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BACKGROUND: Multiple Northeast U.S. communities have discovered per- and polyfluoroalkyl substances (PFASs) in drinking water aquifers in
excess of health-based regulatory levels or advisories. Regional stakeholders (consultants, regulators, and others) need technical background and tools
to mitigate risks associated with exposure to PFAS-affected groundwater.

OBJECTIVES: The aim was to identify challenges faced by stakeholders to extend best practices to other regions experiencing PFAS releases and to es-
tablish a framework for research strategies and best management practices.

METHODS AND APPROACH:Management challenges were identified during stakeholder engagement events connecting attendees with PFAS experts in
focus areas, including fate/transport, toxicology, and regulation. Review of the literature provided perspective on challenges in all focus areas.
Publicly available data were used to characterize sources of PFAS impacts in groundwater and conduct a geospatial case study of potential source
locations relative to drinking water aquifers in Rhode Island.

DISCUSSION: Challenges in managing PFAS impacts in drinking water arise from the large number of relevant PFASs, unconsolidated information
regarding sources, and limited studies on some PFASs. In particular, there is still considerable uncertainty regarding human health impacts of PFASs.
Frameworks sequentially evaluating exposure, persistence, and treatability can prioritize PFASs for evaluation of potential human health impacts. A
regional case study illustrates how risk-based, geospatial methods can help address knowledge gaps regarding potential sources of PFASs in drinking
water aquifers and evaluate risk of exposure.

CONCLUSION: Lessons learned from stakeholder engagement can assist in developing strategies for management of PFASs in other regions. However,
current management practices primarily target a subset of PFASs for which in-depth studies are available. Exposure to less-studied, co-occurring
PFASs remains largely unaddressed. Frameworks leveraging the current state of science can be applied toward accelerating this process and reducing
exposure to total PFASs in drinking water, even as research regarding health effects continues. https://doi.org/10.1289/EHP2727

Introduction
Per- and polyfluoroalkyl substances (PFASs) exhibit unique chem-
istry that makes them favorable for use in a wide variety of con-
sumer and industrial products and applications (Kissa 2001). This
same chemistry has led to limitations in using traditional environ-
mental chemistry and engineering principles and techniques to
understand and manage risks associated with their environmental
releases. For example, unlikemany neutral organic contaminants, in
organisms PFASs are not lipophilic and are known to bind to pro-
teins such as serum albumin (Conder et al. 2008). Additionally,
some PFASs are environmentally persistent with no significant
natural pathways for complete degradation following release.

PFAS chemistry is largely attributable to the strength and low polar-
izability of the carbon-fluorine covalent bond (Banks et al. 1994;
Kissa 2001). PFAS characteristics include thermal stability, chemi-
cal stability, surfactant behavior, and stain-resistant properties
(Banks et al. 1994; Kissa 2001). Because of these characteristics,
PFASs are used in products and applications such as firefighting
foams, fluoropolymer manufacturing, stain-resistant coatings, and
electroplating. These uses have contributed to their global distribu-
tion in organisms and the environment. At the same time, knowl-
edge regarding human health impacts is quite limited, and because
of their unique properties, conventional water-treatment techniques
do not fully mitigate exposure (DeWitt 2015; Eschauzier et al.
2012; Giesy andKannan 2001).

Recent studies estimate asmany as 3,000 PFASs are now or have
been on the global market (Wang et al. 2017). Within this group are
perfluoroalkyl substances, which contain an alkyl tail with all car-
bons bonded to fluorine and which are persistent in the environment
(Buck et al. 2011). These perfluoroalkyl substances include PFASs
such as perfluorooctanoate (PFOA) and perfluorooctane sulfonate
(PFOS), which have been the subject of much of the PFAS research
to date. PFOA, PFOS, and their homologues (i.e., shorter and/or lon-
ger perfluoroalkyl carboxylates and perfluoroalkyl sulfonates) are
often collectively referred to as perfluoroalkyl acids (PFAAs) (Buck
et al. 2011). Polyfluoroalkyl substances have at least one perfluor-
oalkylmoiety ðCnF2n+1Þ but elsewhere in the structure also contain
carbons bonded to hydrogen. These compounds are capable of
transformation in the environment (Buck et al. 2011). The terminal
degradation products of polyfluoroalkyl substances include PFAAs
(e.g., PFOA). So, they are often referred to as precursors and thus
still represent a source of recalcitrant PFAAs in the environment
(Harding-Marjanovic et al. 2015; Mejia Avendaño and Liu 2015).
Examples includefluorotelomer sulfonates, someofwhich are capa-
ble of transforming to PFOA (Harding-Marjanovic et al. 2015).
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There are concerns about the human health impacts of some
PFASs, particularly PFOA, PFOS, and other perfluoroalkyl sub-
stances. Briefly, in rodent studies, these compounds are known to
affect lipid metabolism (e.g., Das et al. 2017) and liver weight
(e.g., Loveless et al. 2006), decrease birth weight/increased resorp-
tions (e.g., Lau et al. 2006), delay hind/fore limb phalanges ossifica-
tion sites in offspring (Lau et al. 2006), delay mammary gland
development in offspring (e.g., Tucker et al. 2015), and induce
immunosuppression (e.g., DeWitt et al. 2008).Notably, these effects
have provided the basis for regulation of PFOA/PFOS. In epidemio-
logical studies conducted by the C8 Science Panel (C8 Science
Panel 2017) and others, PFASs have shown positive associations
with adverse outcomes, including elevated cholesterol (Frisbee et al.
2010; Nelson et al. 2010), ulcerative colitis (Steenland et al. 2013),
thyroid disease (Lopez-Espinosa et al. 2012), testicular and kidney
cancer (Barry et al. 2013), childhood adiposity (Braun et al. 2016),
decreased duration of breast feeding in infants (Romano et al. 2016),
and possibly preeclampsia (Savitz et al. 2012b, 2012a).

Routes of exposure to PFASs include diet (Fromme et al. 2007),
dust (Shoeib et al. 2005), and drinking water (Hu et al. 2016). This
exposure has led to development of a U.S. Environmental Protection
Agency (U.S. EPA) drinking water lifetime health advisory (LHA)
for the sum of PFOA and PFOS of 70 ng=L [70 parts per trillion
(ppt)] (U.S. EPA 2016b, 2016a), and also regional drinking water
standards in the low ppt range (NJDWQI 2016; VTDOH2016). The
U.S. EPA recently completed a national survey of six PFASs in U.S.
drinking water that was targeted primarily at large, public, drinking
water systems serving more than 10,000 people (U.S. EPA 2012).
Studies analyzing these publicly available data (under the Third
Unregulated Contaminant Monitoring Rule or UCMR3) have con-
cluded that 6 million U.S. residents are served by systems exceeding
the LHA (Hu et al. 2016;U.S. EPA2012). The survey sampled equal
numbers of systems sourced from surface water and groundwater,
but approximately 72% of PFAS detections occurred in groundwater
(Guelfo and Adamson 2018). Groundwater is the water source for
33% of public supplies in the U.S., and 90% of supplies in rural
regions that rely on smaller (i.e., private) wells (USGS 2016).
Collectively, health concerns and rates of occurrence highlight the
important role of groundwater in human health risks associated with
PFAS releases.

Numerous communities in the Northeast U.S. are currently
assessing and managing risks due to PFAS-affected groundwater
used as drinking water at the private, community, and public scales
(e.g., Cape Cod, Massachusetts; Merrimack, New Hampshire;
Portsmouth, NewHampshire; Hoosick Falls, NewYork; Paulsboro,
New Jersey; and Bennington, Vermont). In many cases, discovery
of these impacts occurred almost simultaneously in a period begin-
ning in 2015, as a result of investigations initiated when residents
and regulators learned of potential PFAS sources proximal to drink-
ing water wells. Discovery of PFAS impacts led to a large group of
regulators, consultants, analytical laboratories, and responsible par-
ties (herein referred to collectively as stakeholders) with an immedi-
ate need to understand and manage risks associated with PFAS-
affected groundwater and associated exposure. To determine risks
associatedwith affected groundwater aquifers, stakeholders need in-
formation regarding sources, fate and transport pathways, affected
receptors, sampling/analytical tools, health-based regulations, and
water treatment technologies.

The Brown University Superfund Research Program (SRP)
actively engaged with over a thousand stakeholders through PFAS
workshops, analytical guidance, and other research translation efforts
targeted at communicating the state of the science in the areas of
PFAS chemistry, uses, sources, sampling/analysis, fate/transport,
remediation, toxicology, regulation, and case studies. These efforts
also provided an opportunity to hear diverse perspectives and learn

of the key challenges faced by the broader scientific community in
managing PFAS impacts. The objectives of this commentary are to
(1) compile, critically evaluate, and share research translation find-
ings to rationalize extrapolation of findings to other regions experi-
encing PFAS releases and (2) provide a framework to guide research
and management strategies by prioritizing those PFASs that repre-
sent the highest risk of occurrence in treated drinkingwater.We con-
clude with an illustrative case study to demonstratemethods that can
be used to address knowledge gaps regarding PFASs in drinking
water tomore effectively evaluate andmitigate risk.

Methods and Approach
The current evaluation utilizes a combination of research transla-
tion approaches, review of information in traditional publication
outlets, review of publicly available data, and assimilation of
select data sources into a limited case study of the risk of PFAS
drinking water aquifer impacts in the State of Rhode Island.

Research Translation
To address stakeholder needs in the Northeast, a series of research
translation activities were implemented beginning in 2016 to con-
nect stakeholders (primarily from Connecticut, Massachusetts,
Maine, New Hampshire, New Jersey, New York, and Vermont)
with PFAS experts in various focus areas to communicate relevant
aspects of research and current state-of-science (Table S1).
Following these efforts, PFAS experts who participated in these
events collaborated to document and review the challenges and
knowledge gaps that are summarized in the current commentary. A
literature review was used to evaluate the knowledge gaps in the
framework of the current state-of-science. This review includedweb
searches in the Web of Science database for all English language
peer-reviewed articles (e.g., primary data, reviews, editorials) pub-
lished 1995–present using title and topic search string PFOA OR
PFOSORPFAS in titles and topics from1995–present ðn=4,249Þ.

Illustrative Case Study
This commentary presents a geospatial case study to predict risks
of PFAS impacts in drinkingwater aquifers. The approach required
an inventory of potential PFAS release sites, which are defined for
the case study as facilities that may be associated with the synthe-
sis, use, or disposal of PFASs.We first reviewed peer-reviewed lit-
erature and regulatory data to understand potential PFAS source
types and associated characteristics (Table 1). Next, we reviewed
publicly available regional geospatial coverages and manufactur-
ing directories related to these source types to build a database of
facilities in the state of Rhode Island (Table S2). Hard-copy ar-
chives of historical manufacturing directories were converted into
a digital database using tools described in Berenbaum et al. 2016.
Briefly, an open-source data processing tool named GEOREGwas
created to process the scanned images of Rhode Islandmanufactur-
ing directories and convert the text into geocoded historical indus-
trial and manufacturing locations from 1950s–present. GEOREG
also extracts additional information regarding a facility’s name,
address, standard industrial classification (SIC) code (i.e., manu-
facturing type), and number of employees. Resulting data include
more than 11,000 unique historical and contemporary manufactur-
ing sites. From this database, we selected only sites that matched
the SIC codes (Table S2) and time frame (1960s–present) relevant
to PFASs. The application of potential PFAS sources in a geospa-
tial risk evaluation of potential PFAS impacts in Rhode Island
groundwater is further discussed in the case study.

We used the characteristics listed in Table 1 to rank PFAS
source types according to associated risk for causing groundwater
PFAS impacts. First, PFAS source data coverages identified or
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developed for Rhode Island were matched to a source type (i.e.,
Table 1 Source Type in Table 2). Next, Table 1 was used to deter-
mine the number of PFAS compounds known to be present and
upper magnitude of PFAS concentrations measured in affected
groundwater of each source type. Then, each source type was
assigned a risk score of 25, 50, 75, or 100, with themaximum value
assigned to those sites yielding highest PFAS groundwater concen-
trations and number of PFASs (Table 2). The risk score values
themselves are arbitrary values used as multipliers along with the
duration of operation for each identified facility in calculating a
hazard index (HI). A raster of one by one km cells was overlaid on
the sources in Rhode Island, and the HI values within a cell were
summed (Figure 1). Next, each cell was assigned a groundwater
vulnerability index (VI) based on Rhode Island aquifer classifica-
tions GAA, GA, GB, and GC (RIDEM 2012). We further divided
GAA into groundwater recharge zones and wellhead protection

areas. These classifications were given VI values of 100 (GAA,
recharge zones), 80 (GAA wellhead protection areas), 60 (GA), 40
(GB) and 20 (GC). Summed HI values were multiplied by VI values
to assign a risk index (RI) to each raster cell. Finally, we used a simple
universal kriging procedure on the raster cell centroids to smooth RI
values across the raster surface and provide some conservative inter-
polation of the RI values.We used the results to generate riskmaps of
the Rhode Island region. The risk scores, HI, VI, RI, and groundwater
classifications are conceptually described in the discussion.

Results

Key Information Gaps
Sample collection. Investigation of human health and environ-
mental impacts of any compound requires reliable sampling

Table 1. Groundwater concentrations, compounds, relevant groundwater pathways, and affected receptors resulting from groundwater PFAS source types sum-
marized from peer-reviewed literature and regulatory reports.

Source type

Magnitude
of [PFAS]
(µg/L)

Max
PFAS PFASs detected

Ground water
pathways

Receptors
impacted Ref. cited

PFAS/FP manufacturing 10−2–103 PFOA PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFBS, PFHxS,
PFOS

VZ to GW Atm
SW to GW

DW, GW, SW, B MDOH 2012; Davis et al. 2007;
Bach et al. 2017; Dauchy et al.
2012; Weston Solutions 2009

AFFF use (DoD)a 10− 3–104 6:2 FtS PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFDA, PFUnA,
PFDoA, PFEtS, PFPrS, PFBS,
PFPeS, PFHxS, PFHpS, PFOS,
PFDS, 4:2 FtS, 6:2 FtS, 8:2 FtS,
FHxSA, FOSA, 4:2 FtTAoS, 6:2
FtTAoS, PFBSaAm, PFPeSaAm,
PFHxSaAm, PFHxSaAmA

VZ to GW DW, GW, SW, B Houtz et al. 2013; McGuire et al.
2014; Schultz et al. 2004;
Moody et al. 2003; MDHHS
2016; Hull et al 2017; Moody
and Field 1999; Barzen-Hanson
and Field 2015; Backe et al.
2013

AFFF use (airport) 10− 3–102 PFOA PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFBS, PFHxS,
PFOS

VZ to GW DW, GW, SW, B Ahrens et al. 2015; Awad et al.
2011; Yingling 2016; Antea
Group 2011; Delta Consultants
2010; Horsley Witten Group,
Inc., 2016

AFFF use (fire training
area)b

10− 3–102 PFOS PFBA, PFPeA, PFHxA, PFOA,
PFDoA, PFTriA, PFTreA, PFBS,
PFHxS, PFOS, EtFASE,
MeFASE

VZ to GW DW, GW, SW Antea Group 2011; Cape Cod
Commission 2016

AFFF use (petroleum) 10− 3–101 PFOS PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFDA, PFUnA,
PFBS, PFHxS, PFOS, FOSA

VZ to GW DW, GW Antea Group 2011

FP coating (e.g. plastics,
textiles, metals)

10− 3–101 PFOA PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFBS, PFHxS,
PFHpS, PFOS, FOSA, 6:2 FtS,
8:2 FtS

Not specified DW, GW U.S. EPA 2016c; NHDES 2017a

Electronics 10− 3–101 PFOA PFHpA, PFOA, PFOS Not specified DW, GW Unicorn Mgmt. Consultants
2016

Waste streams
(landfills)

10− 3–103 PFBA PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFDA, PFBS,
PFHxS, PFOS, 6:2 FtS

VA to GW Atm DW, GW NHDES 2017a; Weston
Solutions 2016; VTDEC 2016;
Oliaei et al. 2006; Oliaei et al.
2013

Waste streams
(biosolids)

10− 2–100 PFOA PFBA, PFPeA, PFHxA, PFHpA,
PFOA, PFNA, PFBS, PFHxS,
PFOS

VZ to GW DW, GW, SW, B Lindstrom et al. 2011

Waste streams (septic
systems)

10− 3–10− 2 PFHxS PFHxA, PFHpA, PFOA, PFBS,
PFHxS, PFOS

VZ to GW DW, GW Schaider et al. 2016

Note: PFBA, Perfluorobutanoate; PFPeA, perfluoropentanoate; PFHxA, perfluorohexanoate; PFHpA, perfluoroheptanoate; PFOA, perfluorooctanoate; PFNA, perfluorononanoate;
PFDA, perfluorodecanoate; PFUnA, perfluoroundecanoate; PFDoA, perfluorododecanoate; PFTriA, perfluorotridecanoate; PFTreA, perfluorotetradecanoate; PFEtS, perfluoroethane
sulfonate; PFPrS, perfluoropropane sulfonate; PFBS, perfluorobutane sulfonate; PFPeS, perfluoropentane sulfonate; PFHxS, perfluorohexane sulfonate; PFHpS, perfluoroheptane sul-
fonate; PFOS, perfluorooctane sulfonate; PFDS, perfluorodecane sulfonate; 4:2 FtS, 4:2 fluorotelomer sulfonate; 6:2 FtS, 6:2 fluorotelomer sulfonate; 8:2 FtS, 8:2 fluorotelomer sulfo-
nate; FHxSA, perfluorohexane sulfonamide; FOSA, perfluorooctane sulfonamide; 4:2 FtTAoS, 4:2 fluorotelomer thioether amido sulfonate; 6:2 FtTAoS, 6:2 fluorotelomer thioether
amido sulfonate; 8:2 fluorotelomerthioether amido sulfonate (8:2 FtTAoS); PFBSaAM, perfluorobutane sulfonamido amine; PFBSaAM, perfluoropentane sulfonamido amine;
PFHxSaAm, perfluoropentane sulfonamido amine; PFHxSaAmA, perfluorohexane sulfonamide amino carboxylate; EtFASE, N-ethyl perfluoroalkane sulfonamidoethanol; MeFASE,
N-methyl perfluoroalkane sulfonamidoethanol; VZ, vadose zone; GW, groundwater; SW, surface water; (Atm.) atmospheric deposition and migration through the vadose zone; DW,
drinking water, B, biota; DoD, Department of Defense; FP, fluoropolymer.
aRecent studies have identified 11 new classes of PFASs comprising 50 individual compounds in AFFF-impacted groundwater from DoD facilities (Barzen-Hanson et al. 2017b); these
compounds are not listed here because quantification of their concentrations is not yet available.
bRepresents fire training areas at municipal or private fire training institutions.

Environmental Health Perspectives 065001-3 126(6) June 2018



techniques suitable for concentration levels that may represent
health concerns. For PFASs, the challenge arises because of the
low regulatory limits (U.S. EPA 2016b, 2016a), their ubiquitous
nature (Prevedouros et al. 2006), and their use in themanufacturing
process for some types of polytetrafluoroethylene (PTFE), which
is a common laboratory material (Kissa 2001). Stakeholders are
adopting special precautions (e.g., use of high- or low-density
polyethylene containers and silicon tubing) when collecting sam-
ples for PFAS analysis (e.g., MassDEP 2017; NHDES 2017b).
However, some stakeholders are adopting sampling and analysis
protocols that include lists of unallowable items for which the need
for prohibition is uncertain or not supported by scientific studies.
These protocols include avoiding use of waterproof field note-
books, waterproof clothing, clothing laundered fewer than six

times or laundered with fabric softener, cosmetics, and certain
sunscreens (MassDEP 2017; NHDES 2017b). There is only lim-
ited evidence documenting the presence of PFASs in some of these
products (Fujii et al. 2013; Keawmanee et al. 2015), and no cited
published data measuring the potential for transfer of PFASs from
these materials into samples during collection are available.
Therefore, we conclude that the precautions represent an extremely
conservative approach to avoid products and materials that include
even trace amounts of PFASs. Data are needed to support prioriti-
zation of these precautions to avoid unnecessary inconvenience to
field sampling personnel. When regulating in the low ppt level,
we propose that understanding potential sources of background in
samples is also key to differentiating between PFAS-affected
drinking water and cross-contamination of samples.

Table 2. Risk scores utilized for calculation of the PFAS source hazard index (HI).

PFAS source Upper magnitude ðlg=LÞ No. PFASs Risk score Table 1 source type

DoD facilities 10,000 28 100 AFFF use (DoD)
Chemical manufacturing 1,000 13 100 PFAS/FP manufacturing
Landfills 1,000 11 100 Waste streams (landfills)
Airports 100 28 75 AFFF use (Airports)a

Fire training areas 100 28 75 AFFF use (fire training areas)a

Petroleum refineries 10 28 75 AFFF use (petroleum refineries)a

Textiles 10 13 50 FP coating (plastics, textiles, metals)
Furniture 10 13 50 FP coating (plastics, textiles, metals)
Paper 10 13 50 FP coating (plastics, textiles, metals)
Rubber/plastics 10 13 50 FP coating (plastics, textiles, metals)
Fire Stations N/A 28 25 N/Aa,b

Fabricated metal N/A 11 25 N/Ac

aThe number of PFASs reported for this source type was lower in the literature or no data were available (Table 1). A value of 28 was applied because this is the number of PFASs
quantified at DoD AFFF-impacted facilities, and it is assumed that an equal number of PFASs may be present at all AFFF-impacted facilities.
bThere were no data available on groundwater impacts due to fire stations, but fire stations were indicated as a probable source of groundwater impacts during stakeholder engagement.
The overall risk score was presumed to be low because many fire stations do not store or use AFFF, and those that do have AFFF do not typically discharge the foams onsite. In perso-
nal communications with industry, municipal, and volunteer firefighters, some report that equipment cleaning may occur on site following AFFF use (oral communications, July
2014–July 2017).
cThere were no data available on groundwater impacts due to electroplating, but data were available on PFASs in waste streams in the chrome plating process (U.S. EPA 2009). These
data were used to determine the number of PFASs, and the upper concentration magnitude was the average of the magnitudes from other manufacturing sources.

Figure 1. Overview of Rhode Island case study that utilizes a systematic approach to conduct a geospatial risk assessment of potential PFAS impacts in drink-
ing water aquifers. Wells are shown with 1-mile buffers.
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Targeted PFAS analysis. Despite notable progress over the
past 20 y in utilizing liquid chromatography tandem mass spec-
trometry (LC-MS/MS) techniques (and gas chromatographic
techniques for volatile PFASs such as fluorotelomer alcohols)
for PFAS analysis (e.g., Mahmoud et al. 2009; Moody et al.
2001; Schultz et al. 2004), significant challenges remain. Many
obstacles stem from the fact that the complete list of PFASs rele-
vant to environmental and human health exposure scenarios is
still unknown and ever increasing as more studies are completed
identifying novel PFASs and precursor transformation products
(e.g., Barzen-Hanson et al. 2017b). Therefore, though the major-
ity of PFASs are suitable for LC-MS/MS analysis, standards
needed to quantify them are not currently available, and it is diffi-
cult to keep pace with the increasing number of relevant com-
pounds. It should also be noted that even implementation of
targeted LC-MS/MS analysis may represent a challenge in terms
of instrument expense, effort, and elimination of PFAS back-
ground issues (i.e., from aforementioned laboratory materials
such as PTFE) for laboratories that are being required to address
the issue. PFAS standards are commercially available (not
including special order synthesis) for approximately 70 PFASs,
and ∼ 55% of those also have available isotopically labeled ver-
sions for use in isotope dilution approaches. It should be noted
that in cases where a compound standard is available but a match-
ing labeled standard is not, the labeled version of another PFAS
may be used as an internal standard. For example, 1,802- PFHxS
has been used for analysis of PFBS (e.g., Guelfo and Higgins
2013; McGuire et al. 2014). In our view, these challenges make it
virtually impossible for any regulatory authority to comprehen-
sively specify which PFASs need to be investigated at a poten-
tially affected site.

Additional analytical tools. Tools are available that can help to
characterize the PFAS fraction not quantified during targeted LC-
MS/MS analysis. These tools include the total oxidizable precursor
(TOP) assay, high-resolutionmass spectrometry (HRMS) analysis,
particle induced gamma ray emission (PIGE) and adsorbable orga-
nofluorine (AOF) analysis. However, these methods are still lim-
ited in their availability and ability to quantify concentrations of
individual PFASs present at a site. Detailed descriptions of TOP
(Houtz and Sedlak 2012), PIGE (Ritter et al. 2017), and AOF
(Wagner et al. 2013) are available elsewhere, but briefly, they ena-
ble measurement of total precursors, total fluorine, and total or-
ganic fluorine, respectively. Coupling TOP, PIGE, or AOF with
targeted LC-MS/MS analysis can help researchers understand
the total PFAS load present in a sample but does not result in
identification of all individual PFASs present. High-resolution
mass spectrometry (HRMS) using technology such as quadru-
pole time of flight generates high mass accuracy data that can be
used in identification of unknown compounds (Barzen-Hanson
et al. 2017b; Strynar et al. 2015), but quantification of PFASs
without standards remains a challenge. TOP has begun to emerge
as a commercially used technique, but availability of PIGE,
AOF, and HRMS is often limited to noncommercial research lab-
oratories, leaving limited access for regulators and other practi-
tioners who want to implement these tools. During research
translation events, stakeholders reported that these challenges
prevent them from developing conceptual models of affected
sites that include a complete list of PFASs to which environmen-
tal and human receptors may be exposed.

Source zone identification. Another key knowledge gap is
PFAS source zone identification, which can be illustrated through
comparison with the legacy groundwater contaminant, methyl
tert-butyl ether (MTBE). MTBE was historically used as a gaso-
line fuel additive with peak use occurring from 1992–2005 (U.S.
EPA 2016d). MTBE has high aqueous solubility ð∼ 40 g=LÞ, has

low soil sorption, and is slow to degrade, leading to the potential
for more extensive groundwater plumes relative to other legacy
contaminants, such as benzene (Squillace et al. 1996). MTBE
had a single primary use (U.S. EPA 2016d), so point sources
were commonly facilities or infrastructure associated with retail
gasoline supply and distribution for which current and historical
information is typically available. Though indirect sources of
MTBE groundwater contamination such as atmospheric this dep-
osition are possible, this would primarily contribute to disperse,
low-level background concentrations (Squillace et al. 1997) not
likely to pose a threat to human health or the environment.

When considering the sources of PFASs and comparing with
the example of MTBE, we conclude the following. PFASs also
may be highly water soluble with weak soil sorption and exhibit
recalcitrance to natural degradation, leading to the potential for
large groundwater plumes. However, unlike MTBE, there are
many relevant PFASs and diverse products and applications
with which they are associated (Table 1). Additionally, although
PFASs may be associated with a particular process or product,
such as textiles manufacturing, it cannot be concluded that all
products and manufacturers in a relevant industrial category uti-
lized PFASs. Finally, due to regulatory limits in the low ppt
range, indirect sources of PFASs (e.g., groundwater impacts due
to leaching of atmospheric deposition or land application of com-
posts and wastewater biosolids) have led to environmentally rele-
vant groundwater impacts (Lindstrom et al. 2011; Shin et al.
2011) and cannot be discounted as important PFAS sources.
Assembling information on all potential PFAS sources in a par-
ticular region is further complicated because information on
current and historical locations of both direct and indirect sour-
ces is often missing or unconsolidated. For stakeholders who
need to identify sources of known PFAS impacts or to design
targeted screening programs to assess if releases have occurred,
unconsolidated source data may lead to inefficient or untargeted
sampling plans, a failure to identify all sources relevant to a
particular release, or the inability to determine a source, thereby
increasing time required to reduce risks to public health and the
environment.

Subsurface fate and transport. Although studies have investi-
gated PFAS fate and transport, significant knowledge gaps remain
(Figure 2). There are knowledge gaps in the general areas of PFAS
composition [Figure 2 (1)] partitioning [Figure 2 (2–6)] transfor-
mation [Figure 2 (7)], and the influence of site hydrogeology and
geochemistry [Figure 2 (8–11)]. Anunderstanding of fate and trans-
port requires knowledge of both compound-specific (e.g., sorption,
transformation) and site-specific (e.g., geology, geochemistry)
factors (Fetter 1999). PFAAs are recalcitrant (Prevedouros et al.
2006), so the primary compound-specific factors that need to be
understood are sorption and potential for generation from precur-
sors. Polyfluoroalkyl substances (i.e., precursors) can transform
(Harding-Marjanovic et al. 2015; Mejia Avendaño and Liu 2015;
Weiner et al. 2013), so in addition to sorption, knowledge of trans-
formation rates and pathways (e.g., intermediate products) is
required. These processes rely on compound-specific properties,
such as sorbate structure, but are also influenced by site-specific
properties, such as sorbent type, solution chemistry, and cocontami-
nants (Guelfo and Higgins 2013; Higgins and Luthy 2006; Weber
et al. 2017). Further, PFAS distribution at the field scale also
depends on subsurface hydrogeologic conditions, including ground-
water flow direction, velocity, and influence of heterogeneous geol-
ogy (Fetter 1999). Finally, user-friendly groundwater modeling
tools for legacy contaminants have been developed to assist stake-
holders with decision points, such as site prioritization, monitoring
plans and duration, and design of aquifer remediation alternatives
(Aziz and Newell 2000; Newell et al. 1996), but comparable tools
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are currently not available for PFASs. In our opinion, these chal-
lenges in understanding PFAS fate and transport limit the ability to
identify at-risk receptors, understand the probability for a source to
affect those receptors, and to help identify potential sources of newly
discovered groundwater releases.

PFAS toxicology and use in regulation. Other efforts have
summarized the current state of science regarding PFAS toxicol-
ogy (ASTDR 2015; DeWitt et al. 2009, 2015; Lau et al. 2007;
Negri et al. 2017) and epidemiology (Bach et al. 2015, 2016,
Chang et al. 2014; Negri et al. 2017; Steenland et al. 2010). In our
view, results of toxicology studies highlight several challenges

related to understanding health effects of PFASs. First, studies
address the toxicology of only a subset of PFASs. Outside of
PFOA/PFOS, toxicology studies are available for other PFAAs,
such as PFBA mouse studies (Das et al. 2008; Foreman et al.
2009), PFBS rat studies (Lieder et al. 2009a, 2009b), a PFHxA
rat study (Loveless et al. 2009), PFNA mouse studies (Das et al.
2015; Fang et al. 2008), a PFNA rat study (Feng et al. 2010), and
a PFHxS rat study (Butenhoff et al. 2009). Studies are also gener-
ally limited for polyfluoroalkyl compounds (Buck 2015), espe-
cially recent replacement products, although some data are
available for PFOA replacement products GenX (Beekman et al.

Figure 2. Conceptual model of micro and macroscale PFAS fate/transport processes and associated knowledge gaps. Superscripted numbers refer to the follow-
ing references: 1Kissa 2001; 2Banks et al. 1994; 3Higgins and Luthy 2006; 4Liu and Lee 2007; 5Liu and Lee 2005; 6Ferrey et al. 2012; 7Ololade et al. 2016;
8Tang et al. 2010; 9Barzen-Hanson et al. 2017a; 10Weber et al. 2017; 11Guelfo and Higgins 2013; 12McKenzie et al. 2015; 13McKenzie et al. 2016; 14Harding-
Marjanovic et al. 2015; 15Mejia Avendaño and Liu 2015; 16Weiner et al. 2013.
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2016; Caverly Rae et al. 2015; Gannon et al. 2016) and ADONA
(Gordon 2011). Second, the mechanism of action for PFAA-
associated toxicity is not well understood, although peroxisome
proliferator-activated receptor alpha (PPARa) activation is often
implicated (Das et al. 2015; Lau et al. 2007). Third, although ani-
mal studies are useful in elucidating target organs, there are nota-
ble differences in how humans and animals interact with PFAAs.
For example, PFAAs are documented to have half-lives on the
order of years in humans (Li et al. 2018; Worley et al. 2017) but
only hours to days in laboratory animals (Lau et al. 2007). Long
half-lives indicate human serum concentrations will remain ele-
vated, suggesting toxicity in humans may persist even after envi-
ronmental PFAS levels decrease. Further, applying PPARa
activation in animal studies to humans is complicated by several
species differences that are well described elsewhere (Post et al.
2017). Fourth, the potential for synergistic toxicity is not well
characterized, despite human exposure to PFAS mixtures. Two
related in vitro studies found that mixtures of 2–4 PFASs yielded
additive, not synergistic, activation of murine PPARa (Carr et al.
2013; Wolf et al. 2014). However, as noted, questions remain
regarding the role of PPARa and the applicability of animal
PPARa studies to humans. Additionally, in vitro studies are
unable to capture pharmacokinetics alterations that may lead to
synergistic toxicity.

Knowledge gaps in toxicology pose challenges for regulators
and other stakeholders tasked with managing PFAS releases.
Although data are available for PFOS and PFOA, there is still a
lack of consensus regardingwhich toxicological end point and sub-
populations should be targeted in development of drinking water
standards. This lack of consensus can be illustrated through com-
parison of the U.S. EPA LHAs (U.S. EPA 2016b, 2016a) to stand-
ards developed for PFOA in New Jersey (NJDWQI 2016) and
Vermont (VTDOH 2016). Drinking water quality standards
(DWQS) are generally calculated as follows (e.g., U.S. EPA
2016b, 2016a):

DWQS=
RfD � BW

DWI
� RSC [1]

where RfD is the reference dose (i.e., the maximum daily dose for
which no adverse health effects are expected to occur), BW is the
body weight, DWI is the drinking water ingestion rate, and RSC is
the relative source contribution, or proportion of PFAS exposure
from drinking water. The LHA (U.S. EPA 2016b, 2016a) and
DWQS differ between New Jersey (NJDWQI 2016) and Vermont
(VTDOH2016) in part because of key differences in the values used
to calculate these standards (Table 3). In standards development,
values for DWI may change, depending on the subpopulation con-
sidered (e.g., adults, children), and, in the case of PFOA agencies,
differ on which rates are deemed adequately protective: lactating
women (U.S. EPA), BW adjusted rate for the first year of life
(Vermont), or adult water intake (New Jersey). Table 3 also illus-
trates that there is debate regarding the most appropriate RfD.
Specifically, the NJDWQI believes that the EPA failed to consider
more sensitive end points, such as the liver and immune effects for
which the NJ RfD is considered protective (NJDWQI 2016). The
NJDWQI also expressed concerns, which we share, regarding low-

dose findings, such as lack of repetition, nonmonotonic data (delay
in phalanges ossification and mammary gland development), and
unknown clinical significance (mammary gland development with-
out disruption of lactation, delay in phalanges ossification without
malformations, mild reductions in immune factors without increase
incident of infection) (NJDWQI 2016).

Although all approaches result in standards in the low ppt
range, these variations lead to different interpretations of what
would be considered an affected drinking water system. For exam-
ple, the U.S. EPA UCMR3 efforts sampled ∼ 5,000 public drink-
ing water systems in the U.S. for six PFASs, including PFOS,
PFOA, and PFNA (U.S. EPA 2016e). The number of systems in
the data set that would be considered problematic based on theU.S.
EPALHAsmore than doubles if the New Jersey or Vermont stand-
ards are applied to the data set (Guelfo and Adamson 2018).
Additionally, different standards may be applied to drinking water
of adjacent communities separated by state lines. Such is the case
in New York and Vermont, raising questions about why a commu-
nity in one state may continue to drink groundwater that would be
considered unsafe by an adjacent community across a state line.

Groundwater remediation. Conventional treatment techniques
are ineffective for removal or destruction of the full suite of PFASs
present in affected water (e.g., Rahman et al. 2014; Schultz et al.
2006). For example, processes relying on in situ chemical oxidation
cannot fully destroy all PFASs but can enhance oxidation of precur-
sors to end point PFAAs (Houtz and Sedlak 2012). Additionally,
they may destroy perfluoroalkyl carboxylates (e.g., PFOA) under
some conditions but are ineffective at degrading perfluoroalkyl sul-
fonates (e.g., PFOS) (Bruton and Sedlak 2017; Park et al. 2016).
Filtrationwith granular activated carbon (GAC) and anion exchange
resins (AER) have been shown to remove PFOS and PFOAbut may
not be as effective for treatment of short chain PFAAs and precur-
sors (Appleman et al. 2013; Xiao et al. 2017; Yu et al. 2009; Zaggia
et al. 2016). Further, filtration does not achieve compound destruc-
tion, so additional treatment or disposal of spent media is required.
There has been some success at the bench and pilot scale using
advanced oxidation processes that rely on electrochemical or
plasma-based techniques to destroy PFASs in extracted, affected
groundwater (Chaplin 2014; Stratton et al. 2017). Despite signifi-
cant progress, these techniques are generally not ready for full-scale
implementation, and key concerns include potential treatment-rate
limitations and energy requirements. Last, design of any treatment
techniquemay also need to account for cocontaminants (e.g., hydro-
carbon constituents) that may be present in some aquifers (McGuire
et al. 2014).

Despite knowledge gaps, filtration with GAC is a common
technique used to address PFAS in affected drinking water systems
(e.g., Damon 2016; NYDEC 2016; Weston & Sampson 2016).
Although effective for treatment of PFASs currently targeted for
regulation (i.e., PFOS, PFOA), these systems are not optimized for
removal of the full suite of PFASs present in some affected ground-
water. In our view, this suggests exposure to PFASs for which toxi-
cological outcomes are not yet fully understood may be ongoing.
In the event that water quality standards are developed for addi-
tional PFASs, we also point to the potential scenario that sites for-
merly remediated for PFOS/PFOA will need to be revisited for
treatment of PFASs not previously considered. To minimize these

Table 3. Values used in development of PFOA advisories and standards and associated maximum recommended levels in drinking water.

Agency Advisory or standard ðng=LÞ RfD ðmg=kg− dayÞ DWI/BW ðL=kg− dayÞ RSC Toxicological end point Reference

USEPA 70 2.E-05 0.054 0.2 delay in phalanges ossification, mice U.S. EPA 2016b, 2016a
NJDWQI 14 2.E-06 0.029 0.2 Hepatoxicity, mice NJDWQI 2016
VTDOH 20 2.E-05 0.175 0.2 delay in phalanges ossification, mice VTDOH 2016

Note: NJDWQI, New Jersey Drinking Water Quality Institute; VTDOH, Vermont Department of Health; DWI, drinking water ingestion rate; BW, body weight; RSC, relative source
contribution.
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potential risks,we agreewith others that itmay be necessary to imple-
ment combined remedies or treatment trains (Crimi et al. 2017;
Kucharzyk et al. 2017) and argue that these approaches should target
removal or destruction of total PFASs present.

Discussion
Often during site assessment, evaluation of levels of exposure
and potential human health consequences are of paramount con-
cern (U.S. EPA 1989). In our view, even when areas such as
occurrence, fate/transport, and remediation are well understood,
the health consequences of PFASswill remain uncertain. Although
the volume of research in both toxicology and human health studies
has increasedmarkedly in the last decade, firm conclusions relating
individual PFASs to specific health outcomes have remained elu-
sive. As noted, a wide range of potential links between PFAS expo-
sure and health outcomes have been reported (e.g., ASTDR 2015;
Steenland et al. 2010), but the uncertainties remain substantial. As
one extends that interest into other legacy PFASs and particularly
into the newer generation of PFASs, the empirical evidence guid-
ing interpretation of health effects declines substantially and is vir-
tually absent for many of the compounds, suggesting a need for
strategies to prioritize PFASs for further study.

PFAS Framework
Frameworks have been developed in previous studies to evaluate
large groups of compounds and prioritize those that should be tar-
geted for further research on factors such as analysis, occurrence,
fate and transport, and treatability (de Voogt et al. 2009; Howard
andMuir 2010, 2011, 2013; Kumar and Xagoraraki 2010; Strempel
et al. 2012), but these approaches often rely at least in part on toxic-
ity information, the limitations of which have already been dis-
cussed for PFASs. Nevertheless, we propose that additional
criteria used in these approaches, such as occurrence, persistence,
and treatability, might be coupled with evaluation of exposure
into a framework to guide future research and inform best man-
agement practices (Figure 3). Despite challenges outlined herein,
progress has been made in understanding drinking water occur-
rence, persistence, and treatability, such that it is possible to
begin identifying PFASs that should be targeted for further study.
That is particularly the case for evaluation of exposure (Step 1),
and here we present a limited case study illustrating a risk-based
evaluation of the potential for PFAS exposure in drinking water
due to presence of potential source zones. Last, we note that the
body of publicly available information regarding aspects such as
compound persistence and toxicity continues to grow as part of

legislative efforts, such as the European Union's Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH)
(ECHA 2017a). REACH requires industry to identify and commu-
nicate risks associatedwith substances they use (ECHA2017b), cre-
ating a valuable resource that can be applied toward compound
prioritization using this framework.

Geospatial Evaluation of PFAS Exposure Risk
As discussed, there are challenges in identifying sources of and ex-
posure to PFAS groundwater impacts on a regional scale.We pres-
ent a case study of potential PFAS groundwater impacts in the state
of Rhode Island to illustrate methods that can be used to overcome
these challenges. Previous studies have assessed regional risks of
degraded groundwater quality due to other classes of contaminants
by compiling information on potential sources of contamination
(e.g., population-dense regions, landfills, gas stations) and compar-
ing their location with groundwater that is vulnerable to impacts
(Babiker et al. 2005; Rahman 2008). Groundwater vulnerability
may be evaluated through hydrogeologic characteristics, such as
depth to groundwater and transmissivity (Gemitzi et al. 2006;
Wang et al. 2012). A similar approach can be adopted for PFASs
by compiling data on potential PFAS sources and groundwater vul-
nerability and applying a risk-based system to evaluate the poten-
tial for PFAS impacts (Figure 1).

As described in the Methods section, risk scores were assigned
to each PFAS source type (Table 2). This score was based on
the fact that not all PFAS sources are likely to be associated with the
same (or any) severity of groundwater effects. A limitation to the cal-
culation of the risk scores is that the number of PFASs detected at a
given type of sitemay be a product of the limited PFASs thatwere an-
alyzed. For example, many precursors could be present that have
never been investigated. Additionally, some source types. such as
electronics facilities andmetal plating. had limited or nogroundwater
data from affected sites, so the upper magnitude of concentrations
may not be representative. Nevertheless, the data are considered to
be representative in terms of understanding the different source types
relative to each other. Further, the resulting source ranking that
reflects Department of Defense (DoD), chemicals manufacturing,
and landfills as the highest risk sites is consistent with literature and
regulatory reports in terms of capturing release types that are known
to have caused significant drinking water aquifer PFAS impacts
(Davis et al. 2007; Moody et al. 2003; NH DHHS 2016; Oliaei et al.
2013). Risk scores were used to calculate HI values (see Methods)
which, when mapped, depict areas where PFAS releases are most
likely to have occurred (Figure 1).

Figure 3. Framework for research and management strategies that prioritize PFASs based on highest risk of exposure in drinking water. It should be noted that
here exposure refers only to drinking water; other routes of ingestion, such as food, are not considered.
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The HI, or likelihood of PFAS release, should not be used as
the sole indicator for potential aquifer impacts and subsequent ex-
posure because releases that occur must also be transported
through the subsurface to the saturated zone in order to affect aqui-
fers, and certain hydrogeologic conditions make this more likely
(i.e., higher groundwater vulnerability) in some regions (Fetter
1999). Rhode Island aquifer classifications already represent an
evaluation of groundwater vulnerability. The State of Rhode Island
classifications are based on locations of shallow zones of recharge
to deeper aquifers and wellhead protection areas (GAA), drinking
water aquifers evaluated based on transmissivity and saturated aq-
uifer thickness (GA), aquifers presumed or known to be degraded
(GB), and groundwater where waste injection is permitted (GC)
(RIDEM 2012). VI values based on these classifications (see
Methods) define the risk of environmental releases affecting usable
groundwater when such events occur (Figure 1). When the HI and
VI are combined to calculate RI, the highest RI values represent
areas at highest risk for PFAS impacts in drinking water and subse-
quent exposure (Figure 1).

Results of the evaluation of groundwater PFAS impacts in
Rhode Island reveal high HI values centered around regions with a
high density of former manufacturing facilities that are situated in
the population-dense region of Providence. Although there is a
high likelihood of a PFAS release having occurred in this region,
the RI values near Providence are low due to depressed VI values.
Aquifers in the immediate vicinity of Providence are classified as
GB, indicating that there is no use of the groundwater (RIDEM
2012), so there should be no drinking water exposure to PFAS
impacts present. The highest RI values occurred in more rural
regions with a lower density of sources (i.e., lower HI) but higher
VI values due to proximity to groundwater recharge areas and
drinking water aquifers. RI maps can be applied towards under-
standing potential sources of known PFAS groundwater impacts or
in prioritizing drinking water wells that should be targeted in sam-
pling programs, with the ultimate goal of understanding and miti-
gating risks associated with PFAS exposure. In Rhode Island, the
majority of wells in high RI regions are private or small community
wells, which were not screened as part of U.S. EPA UCMR3
screening efforts. Notably, two PFOA detections were discovered
in Rhode Island as part of UCMR3, with concentrations of
20− 81 ng=L. The geospatial evaluation of PFASs in Rhode Island
aquifers found that wells in both of these systems (some systems
are sourced from multiple wells) have overlap with areas of high
RI (Figure 1). Finally, it should be noted that this approach repre-
sents a limited case study for illustrative purposes, and efforts to
further ground truth, refine the geospatial approach, and character-
ize which (if any) PFASs are present are part of ongoing research.

Conclusions
In summary, interactions with stakeholders from affected commun-
ities in the Northeast U.S. have identified a number of key knowl-
edge gaps in several areas, including sampling and analysis, fate and
transport, toxicology, regulation, and water treatment. An important
result is a lack of consensus regarding management and regulation
of PFASs in drinking water. Both laboratory and epidemiological
studies support the potential for negative health outcomes due to
PFAS exposure. In response, water quality regulations for PFASs
are starting to emerge, but these regulations primarily apply to
PFOS/PFOA. Regulatory levels are based solely on extrapolation
frommechanistic studies in animal models and incorporate substan-
tial uncertainty factors as a margin of safety.We conclude that these
recently recommended standards and advisories for select PFASs
should not be interpreted as indicating that health will be adversely
affected if levels are exceeded. Rather, in explaining the health
implications of elevated levels of PFASs in water sources to various

stakeholders, it is important to be clear that knowledge is limited, in
most cases severely so, and that declaration of safe or harmful levels
of contamination is not possible.

Despite this uncertainty, we believe that it is important not
to be complacent about human exposure to PFASs via drinking
water, and strategies are needed to begin addressing water qual-
ity impacts even as research is ongoing. Therefore, we conclude
that understanding knowledge gaps will help to guide investiga-
tion, management, and mitigation of specific releases, and that
the framework developed here can be used to facilitate broader
strategies for research and management focused on total PFASs
in drinking water. The latter will help accelerate the process of
mitigating exposure to PFASs for which detailed studies are
lacking.

Results presented herein suggest that it is possible to begin
implementing a comprehensive strategy towards PFAS manage-
ment despite the considerable gaps in current knowledge, particu-
larly regarding toxicity. In particular, this work compiles an
already a large body of evidence related to potential PFAS sour-
ces and occurrence in groundwater (Table 1) that can be applied
toward understanding exposure. We illustrated this by performing
a risk-based, geospatial case study of potential PFAS source
zones in Rhode Island drinking water aquifers. When compared
with limited groundwater aquifer results, high-risk zones identi-
fied in the geospatial evaluation were proximal to drinking water
wells with detectable PFAS concentrations (Figure 1). Further,
new regulations such as REACH have led to increased sharing of
industry data related to compound behavior in the environment,
and this sharing helps build connections between research in aca-
demia, industry, and government. In our view, growing such part-
nerships facilitates effective management of chemical use and
release. This commentary focuses on streamlined research strat-
egies and best management practices for PFASs in drinking
water, and this focus could be extended to evaluate other routes
of exposure. Similar approaches might also be applied to other
complex mixtures of aqueous contaminants with the overall effect
of leveraging the current state of the science towards understand-
ing drinking water impacts and reducing risks to human health.
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