
12 BARNS-04-SB01-062617-Dup	06/26/17 00:00	50	FD	N	X													5	一面	题部	1	
Sampler's Signature:		Date:	Time: 0940	-	For Lab Use											Name of the last			\exists			
Relinguished By/Affiliation:)/(7/7) Date:	Contract of the Contract of th		-	COC ma		ples:	Y OF N			Comments: X=Analyze H=Hold Analysis Request					-					
Meninguisned by/Anniation.	ME FW	7/5/17	Time: 0947		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	seal intac				or N		Co	ontract	# W	/91331	-14-D	-0002	T000	06			- 1
Received By: What Vah		7/6(17	Time:		The second second	problem				N 10		PC)# F0	13200	677							1
		1/6/11	1810		-	OT conta			Y	or N				ammie d: Tod								-
Relinquished By/Affiliation;		Date:	Time:		Date	contacted	1;	-	_	-				id: Cra			amecf	w.con	n			
Received By:		Date:	Time:		Cool	er Temper	ature at	receipt		C						0.	. Sales					1
									9.5	2.5		NUMB	ER OF	COOLE	RS SEN	T:	1				_	_
Relinquished By/Affiliation:		Date:	Time:		V	0	1			100	T.				- 1	.0.4	71	. 1.		v		
Received By (LAB):		Date:	Time:		1	Rev	1500	C	00	rec	PIV	red	VIA	em	all	OV	11	11/2	011	*		
THE TOUR PARTY OF THE PARTY OF		100 (F CD)C			1												- 0		6	N7	/11/1	71

17008 30 0.5°C

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way El Dorado Hills, CA 95762 Atten: Martha Maier

Lab Phone# (916) 673-1520

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 1 OF 3

10	Project Name:	Phase I Regional SI - Barne	es Project Contact	Denise King				Bill To	: Amec Foster W	heeler Environ	ment & Infrastructure	Disposal Instruc	tions:	LAB	1	
	Project Number:	291330006	Phone Number:	(978) 392-5339					9210 Sky Park	Court Suite 200		Shipment Metho	od:	FED	Attach and a second	
	Project Manager:	Kerry Tull	Project Phase:	.010					San Diego, CA	92123		Waybill Number		N/A		
Sa	mple Information				_				Method	s for Analysis	s		I R	USH	_	
-						HIT										\top
No	. Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Method 537.1 UCMR 3							24 Hour 48 Hour	72 Hour	5 Days	HOLD All Analyses
3	BARNS-04-SB01-062617-0-2	06/26/17 10:20	50	N	N	X										1
3	BARNS-06-SB01-062617-0-2	06/26/17 09:58	50	N	N	X										1
	BARNS-06-5B02-062617-0-2	06/26/17 09:10	50	N	N	X										1
. 3	4 BARNS-06-5B03-062617-0-2	06/26/17 08:55	50	N	N	X										1
	5 BARNS-08-SB01-062617-0-2	06/26/17 11:35	50	N	N	X										1
	BARN5-08-5B02-062617-0-2	06/26/17 11:25	50	N	N	X										1
1	7 MW-6-063017-25	06/20/17 10:08	WG	N	У	x										6
	BARNS-03-5D01-062717-0-2	06/27/17 11:30	SE	N	У											3
	BARNS-03-5D02-062717-0-2	06/27/17 12:05	SE	N	N	X										1
1	BARNS-03-5D02-062717-Dup	06/27/17 00:00	SE	FD	N	X										1
1	BARN5-04-GW-TW02-062817-30	06/28/17 11:25	WG	N	N	X										2
1	BARNS-04-SB01-062617-Dup	06/26/17 00:00	50	FD	N	х										1
Re Re	Inquished By/Affiliation: Inceived By: Inquished By/Affiliation: Inceived By: Inquished By/Affiliation: Inceived By:	ANK FOR	Date: Date: Date: Date: Date: Date: Date:	Time: 0940 Time: 0940 Time: Time:		Does COC Broken Cor COC seal in Other probl WSDOT co Date contact	match sam otainer: ntact: ems: ntacted: oted:	-	Y or N Y or N Y or N Y or N Y or N	Co PO AT Ba Fie	x=Analyze H=H ntract# W9133 # F013200677 TN: Tammie Ripp se Lead: Todd Col ld Lead: Craig.kea	SL-14-D-0002 TO ie ifin ating@amecfw.c	00006	t.		
Re	linquished By/Affiliation:		Date:	Time:												
Re	ceived By (LAB):		Date:	Time:												

Sample Log-in Checklist

700830 Vista Work Order #: Date/Time Initials: Location: Samples 7/6/17 0946 MILE Arrival: Shelf/Rack: Location: WR-2 Date/Time Initials: Logged In: SUM 07/06/17 1235 Shelf/Rack: Hand Delivered By: FedEx UPS On Trac GSO DHL Other Delivered Preservation: Ice Blue Ice Dry Ice None 0.9 Temp °C: Time: 1009 (uncorrected) Thermometer ID: IR-2 Probe used: Yes□ No⊠ 0.5 Temp °C: (corrected) YES NO NA Adequate Sample Volume Received? Holding Time Acceptable? V Shipping Container(s) Intact? Shipping Custody Seals Intact? Shipping Documentation Present? Trk# 8009 5563 6272 Airbill Sample Container Intact? Sample Custody Seals Intact? Chain of Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed? If Chlorinated or Drinking Water Samples, Acceptable Preservation? Preservation Documented: NA No Na₂S₂Q₃ Trizma None Shipping Container Vista Client Retain Return Dispose Comments: sample labels: Barus - 04 - SBOI - 062617 - 00 - 02 all ID's reconciled via Barus-06-5B01-062617-00-02 cap label Barus-06-5802-062617-00-02 Barus - 06-5803-06217-00-02 BARUS-08-SBO1-062617-00-02 BARUS-08-SBO2-062617-00-02 BARUS-03-5DOI-062717-00-02

ID .: LR - SLC

Page: 1 of 1

Chain of Custody Anomaly/Sample Acceptance Form

AMEC Foster Wheeler

Client:

1700830

Contact: Denise King Date Received: 06-Jul-17 09:46 Denise.king@amecfw.com Documented by/date: B.Benedict 07/06/2017 Email: Phone: (978) 392-5339 Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis. Thank you, Martha Maier mmaier@vista-analytical.com 916-673-1520 The following information or item is needed to proceed with analysis: Collector's Name Complete Chain-of-Custody Preservative Test Method Requested Sample Identification Sample Type Analyte List Requested Sample Collection Date * Sample Location Other: The following anomalies were noted. Authorization is needed to proceed with analysis. Temperature outside < 6°C Range Samples Affected: Temperature Ice Present? Yes No Melted Insufficient Sample Size Sample ID Discrepancy: See Comments Sample Holding Time Missed Sample Container(s) Broken Custody Seals Broken Incorrect Container Type Label ID Comments: COC ID BARNS-04-SB01-062617-00-02 BARNS-04-SB01-062617-0-2 BARNS-06-SB01-062617-0-2 BARNS-06-SB01-062617-00-02 BARNS-06-SB02-062617-0-2 BARNS-06-SB02-062617-00-02 BARNS-06-SB03-062617-0-2 BARNS-06-SB03-062617-00-02 BARNS-08-SB01-062617-0-2 BARNS-08-SB01-062617-00-02 BARNS-03-SD01-062717-0-2 BARNS-03-SD01-062717-00-02 BARNS-03-SD02-062717-0-2 BARNS-03-SD02-062717-00-02 COC Collection Date: **COC ID: MW-6-063017-25 06/20/17

Workorder Number:

Client Authorization	
Proceed with Analysis: YES NO	Signature and Date Kalen F. Wyputh 7-10-19
Client Comments/Instructions Per emai)	from Todd coffin, the sampler are logged in
currently. The collection do	ite for sample "MW-6" is 6/30/2017.

Work Order 1700830 Page 32 of 32

July 20, 2017

Vista Work Order No. 1700831

Ms. Denise King AMEC Foster Wheeler 271 Mill Road Chelmsford, MA 01824

Dear Ms. King,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 06, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'Phase I Regional SI- Barnes / 291330006'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1700831 Page 1 of 32

Vista Work Order No. 1700831 Case Narrative

Sample Condition on Receipt:

Seven soil samples and five groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The client confirmed that the sample IDs on the Chain of Custody are correct.

Analytical Notes:

Modified EPA Method 537

Samples "BARNS-06-GW-TW01-062817-37" and "BARNS-06-GW-TW01-062817-Dup" contained particulate and were centrifuged prior to extraction.

The aqueous samples were extracted and analyzed for a selected list of 6 PFAS using Modified EPA Method 537.

Holding Times

Due to laboratory oversight, samples "BARNS-EB-01" and "BARNS-EB-02" were extracted and analyzed outside of the method hold time. All other samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

VAL-PFAS

The solid samples were extracted and analyzed for a selected list of 6 PFAS using VAL Method PFAS.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

Work Order 1700831 Page 2 of 32

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

Work Order 1700831 Page 3 of 32

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	25
Certifications	26
Sample Receipt	29

Work Order 1700831 Page 4 of 32

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700831-01	BARNS-05-SB02-062717-0-2	27-Jun-17 09:20	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-02	BARNS-06-GW-TW01-062817-37	28-Jun-17 15:30	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700831-03	BARNS-07-SB01-062617-0-2	26-Jun-17 12:15	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-04	BARNS-07-SB02-062817-13-15	28-Jun-17 15:30	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-05	BARNS-EB-01	26-Jun-17 12:50	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700831-06	BARNS-EB-02	26-Jun-17 12:55	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700831-07	BARNS-01-GW-TW03-062917-37	29-Jun-17 14:15	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700831-08	BARNS-04-SB01-062917-13-15	29-Jun-17 15:05	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-09	BARNS-04-SB03-062917-13-15	29-Jun-17 09:20	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-10	BARNS-05-SB01-062917-13-15	29-Jun-17 08:20	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-11	BARNS-05-SB02-062917-13-15	29-Jun-17 08:00	06-Jul-17 09:46	HDPE Jar, 6 oz
1700831-12	BARNS-06-GW-TW01-062817-Dup	28-Jun-17 00:00	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1700831 Client Project: Phase I Regional SI- Barnes / 291330006

Work Order 1700831 Page 5 of 32

ANALYTICAL RESULTS

Work Order 1700831 Page 6 of 32

Sample ID: Method Blank	I Blank								VA]	VAL - PFAS
Matrix: Solid Sample Size: 1.00 g		QC Batch: Date Extracted:	B7G0050 11-Jul-2017 14:53	53		Lab S Date	Lab Sample: B7G0050-BLK1 Date Analyzed: 12-Jul-17 20:36 Column: BEH C18	Column: BEH C	118	
Analyte	Conc. (ng/g)	DF	LOD	T00	Qualifiers	L	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.285	1.00	2.00		SI	13C3-PFBS	86.7	50 - 150	
PFHpA	N	0.285	1.00	2.00		IS	13C4-PFHpA	81.6	50 - 150	
PFHxS	N	0.285	1.00	2.00		IS	18O2-PFHxS	6.08	50 - 150	
PFOA	N	0.285	1.00	2.00		IS	13C2-PFOA	83.9	50 - 150	
PFOS	N	0.285	1.00	2.00		IS	13C8-PFOS	74.5	50 - 150	
PFNA	ND	0.285	1.00	2.00		IS	13C5-PFNA	58.7	50 - 150	
					†					Ī

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size: 1.00 g	QC Batch: Date Extracted:	B7G0050 : 11-Jul-2017 14:53	14:53		Lab Sample: Date Analyzed:	Lab Sample: B7G0050-BS1 Date Analyzed: 12-Jul-17 19:58 Column: BEH C18	H C18	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	TCL-UCL
PFBS	8.82	10.0	88.2	70 - 130	IS	13C3-PFBS	80.4	50 - 150
PFHpA	8.74	10.0	87.4	70 - 130	IS	13C4-PFHpA	82.7	50 - 150
PFHxS	8.83	10.0	88.3	70 - 130	IS	1802-PFH _x S	84.0	50 - 150
PFOA	8.91	10.0	89.1	70 - 130	SI	13C2-PFOA	91.2	50 - 150
PFOS	10.2	10.0	102	70 - 130	IS	13C8-PFOS	6.62	50 - 150
PFNA	9.46	10.0	94.6	70 - 130	IS	13C5-PFNA	84.7	50 - 150

LCL-UCL - Lower control limit - upper control limit

Sample ID:	Sample ID: BARNS-05-SB02-062717-0-2	0-2							VAI	VAL - PFAS
Client Data			Sample Data		Lal	Laboratory Data				
Name:	AMEC F8ster Wheeler		Matrix:	S8il		Lab Sample:	1700HB1-01	Date Received: 06-Jul-2017 9:46	06-Jul-2017	9:46
Pr8ject:	Phase I Regi8nal SI- Barnes / 291330006	9000	Sample Size:	1.14 g	0	QC Batch:	B7G0050	Date Extracted:	11-Jul-2017 14:53	14:53
Date C8llected: L8cati8n:	27-Jun-2017 9:20		% S8lids:	HD.6	<u>О</u>	ate Analyzed:	Date Analyzed: 13-Jul-1711:20 C8lumn: BEo C1H	mn: BEo C1H		
Analyte	Conc. (ng/g)	DF	TOD	TOO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.279	0.979	1.96		IS 13C	13C3-PFBS	77.6	50 - 150	
PFo pA	ND	0.279	0.979	1.96		IS 13C	13C4-PFo pA	62.H	50 - 150	
PFoxS	0.314	0.279	0.979	1.96	ſ	IS 1HC	1HO2-PFo xS	75.2	50 - 150	
PFOA	ND	0.279	0.979	1.96		IS 13C	13C2-PFOA	57.9	50 - 150	
PFOS	7.19	0.279	0.979	1.96		IS 13C	13CHPFOS	72.5	50 - 150	
PFNA	ND	0.279	0.979	1.96		IS 13C	13C5-PFNA	62.9	50 - 150	
						1 OT 1701	1,; 1, 10,, 0,, 1,; 1, 10,, 0,, 1, 10, 1, 10, 1	1:::4		

Sample ID:	Sample ID: BARNS-06-SB01-027216-0-7	7-(VA	VAL - PFAS
Client Data			Sample Data		L	Laboratory Data	Data			
Name:	AMEC F8ster Wheeler		Matrix:	S8il	_	Lab Sample:	e: 1700HB1-03	Date Received:	Date Received: 06-Jul-2017 9:46	9:46
Pr8ject:	Phase I Regi8nal SI- Barnes / 291330006	9000	Sample Size:	1.13 g	_	QC Batch:	B7G0050	Date Extracted:	: 11-Jul-2017 14:53	14:53
Date C8llected: L8cati8n:	26-Jun-2017 12:15		% S8lids:	93.4		Date Analy	Date Analyzed: 13-Jul-1711:33 C8lumn: BEo C1H	ımn: BEo C1H		
Analyte	Conc. (ng/g)	DF	TOD	COO	Qualifiers	S	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.270	0.947	1.H9		SI	13C3-PFBS	110	50 - 150	
PFo pA	ND	0.270	0.947	1.H9		IS	13C4-PFo pA	77.4	50 - 150	
PFoxS	ND	0.270	0.947	1.H9		SI	1HO2-PFo xS	H7.3	50 - 150	
PFOA	ND	0.270	0.947	1.H9		IS	13C2-PFOA	74.4	50 - 150	
PFOS	0.921	0.270	0.947	1.H9	J	IS	13CHPF0S	75.3	50 - 150	
PFNA	QN	0.270	0.947	1.H9		IS	13C5-PFNA	74.2	50 - 150	
						1011				

FAS					iers							
VAL - PFAS		9:48	14:53		Qualif							
VA		08-Jul-2017	11-Jul-2017		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date v eceifed: 08-Jul-2017 9:48	Date Extracted: 11-Jul-2017 14:53	: BEH CIR	%R	123	74.5	94.2	73.R	93.5	91.R	
	Laboratory Data	ple: 1700R31-04	h: B7G0050	Date Analyzed: 13-Jul-1711:48 Column: BEH C1R	Labeled Standard	13C3-PFBS	13C4-PFHpA	1RO2-PFHxS	13C2-PFOA	13CR-PFOS	13C5-PFNA	
	borator	Lab Sample:	QC Batch:	ate Ana	70	IS	IS	IS	IS	IS	IS	
	La		_	<u> </u>	Qualifiers							
		Soil	1.1Rg	R4.1	T00	2.01	2.01	2.01	2.01	2.01	2.01	
	Sample Data	Matrix:	Sample Size:	% Solids:	TOD	1.01	1.01	1.01	1.01	1.01	1.01	
7-13-15			330008		DF	0.2R7	0.2R7	0.2R7	0.2R7	0.2R7	0.2R7	
Sample ID: BARNS-07-SB02-062817-13-15		AMEC Foster Wheeler	Phase I vegional SI- Barnes / 291330008	2R-Jun-2017 15:30	Conc. (ng/g)	ND	ND	QN	ND	ND	QN	
Sample ID:	Client Data	Name:	Project:	Date Collected: Location:	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

'AS					ers							
VAL - PFAS		9:46	14:53		Qualifi							
VAI		06-Jul-2017	11-Jul-2017 14:53		LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date Received: 06-Jul-2017 9:46	Date Extracted:	ın: BEo C1H	%R	102	9.79	H5.4	62.9	HF.6	93.1	
	ata	1700FB1-0H	B7G0050	Date Analyzed: 13-Jul-1712:24 C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	1HD2-PFo xS	13C2-PFOA	13CHPFOS	13C5-PFNA	2 110 0 0 2 101 10 1
	Laboratory Data	Lab Sample:	QC Batch:	Analyze		S 1.	S	S	S	S	S	1011
	Labora	Lab S	QC B	Date 1	iers							
					Qualifiers							
		S8il	1.1Hg	H5.2	D07	1.99	1.99	1.99	1.99	1.99	1.99	
	Sample Data	Matrix:	Sample Size:	% S8lids:	TOD	0.995	0.995	0.995	0.995	0.995	0.995	
7-13-15			1330006		DI	0.2団	0.2H	0.2H	0.2H	0.2H	0.2日	
Sample ID: BARNS-04-SB01-062917-13-15		AMEC F8ster Wheeler	Phase I Regi8nal SI- Barnes / 291330006	29-Jun-2017 15:05	Conc. (ng/g)	ND	ND	ND	QN	ND	QN	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected: L8cati8n:	Analyte	PFBS	PFopA	PFoxS	PFOA	PFOS	PFNA	

LCL-UCL - L8wer c8ntr8l limit - upper c8ntr8l limit
The results are rep8rted in dry weight.
The sample size is rep8rted in wet weight.
Results rep8rted t8 DL.
When rep8rted, PFBS, PFo xS, PFOA and PFOS include b8th linear and branched is8mers.
Only the linear is8mer is rep8rted f8r all 8ther analytes.

FAS						ïers							
VAL - PFAS		9:48	14:53			Qualit							
VA		08-Jul-2017	11-Jul-2017			LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date v ecei6ed: 08-Jul-2017 9:48	Date Extracted: 11-Jul-2017 14:53	ın: BEH C1R		%R	94.5	79.2	72.0	89.0	72.0	72.R	
)ata	: 1700R31-09	B7G0050	Date Analyzed: 13-Jul-1712:38 Column: BEH C1R		Labeled Standard	13C3-PFBS	13C4-PFHpA	1RO2-PFHxS	13C2-PFOA	13CR-PFOS	13C5-PFNA	imil lortage remain timil leather remo I IOI IOI
	Laboratory Data	Lab Sample:	QC Batch:	Analyz			SI	IS	IS	IS	IS	IS	TULL
	Labor	Lab	QC I	Date		fiers							1
						Qualifiers							
		Soil	1.23 g	R2.7		Γ 00	1.97	1.97	1.97	1.97	1.97	1.97	
	Sample Data	Matrix:	Sample Size:	% Solids:		TOD	0.9R4	0.9R4	0.9R4	0.9R4	0.9R4	0.9R4	
3-71-75			1330008			DF	0.2R0	0.2R0	0.2R0	0.2RO	0.2R0	0.2R0	
Sample ID: BARNS-04-SB01-062973-71-75		AMEC Foster Wheeler	Phase I vegional SI- Barnes / 291330008	29-Jun-2017 9:20		Conc. (ng/g)	ND	ND	ND	QN	3.27	QN	
Sample ID:	Client Data	Name:	Project:	Date Collected:	Location:	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight.
The sample size is reported in wet weight.
The sample size is reported in wet weight.
Vesults reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

AS						iers							
VAL - PFAS		9:4R	14:53			Qualifi					О		
[A]		0R-Jul-2017	11-Jul-2017 14:53			LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
		Date v eceifed: 0R-Jul-2017 9:4R	Date Extracted:	nn: BEo C1H	nn: BEo C1H	%R	93.0	HI.5	9R5	RH4	72.3	73.R	
	ıta	1700HB1-10	B7G0050	d: 13-Jul-1715:32 C8lumn: BEo C1H	1HJul-1713:0R C8lumn: BEo C1H	Labeled Standard	13C3-PFBS	13C4-PFo pA	IHO2-PFo xS	13C2-PFOA	13CHPF0S	13C5-PFNA	
	tory Da	Lab Sample:	tch:	Date Analyzed:		L.	S 13	S 13	S 11F	S 13	S 13	S 13	
	Laboratory Data	Lab Sa	QC Batch:	Date A		sre	I	21	1	-	31	11	ì
	_					Qualifiers					D		
		S8il	1.17 g	H7.4		D07	1.9R	1.9R	1.9R	1.9R	9.7H	1.9R	
	Sample Data	Matrix:	Sample Size:	% S8lids:		TOD	H26.0	H26.0	H76.0	H26.0	4.HĐ	H26.0	
7-13-15			133000R			DF	0.279	0.279	0.279	0.279	1.39	0.279	
Sample ID: BARNS-05-SB01-062917-13-15		AMEC F8ster Wheeler	Phase I v egi8nal SI- Barnes / 29133000R	29-Jun-2017 H20		Conc. (ng/g)	ND	ND	H2R	5.3H	427	QN	
Sample ID:	Client Data	Name:	Pr8ject:	Date C8llected:	L8cati8n:	Analyte	PFBS	PFo pA	PFoxS	PFOA	PFOS	PFNA	

LCL-UCL - L8wer c8ntr8l limit - upper c8ntr8l limit
The results are rep8rted in dry weight.
The sample size is rep8rted in wet weight.
v esults rep8rted t8 DL.
When rep8rted, PFBS, PFo xS, PFOA and PFOS include b8th linear and branched is8mers.
Only the linear is8mer is rep8rted f8r all 8ther analytes.

Sample ID:	Sample ID: BARNS-05-SB01-061297-93-95	-93-95							[A]	VAL - PFAS
Client Data			Sample Data		La	Laboratory Data	Data			
Name:	AMEC F8ster Wheeler		Matrix:	S8i1	<u> </u>	Lab Sample:	e: 1700FB1-11	Date Received: 06-Jul-2017 9:46	06-Jul-2017	9:46
Pr8ject:	Phase I Regi8nal SI- Barnes / 291330006	30008	Sample Size:	1.16 g		QC Batch:	B7G0050	Date Extracted:	11-Jul-2017 14:53	14:53
Date C8llected: L8cati8n:	29-Jun-2017 H00		% S8lids:	HH7	<u>—</u>	ate Analy	Date Analyzed: 13-Jul-1713:14 C8lumn: BEo C1H	8lumn: BEo C1H		
Analyte	Conc. (ng/g)	DF	TOD	TOO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.277	0.972	1.94		SI	13C3-PFBS	H5.3	50 - 150	
PFo pA	ND	0.277	0.972	1.94		IS	13C4-PFo pA	72.H	50 - 150	
PFo xS	0.371	0.277	0.972	1.94	Ţ	IS	1HO2-PFo xS	90.4	50 - 150	
PFOA	ND	0.277	0.972	1.94		IS	13C2-PFOA	6H1	50 - 150	
PFOS	0.434	0.277	0.972	1.94	J	IS	13CHPFOS	79.4	50 - 150	
PFNA	QN	0.277	0.972	1.94		IS	13C5-PFNA	H.H	50 - 150	
						1011	0 1 101 10 1			1

LCL-UCL - L8wer c8ntr8l limit - upper c8ntr8l limit
The results are rep8rted in dry weight.
The sample size is rep8rted in wet weight.
Results rep8rted t8 DL.
When rep8rted, PFBS, PFo xS, PFOA and PFOS include b8th linear and branched is8mers.
Only the linear is8mer is rep8rted f8r all 8ther analytes.

Sample ID:	Sample ID: Method Blank							Modific	Modified EPA Method 537	thod 537
Matrix: Sample Size:	Aqueous 0.125 L	QC Batch: Date Extracted:	B7G0031 10-Jul-2017 7:38	:38		Lab 9 Date	Lab Sample: B7G0031-BLK1 Date Analyzed: 11-Jul-17 20:12 Column: BEH C18	Column: BEH C	18	
Analyte	Conc. (ug/L)	DF	TOD	T00	Qualifiers	L	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	QN	0.00218	0.00500	0.00800		SI	13C3-PFBS	95.5	50 - 150	
PFHpA	QN	0.00218	0.00500	0.00800		IS	13C4-PFHpA	94.7	50 - 150	
PFHxS	ND	0.00218	0.00500	0.00800		IS	18O2-PFHxS	118	50 - 150	
PFOA	QN	0.00218	0.00500	0.00800		IS	13C2-PFOA	104	50 - 150	
PFOS	ND	0.00218	0.00500	0.00800		IS	13C8-PFOS	103	50 - 150	
PFNA	QN	0.00218	0.00500	0.00800		IS	13C5-PFNA	96.2	50 - 150	
					†					

DL - Detection limit RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR							Modified F	Modified EPA Method 537
Matrix: Aqueous Sample Size: 0.125 L	QC Batch: Date Extracted:	B7G0031 10-Jul-2017 7:38	7:38		Lab Sample: Date Analyzed:	B7G0031-BS1 d: 11-Jul-17 19:47 Column: BEH C18	83	
Analyte	Amt Found (ug/L)	Spike Amt	%R	Limits		Labeled Standard	%R	TCL-UCL
PFBS	0.0601	0.0800	75.2	70 - 130	IS	13C3-PFBS	108	50 - 150
PFHpA	0.0637	0.0800	79.7	70 - 130	IS	13C4-PFHpA	103	50 - 150
PFHxS	0.0655	0.0800	81.9	70 - 130	IS	1802-PFHxS	1111	50 - 150
PFOA	0.0719	0.0800	8.68	70 - 130	IS	13C2-PFOA	95.2	50 - 150
PFOS	0.0564	0.0800	9.07	70 - 130	IS	13C8-PFOS	102	50 - 150
PFNA	0.0564	0.0800	70.5	70 - 130	IS	13C5-PFNA	102	50 - 150

LCL-UCL - Lower control limit - upper control limit

Sample ID:	Method Blank							Modifie	Modified EPA Method 537	thod 537
Matrix: Sample Size:	Aqueous 0.125 L	QC Batch: Date Extracted:	B7G0048 11-Jul-2017 12:55	:55		Lab 9 Date	Lab Sample: B7G0048-BLK1 Date Analyzed: 12-Jul-17 20:23 Column: BEH C18	Column: BEH C	18	
Analyte	Conc. (ug/L)	DF	TOD	T00	Qualifiers	Г	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	QN	0.00218	0.00500	0.00800		SI	13C3-PFBS	90.2	50 - 150	
PFHpA	QN	0.00218	0.00500	0.00800		IS	13C4-PFHpA	79.5	50 - 150	
PFHxS	ON	0.00218	0.00500	0.00800		IS	1802-PFHxS	92.6	50 - 150	
PFOA	QN	0.00218	0.00500	0.00800		IS	13C2-PFOA	92.7	50 - 150	
PFOS	ND	0.00218	0.00500	0.00800		IS	13C8-PFOS	8.06	50 - 150	
PFNA	QN	0.00218	0.00500	0.00800		IS	13C5-PFNA	73.3	50 - 150	
						1011	7			

DL - Detection limit RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR							Modified	Modified EPA Method 537
Matrix: Aqueous Sample Size: 08L b	QC Batch: Date Extracted	QC Batch: B7G0031 Date Extracted: J2ulJ80-7 -8:LL	-8:LL		ban Sample: Date Ayal9zed:	le: B7G0031JBS- 9zed: -8J2ulJ-7-4:3L Columy: BEH C-1	HC-1	
Analyte	Amt Found (ug/L)	Spike Amt	%R	Limits		Labeled Standard	%R	TCF-UCL
SPBS	0.064-	0.0100	16.F	70 J-F0	SI	- FCFJ5PBS	4F	01-f 01
5PHpA	0.07-6	0.0100	14.L	70 J-F0	IS	- FC3J5PHpA	4L.L	L0 J-L0
SPHxS	0.07F0	0.0100	84	70 J-F0	IS	-108J5PHxS	4F.1	L0 J-L0
5POA	-9/0.0	0.0100	4L	70 J-F0	IS	- FC8J5POA	17.4	L0 J-L0
5POS	0.01-6	0.0100	80-	70 J-F0	IS	-FC1J5POS	11.0	LO J-LO
SPNA	0.070L	0.0100	11	70 J-F0	IS	- FCLJ5PNA	46.3	LOJ-LO

bCbJUCb J bower coytrol limit J upper coytrol limit

Sample ID:	Sample ID: BARNS-06-GW-TW01-062817-37	062817-37	7					Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data		La	Laboratory Data				
Name:	AMEC Foster Wheeler		Matrix:	Groundwater		Lab Sample:	1700831-02	Date Received: 06-Jul-2017 9:46	06-Jul-2017	9:46
Project:	Phase I Regional SI- Barnes / 291330006	330006	Sample Size:	$0.124\mathrm{L}$	<u>~</u>	QC Batch:	B7G0031	Date Extracted:	10-Jul-2017	7:38
Date Collected:	28-Jun-2017 15:30				<u>О</u>	Date Analyzed:	11-Jul-17 21:15 Column: BEH C18	nn: BEH C18		
Location:										
Analyte	Conc. (ug/L)	DF	TOD	00	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	0.0395	0.00219	0.00504	0.00803		IS 13C	13C3-PFBS	105	50 - 150	
PFHpA	0.0200	0.00219	0.00504	0.00803		IS 13C	13C4-PFHpA	112	50 - 150	
PFHxS	0.641	0.00219	0.00504	0.00803		IS 18C	18O2-PFHxS	119	50 - 150	
PFOA	0.0699	0.00219	0.00504	0.00803		IS 13C	I3C2-PFOA	118	50 - 150	
PFOS	609.0	0.00219	0.00504	0.00803		IS 13C	13C8-PFOS	117	50 - 150	
PFNA	QN	0.00219	0.00504	0.00803		IS 13C	13C5-PFNA	112	50 - 150	
		DF - De	DL - Detection limit			TCL-UCL - Low	LCL-UCL - Lower control limit - upper control limit	mit		

RL - Reporting limit

Results reported to DL.
When reported, PFBS, PFHXS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

mple ID:	Sample ID: BARNS-EB-01							Modifi	Modified EPA Method 537	thod 537
Client Data			Sample Data		Lab	Laboratory Data	ıta			
Name:	n MEC Fwster Wheeler		Matrix:	Grw2ydv ater	ba	baASample:	- 70010-JOL	Date 6 ecei9ed:	Date 6 ecei9ed: 04Ju21J80-7 H34	H34
Prwject:	Phase I 6 egiwyal SIJ Baryes / 8H 000004	200004	Sample Size:	07 b	ŏ <u> </u>	QC Batch:	B7G0031	Date Extracted	Date Extracted: Ju21J80-7 - 8:LL	-8:IT
Date Cwllected: b wcatiwy:	84Ju2yJ80-7 -8:L0				Da	te n yal5ze	Date n yal5zed: -oJu2lJ-7:LH Cwl2my: BER C-1	2my: BER C-1		
Analyte	Conc. (ug/L)	DI	TOD	T00	Qualifiers	L.	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.00800	0.00Lo3	0.00113)- SI	- oCoJPFBS	T	TO 1 - TO	
п	ND	0.00800	0.00Lo3	0.001L3		IS -	-oC3JPFRpn	17.8	LOJ - LO	
PFRxS	ND	0.00800	0.00Lo3	0.001L3		IS -	· 108JPFRxS	11.4	LOJ - LO	
PFOn	ND	0.00800	0.00Lo3	0.001L3		IS -	- oC8JPFOn	4H4	LOJ - LO	
PFOS	ND	0.00800	0.00Lo3	0.00113		IS -	-oC1JPFOS	17.3	LOJ - LO	
PFNn	QN	0.00800	0.00Lo3	0.00113		IS -	- oCLJPFNn	11.H	TO J - TO	
		Dh I Det	Db I Detectivay limit			Ch II ICh I b	half I I I I I I I I I I I I I I I I I I I	1 limit		

Db J Detectiwy limit 6 b J 6 epwrtiyg limit

bCb JUCb Jb we er cwytrwl limit J 2pper cwytrwl limit 6 es2lis repwrted twDb.
Whey repwrted, PFBS, PFRxS, PFOn ayd PFOS iycl2de Awth liyear ayd Arayched iswmers.
Oyl5 the liyear iswmer is repwrted fwr all wher ayal5tes.

Sample ID:	Sample ID: BARNS-EB-02							Modifi	Modified EPA Method 537	thod 537
Client Data			Sample Data			Laboratory Data	ıta			
Name:	n MEC Flkter Wheeler		Matrix:	GrHzydRater	_	baASample:	- 7001o- J09	Date v ecei6ed	Date v ecei6ed: 09Ju21J80-7 4:39	4:39
PrHject:	Phase I v egiHyal SIJ Baryes / 84-000009	600	Sample Size:	0Lb	_	QC Batch:	B7G0031	Date Extracted:	1: Ju21J80-7 -8:LL	-8:LL
Date CHlected: b Heatily:	89Ju2yJ80-7 -8:LL					Date n yal5zed:		- oJu2lJ-7-8: CH2my: BEw C-1		
Analyte	Conc. (ug/L)	DF	TOD	Γ 00	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ON	0.00809	0.00130	0.00197		- SI	- oCoJPFBS	10.L	10 J - TO	
PFwpn) QN	0.00809	0.00130	0.00197		IS	- oC3JPFwpn	79.0	L0J-L0	
PFwxS	ON	0.00809	0.00130	0.00197		- SI	108JPFwxS	47.4	L0J-L0	
PFOn	ON	0.00809	0.00L3o	0.00197		IS -	oC8JPFOn	67	T01-T0	
PFOS	ON ON	0.00809	0.00130	0.00197		IS -	· oC1JPFOS	13.3	TO 1 - TO	
PFNn	ON	0.00809	0.00L3o	0.00197		- SI	oCLJPFNn	6.77	LOJ - LO	
		Db J DetectiHy limit	ctiHv limit			hCh II ICh I h	hCh II ICh 1 h HR er cHatr H limit 1 2 mper cHatr H limit	c Hytr II limit		

Db J Detectiffy limit v b J v epHrtiyg limit

bCb JUCb Jb Rer clfytrH limit J 2pper clfytrH limit v es2lts repHrted tHDb.

Whey repHrted, PFBS, PFwxS, PFOn ayd PFOS iycl2de Ath liyear ayd Arayched isHmers. Oyl5 the liyear isHmer is repHrted flft all Hher ayal5tes.

Sample ID:	Sample ID: BARNS-01-GW-TW03-062917-37	62917-37	7					Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data			Laboratory Data	я			
4 ame:	AMEC F5ster Wheeler		Matrix:	Gr5undHater		Lab Sample:	1700831-07	Date weceiRed: 0v-Jul-2017 6:9v	0v-Jul-2017	v6:9v
Nr5Rect:	Nhase I wegi5nal SI- Barnes / 26133000v	33000v	Sample Size:	$0.122\mathrm{L}$		QC Batch:	B7G0031	Date Extracted:	10-Jul-2017	7:38
Date C5llected: L5cati5n:	26-Jun-2017 19:1j				• •	Date Analyzed:	: 11-Jul-17 21:28 C5lumn: BEo C18	ımn: BEo C18		
Analyte	Conc. (ug/L)	DF	TOD	TOQ	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
NFBS	0.0128	0.00223	0.00j 12	0.00818		IS 130	13C3-NFBS	112	j 0 - 1j 0	
NFo pA	0.0287	0.00223	0.00j 12	0.00818		IS 13(13C9-NFo pA	109	j 0 - 1j 0	
NFoxS	0.316	0.00223	0.00 12	0.00818		IS 180	1802-NFo xS	112	j 0 - 1 j 0	
NFOA	0.09j j	0.00223	0.00j 12	0.00818		IS 130	3C2-NFOA	123	j 0 - 1j 0	
NFOS	0.101	0.00223	0.00j 12	0.00818		IS 130	13C8-NFOS	66.1	j 0 - 1j 0	
NF4 A	0.00932	0.00223	0.00j 12	0.00818	J	IS 130	13Cj -N - 4 A	62.0	j 0 - 1j 0	
		1.C	DI Detection limit			TOT TOT	1, 11, 11, 11, 11, 11, 11, 11, 11, 11,	1 15		

DL - Detecti5n limit wL - wep5rting limit

LCL-UCL - L5Her c5ntr5l limit - upper c5ntr5l limit wesults rep5rted t5 DL.
When rep5rted, NFBS, NFO xS, NFOA and NFOS include b5th linear and branched is5mers.
Only the linear is5mer is rep5rted f5r all 5ther analytes.

Sample ID:	Sample ID: BARNS-06-GW-TW01-062817-Dup	062817-D	dn					Modifi	Modified EPA Method 537	thod 537
Client Data			Sample Data		La	Laboratory Data	ata			
4 ame:	AMEC j ofter s heeler		Matrix:	GroundRater		Lab Sample:	1700831-12	Date v ecei6ed	Date v eceifed: 09-Jul-2017 w.59	65.W
NroPect:	NhaFe We I ional SWBarneFg2wl330009	330009	Sample Size:	0/125 L		QC Batch:	B7G0031	Date Extracted:	1: 10-Jul-2017 7:38	7:38
Date Collected:	28-Jun-2017 0:00				<u>П</u>	Date Analyzed:		11-Jul-17 21:50 Column: BEH C18		
Location:							12-Jul-17 11:0w	12-Jul-17 11:0w Column: BEH C18		
Analyte	Conc. (ug/L)	DF	TOD	T00	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
N BS	0/0529	0/00220	0/00.05	80800/0		18 1	13C3-Nj BS	101	0 - 1.0	
N HpA	0/0238	0/00220	0/00.05	80800/0		<u>8</u>	3C5-N HpA	0/ w	. 0 - 1.0	
N HxS	0/737	0/00220	0/00.05	80800/0		<u>8</u>	.802-N HxS	102	. 0 - 1. 0	
N OA	0/07w3	0/00220	0/00.05	80800/0		8	3C2-N OA	110	. 0 - 1.0	
N OS	0/w 0	0/0110	0/02.2	0/0505	D	<u>8</u>	3C8-N OS	12w	. 0 - 1. 0	D
Ŋ 4 A	4 D	0/00220	0/00.05	80800/0		<u>8</u>	13CNj 4 A	85/7	. 0 - 1. 0	
		I.C.	DI Detection limit			TOTT TO I	timil loutuse assume timil loutuse as as I IIII	2 march 1 12 marks		

DL - Detection limit v L - v eportinl limit

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700831 Page 25 of 32

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700831 Page 26 of 32

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700831 Page 27 of 32

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700831 Page 28 of 32

1700831 0.50

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windheld Way El Dorado Hills, CA 95762 Atten: Martha Maier Lab Phones (916) 673-150

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 2 OF 3

2.5	Project Name:	Phase I Regional SI - Barnes	Project Contact		Lab Phor				Bal	To:	Amec For	ster Whe	eler En	vironme	nt & Infr	astruct	enur	Di	sposal I	nstructi	ons:	LA	B	955000
Facto	Project Number:	291330006	Phone Number	(978) 392-5339		200	U 731	17.15	100	01,95	9210 Sky	Park,Co	urt Sults	200	MSL SA		de Ma	SI	ipment	Method	t in	FE	DEX	
15	Project Manager:	Kerry Tull	Project Phase:	.010		1	700	1,4(1,1)		15.45	San Dieg	o, CA 92	123	No. of	11 1		N. W.	W	aybill N	umber		NI	A	Die sales
	nple Information																					PATTEST.		
Sal	The information		T	7		-		III	T T	1	1 1 1	Methods	TOT AN	alysis		-	1		T	-	10.04	RUSH	1	1
					MSIMSD	Method 537.1 UCMR 3															our I	our.	9)	AL BOTTLES
No	Sample ID	Date & Time Sampled	Matrix	Sample Type	MSW	Me															24 Hour	48 Hour 72 Hour	S Days	TOT/
	BARNS-05-SB02-062717-0-2	06/27/17 09:20	50	N	N	X									1-1							35 55	川網	1
-	BARN5-06-GW-TW01-062817-37	06/28/17 15:30	WG	N	N	X																	開館	2
-	BARNS-07-5801-062617-0-2	06/26/17 12:15	50	N	N	X																	100	1
	BARNS-07-SB02-062817-13-15	06/28/17 15:30	50	N	N	X		11						T							100			1
1	BARNS-EB-01	06/26/17 12:50	WQ	EB	N	X	FF	11											11		54			2
	BARNS-EB-02	06/26/17 12:55	WQ	EB	N	X		11		T											130			2
S	BARNS-01-GW-TW03-062917-37	06/29/17 14:15	WG	N	N	X															靈	題情	100	2
1	BARNS-04-SB01-062917-13-15	06/29/17 15:05	50	N	N	X																		1
	BARNS-04-SB03-062917-13-15	06/29/17 09:20	50	N	N	X	ME														224	量都	日期	1
1	BARNS-05-SB01-062917-13-15	06/29/17 08:20	50	N	N	X		H																1
1	BARNS-05-5802-062917-13-15	06/29/17 08:00	50	N	N	X								11					11		36	题音		1
1:	BARNS-06-GW-TW01-062817-Dup	06/28/17 00:00	WG	FD	N	X													11		16		B	M
Sa	mpler's Signature:		Date: 7/5//7	Time: 0940		-		match	or Lab Us amples:	е	Y or N		Co	mmen										
	linquished By/Affiliation:	AmecFie	Date:	Time: 0945		coc	400	intainer: intact: plems:			Y or N Y or N Y or N			Con	tract #	t V	V913	3L-14	nalys -D-000	D2 TO	que 0006	51		
	linquished By/Affiliation: 128/	<u> </u>	Pate: 17 Date:	Time:		-	OOT co	ontacted:			Y or N			Base	N: Tar	: Too	d Co	ffin	game)	efu, ec				
Re	ceived By:	4 5	Date:	Time:		Cool	er Ter	mperatu	e at receip	ol.		°C	N		OFC)	C144.GC	2171			
Re	linguished By/Affiliation:		Date:	Time:		*	Re	VISE	d Co	0	VECE	i VP	di	ia	em	ai l	a	n ·	1/1	4/20	17	*		
Re	3/7/05					-								UMBER	OF CO	OOLE	RS SE	NT:				14/2017	14/2017.*	19/2017. * W 2/11

7/7/2

Work Order 1700831

Page 29 of 32

1700831 0.50

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way El Dorado Hills, CA 95762 Atten: Martha Maier

Lab Phone# (916) 673-1520

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 2 OF 3

Project Name: Project Number: Project Manager:	Phase I Regional SI - Barnes 291330006 Kerry Tull	Committee of the commit	(978) 392-5339					Bill T	921	0 Sky I	100000000000000000000000000000000000000	eler Env urt Suite 123		t & Infra	structur	е	Disposal In Shipment Nu Waybill Nu	lethod:	ns:	FEC N/A	DEX	
												, ,								112511		
Sample Information							-	T		M	ethods	for Ana	lysis	11					R	USH		_
No. Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Method 537.1 UCMR 3														24 Hour 48 Hour	72 Hour	5 Days	TOTAL BOTTLES
1 BARNS-05-SB02-062717-0-2	06/27/17 09:20	50	N	N	X																	1
2 BARNS-06-GW-TW01-062817-37	06/28/17 15:30	WG	N	N	X																	2
3 BARNS-07-SB01-062617-0-2	06/26/17 12:15	50	N	N	X																	1
4 BARNS-07-SB02-062817-13-15	06/28/17 15:30	50	N	N	X																	1
5 BARNS-EB-01	06/26/17 12:50	WQ	EB	N	X																	2
6 BARNS-EB-02	06/26/17 12:55	WQ	EB	N	X																	2
7 BARNS-01-GW-TW03-062917-37	06/29/17 14:15	WG	N	N	X																	2
8 BARNS-04-5B01-062917-13-15	06/29/17 15:05	50	N	Ν	X																	1
9 BARNS-04-5B03-062917-13-15	06/29/17 09:20	50	N	N	X																	1
10 BARNS-05-SB01-062917-13-15	06/29/17 08:20	50	N	N	X																	1
11 BARNS-05-5B02-062917-13-15	06/29/17 08:00	50	N	N	X																	1
12 BARNS-06-GW-TW01-062817-Dup	06/28/17 00:00	WG	FD	N	X																18	1
Sampler's Signature: Relinquished By/Affiliation: Received By: Relinquished By/Affiliation: Received By: Relinquished By/Affiliation:	Amec Fix -	Date: Date: Date: Date: Date:	Time: O940 Time: O945 Time: Time: Time:		Broken COC s Other p WSDO Date co	Contain eal intac problems T contac ontacted	t: :: :ted:	les:	Y Y Y	or N or N or N or N	С		Cont PO # ATTN Base Field	=Anal ract # F013 I: Tam Lead: Lead:	WS 32006 mie R Todd Craig	9133L- 177 Lippie Coffin	ng@amec	2 TO0	006			
Received By (LAB):		Date:	Time:																			

Work Order 1700831 Page 30 of 32

Sample Log-in Checklist

Samples Arrival:	7/6/17 0946	0	Initials:		Shelf/Rack: N	
Logged In:	Date/Time 07/06/17	1341	Initials:	PAB	Location: WR	
Delivered By:	FedEx UPS	6 On Tr	ac GSO	DH	Hand	Other
Preservation:	lce	В	lue Ice		Dry Ice	None
Temp °C: 0.5	(uncorrected)	Time: 10	00 sed: Yes□	No.	Thermometer II	D: IR-2

				YES	NO	NA
Adequate Sample Volu	me Received?					
Holding Time Acceptab	ole?			/		
Shipping Container(s) I	ntact?			V		
Shipping Custody Seal	s Intact?			V		
Shipping Documentation	n Present?			1		
Airbill	Trk# 8009 5563	6272		~		
Sample Container Intac	et?			1		
Sample Custody Seals	Intact?					1
Chain of Custody / San	nple Documentation Pr	esent?		~		
COC Anomaly/Sample	Acceptance Form com	pleted?		1		
If Chlorinated or Drinkir	ng Water Samples, Acc	ceptable Pres	ervation?			V
Preservation Document	ted: Na ₂ S ₂ Q ₃	Trizma	None	Yes	No	NA
Shipping Container	(Vista)	Client	(Retain) Re	eturn	Disp	ose

comments: Sample labels: Barus - 05-5802-062717-00-02

Barus - 07-5801-062617-00-02

** Barus - 06-GW-TW01-062817-DUP (2 bothes) received)

** COC says 1 bothe

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Chain of Custody Anomaly/Sample Acceptance Form

Client: AMEC Foster Wheeler

Proceed with Analysis: YES

Client Comments/Instructions Per email

on the coc are currect.

Email: De	enise King enise.king@amecfw.com 78) 392-5339		ocumented by/date;	B.Benedict 07/06/2017
	the following information and compl before proceeding with sample analys		ection. To comply	with NELAC regulations, we must receive
Thank you,				
Martha Maier mmaier@vist 916-673-1520	a-analytical.com			
The following	information or item is needed to pr	oceed with analysis:		
Con	nplete Chain-of-Custody	Preservative		Collector's Name
Test	t Method Requested	Sample Identification		Sample Type
Ana	llyte List Requested	Sample Collection Date and	/or Time	Sample Location
Othe	er:			
X Sam Sam Cust Comments: COC ID BARNS-05-S	g anomalies were noted. Authorization perature outside < 6°C Range Temperature°C uple ID Discrepancy: See Comments ople Holding Time Missed tody Seals Broken 6802-062717-0-2 6801-062617-0-2	Samples Affected: Ice Present? Yes Insufficie Sample C	No Melted ent Sample Size Container(s) Broken Container Type	
Client Autho	orization			

Workorder Number:

1700831

Work Order 1700831 Page 32 of 32

July 20, 2017

Vista Work Order No. 1700832

Ms. Denise King AMEC Foster Wheeler 271 Mill Road Chelmsford, MA 01824

Dear Ms. King,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 06, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'Phase I Regional SI- Barnes / 291330006'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1700832 Page 1 of 29

Vista Work Order No. 1700832 Case Narrative

Sample Condition on Receipt:

Five aqueous samples and five soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. A sample ID discrepancy was found for sample "BARNS-08-GW-TW04-063017-37". The client confirmed that the label sample ID should be used "BARNS-08-GW-TW04-063017-36". A revised Chain of Custody was received on July 11, 2017 to reflect this information.

Analytical Notes:

Modified EPA Method 537

Samples "BARNS-07-GW-TW05-062917-49" and "BARNS-08-GW-TW04-063017-37" contained particulate and were centrifuged prior to extraction.

The aqueous samples were extracted and analyzed for a selected list of 6 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

VAL-PFAS

The solid samples were extracted and analyzed for a selected list of 6 PFAS using VAL Method PFAS.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

Work Order 1700832 Page 2 of 29

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

As requested, an MS/MSD was performed on sample "BARNS-07-SB01-062917-13-15".

Work Order 1700832 Page 3 of 29

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	22
Certifications	23
Sample Receipt	26

Work Order 1700832 Page 4 of 29

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700832-01	BARNS-06-SB01-062917-13-15	29-Jun-17 13:55	06-Jul-17 09:46	HDPE Jar, 6 oz
1700832-02	BARNS-06-SB02-062917-13-15	29-Jun-17 13:45	06-Jul-17 09:46	HDPE Jar, 6 oz
1700832-03	BARNS-06-SB03-062917-13-15	29-Jun-17 13:10	06-Jul-17 09:46	HDPE Jar, 6 oz
1700832-04	BARNS-07-GW-TW05-062917-49	29-Jun-17 09:55	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700832-05	BARNS-07-SB01-062917-13-15 MS/MSD	29-Jun-17 10:20	06-Jul-17 09:46	HDPE Jar, 6 oz
	MS/MSD			HDPE Jar, 6 oz
	MS/MSD			HDPE Jar, 6 oz
1700832-06	BARNS-05-SB01-062717-DUP	27-Jun-17 00:00	06-Jul-17 09:46	HDPE Jar, 6 oz
1700832-07	BARNS-EB-03-063017	30-Jun-17 15:44	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700832-08	BARNS-EB-04-063017	30-Jun-17 15:48	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700832-09	BARNS-EB-05-063017	30-Jun-17 15:50	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700832-10	BARNS-08-GW-TW04-063017-36	30-Jun-17 11:55	06-Jul-17 09:46	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1700832 Client Project: Phase I Regional SI- Barnes / 291330006

Work Order 1700832 Page 5 of 29

ANALYTICAL RESULTS

Work Order 1700832 Page 6 of 29

VAL - PFAS		ualifiers							
VAL	&:	LCL-UCL Qualifiers	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	50 - 150	
	Column: BEH C1	%R	90.2	74.9	85.6	87.7	89.5	81.3	
	Lab Sample: B7G0046-BLK1 Date Analyzed: 13-Jul-17 17:25 Column: BEH C18	Labeled Standard	13C3-PFBS	13C4-PFHpA	1802-PFHxS	13C2-PFOA	13C8-PFOS	13C5-PFNA	
		Qualifiers	SI	IS	IS	IS	IS	IS	
		Qua							
	:39	T00	2.00	2.00	2.00	2.00	2.00	2.00	
	B7G0046 11-Jul-2017 12:39	TOD	1.00	1.00	1.00	1.00	1.00	1.00	
	QC Batch: Date Extracted:	DF	0.285	0.285	0.285	0.285	0.285	0.285	
Method Blank	50	Conc. (ng/g)	ND	ND	ND	ND	ND	ON	
Sample ID: N	Matrix: Solid Sample Size: 1.00 g	Analyte	PFBS	PFHpA	PFHxS	PFOA	PFOS	PFNA	

LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size:00 g	QC Batch: Date Extracted:	B7G0051 Ju2lJ40-7 -4:3L	.4:3L		b aASample: Date n yal9zed:	e: B7G0051JBS- rzed: -3Ju2lJ-7-7:00 Col2my: BE8 C-H	С-Н	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	TCT-NCT
PFBS	H-1	- 0.0	H.1	70 J-30	IS	-3C3JPFBS	LN 1	NJ-N
PF8 pn	H57	0.0 -	H5.7	70 J - 30	SI	-3C5JPF8 pn	7N-	NO J-NO
PF8 xS	HIH	- 0.0	Ή	70 J-30	IS	- HD4JPF8 xS	HB.1	No J-No
PFOn	之ゴ	0.0 -	ĽN.	70 J - 30	IS	-3C4JPFOn	1H7	NO J-NO
PFOS	H-5	- 0.0	H.5	70 J-30	SI	-3CHIPFOS	7H5	No J-No
PF6 n	H-3	-0.0	H.3	70 J-30	IS	-3CNPF6 n	17.N	NJ-N

bCbJUCb J bower coytrol limit J 2pper coytrol limit

PFAS		_	Г		lifiers							
VAL - PFAS		0-7 L:5	0-7 -4:3		[Qua)		()	0	
		013u21340	Ju21J40-7 -4:3L		LCL-UCL Qualifiers	j 0 J - j 0	j0J-j0	j 0 J - j 0	j 0 J - j 0	j0J-j0	j 0 J - j 0	
		Date v ecei6ed: 01Ju2lJ40-7 L:51	Date Extracted:	2my: BER C-0	%R	5.00	11.7	05.1	74	LO	71	
	ıta	- 700034J0-	B7G0051	d: -3Ju2lJ-7-7:30 CH2my: BER C-0	Labeled Standard	3C3JNFBS	3C5JNFRpn	-004JNFRxS	3C4JNFOn	3CoJNFOS	3Cj JNF9 n	
	Laboratory Data	baASample:	QC Batch:	Date n yal8zed:	Γ	E- 3	IS - 3	IS -c	IS -3	IS -3	IS -3	
	Labora	baAS	QC B	Date	Qualifiers							
					Qual			n	n	n		
		SHI	e.0j g	L1.0	Γ OO	oJ	oT	oT	oT	oT	ol	
	Sample Data	Matrix:	Sample Size:	% SHids:	TOD	0.114	0.114	0.114	0.LL4	0.LL4	0.LL4	
9-17-13			-330001		DF	0.403	0.403	0.403	0.403	0.403	0.403	
Sample ID: BARNS-05-SB01-056219-17-13		n MEC FHster Wheeler	Nhase I v egiHyal SIJ Baryes / 4L-330001	4LJu2yJ40-7 -3:j j	Conc. (ng/g)	9 D	9 D	33	0.40j	00	9 D	
Sample ID:	Client Data	9 ame:	N-Hect:	Date CHlected: b HeatiHy:	Analyte	NFBS	NFRpn	NFRXS	NFOn	NFOS	NF9 n	

bCb.IUCb Jb Hwer elytrH limit J2pper elytrH limit
The res2lts are repHred iy dr8 weight.
The sample size is repHred iy wet weight.
v es2lts repHred tHDb.
Whey repHred thDb.
Whey repHred, N-BS, N-RxS, N-FOn ayd N-FOS iycl2de AH liyear ayd Arayched isHners.
Oyl8 the liyear isHner is repHred fH all Hher ayal8tes.

VAL - PFAS		L:51	-4:3L			Qualifiers					О		
VA		01Ju21J40-7	Ju21J40-7 -4:3L			LCL-UCL Qualifiers	00 - f 00	00 J - 00	00 J - 00	00 J - 00	00 J - 00	00 - f 00	
		Date 6 ecei9ed: 01Ju2lJ40-7 L:51	Date Extracted:	my: BER C-v	my: BER C-v	%R	L5	70.1	7L.1	71.0	00-	v5.3	
	ıta	- 700v34J04	B7G0051	d: -3Ju21J-7-7:00 CH2my: BER C-v	-LJu2lJ-7:07 CH2my: BER C-v	Labeled Standard	-3C3JPFBS	- 3C5JPFRpn	· vO4JPFRxS	3C4JPFOn	3CvJPFOS	3CoJPFNn	
	Laboratory Data	baASample:	QC Batch:	Date n yal8zed:		Ľ	E- 3	IS -3	IS -	IS -3	IS -3	IS - 3	
	Labor	baA.	OC I	Date		Qualifiers				n	D		
		SHI	0Lg	Lo.3		T00	I3	L3	L3	L3	L.13	L3	
	Sample Data	Matrix:	Sample Size:	% SHids:		TOD	0.L13	0.L13	0.L13	0.L13	5.v4	0.L13	
-27-23			30001			DF	0.475	0.475	0.475	0.475	37	0.475	
Sample ID: BARNS-05-SB01-051629-27-23		n MEC Flkter Wheeler	Phase I 6 egiHyal SIJ Baryes / 4L-330001	4LJu2yJ40-7 -3:50		Conc. (ng/g)	ND	ND	1	0.v15	^	QN	
Sample ID:	Client Data	Name:	PrHect:	Date CHlected:	b HeatiHy:	Analyte	PFBS	PFRpn	PFRxS	PFOn	PFOS	PFNn	

bCb JUCb Jb Hwer ellytrH limit J 2pper ellytrH limit
The res2lts are repHred iy dr8 weight.
The sample size is repHred iy wet weight.
6 es2lts repHred tHDb.
Whey repHred, PFBS, PFRxS, PFOn ayd PFOS iycl2de AH liyear ayd Arayched isHners.
Oyl8 the liyear isHner is repHred fH all Hher ayal8tes.

VAL - PFAS		_][][alifiers							
VAL-		0-7 L:5	Ju21J40-7 -4:3L		L Qua	0	9	9	9	0	9	
		01Ju2JJ4	Ju21J4		LCL-UCL Qualifiers	% - f %	% - f %	% - f 0%	% - f %	% - 10%	% - ſ%	
		Date v ecei6ed: 01Ju2lJ40-7 L:51	Date Extracted:	2my: BER C- o	%R	E%3	77.0	01.%	73.3	70.4	00	
	ta	- 700034J03	B7G0051	Date n yal8zed: -3Ju2lJ-7-0:03 CH2my: BER C-0	Labeled Standard	SC3JN BS	3C5JN Rpn	.004JNj RxS	3C4JNj On	3CoJN OS	3C/M 9 n	***
	Laboratory Data	baASample:	atch:	ı yal8zed	La	8 -30	8 -3	0- 8	8 -3(8 -3(- 3(
	Labora	baAS	QC Batch:	Date 1	fiers							
					Qualifiers					n		
		SHI	07 I	L%-	TOO	L1	1	- II	17.	<u>1</u> 7	Ll	
	Sample Data	Matrix:	Sample Size:	/ SHidF.	TOD	0.Lo4	0.Lo4	0.Lo4	0.Lo4	0.Lo4	0.Lo4	
7-91-93			330001		DF	0.400	0.400	0.400	0.400	0.400	0.400	
Sample ID: BARNS-05-SB01-056297-91-93		n MEC j Heers heeler	NhaFe WeliHyal SWBaryeFg4L-330001	4LJu2yJ40-7 -3:-0	Conc. (ng/g)	О 6	9D	9 D	9D	0.305	9 D	
Sample ID:	Client Data	9 ame:	N-Hect:	Date CHlected: b Featify:	Analyte	N BS	N Rpn	N RxS	N On	SO N	N 9 n	

bCb JUCb Jb Hwer ellytrH limit J 2pper ellytrH limit
The ref2llFare repHted iy dr8 weil ht.
The Fample Fize iF repHted iy wet weil ht.
v ef2llFrepHted tHDb.
s hey repHted, Nj BS, Nj RxS, Nj On ayd Nj OS iycl2de AH liyear ayd Arayched iHhnerF.
Oyl8 the liyear iHhner iF repHted fH all Hher ayal8teF.

FAS					fiers							
VAL - PFAS		' L:51	-4:3L		Quali							
VA		01Ju2JJ40-7	Ju21J40-7 -4:3L		LCL-UCL Qualifiers	но г-но	HD J - HD	HOJ-HO	HD J - HD	HO J - HO	HO J - HO	
		Date 6 ecei9ed: 01Ju2lJ40-7 L:51	Date Extracted:	1y: BEv C-0	%R	14.7	73.5	7L.H	73.3	73	03	2
	ata	- 700o34J0H	B7G0051	Date n yal8zed: -3Ju2lJ-7-o:-H CRl2my: BEv C-o	Labeled Standard	-3C3JPFBS	3C5JPFv pn	- oO4JPFv xS	3C4JPFOn	3CoJPFOS	3CHIPFNn	
	Laboratory Data	baASample:	QC Batch:	n yal8z	I	- SI	- SI	IS -	- SI	- SI	- SI	
	Labor	baA.	QC I	Date	Qualifiers							-
					Qua							
		SRil	43 g	7L.L	TOQ	4.05	4.05	4.05	4.05	4.05	4.05	
	Sample Data	Matrix:	Sample Size:	% SRids:	TOD	04	04	04	04	04	04	
5-17-13			.330001		DI	0.4L0	0.4L0	0.4L0	0.4L0	0.4L0	0.4L0	
Sample ID: BARNS-05-SB01-062915-17-13		n MEC FRster Wheeler	Phase I 6 egiRyal SIJ Baryes / 4L- 330001	4LJu2yJ40-7 -0:40	Conc. (ng/g)	ND	QN	QN	QN	ND	QN	
Sample ID:	Client Data	Name:	PrRject:	Date CRIlected: b ReatiRy:	Analyte	PFBS	PFv pn	PFv xS	PFOn	PFOS	PFNn	

bCb JUCb Jb Rwer cRytrRl limit J 2pper cRytrRl limit
The res2lts are repReted iy dr8 weight.
The sample size is repReted iy wet weight.
6 es2lts repReted tR Db.
Whey repReted, PFBS, PFV xS, PFOn ayd PFOS iycl2de ARth liyear ayd Arayched isRmers.
Oyl8 the liyear isRmer is repReted Rr all Rther ayal8tes.

Matrix Spike Results	esults														/AL -	VAL - PFAS
Source Client ID: Source LabNumber: Matrix: Sample Size:	BARNS-07-SB01-062917-13-15 1700832-05 Solid 1.29/1.24 g	.01-062917	-13-15		QC Batch: Date Extra	ı: acted:	QC Batch: B7G0046 Date Extracted: 11-Jul-2017 12:39	5 17 12:39		Lab Date	Lab Sample: Date Analyzed:	B7G0046-MS1/B7G0046-MSD1 13-Jul-1718:28 Column: BEH C18 13-Jul-1718:40 Column: BEH C18	6-MSD1 : BEH C18 : BEH C18			
		Spike-MS	MS	MS S	Q	MSD	MSD) %R	%RPD				MS	MS 1	MSD	MS
Analyte		(g/gu)	%R (Qual.	%R Qual. (ng/g)	%R	%R RPD Qual. Limit Limit	l. Limit	Limit		Labeled Standard	dard	%R C	Qualifiers	%R	Qual.
PFBS		9.71	84.6		10.1	91.6	7.95	70 - 13	70 - 130 25	IS	13C3-PFBS	Si	101		0.88	
PFHpA		9.71	82.4		10.1	9.98	4.97	70 - 130	0 25	IS	13C4-PFHpA	lpA	85.7		76.3	
PFHxS		9.71	83.9		10.1	93.8	11.1	70 - 130	0 25	IS	18O2-PFH _x S	IxS	94.6		87.5	
PFOA		9.71	93.1		10.1	96.2	3.28	70 - 130	0 25	IS	13C2-PFOA)A	77.1		6.62	
PFOS		9.71	101		10.1	80.2	23.0	70 - 130	0 25	IS	13C8-PFOS	S	77.0		9.88	
PFNA		9.71	73.2		10.1	81.1	10.2	70 - 130	0 25	IS	13C5-PFNA	IA	6.88		80.2	

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

VAL - PFAS		7 L:51	7 -4:3L			LCL-UCL Qualifiers					О		
VA		01Ju21J40-	: Ju21J40-7 -4:3L			TCT-UCL	НОЈ-НО	ЮЈ-НО	HD J - HD	HO J - HO	НО Ј - НО	HO J - HO	
		Date 6 ecei9ed: 01Ju21J40-7 L:51	Date Extracted:	2my: BEv C-o	2my: BEv C-o	%R	- 40	03.5	01.7	7H3	10.H	05.5	
	ata	- 700034J01	B7G0051	ed: -3Ju21J-7-0:HB CRl2my: BEv C-0	- oJu21J-7-1:45 CR12my: BEv C-o	Labeled Standard	-3C3JPFBS	· 3C5JPFv pn	-004JPFv xS	3C4JPFOn	3CoJPFOS	3CHIPFNn	
	Laboratory Data	baASample:	QC Batch:	Date n yal8zed:		I	- SI	- SI	- SI	- SI	- SI	IS	
	Labo	ba⊿	9C	Dat		Qualifiers		n			D		
		SRil	g 0 - · -	7o.L		DOT	4H	4H	4H	4H	-0.7	4H	
	Sample Data	Matrix:	Sample Size:	% SRlids:		TOD	70	07	70	07	H37	07	
1-DUP			.330001			DF	0.301	0.301	0.301	0.301	H3	0.301	
Sample ID: BARNS-05-SB02-067121-DUP		n MEC FRster Wheeler	Phase I 6 egiRyal SIJ Baryes / 4L- 330001	$47 \text{Ju}_2 \text{y} 140-7 0:00$		Conc. (ng/g)	ND	0.54H	HH	3.4L	400	QN	
Sample ID:	Client Data	Name:	PrRject:	Date CRIlected:	b ReatiRy:	Analyte	PFBS	PFv pn	PFvxS	PFOn	PFOS	PFNn	

bCb JUCb Jb Rwer cRytrRl limit J 2pper cRytrRl limit
The res2lts are repReted iy dr8 weight.
The sample size is repReted iy wet weight.
6 es2lts repReted tR Db.
Whey repReted, PFBS, PFV xS, PFOn ayd PFOS iycl2de ARth liyear ayd Arayched isRmers.
Oyl8 the liyear isRmer is repReted Rr all Rther ayal8tes.

Modified EPA Method 537		olumn: BEH C18	olumn: BEH C18 %R LCL-UCL Qualifiers	%R LCL-UCL Qualifiers 95.5 50 - 150	%R LCL-UCL Qualifiers 95.5 50 - 150 94.7 50 - 150	%R LCL-UCL Qualifiers 95.5 50 - 150 94.7 50 - 150 118 50 - 150	96R LCL-UCL Qualifiers 95.5 50 - 150 94.7 50 - 150 118 50 - 150 104 50 - 150	96R LCL-UCL Qualifiers 95.5 50 - 150 94.7 50 - 150 118 50 - 150 104 50 - 150 103 50 - 150
	Lab Sample: B7G0031-BLK1 Date Analyzed: 11-Jul-17 20:12 Column: BEH C18		Labeled Standard %R	•	6	e`	6	6'
I ah Sam	Date Ana		Qualifiers Label	IS	SI	SI SI SI	S S S S S S S S S S S S S S S S S S S	S1 S
	∞		LOQ Qua					
	B7G0031 10-Jul-2017 7:38		ГОО	LOD 0.00500	LOD 0.00500 0.00500	LOD 0.00500 0.00500 0.00500	LOD 0.00500 0.00500 0.00500 0.00500	LOD 0.00500 0.00500 0.00500 0.00500 0.00500
	QC Batch: Date Extracted:		DF	DL 0.00218	DL 0.00218 0.00218	0.00218 0.00218 0.00218	0.00218 0.00218 0.00218 0.00218	0.00218 0.00218 0.00218 0.00218 0.00218
Method Blank	Aqueous 0.125 L		Conc. (ug/L)	Conc. (ug/L) ND	Conc. (ug/L) ND ND	Conc. (ug/L) ND ND ND	Conc. (ug/L) ND ND ND ND ND	Conc. (ug/L) ND ND ND ND ND ND
Sample ID:	Matrix: Aque Sample Size: 0.12:		Analyte	Analyte PFBS	Analyte PFBS PFHpA	Analyte PFBS PFHpA PFHxS	Analyte PFBS PFHpA PFHxS PFOA	Analyte PFBS PFHpA PFHxS PFOA PFOA

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR							Modified F	Modified EPA Method 537
Matrix: Aqueous Sample Size: 0.125 L	QC Batch: Date Extracted:	QC Batch: B7G0031 Date Extracted: 10-Jul-2017 7:38	7:38		Lab Sample: Date Analyzed:	Lab Sample: B7G0031-BS1 Date Analyzed: 11-Jul-17 19:47 Column: BEH C18	C18	
Analyte	Amt Found (ug/L)	Spike Amt	%R	Limits		Labeled Standard	%R	TCT-nct
PFBS	0.0601	0.0800	75.2	70 - 130	IS	13C3-PFBS	108	50 - 150
PFHpA	0.0637	0.0800	7.67	70 - 130	IS	13C4-PFHpA	103	50 - 150
PFHxS	0.0655	0.0800	81.9	70 - 130	IS	18O2-PFHxS	111	50 - 150
PFOA	0.0719	0.0800	8.68	70 - 130	IS	13C2-PFOA	95.2	50 - 150
PFOS	0.0564	0.0800	9.07	70 - 130	IS	13C8-PFOS	102	50 - 150
PFNA	0.0564	0.0800	70.5	70 - 130	SI	13C5-PFNA	102	50 - 150

LCL-UCL - Lower control limit - upper control limit

Sample ID:	Sample ID: BARNS-07-GW-TW05-062917-49	062917-49						Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data		Ta	Laboratory Data	ta ta			
P ame:	AMEC FHRer Wheeler		Matrix:	AsueHuR		Lab Sample:	1700832-0N	Date v ecei6ed:	Date v ecei6ed: 09-Jul-2017 4:N9	4:N9
j rHect:	j haRe I v egiHhal SI- BarneR/ 241330009	330009	Sample Size:	0.12o L	_	QC Batch:	B7G0031	Date Extracted:	: 10-Jul-2017 7:38	7:38
Date CHlected: LÆatiHn:	24-Jun-2017 4:00				<u> </u>	Date Analyzed:	i: 11-Jul-17 21:03 CHumn: BEq C18	nn: BEq C18		
Analyte	Conc. (ug/L)	DF	TOD	COO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
j FBS	0.0030	0.00218	0.00000	0.00802		IS 13	13C3-j FBS	107	00 - 100	
j Fq pA	0.0270	0.00218	0.00000	0.00802		IS 13	3CNj Fq pA	112	00 - 100	
j Fq xS	0.94N	0.00218	0.00000	0.00802		IS 18	.802-j Fq xS	122	00 - 100	
j FOA	0.0047	0.00218	0.00000	0.00802		IS 13	3C2-j FOA	112	00 - 100	
j FOS	0.93N	0.00218	0.00000	0.00802		IS 13	.3C8-j FOS	104	00 - 100	
j FP A	PD	0.00218	0.00000	0.00802		IS 13	13Co-j FP A	48.2	00 - 100	

LCL-UCL - LHwer chturh limit - upper churh limit v ethitkrepHted thDL.

When repHted, j FBS, j FQXS, j FOA and j FOS include bHh linear and branched iRthnerR Only the linear iRther iRtepHted fit all Hher analyteR

Sample ID:	Sample ID: BARNS-EB-03-063017							Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data		La	Laboratory Data	ta ta			
P ame:	AMEC FHRer Wheeler		Matrix:	AsueHuR		Lab Sample:	1700832-07	Date v ecei6ed:	09-Jul-2017 4:N9	4:N9
j rHæct:	j hare I v egirhal SI- Barner/ 241330009	1330009	Sample Size:	$0.122\mathrm{L}$	_	QC Batch:	B7G0031	Date Extracted:	10-Jul-2017	7:38
Date CHlected: L'EatiHr:	30-Jun-2017 10:NN					Date Analyzed:	: 11-Jul-17 22:00 CHumn: BEq C18	ımı: BEq C18		
Analyte	Conc. (ug/L)	DF	TOD	T00	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
j FBS	PD	0.00223	0.00o12	0.00814		IS 13	13C3-j FBS	48.2	00-100	
j Fq pA	PD	0.00223	0.00012	0.00814		IS 13	3CNj Fq pA	40.0	00 - 100	
j Fq xS	PD	0.00223	0.00012	0.00814		IS 18	1802-j Fq xS	112	00 - 100	
j FOA	PD	0.00223	0.00012	0.00814		IS 13	3C2-j FOA	10N	00 - 100	
j FOS	PD	0.00223	0.00012	0.00814		IS 13	13C8-j FOS	112	00 - 100	
j FP A	PD	0.00223	0.00012	0.00814		IS 13	13Co-j FP A	6.68	00 - 100	

LCL-UCL - LHwer chturh limit - upper churh limit v ethitkrepHted thDL.

When repHted, j FBS, j FQXS, j FOA and j FOS include bHh linear and branched iRthnerR Only the linear iRther iRtepHted fit all Hher analyteR

Sample ID:	Sample ID: BARNS-EB-04-063017							Modifi	Modified EPA Method 537	thod 537
Client Data			Sample Data		La	aboratory Data	ata			
Name:	AMEC FHRer Wheeler		Matrix:	AsueHuR		Lab Sample:	1700832-08	Date v ecei6ed:	Date v eceifed: 09-Jul-2017 0:49	0:49
PrHject:	Phare I v egithal SI- Barner/ 201330009	330009	Sample Size:	0.123 L	_	QC Batch:	B7G0031	Date Extracted:	: 10-Jul-2017 7:38	7:38
Date CHlected: LÆatiHn:	30-Jun-2017 15:48				<u> </u>	Date Analyzed:	ed: 11-Jul-17 22:10 CHumn: BEq C18	lumn: BEq C18		
Analyte	Conc. (ug/L)	DI	TOD	COO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.00222	0.00508	0.00813		IS 1	13C3-PFBS	101	50 - 150	
PFq pA	QN	0.00222	0.00508	0.00813		IS	3C4-PFq pA	100	50 - 150	
PFqxS	QN	0.00222	0.00508	0.00813		IS 1	.802-PFq xS	8.00	50 - 150	
PFÓA	QN	0.00222	0.00508	0.00813		IS 1	3C2-PFOA	107	50 - 150	
PFOS	QN	0.00222	0.00508	0.00813		IS 1	3C8-PFOS	01.3	50 - 150	
PFNA	QN	0.00222	0.00508	0.00813		IS 1	3C5-PFNA	87.3	50 - 150	

LCL-UCL - LHwer cHntrH limit - upper cHntrH limit v eRultRrepHted tHDL.

When repHted, PFBS, PFq xS, PFOA and PFOS include bHh linear and branched iRthnerR Only the linear iRthner iRrepHted ft all Hher analyteR

Sample ID:	Sample ID: BARNS-EB-05-063017							Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data			Laboratory Data	ta			
Name:	AMEC Foster Wheeler		Matrix:	Aqueous	_	Lab Sample:	1700832-09	Date Received: 06-Jul-2017 9:46	06-Jul-2017	9:46
Project:	Phase I Regional SI- Barnes / 291330006	330006	Sample Size:	0.117 L	_	QC Batch:	B7G0031	Date Extracted:	10-Jul-2017	7:38
Date Collected: Location:	30-Jun-2017 15:50					Date Analyzed:	d: 11-Jul-17 22:31 Column: BEH C18	n: BEH C18		
Analyte	Conc. (ug/L)	DF	TOD	T00	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.00232	0.00534	0.00852		IS 13	13C3-PFBS	101	50 - 150	
PFHpA	QN	0.00232	0.00534	0.00852		IS 13	13C4-PFHpA	109	50 - 150	
PFHxS	ND	0.00232	0.00534	0.00852		IS 18	8O2-PFHxS	98.4	50 - 150	
PFOA	ND	0.00232	0.00534	0.00852		IS 13	I3C2-PFOA	100	50 - 150	
PFOS	ND	0.00232	0.00534	0.00852		IS 13	3C8-PFOS	107	50 - 150	
PFNA	QN	0.00232	0.00534	0.00852		_ IS 13	13C5-PFNA	93.5	50 - 150	

LCL-UCL - Lower control limit - upper control limit
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID:	Sample ID: BARNS-08-GW-TW04-063017-36	063017-30						Modifie	Modified EPA Method 537	thod 537
Client Data			Sample Data		Γ_{δ}	Laboratory Data	ata			
Name:	AMEC FHRer Wheeler		Matrix:	AsueHuR	_	Lab Sample:	1700832-10	Date v ecei6ed: 09-Jul-2017 4:09	09-Jul-2017	4:09
PrHect:	PhaRe I v egiHhal SI- BarneR/ 241330009	330009	Sample Size:	$0.123\mathrm{L}$	_	QC Batch:	B7G0031	Date Extracted:	10-Jul-2017	7:38
Date CHlected: LÆatiHn:	30-Jun-2017 11:55					Date Analyzed:	ed: 11-Jul-17 22:00 CHumn: BEq C18	umn: BEq C18		
Analyte	Conc. (ug/L)	DF	TOD	COO	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
PFBS	ND	0.00221	0.00508	0.00812		IS 1	13C3-PFBS	104	50 - 150	
PFq pA	ND	0.00221	0.00508	0.00812		IS	13Co-PFq pA	103	50 - 150	
PFq xS	0.0149	0.00221	0.00508	0.00812		IS	1802-PFq xS	110	50 - 150	
PFÓA	QN	0.00221	0.00508	0.00812		IS	3C2-PFOA	41.5	50 - 150	
PFOS	0.00380	0.00221	0.00508	0.00812	Г	IS	3C8-PFOS	48.0	50 - 150	
PFNA	QN	0.00221	0.00508	0.00812		IS	I3C5-PFNA	88.1	50 - 150	

LCL-UCL - LHwer cHntrH limit - upper cHntrH limit v eRultRrepHted tHDL.

When repHted, PFBS, PFq xS, PFOA and PFOS include bHh linear and branched iRthnerR Only the linear iRthner iRrepHted ft all Hher analyteR

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700832 Page 22 of 29

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700832 Page 23 of 29

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700832 Page 24 of 29

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700832 Page 25 of 29

1700832 0.5°C

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 3 OF 3

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way El Dorado Hills, CA 95762 Atten Martha Maier Lab Phone# (916) 673-1520

Project Name:	Phase I Regional SI - Barne	s Project Contact	: Denise King	15/16/17	100		STATE OF	Bill	To: A	unec F	oster W	heeler E	nvironn	a Inon	nfrastn	ucture	Dis	posal fi	nstrucți	ons;	LAF	3 統領	
Project Number:	291330006	Phone Number	(978) 392-5339				Section ()	計學	9	2105	ký Park	Court St	na 200	1 6		24		ipment			FEC	DEX	3838
Project Manager.	Kerry Tull	Project Phase:	010			II) S S S S	76(2)	8 8	S	an Die	ego, CA	92123	CARG.	1000	asi)	F (1)	Wa	ybill Nu	imber:		NVA	相談	and a
Sample Information					-						Method	s for A	nalysis	-			-		-	A	USH	T	_
				05	od 537.1 UCMR 3																		BOTTLES
No. Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Method													Ш		24 Hour	72 Hou	5 Days	TOTAL
I BARNS-06-5801-062917-13-15	06/29/17 13:55	50	N	N	X				11		11	11								G 4		200	1
2 BARNS-06-5802-062917-13-15	06/29/17 13:45	50	N	N	X	11		-	+			11								93 8		200	1
3 BARNS-06-5803-062917-13-15	06/29/17 13:10	50	N	N	X		1	1			++-	1					-				1 10		1
4 BARNS-07-GW-TW05-062917-49	06/29/17 09:55	WG	N	N	X	ti	11	-	1			1			11					22 6	110	102	2
5 BARNS-07-5B01-062917-13-15	06/29/17 10:20	50	N	У	X	Ħ	11	1	Ħ			11	11							60 10			3
6 8ARNS-05-SB01-062717-DUP	06/27/17 00:00	50	FD	N	X			1	\Box			11	1		$\dagger \dagger$					1 1 2 3 3 3 3 3 3 3 3 3 3	I IS		1
7 BARNS-EB-03-063017	06/30/17 15:44	WQ	EB	N	X	TT	11	-	11		++	11			11					20 15			2
8 BARNS-EB-04-063017	06/30/17 15:48	WQ	EB	N	X			1				11								增養	To		2
9 BARNS-EB-05-063017	06/30/17 15:50	WQ	EB	N	X														T	極個			2
10 BARNS-08-GW-TW04-063017-3>	06/30/17 11:55	WG	N	N	X		11								11					100		惠	1
11 6 .	DYK																		T	12 8	100		
12	117/12																			(1) p		1	
Sampler's Signature: Relinquished By/Affiliation: Received By: Relinquished By/Affiliation: Received By: Relinquished By/Affiliation:	y Amer FW 18h	Date: Date: Date: Date: Date: Date:	Time: 0946 Time: 0.945 Time: 1011 Time: Time:	and the second	Broken COC s Other p WSDO Date of	Contai eal inta problem T contacte ontacte Tempe	ct: s: icted.	nples:	pt:	or or or or or	N N N	2	PO AT Bas Fie	X=Ar htract # FO TN: Ta se Lea Id Lea	# 01320 ammi id: To id: Cr	W913: 0677 e Ripp dd Co aig.ke	ffin ating@ NT:	D-000	cfw.c	0006 om			
Received By (LAB):		Date:	Time:	-	1	KE !	110	101	u	, 0	1 -	- 0.		*			- 1 (pr	71	111	17	

1700832 0.5°C

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way El Dorado Hills, CA 95762 Atten: Martha Maier Lab Phone# (916) 673-1520

CHAIN OF CUSTODY

DATE: 7/5/2017

COC #: BARNS170705A

PAGE: 3 OF 3

No. Sample ID Date & Time Sampled	Market Company of the Con-	Phone Number: Project Phase:	(978) 392-5339 .010		T						The second second	urt Suite	200			Ship	ment Me	thod:		FEDEX	
Sample Information Sample ID	Project Phase:	Project Phase:	.010		T			500	c.	-	CHANGE OF STREET										
No. Sample ID Date & Time Sampled 1 BARNS-06-SB01-062917-13-15 06/29/17 13:55 2 BARNS-06-SB02-062917-13-15 06/29/17 13:45 3 BARNS-06-SB03-062917-13-15 06/29/17 13:10 4 BARNS-07-GW-TW05-062917-49 06/29/17 09:55 5 BARNS-07-SB01-062917-13-15 06/29/17 10:20 6 BARNS-05-SB01-062917-13-15 06/29/17 10:20 7 BARNS-EB-03-063017 06/30/17 15:44 8 BARNS-EB-04-063017 06/30/17 15:48 9 BARNS-EB-05-063017 06/30/17 15:50 10 BARNS-08-GW-TW04-063017-37 06/30/17 11:55 11 12 Sampler's Signature: Relinquished By/Affiliation:					_				38	an Diego	, CA 92	123				Wa	ybill Numl	oer:		N/A	200
1 BARNS-06-SB01-062917-13-15 06/29/17 13:55 2 BARNS-06-SB02-062917-13-15 06/29/17 13:45 3 BARNS-06-SB03-062917-13-15 06/29/17 13:10 4 BARNS-07-GW-TW05-062917-49 06/29/17 09:55 5 BARNS-07-SB01-062917-13-15 06/29/17 10:20 6 BARNS-05-SB01-062917-13-15 06/29/17 10:20 7 BARNS-EB-03-063017 06/30/17 15:44 8 BARNS-EB-04-063017 06/30/17 15:48 9 BARNS-EB-05-063017 06/30/17 15:50 10 BARNS-EB-05-063017 06/30/17 15:50 11 BARNS-08-GW-TW04-063017-37 06/30/17 11:55										M	ethods	for Anal	/sis					T	RUS	SH	
Sampler's Signature: Relinquished By/Affiliation: Amer. Fw	Matrix SO SO SO WG SO WG WQ WQ WQ WQ	50 50 50 W6 50 50 WQ WQ	Sample Type N N N N N FD EB EB EB N	OSMSM Z Z Z Z Z Z Z Z Z Z Z Z	X X X X X X X Method 537.1 UCMR 3													24 Hour	48 Hour	72 Hour 5 Days	1 1 1 2 3 1 2 2 2 2 1 1
Relinquished By/Affiliation: All Amer FW																		100			
Received By:	Date: 7/5//7 Date: 7/6/17 Date: Date:	Date: 7/5//7 Date: 7/6/17 Date: Date:	Time: 0940 Time: 0945 Time: 1011 Time: Time:		Brok COO Othe WS Date	s COC resen Control Seal in Seal in Description Seal in Control Seal Seal Seal Seal Seal Seal Seal Sea	natch sa ainer: act: ms: tacted: ed:	amples:	Y Y Y Y	or N or N or N or N			Contra PO # ATTN: Base L Field L	Analyz ict # F0132 Tamm ead: Te ead: C	W913: 00677 ie Ripp odd Co	3L-14-I ie ffin ating@	nalysis 0-0002 Damecfv	TO00(06		

Sample Log-in Checklist

Arrival:	7/6/17 094	6	Initials:		Location: Shelf/Rad	1	2	
Logged In:	07/06/17	1501	Initials:	RB	Location:	CT 0.5		
Delivered By:	FedEx UPS	6 On Tr	ac GSO	DHI	На	nd		ner
Preservation:	lce	В	ue Ice		Dry Ice		No	ne
Temp °C: 0₅°	·	Time: 10	ભુ ed: Yes□	No)¤	Thermom	eter ID:	IR-2	
						YES	NO	NA
Adequate Sam	ple Volume Receiv	ed?				/		
Holding Time A	cceptable?					1		n_
Shipping Conta	niner(s) Intact?					1		
Shipping Custo	dy Seals Intact?					1		
Shipping Docu	mentation Present?					1		
Airbill	Trk# 80	A 2263	6272			1		
Sample Contain	ner Intact?					V	12	
Sample Custod	y Seals Intact?							V
Chain of Custo	dy / Sample Docum	nentation P	resent?			V		
	Sample Acceptanc					V	+	1
If Chlorinated o	r Drinking Water S	amples, Ac	ceptable Pr	eserva	tion?			/
	ocumented:	Na ₂ S ₂ Q ₃	Trizma	1	Vone	Yes	No	(NA)
Preservation Do			Client	(Re	etain F			pose

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Chain of Custody Anomaly/Sample Acceptance Form

Client: AMEC Foster Wheeler Workorder Number: 1700832 Contact: Denise King 06-Jul-17 09:46 Date Received: Email: Denise.king@amecfw.com Documented by/date: B.Benedict 07/06/2017 Phone: (978) 392-5339 Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis. Thank you, Martha Maier mmaier@vista-analytical.com 916-673-1520 The following information or item is needed to proceed with analysis: Complete Chain-of-Custody Preservative Collector's Name Test Method Requested Sample Identification Sample Type Analyte List Requested Sample Collection Date and/or Time Sample Location Other: The following anomalies were noted. Authorization is needed to proceed with analysis. Temperature outside < 6°C Range Samples Affected: Temperature °C Ice Present? Yes No Melted Sample ID Discrepancy: See Comments Insufficient Sample Size Sample Holding Time Missed Sample Container(s) Broken Custody Seals Broken Incorrect Container Type Comments: COC ID: Label ID: BARNS-08-GW-TW04-063017-37 BARNS-08-GW-TW04-063017-36

Client Authorization		
Proceed with Analysis: YES		Signature and Date Kavery. Volpendon 7-10-2017
Client Comments/Instructions	Per email	from Toda Coffin, the sample ID on the

Work Order 1700832

Page 29 of 29

July 20, 2017

Vista Work Order No. 1700833

Ms. Denise King AMEC Foster Wheeler 271 Mill Road Chelmsford, MA 01824

Dear Ms. King,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 06, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'Phase I Regional SI- Barnes / 291330006'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1700833 Page 1 of 21

Vista Work Order No. 1700833 Case Narrative

Sample Condition on Receipt:

Seven soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The Chain of Custody was not present during sample receipt. A copy of the Chain of Custody was received via email on July 8, 2017.

Analytical Notes:

VAL-PFAS

The samples were extracted and analyzed for a selected list of 6 PFAS using VAL Method PFAS.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

Work Order 1700833 Page 2 of 21

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	15
Certifications	16
Sample Receipt	19

Work Order 1700833 Page 3 of 21

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700833-01	BARNS-05-SB01-062717-0-2	27-Jun-17 09:40	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-02	BARNS-04-SB02-062917-13-15	29-Jun-17 09:40	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-03	BARNS-04-SB02-062617-0-2	26-Jun-17 10:43	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-04	BARNS-01-SB02-062617-0-2	26-Jun-17 08:30	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-05	BARNS-01-SB01-062617-0-2	26-Jun-17 08:20	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-06	BARNS-04-SB03-062617-0-2	26-Jun-17 10:53	06-Jul-17 09:46	HDPE Jar, 6 oz
1700833-07	BARNS-07-SB02-062617-0-2	26-Jun-17 11:55	06-Jul-17 09:46	HDPE Jar, 6 oz

Vista Project: 1700833 Client Project: Phase I Regional SI- Barnes / 291330006

Work Order 1700833 Page 4 of 21

ANALYTICAL RESULTS

Work Order 1700833 Page 5 of 21

30046 Lab Sample: B7G0046-BLK1 Lul-2017 12:39 Date Analyzed: 13-Jul-1717:25 Column: BEH C18 OD LOQ Qualifiers Labeled Standard %R LCL-UCL Qualifiers 1.00 2.00 IS 13C3-PFBS 90.2 50-150 1.00 2.00 IS 13C4-PFHpA 74.9 50-150 1.00 2.00 IS 13C2-PFAS 85.6 50-150 1.00 2.00 IS 13C8-PFOS 87.7 50-150 1.00 2.00 IS 13C8-PFOS 89.5 50-150	Method Blank
LOQ Qualifiers Labeled Standard %R 2.00 IS 13C3-PFBS 90.2 2.00 IS 13C4-PFHpA 74.9 2.00 IS 18O2-PFHxS 85.6 2.00 IS 13C2-PFOA 87.7 2.00 IS 13C8-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	B7G0046 11-Jul-2017 12:39
2.00 IS 13C3-PFBS 90.2 2.00 IS 13C4-PFHpA 74.9 2.00 IS 18O2-PFHxS 85.6 2.00 IS 13C2-PFOA 87.7 2.00 IS 13C8-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	TOD TOO
2.00 IS 13C4-PFHpA 74.9 2.00 IS 18O2-PFHxS 85.6 2.00 IS 13C2-PFOA 87.7 2.00 IS 13C8-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	
2.00 IS 1802-PFHxS 85.6 2.00 IS 13C2-PFOA 87.7 2.00 IS 13C8-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	
2.00 IS 13C2-PFOA 87.7 2.00 IS 13C8-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	
2.00 IS 13CS-PFOS 89.5 2.00 IS 13C5-PFNA 81.3	
IS 13C5-PFNA 81.3	2.00
	2.00

LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to DL.
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size:00 g	QC Batch: Date Extracted:	B7G0051 Ju2lJ40-7 -4:3L	.4:3L		b aASample: Date n yal9zed:	e: B7G0051JBS- rzed: -3Ju2lJ-7-7:00 Col2my: BE8 C-H	С-Н	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	TCT-NCT
PFBS	H-1	- 0.0	H.1	70 J-30	IS	-3C3JPFBS	LN 1	NJ-N
PF8 pn	H57	0.0 -	H5.7	70 J - 30	SI	-3C5JPF8 pn	7N-	NO J-NO
PF8 xS	HIH	- 0.0	Ή	70 J-30	IS	- HD4JPF8 xS	HB.1	No J-No
PFOn	之ゴ	0.0 -	ĽN.	70 J - 30	IS	-3C4JPFOn	1H7	NO J-NO
PFOS	H-5	- 0.0	H.5	70 J-30	SI	-3CHIPFOS	7H5	No J-No
PF6 n	H-3	-0.0	H.3	70 J-30	IS	-3CNPF6 n	17.N	NJ-N

bCbJUCb J bower coytrol limit J 2pper coytrol limit

Sample ID: BARNS-05-SB02-067121-0-7	21	2-0-7	Sample Data			Lahoratory Data	913		VA	VAL - PFAS
n MEC Flster Wheeler Matrix:	Matrix:	Matrix:		SHI	q	baASample:	-700v33J0-	Date 6 ecei9ed: 01Ju2lJ40-7 L:51	01Ju21J40-7	L:51
Phase I 6 egitlyal SIJ Baryes / 4L-330001 Sample Size:		Sample Siz	ze:	g -4		QC Batch:	B7G0051	Date Extracted:	: Ju21J40-7 -4:3L	-4:3L
47Ju2yJ40-7 L:50 % SHids:	% SHids:	% SHids:		v4.v		Date n yal8zed:		-3Ju2lJ-7-L:00 CH2my: BER C-v		
							- vJu21J- 7 - 1:31	-vJu21J-7-1:31 CH2my: BER C-v		
Conc. (ng/g) DL LOD		TOD		Γ	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
ND $0.4vo$ $0.1Lv$		0.LLv		4.00		- SI	-3C3JPFBS	- 03	00 - f 00	
0.503 0.4vo 0.LLv		0.LLv		4.00	n	SI	-3C5JPFRpn	1L.v	00 - f 00	
5.v0 0.4vo 0.LLv		0.LLv		4.00		SI	· vO4JPFRxS	v5.4	00 - f 00	
4.15 0.4vo 0.1Lv		0.LLv		4.00		SI	3C4JPFOn	75.5	00 - f 00	
054 5.IL		5.LL		L.Lv	D	IS	· 3CvJPFOS	73.L	00 - f 00	D
ND 0.4vo 0.LLv		0.LLv		4.00		- SI	3CoJPFNn	v4.3	00 - f 00	
						L OLU ITOL I	4	TI -4TI 12 24		

bCb JUCb Jb Hwer ellytrH limit J 2pper ellytrH limit
The res2lts are repHred iy dr8 weight.
The sample size is repHred iy wet weight.
6 es2lts repHred tHDb.
Whey repHred, PFBS, PFRxS, PFOn ayd PFOS iycl2de AH liyear ayd Arayched isHners.
Oyl8 the liyear isHner is repHred fH all Hher ayal8tes.

Sample ID:	Sample ID: BARNS-04-SB01-061297-93-95	-93-95							VA	VAL - PFAS
Client Data			Sample Data		Ta	Laboratory Data	Data			
9 ame:	n MEC j Hers heeler		Matrix:	SHI	<u>م</u>	baASample:	: - 700033J04	Date v ecei6ed: 01Ju21J40-7 L:51	01Ju2lJ40-7	L:51
N-HBct:	NhaFe We IiHyal SWBaryeFg4L-330001	30001	Sample Size:	- % I	_	QC Batch:	B7G0051	Date Extracted:	Ju21J40-7 -4:3L	-4:3L
Date CHlected: b HeatiHy:	4LJu2yJ40-7 L:50		/ SHidF.	1.5%	—	ate n yal8;	Date n yal8zed: -3Ju2lJ-7-L:-0 CH2my: BER C-0	H2my: BER C-0		
Analyte	Conc. (ng/g)	DF	TOD	T00	Qualifiers	8	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
N BS	9 В	02470	0%77	- %		81	-3C3JN BS	T. %	0 · - f 0 ·	
N Rpn	9 D	0%70	02677	- %		89	-3C5JN Rpn	L43	0 · - f 0 ·	
N RxS	9 D	0%70	0%77	- %		9	-004JNj RxS	1.5%	0 · - f0 ·	
N On	9 D	0%70	0%77	- %		89	-3C4JNj On	73%	0 · - f0 ·	
N OS	9 D	02470	0%77	- %		39	-3CoJN OS	05%	0 · - f 0 ·	
N 9 n	9 D	0%70	03%77	- %.		89	-3C. JNj 9 n	07%	0 · - f 0 ·	
						10111	CARL SERVICE COMMISSION OF THE PROPERTY OF THE			

bCbJUCb J b Hwer clłytrH limit J 2pper clłytrH limit
The ret2ltFare repHred iy dr8 weil ht%
The Rample Hze iFrepHred iy wet weil ht%
v et2ltFrepHred tHDb %
s hey repHred, Nj BS, Nj RxS, Nj On ayd Nj OS iycl2de Ath liyear ayd Arayched iFHnerF%
Oyl8 the liyear iFrepHred fl+ all Hher ayal8teP%

Sample ID:	Sample ID: BARNS-04-SB01-061627-0-1)-1							VA	VAL - PFAS
Client Data			Sample Data		Γ_{δ}	Laboratory Data	Data			
9 ame:	n MEC j ofter s heeler		Matrix:	Soil		baASample:	le: - 700R33J03	Date v ecei6ed: 01Ju2lJ40-7 L:51	01Ju21J40-7	L:51
NroPect:	NhaFe Welioyal SWBaryeFg4L-330001	1000	Sample Size:	- %5 I	_	QC Batch:	B7G0051	Date Extracted:	: Ju21J40-7 -4:3L	-4:3L
Date Collected:	41Ju2yJ40-7 -0:53		/ SolidF:	R7%		Oate n yal	Date n yal8zed: -3Ju2lJ-7-L:3- Col2my: BEH C-R	Col2my: BEH C-R		
b ocatioy:										
Analyte	Conc. (ng/g)	DF	TOD	00	Qualifiers	S	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
N BS	9 D	0%R	0% -	49%0		89	-3C3JN BS	-0R	010.	
N Hpn	9 D	0%R	0% -	4900		89	-3C5JNj Hpn	R-94	0 · - f0 ·	
N HxS	9 D	0%R	0% -	49%0		89	-RO4JNj HxS	R4%	0 · - f0 ·	
N On	9D	0%R	0% -	4900		89	-3C4JNj On	70% TO%	0 · - f0 ·	
N OS	0%4.	0%R	0% -	4900	n	8	-3CRIN OS	L1%	0 · - f0 ·	
n 9 in	9 D	0%R	0% -	4930		89	-3C. JN 9 n	%0T	0 · - f 0 ·	
						101 11	2	2 11 2		

bCbJUCb J bower coytrol limit J 2pper coytrol limit
The ret2ltFare reported iy dr8 weil ht%
The Rample Hze iFreported iy wet weil ht%
v eE2ltFreported to Db %
s hey reported, Nj BS, Nj HxS, Nj On ayd Nj OS iycl2de Aoth liyear ayd Arayched iFomerF%
Oyl8 the liyear iFomer iFreported for all other ayal8teP%

VAL - PFAS		01Ju2lJ40-7 L:51	Ju21J40-7 -4:3L		LCL-UCL Qualifiers	. 0J 0	.0J0	.0J0	.0J0	.0J0	. 0 J 0
		Date v ecei6ed: (Date Extracted:	2my: BEH C-R	%R L	11.95	R5%	R3%	R3%	71%	1.5%
	ata	- 700R33J05	B7G0051	ed: -3Ju2lJ-7-L:53 Col2my: BEH C-R	Labeled Standard	3C3JN BS	3C5JN Hpn	RO4JNj HxS	3C4JNj On	3CRINJ OS	3C. JN 9 n
	Laboratory Data	baASample:	QC Batch:	Date n yal8zed:		- 8	- 89	<u> </u>	- 89	- 89	- 89
	Lab	- ps	~ —	<u>~</u>	Qualifiers			n			
		Soil	-%. I	R7%	DOT	- %R	- %R	- %R	- %R	- %R	- %R
	Sample Data	Matrix:	Sample Size:	/ SolidF:	TOD	07%0	07%0	07%0	07%0	07%0	07%TO
0-1			10001		DI	0%R4	0%R4	0%R4	0%R4	0%R4	0%R4
Sample ID: BARNS-06-SB01-021267-0-1		n MEC j ofter s heeler	NhaFe We I ioyal SWBaryeFg4L-330001	41Ju2yJ40-7 R30	Conc. (ng/g)	9.D	9 D	0%-5	9D	- 4%	9 D
Sample ID:	Client Data	9 ame:	NroPect:	Date Collected: bocatiov:	Analyte	N BS	N Hpn	N HxS	N On	N OS	ng N

bCbJUCb J bower coytrol limit J 2pper coytrol limit
The ret2ltFare reported iy dr8 weil ht%
The Rample Hze iFreported iy wet weil ht%
v eE2ltFreported to Db %
s hey reported, Nj BS, Nj HxS, Nj On ayd Nj OS iycl2de Aoth liyear ayd Arayched iFomerF%
Oyl8 the liyear iFomer iFreported for all other ayal8teP%

FAS			ر		lifiers							
VAL - PFAS		-7 L:51	-7 -4:3]		Qua							
\mathbf{V}_{2}		01Ju2lJ40-	Ju21J40-7 -4:3L		LCL-UCL Qualifiers	00 J - 00	oo 1 - oo	00 J - 00	oo 1 - oo	00 J - 00	00 J - 00	
		Date 6 ecei9ed: 01Ju2lJ40-7 L:51	Date Extracted:	lmy: BER C-v	%R	T0-	L0.0	10.5	v5.0	71.3	v4.1	
	ıta	- 700v33J0o	B7G0051	Date n yal8zed: -3Ju2lJ-7-L:01 CH2my: BER C-v	Labeled Standard	-3C3JPFBS	- 3C5JPFRpn	· vO4JPFRxS	3C4JPFOn	3CvJPFOS	3CoJPFNn	***************************************
	Laboratory Data	baASample:	QC Batch:	ı yal8ze	Ľ	€- SI	S - 3	\- SI	[S - 3	S - 3	S -3	100000
	Labors	baAS	QC B	Date 1	fiers						_	
					Qualifiers		n	n	n			
		SHI	g 5	v1.4	T00	4.05	4.05	4.05	4.05	4.05	4.05	
	Sample Data	Matrix:	Sample Size:	% SHids:	TOD	04	04	04	04	04	04	
7-0-2			330001		DF	0.41.0	0.4L0	0.4L0	0.4L0	0.4L0	0.4L0	
Sample ID: BARNS-06-SB06-012167-0-2		n MEC FHster Wheeler	Phase I 6 egiHyal SIJ Baryes / 4L-330001	41Ju2yJ40-7 v:40	Conc. (ng/g)	ND	0.335	0.vL5	0.v4v	5.L3	ND	
Sample ID:	Client Data	Name:	PrHect:	Date CHlected: b HeatiHy:	Analyte	PFBS	PFRpn	PFRxS	PFOn	PFOS	PFNn	

bCb JUCb Jb Hwer ellytrH limit J 2pper ellytrH limit
The res2lts are repHred iy dr8 weight.
The sample size is repHred iy wet weight.
6 es2lts repHred tHDb.
Whey repHred, PFBS, PFRxS, PFOn ayd PFOS iycl2de AH liyear ayd Arayched isHners.
Oyl8 the liyear isHner is repHred fH all Hher ayal8tes.

ample ID:	Sample ID: BARNS-04-SB03-062617-0-2	.0-2							VA	VAL - PFAS
Client Data			Sample Data		<u>r</u>	Laboratory Data	y Data			
9 ame:	n MEC Foster Wheeler		Matrix:	Soil		baASample:	ple: -700R33J01	Date v ecei6ed: 01Ju21J40-7 L:51	01Ju21J40-7	L:51
NroBet:	Nhase I vegioyal SIJ Baryes / 4L-330001	30001	Sample Size:	e.05 g	_	QC Batch:	1: B7G0051	Date Extracted:	Ju21J40-7 -4:3L	-4:3L
Date Collected: b ocatioy:	41Ju2yJ40-7 -0:j 3		% Solids:	Lj .4		Date n yal8zed:	18zed: -3Ju2lJ-740:51 Col2my: BEH C-R	ol2my: BEH C-R		
Analyte	Conc. (ng/g)	DF	TOD	T00	Qualifiers	SJ	Labeled Standard	%R	LCL-UCL Qualifiers	Qualifiers
NFBS	9 Б	0.4RR	-0	4.04		SI	-3C3JNFBS	- 04	j 0 J - j 0	
\FHpn	9 D	0.4RR	-0	4.04		IS	-3C5JNFHpn	71.5	j 0 J - j 0	
NFHxS	9 D	0.4RR	-0	4.04		IS	- RO4JNFHxS	RI.4	j0J-j0	
NFOn	9 D	0.4RR	-0:-	4.04		IS	-3C4JNFOn	7j .1	j 0 J - j 0	
NFOS	IL	0.4RR	-0	4.04	n	IS	-3CRINFOS	Rj.L	j0J-j0	
NF9 n	9 D	0.4RR	-0	4.04		IS	-3Cj JNF9 n	7R1	j 0 J - j 0	

bCb.IUCb J b ower coytrol limit J 2pper coytrol limit
The res2lts are reported iy dr8 weight.
The sample size is reported iy wet weight.
v es2lts reported to Db.
Whey reported, NFBS, NFHxS, NFOn ayd NFOS iycl2de Aoth liyear ayd Arayched isomers.
Oyl8 the liyear isomer is reported for all other ayal8tes.

FAS					fiers							
VAL - PFAS		7 L:51	7 -4:3L		Quali							
VA		01Ju2JJ40-7	Ju21J40-7 -4:3L		LCL-UCL Qualifiers	00 - f 00	00 - f 00	00 - f 00	00 - f 00	00 - f 00	00 - 00	
		Date 6 ecei9ed: 01Ju2lJ40-7 L:51	Date Extracted:	ıy: BER C-v	%R	v5.4	11.0	71.1	70	74.7	73.0	
) ata	: - 700v33J07	B7G0051	Date n yal8zed: -3Ju2lJ-7 40:oL CH2my: BER C-v	Labeled Standard	-3C3JPFBS	-3C5JPFRpn	- vO4JPFRxS	-3C4JPFOn	-3CvJPFOS	-3CoJPFNn	***************************************
	Laboratory Data	baASample:	QC Batch:	n yal8z		. SI	IS	. SI	·	· SI	·	10000
	Labo	baA	OC	Date	Qualifiers					n		
		SHI	80	v1.3	D07	4.0-	4.0-	4.0-	4.0-	4.0-	4.0-	
	Sample Data	Matrix:	Sample Size:	% SHids:	TOD	-0	-0	-0	-0	-0	-0	
6-0-1			330001		DI	0.4v7	0.4v7	0.4v7	0.4v7	0.4v7	0.4v7	
Sample ID: BARNS-06-SB01-021276-0-1		n MEC FHster Wheeler	Phase I 6 egiHyal SIJ Baryes / 4L-330001	41Ju2yJ40-7:00	Conc. (ng/g)	ND	ND	ND	ND	03	QN	
Sample ID:	Client Data	Name:	PrHect:	Date CHlected: b HeatiHy:	Analyte	PFBS	PFRpn	PFRxS	PFOn	PFOS	PFNn	

bCb JUCb Jb Hwer ellytrH limit J 2pper ellytrH limit
The res2lts are repHred iy dr8 weight.
The sample size is repHred iy wet weight.
6 es2lts repHred tHDb.
Whey repHred, PFBS, PFRxS, PFOn ayd PFOS iycl2de AH liyear ayd Arayched isHners.
Oyl8 the liyear isHner is repHred fH all Hher ayal8tes.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1700833 Page 15 of 21

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1700833 Page 16 of 21

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1700833 Page 17 of 21

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1700833 Page 18 of 21

1700833 0.5%

Amec Foster Wheeler Environment & Infrastructure 271 Mill Road Chelmsford, MA 01824 (978) 692-9090 SHIP TO: Vista 1104 Windfield Way EI Dorado Hills, CA 95762 Atten: Martha Maier Lab Phone# (916) 673-1520

CHAIN OF CUSTODY

DATE: 7/7/2017

COC #: BARNS170707A

PAGE: 1 OF 1

Project Name:	Phase I Regional SI - Barne	es Project Contac		Lab Phor	10# (510)	7010-10	20	Bill	To F	Amec	Foster V	heeler Env	ironment	& Infrast	ructure	- Ic	Disposal	Instructi	ons	LAB	******
Project Number	291330006	Phone Number	r (978) 392-5339		7				9	9210 8	ky Park	Court Suite	200			19	hipment	Method		FEDE	X
Project Manager	Kerry Tull	Project Phase	010							San Di	ego, CA	92123			2.00	V	Vaybill N	umber		N/A	-
Sample Information											Metho	ds for Ana	lvsis					_	R	JSH	
			1		1	7	TT		T T		T				-	T	TT			I	1
No. Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Method 537.1 UCMR 3														24 Hour 48 Hour	72 Hour	OTAL BOTTLES
1 BARN5-05-SB01-062717-0-2	06/27/17 09:40	50	N	N	X		11				11								0 4		1
2 BARNS-04-5B02-062917-13-15	06/29/17 09:40	50	N	N	X		11												6		1
3 BARNS-04-5B02-062617-0-2	06/26/17 10:43	50	N	N	X				H	2											1
4 BARNS-01-SB02-062617-0-2	06/26/17 08:30	50	N	N	X											1					1
5 BARNS-01-5B01-062617-0-2	06/26/17 08:20	50	N	N	x	11	11									77	T				1
6 BARNS-04-5B03-062617-0-2	06/26/17 10:53	50	N	N	x																1
7 BARNS-07-5B02-062617-0-2	06/26/17 11:55	50	N	N	X		11				1					The l			100		1
8		t in																	70		
9																			61 8		
10																			273		
11																11	11		100		
12																					
Sampler's Signature:		Date:	Time:				ForL	ab Us	e												
Shawna lacozzi - Amec Foster Wheeler		5-Jul-17	9:40			COC ma		nples:		Y or	200	Co	mments:		100.00	ware and	180 F 182 H	9 27		30	
Relinquished By/Affiliation:		Date: 5-Jul-17	Time: 9:45		100000000000000000000000000000000000000	n Contai				Y or	10507		X=	Analyz	ze H=	Hold	Analys 4-D-000	sis Re	ques	t	
Shawna lacozzi - Amec Foster Wheeler Received By:		Date:	9:45 Time:			seal inta problem				Y or	C0222.0			F0132			4-0-000	JZ 100	0000		
Received By: Via P.M. Relinquished By/Affiliation:	nedit	07/08/17 Date:	Time: 744		WSD	OT contacte	cted:	_		Y or	A 355 A		ATTN: Base L	Tamm ead: T	ie Rip odd C	pie offin	g@ame	ecfw.c	om		
Received By:		Date:	Time:		Coole	r Tempe	rature a	at recei	pt: _		_*c	NU	MBER C		- 20						
Relinquished By/Affiliation:		Date:	Time:		Notes 15-Da	: ly TAT re	equeste	ed.													
Received By (LAB):		Date:	Time:																		

Sample Log-in Checklist

Samples Arrival:	Date/Time Initials: Location F/6/17 0946 WWS Shelf/Ra						WILZ				
Logged In:	Date/Time 07/06/17	1543	Initials:	223	Locati	on:	WR-7				
Delivered By:	(FedEx) UPS	On Tra	c GSO	DHL		Hand		ner			
Preservation:	lce	Blu	ue Ice		Dry lo			ne			
Temp °C: 0.5	(uncorrected)	Time: X	β ed:Yes⊡i	лòД	Therm	omet	er ID:	IR-2			
							YES	NO	NA		
	e Volume Receiv	ed?		,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	/				
Holding Time Acceptable?											
Shipping Contain							1				
Shipping Custody Seals Intact?											
Shipping Documentation Present?											
Airbill Trk # 800 5563 6272											
Sample Containe	er Intact?						V		1		
Sample Custody	Seals Intact?							1	1		
Chain of Custody	/ / Sample Docum	nentation Pr	esent?		76	MB	A	1			
COC Anomaly/Sa	ample Acceptanc	e Form com	pleted?			10	V				
If Chlorinated or I	Drinking Water Sa	amples. Acc	entable Pre	serval	ion?				1		
Preservation Doc		Na ₂ S ₂ Q ₃	Trizma		lone		Yes	No	(NA		
Shipping Container (Vista) Client (Retain) Re								Dispose			
Barn Barn Barn Barn	ample label I 5-05-SB01- 5-04-SB02 5-04-SB02 5-07-SB02 5-01-SB01-	-062717 -062917 2-66261 2-6626	7 -13-15 7 -00-00 17 -00-	2	Da 06/27 06/2 06/2 06/2	117 417	7 /	940 940 945 043 083 082	6		

Chain of Custody Anomaly/Sample Acceptance Form

AMEC Foster Wheeler Client: 1700833 Workorder Number: Contact: Denise King 06-Jul-17 09:46 Date Received: Email: Denise.king@amecfw.com Documented by/date: B.Benedict 07/06/2017 Phone: (978) 392-5339 Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis. Thank you, Martha Maier mmaier@vista-analytical.com 916-673-1520 The following information or item is needed to proceed with analysis: Complete Chain-of-Custody Preservative Collector's Name Test Method Requested Sample Identification Sample Type Analyte List Requested Sample Location Sample Collection Date and/or Time Other: The following anomalies were noted. Authorization is needed to proceed with analysis. Temperature outside < 6°C Range Samples Affected: Temperature Ice Present? No Melted Yes Sample ID Discrepancy Insufficient Sample Size Sample Holding Time Missed Sample Container(s) Broken Custody Seals Broken Incorrect Container Type Comments:

Client Authorization	
Proceed with Analysis: YES NO	Signature and Date Kenney Wepulph 7-10-17
Client Comments/Instructions A Copy 4	the coc was provided via email
Oh July 8, 2017.	