1	
2	
3	
4	
5	PUBLIC REVIEW DRAFT
6	
7	
8	
9	HEALTH-BASED MAXIMUM CONTAMINANT LEVEL
10	SUPPORT DOCUMENT:
11	PERFLUOROOCTANE SULFONATE (PFOS)
12	(CAS #: 1763-23-1; Chemical Formula: C ₈ HF ₁₇ O ₃ S)
13	
14	
15	
16 17	
18	
19	
20	
21	New Jersey Drinking Water Quality Institute
22	Health Effects Subcommittee
23	November 15, 2017
24	
25	
26	
27	
28	
29	
30	Subcommittee Members:
31	Jessie A. Gleason, M.S.P.H., Chair
32	Keith R. Cooper, Ph.D.
33	Judith B. Klotz, M.S., Dr.P.H.
34	Gloria B. Post, Ph.D., D.A.B.T.
35	George Van Orden, Ph.D.
36	

1	
2	
3	Page intentionally left blank
4	

1 Acknowledgements

- 2 This document is based on the Health Effects Subcommittee's review of an earlier draft
- 3 document by Brian Pachkowski, Ph.D. and Alan Stern, Dr.P.H., DABT, with contributions from
- 4 Lori Lester, Ph.D., of the NJDEP Division of Science, Research and Environmental Health. We
- 5 thank Sandra Goodrow, Ph.D. of DSREH for assistance with analysis of New Jersey PFOS
- 6 drinking water occurrence data and Theresa Tucker of DSREH for technical and editorial
- 7 assistance. Finally, this work would not have been possible without the ongoing support of the
- 8 librarians of the NJDEP Environmental Research Library Dorothy Alibrando and Tonia Wu.
- 9

1	
2	
3	Page intentionally left blank
4	

1	TABLE OF CONTENTS	
2	ABSTRACT	i
3	EXECUTIVE SUMMARY	ES-1
4	INTRODUCTION	1
5	BACKGROUND INFORMATION	
6	GUIDANCE AND STANDARDS DEVELOPED BY USEPA AND OTHER STATES	5
7	ENVIRONMENTAL FATE, TRANSPORT, AND OCCURRENCE	7
8	HUMAN BIOMONITORING	11
9	SOURCES OF HUMAN EXPOSURE	16
10	TOXICOKINETICS	
11	HAZARD IDENTIFICATION	
12	MODE OF ACTION	213
13	POINTS OF DEPARTURE FOR NON-CANCER AND CANCER ENDPOINTS	221
14	DEVELOPMENT OF POTENTIAL HEALTH-BASED MCLs FOR NON-CANCER	
15	ENDPOINTS	247
16	ESTIMATION OF CANCER RISK FOR PFOS IN DRINKING WATER	268
17	RECOMMENDED HEALTH-BASED MCL	275
18	DISCUSSION OF UNCERTAINTIES	276
19	Citations	
20	Appendix 1: Literature search strategy and results	309
21	Appendix 2: Comparison of USEPA Office of Water Health Advisory and DWQI Health-	
22	MCL for PFOS	
23	Appendix 3: Alternate Derivation of the PFOS-Specific Clearance Factor	
24	Basis for USEPA (2016) clearance factor used in Health-based MCL development	
25	Appendix 4: Animal evidence tables	
26	Appendix 5: Animal tabular review tables	
27	Appendix 6: Epidemiology evidence tables	
28	Appendix 7: Benchmark dose modeling results	
29	Butenhoff et al. (2012) Benchmark Dose Analysis	
30	Dong et al. (2009) Benchmark Dose Analysis - Relative Liver Weight	
31	Dong et al. (2009) Benchmark Dose Analysis - Plaque Forming Cell Response	886

1	Dong et al. (2009) Benchmark Dose Analysis - Plaque Forming Cell Response	929
2	Dong et al. (2012a) Benchmark Dose Analysis - Relative Liver Weight	973
3	Wang et al. (2011c) Benchmark Dose Analysis - Offspring Total T4 (at PND7)	. 1029
4	Butenhoff et al. (2012) and Thomford et al. (2002) - Hepatocellular Adenomas and	
5	Carcinomas in Female Rats	. 1054
5		. 10

6

7

List of Tables

8	Table E-1. Calculation of Target Human Serum Levels	ES-13
9	Table E-2. RfDs derived from Target Human Serum Levels	ES-14
10	Table E-3. Calculation of Potential Health-based MCLs	ES-15
11	Table 1. PFOS concentration in raw or finished water from PWS included in NJDEP database*	10
12	Table 2. New Jersey versus national UCMR3 PFC occurrence data as of January 2016	11
13	Table 3. Total serum PFOS concentrations reported by NHANES for 2011-2012 and 2013-2014 (CDC,
14	2017)	13
15	Table 4. Summary of data for PFOS elimination half-life (USEPA, 2016b – Table 2-20)	21
16	Table 5. Increase in serum PFOS concentrations predicted from various concentrations of PFOS in	n
17	drinking water	
18	Table 6. Study summary table for body weight effects in animals	
19	Table 7. Summary of Epidemiology Studies of Body weight/BMI	
20	Table 8. Study summary table for endocrine/metabolic effects in animals	47
21	Table 9. Summary of Epidemiology Studies of Thyroid Function	55
22	Table 10. Summary of Epidemiology Studies of Metabolic Function	58
23	Table 11. Summary of Epidemiology Studies of Sex Hormones	59
24	Table 12. Study summary table for hepatic effects in animals	65
25	Table 13. Summary of Epidemiology Studies of Hepatic Effects	75
26	Table 14. Study summary table for immune system effects in animals	79
27	Table 15. Summary of Epidemiology Studies of Immune Effects	
28	Table 16. Study summary table for neurological effects in animals	95
29	Table 17. Summary of Epidemiology Studies of Neurologic Effects	99
30	Table 18. Study summary table for renal effects in animals	102
31	Table 19. Summary of Epidemiology Studies of Renal Effects	105
32	Table 20. Study summary table for clinical chemistry parameters in animals	108
33	Table 21. Summary of Epidemiology Studies of Serum Lipids	117
34	Table 22. Study summary table for hematological effects in animals	121
35	Table 23. Summary of Epidemiology Studies of Blood Chemistry (non-lipid)	123
36	Table 24. Study summary table for reproductive/developmental effects in animals	141
37	Table 25. Summary of Epidemiology Studies of Reproductive Effects	205
38	Table 26. Summary of Epidemiology Studies of Developmental Effects	208
39	Table 27. Summary of select tumor data from Butenhoff et al. (2012)	209
40	Table 28. List of endpoints with serum PFOS concentration of \leq 10,000 ng/mL at the LOAEL	229
41	Table 29. List of cancer and non-cancer endpoints carried forward into dose-response assessment .	235

1	Table 30. Summary of AUC and time-weighted average serum concentration for male and female ra	
2	from Butenhoff et al. (2012) and 3M Environmental Laboratory (2001)	
3	Table 31. Summary of dose-response data for the four non-cancer endpoints that underwent benchm	ark
4	dose modeling	239
5	Table 32. Summary of BMD modeling results for hepatocellular hypertrophy in male rats (Butenhof	f et
6	al., 2012); BMR = 10% change from the control response	241
7	Table 33. Summary of BMDLs and AIC values for hepatocellular hypertrophy in male rats (Butenho	off et
8	al., 2012)	242
9	Table 34. Summary of BMD modeling results for relative liver weight in male mice	243
10	Table 35. Summary of BMD modeling results for relative liver weight in male mice	244
11	Table 36. Summary of BMD modeling results for plaque forming cell response in male mice	245
12	Table 37. Summary of BMD modeling results for plaque forming cell response in male mice, exclude	ling
13	the highest dose	246
14	Table 38. PODs, NOAELs and LOAELs (based on serum PFOS concentration) for endpoints identif	fied
15	for dose-response assessment	248
15	for dose responde assessment	
16	Table 39. PODs for endpoints selected for criterion development	
		248
16	Table 39. PODs for endpoints selected for criterion development	248 253
16 17	Table 39. PODs for endpoints selected for criterion development Table 40. Calculation of Target Human Serum Levels	248 253 253
16 17 18	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum Levels	248 253 253 255
16 17 18 19	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLs	248 253 253 255 258
16 17 18 19 20	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.	248 253 253 255 258 pect
16 17 18 19 20 21	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with response	248 253 253 255 258 pect 261
16 17 18 19 20 21 22	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)	248 253 253 255 258 pect 261 270
16 17 18 19 20 21 22 23	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)	248 253 253 255 258 pect 261 270 272
16 17 18 19 20 21 22 23 24	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)Table 46. Summary of hepatocellular tumor data in female rats from Butenhoff et al. (2012)	248 253 253 255 258 Dect 261 270 272 ata
16 17 18 19 20 21 22 23 24 25	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data from Butenhoff et al. (2012) and Thomford et al. (2002)Table A-1. Summary of PubMed and Toxline database search strategies	248 253 253 255 258 bect 261 270 272 ata 273 309
16 17 18 20 21 22 23 24 25 26	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data from Butenhoff et al. (2012) and Thomford et al. (2002)	248 253 253 255 258 bect 261 270 272 ata 273 309
16 17 18 19 20 21 22 23 24 25 26 27	Table 39. PODs for endpoints selected for criterion developmentTable 40. Calculation of Target Human Serum LevelsTable 41. RfDs derived from Target Human Serum LevelsTable 42. Calculation of potential Health-based MCLsTable 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response.Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respto uncertainties in the interpretation of Dong et al. (2009)Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data from Butenhoff et al. (2012) and Thomford et al. (2002)Table A-1. Summary of PubMed and Toxline database search strategies	248 253 253 255 258 pect 261 270 272 ata 273 309 310

31

32

List of Figures

33	Figure E-1. Increases in serum PFOS concentrations predicted from mean and upper percentile
34	consumption of drinking water with various concentrations of PFOS, as compared to U.S median and
35	95th percentile serum PFOS levels (NHANES, 2013-14) ES-5
36	Figure E-2. Graphical representation of representation of the approach used to derive the Health-based
37	MCLES-12
38	Figure 1. Increases in the median U.S. serum PFOS concentration (right of dotted line) predicted from
39	mean and upper percentile consumption of drinking water for PFOS concentrations in drinking water at
40	the Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L) levels, as compared to U.S
41	median and 95th percentile serum PFOS levels (NHANES, 2013-14)
42	Figure 2. Major transport pathways of perfluorinated compounds to the Arctic (and other remote
43	locations), by Annika Jahnke (Butt et al., 2010)

1	Figure 3. Geometric mean serum PFOS concentration as reported by NHANES by reporting cycle, 1999-
2	2014
3	Figure 4. PFOS concentration in cord blood and blood collected in infants around six and nineteen
4	months after birth (Fromme et al., 2010)
5	Figure 5. Serum PFOS concentrations over time in 12 infants from Mogensen et al. (2015). Data shown
6	by dotted blue line are from an infant who was not breastfed25
7	Figure 6. Monte Carlo simulations ($n = 10\ 000$) of child/mother ratios of plasma PFOS levels (ng/ml ;
8	right side of figure) and doses (ng/kg/day; left side of figure) for a breastfeeding period of 30 months 26
9	Figure 7. Increases in serum PFOS concentrations predicted from mean and upper percentile
10	consumption of drinking water with various concentrations of PFOS, as compared to U.S median and
11	95th percentile serum PFOS levels (NHANES, 2013-14)
12	Figure 8. Graphical representation of approach taken to identify most sensitive endpoints
13	Figure 9. Graphical array of body weight, clinical chemistry, and hepatic effects in adult animals within
14	the first quartile of serum PFOS concentrations
15	Figure 10. Graphical array of immune effects in adult animals within the first quartile of serum PFOS
16	concentrations
17	Figure 11. Graphical array of endocrine/metabolic effects in adult animals within the first quartile of
18	serum PFOS concentrations
19	Figure 12. Graphical array of body weight, hepatic, and mortality effects in offspring animals within the
20	first quartile of serum PFOS concentrations
21	Figure 13. Graphical array of endocrine/metabolic and respiratory effects in offspring animals within the
22	first quartile of serum PFOS concentrations
23	Figure 14. PFOS - Area Under Curve (AUC) (data from Table 7 of Butenhoff et al., 2012) and 3M
24	Environmental Laboratory (2001; week 53 female serum PFOS concentration in the 20 ppm group)238
25	Figure 15. Graphical representation of the approach used to derive the Health-based MCL
26	Figure 16. Comparison of plaque forming cell response studies
27	Figure 17. Serum PFOS- plaque forming cell response response (PFCR) (male mice; diamonds)
28	Figure 18. Fit of gamma multi-hit model to data on increased hepatocellular tumors in male rats
29	Figure A-1. Graphical representation of literature search
30	

1 Abbreviations

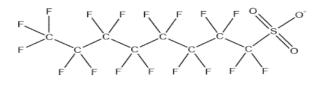
- 2 AFFF aqueous fire fighting foam, also known as aqueous film forming foam
- 3 AIC Akaike Information Criterion
- 4 ALP alkaline phosphatase
- 5 ALT alanine aminotransferase
- 6 APFO ammonium perfluorooctanoate, the ammonium salt of PFOA
- 7 AST aspartate aminotransferase
- 8 ATSDR Agency for Toxic Substances and Disease Control
- 9 AUC area under the curve
- 10 BMD Benchmark Dose
- 11 BMDL lower 95% confidence limit on the Benchmark Dose
- 12 BMDS Benchmark Dose software
- 13 BMI body mass index
- 14 BMR Benchmark Response
- 15 BUN blood urea nitrogen
- 16 C8 a synonym for PFOA
- 17 C9 a synonym for PFNA
- 18 CAR constitutive androstane receptor
- 19 CDC Centers for Disease Control
- 20 CL clearance factor
- 21 DSREH NJDEP Division of Science, Research and Environmental Health
- 22 DWQI New Jersey Drinking Water Quality Institute
- ER estrogen receptor
- 24 FOSA perfluorooctane sulfonamide
- 25 FOSE perfluorooctane sulfonamidoethanol
- 26 FSH follicle stimulating hormone
- 27 GAC granular activated carbon
- 28 GD gestational day
- 29 GFR glomerular filtration rate
- 30 GGT gamma-glutamyl transferase
- 31 HDL high-density lipid cholesterol
- 32 HNF-4 α hepatocyte nuclear factor 4- α
- 33 HOMA-IR —
- 34 IARC International Agency for Cancer Research
- 35 IRIS USEPA Integrated Risk Information System
- 36 LDL low-density lipid cholesterol
- 37 LH luteinizing hormone
- 38 LOAEL Lowest Observed Adverse Effect Level
- 39 MCL Maximum Contaminant Level
- $40 \quad MOA mode of action$

- 1 NHANES National Health and Nutrition Examination Survey
- 2 NJDEP New Jersey Department of Environmental Protection
- 3 NJDOH New Jersey Department of Health
- 4 NOAEL No Observed Adverse Effect Level
- 5 NTP National Toxicology Program
- 6 OR odds ratio
- 7 PFAA perfluoroalkyl acid
- 8 PFAS per- and polyfluoroalkyl substances
- 9 PFC perfluorinated compound
- 10 PFHxS perfluorohexane sulfonate
- 11 PFNA perfluorononanoic acid
- 12 PFOA perfluorooctanoic acid
- 13 PFOS perfluorooctane sulfonate
- 14 PND postnatal day
- 15 POD Point of Departure
- 16 PPAR peroxisome proliferator activated receptor
- $17 \quad PTFE polytetrafluoroethylene$
- 18 PWS public water supplies
- 19 PXR pregnane X receptor
- 20 RfD Reference Dose
- 21 RL Reporting Level
- 22 RR relative risk
- 23 RSC Relative Source Contribution
- 24 SDWA Safe Drinking Water Act
- 25 SHBG sex hormone binding globulin
- 26 SMR standardized mortality ratio
- 27 TSH thyroid stimulating hormone
- 28 T3 triiodothyronine
- 29 T4 thyroxine
- 30 UCMR3 Unregulated Contaminant Monitoring Rule 3
- 31 UF uncertainty factor
- $32 \hspace{0.5cm} V_d \hspace{-0.5cm} \hspace{-0.5cm} volume \hspace{0.5cm} of \hspace{0.5cm} distribution$
- 33 VLDL very low-density lipid cholesterol
- 34 WT wild type
- 35 USEPA United States Environmental Protection Agency
- WY Wyeth 14,643; (4-Chloro-6-[2,3-xylidino]-2-pyrimidinylthio)acetic acid), a model
 PPAR-alpha activating compound

1

2 ABSTRACT

3 A Health-based Maximum Contaminant Level (Health-based MCL) for perfluorooctane 4 sulfonate (PFOS) was developed using a risk assessment approach intended to protect for chronic (lifetime) drinking water exposure. A public health-protective approach in developing a 5 6 Health-based MCL based on animal toxicology data is supported by epidemiological 7 associations of PFOS with health effects in the general population, as well as its biological persistence and bioaccumulation from drinking water in humans. Both non-carcinogenic and 8 carcinogenic effects were evaluated for Health-based MCL development. PFOS causes a number 9 of different types of toxicological effects in animals including hepatic, endocrine, developmental, 10 11 immune system toxicity, and hepatocellular and thyroid tumors. The most sensitive non-cancer 12 effect with data needed for Health-based MCL development was identified as immune 13 suppression, specifically, a decrease in antibody response to an exogenous antigen challenge (i.e., plaque-forming cell response) following 60 days of PFOS exposure in adult male mice 14 (Dong et al., 2009). Use of Dong et al. (2009) as the quantitative basis for the Health-based 15 16 MCL is supported by decreased plaque-forming cell response in mice in other studies and by the association of PFOS with decreased vaccine response in humans within the general population. 17 18 A Target Human Serum Level (analogous to a Reference Dose but on a serum level basis) of 23 19 ng/ml was developed by applying a total uncertainty factor of 30 to the PFOS serum level, 674 20 ng/ml, at the No Observed Adverse Effect Level (NOAEL) in Dong et al. (2009). A clearance factor (8.1 x 10⁻⁵ L/kg/day) which relates serum PFOS concentrations to human external PFOS 21 doses was applied to the Target Human Serum Level to develop a Reference Dose of 1.8 22 ng/kg/day. Default values for drinking water exposure assumptions (2 L/day water consumption; 23 24 70 kg body weight) and Relative Source Contribution factor (20%) were used to develop a Health-based MCL of 13 ng/L. PFOS caused liver and thyroid tumors in a chronic rat study and 25 was characterized as having "suggestive evidence of carcinogenic potential," consistent with the 26 27 conclusion of USEPA Office of Water. Cancer risk was estimated based on dose-response modeling of liver tumors in female rats. It was concluded that the cancer risk assessment is too 28 29 uncertain for use as the basis of the Health-based MCL. However, the estimated cancer risk at 30 the Health-based MCL of 13 ng/L is close to the New Jersey cancer risk goal of one in one million. The Health-based MCL of 13 ng/L based on immune system toxicity is therefore 31 32 considered to be both scientifically appropriate and health protective.


1 <u>EXECUTIVE SUMMARY</u>

2

9

3 Introduction

- 4 Perfluorooctane sulfonate (PFOS) is a member of the group of substances called perfluorinated
- 5 compounds, chemicals that contain a totally fluorinated carbon chain which varies in length and
- 6 a functional group such as carboxylic or sulfonic acid. Perfluorinated compounds are part of a
- 7 larger group of chemicals called poly- and perfluoroalkyl substances (PFAS).
- 8 The chemical structure of PFOS is:

- 10 On March 21, 2014, New Jersey DEP Commissioner Bob Martin requested that the New Jersey
- 11 Drinking Water Quality Institute recommend an MCL for PFOS and two other perfluorinated

12 compounds, perfluorononanoic acid (PFNA, C9) and perfluorooctanoic acid (PFOA). The

13 Subcommittee's evaluation and Health-based MCL recommendation for PFOS are presented in

- 14 this document.
- 15 Health-based MCLs recommended by the DWQI are based on the goals specified in the 1984
- 16 Amendments to the New Jersey Safe Drinking Water Act (SDWA) at N.J.S.A. 58:12A-20. This
- 17 statute specifies a one in one million (10^{-6}) risk of cancer from lifetime exposure to carcinogens,
- 18 and that no "adverse physiological effects" are expected to result from lifetime ingestion for non-
- 19 carcinogenic effects. Human health risk assessment approaches used by the DWQI to develop
- 20 Health-based MCLs generally follow USEPA risk assessment guidance.

21 **Production and Use**

- 22 Because carbon-fluorine bonds are among the strongest found in organic chemistry, PFOS and
- 23 other PFCs are extremely stable and resistant to chemical reactions. Its structure gives PFOS
- 24 both hydrophobic/lipophilic and hydrophilic properties that make it useful commercially and
- 25 industrially. PFOS was produced in the U.S. for use in commercial products and industrial
- 26 processes for over 50 years. The main worldwide producer of PFOS completed phasing out the
- 27 manufacture of PFOS and its precursors in the U.S. and in other nations in 2002, although
- 28 production continues in some Asian countries.
- 29 Many of the uses of PFOS stem from its surfactant properties and from its ability to repel both
- 30 water and fats/oils. The following are some major uses of PFOS (continuing and discontinued):
- Stain/water repellants on clothing, bedding materials, upholstered furniture, carpets, and automobile interiors (e.g., ScotchGardTM)
- Metal plating and finishing (continuing use)

- Aqueous film forming foams (AFFF, also known as aqueous fire fighting foams;
 continuing use; used for firefighting)
 - Photograph development (continuing use)
 - Aviation fluids (continuing use)
 - Food containers and contact paper
- 5 6

3

4

- 7 The use of PFOS in AFFF is of particular importance as a source of environmental
- 8 contamination. Whereas the U.S. no longer produces or imports PFOS-based AFFF, the use of
- 9 existing stocks of these foams continues. This use results in release of PFOS to the environment,
- 10 leading to contamination of soil, surface water, and groundwater. This is particularly the case at
- 11 military bases, and military and civilian airports, where fire-fighting training and drills are
- 12 carried out regularly.

13 Environmental Fate and Transport

- 14 Because of the extreme stability of their carbon-fluorine bonds, PFOS and other PFCs are
- 15 extremely resistant to degradation in the environment and thus persist indefinitely. PFOS and
- 16 other PFCs are found in many environmental media and in wildlife worldwide including in
- 17 remote polar regions. PFOS is bioaccumulative in fish, and it is the PFC most commonly
- 18 detected in fish monitoring studies. PFOS and other PFCs can be taken up into plants from
- 19 contaminated soil or irrigation water. In general, PFOS and other longer chain PFCs are
- 20 preferentially taken up into the root and shoot parts of the plant.
- 21
- 22 PFOS and some other PFCs are distinctive from other persistent and bioaccumulative organic
- 23 compounds because of their importance as drinking water contaminants. PFOS migrates readily
- from soil to ground water and is highly water-soluble. These properties of PFOS differ from
- those of other well-known persistent and bioaccumulative organic pollutants such as
- 26 polychlorinated dioxins and polychlorinated biphenyls (PCBs) that have a high affinity for soil
- 27 and sediments but low water solubility.
- 28
- 29 PFOS that is released into the environment can contaminate surface water and groundwater used
- 30 as drinking water sources. Environmental sources include industrial discharge; release of AFFF;
- 31 disposal in landfills; wastewater treatment plant discharge; and land application of biosolids.
- 32 PFOS also enters the environment through the breakdown of precursor compounds. These
- 33 precursor compounds are or were used industrially and are found in AFFF.
- 34 Although the production of PFOS and its precursors (e.g., perfluorooctanesulfonyl fluoride,
- 35 POSF) were voluntarily phased out by the major global manufacturer of PFOS, environmental
- 36 contamination and resulting human exposure to PFOS are anticipated to continue for the
- 37 foreseeable future due to its environmental persistence, formation from precursor compounds, and
- 38 continued production by other manufacturers.

1 Occurrence in Drinking Water

- 2 PFOS and other PFCs are not effectively removed from drinking water by standard treatment
- 3 processes but can be removed from drinking water by granular activated carbon (GAC) or
- 4 reverse osmosis. Therefore, unless specific treatment for removal of PFCs is in place,
- 5 concentrations of PFOS detected in raw drinking water can be considered representative of
- 6 concentrations in finished drinking water.
- 7 The occurrence of PFOS and other PFCs in public water supplies (PWS) has been evaluated
- 8 more extensively in New Jersey than in most or all other states. More than 1,000 samples from
- 9 80 NJ PWS were analyzed with relatively low Reporting Levels (RLs; generally \leq 5 ng/L) from
- 10 2006-2016. PFOS was a frequently detected PFC and was found in samples from approximately
- 11 42% of the 76 NJ PWS tested. In the 2013-2015 USEPA Unregulated Contaminant Monitoring
- 12 Rule 3 (UCMR3) survey of all large PWS (>10,000 users) and a subset of smaller PWS in the
- 13 U.S., PFOS was detected more frequently in New Jersey PWS (3.4%) than nationally (1.9%).
- 14 The RL in UCMR3 was 40 ng/L, much higher than the RLs for most other NJ PWS monitoring.
- 15 PFOS has also been detected in NJ private wells near sites where contamination has occurred.
- 16

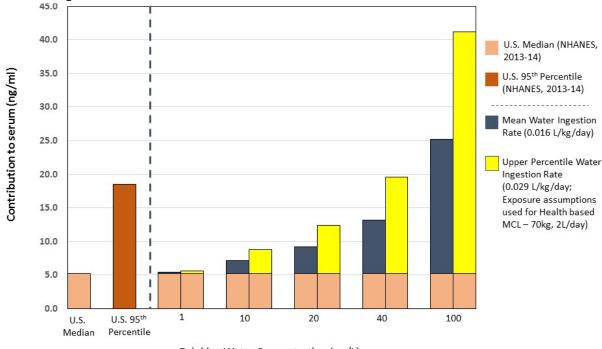
17 Human Biomonitoring

- 18 PFOS and other PFCs are found ubiquitously in the blood serum of the general population in the
- 19 U.S. and worldwide. The most recent (2013-2014) National Health and Nutrition Examination
- 20 Survey (NHANES), a representative sample survey of the U.S. general population conducted by
- 21 the U.S. Centers for Disease Control and Prevention (CDC), determined the geometric mean and
- 22 95th percentile serum PFOS concentrations as 4.99 and 18.5 ng/ml, respectively. Serum PFOS
- 23 levels in the U.S. general population have decreased over time, with an 84% decrease in the
- 24 geometric mean in NHANES 2013-14 from the first NHANES monitoring in 1999-2000. In
- communities exposed through contaminated drinking water, serum PFOS levels are elevated
- compared to the general population. Exposures to industrially-exposed workers or others with
- 27 occupational exposure are much higher than in the general population. Serum PFOS
- concentrations of greater than 10,000 ng/ml (10 ppm) have been reported in industrially exposed
- 29 workers, although levels in most workers were lower.
- 30

31 Sources of Human Exposure

- 32 The human body burden of PFOS results from exposure to both PFOS itself and to precursor
- 33 compounds that can be metabolized to PFOS. In the absence of the influence of specific sources
- 34 of PFOS release to the environment, it appears that food and possibly house dust (reflecting
- 35 consumer products use and breakdown) are the major sources of human exposure to PFOS. For
- 36 high end consumers of fish and specifically for those who consume recreationally caught
- 37 freshwater fish from contaminated waters, fish may be a particular source of PFOS in the diet.
- 38 The contribution of ingested drinking water to total exposure from all sources (e.g. diet,
- 39 consumer products, etc.) is dependent on the concentration of PFOS in the drinking water, and

- 1 relatively low concentrations in water substantially increase human body burden. Inhalation
- 2 from showering, bathing, laundry, and dishwashing, and dermal absorption during showering,
- 3 bathing, or swimming, are not expected to be significant sources of exposure from contaminated
- 4 drinking water.
- 5 Exposures to PFOS may be higher in young children than in older individuals because of age-
- 6 specific behaviors such as greater drinking water and food consumption on a body weight basis,
- 7 hand-to-mouth behavior resulting in greater ingestion of house dust, and more time spent on
- 8 floors where treated carpets are found.
- 9


10 <u>Toxicokinetics</u>

- 11 PFOS is well absorbed orally in animal studies, and it is reasonable to assume that PFOS is
- 12 orally absorbed in humans with close to 100% efficiency. Unlike most other bioaccumulative
- 13 organic compounds, it does not distribute to fat. Across species, liver accumulates the highest
- 14 concentration of PFOS. However, with sufficiently long exposures and/or sufficiently sensitive
- 15 analytical methods, PFOS is generally found in all tissues and organs. Although the brain is not
- 16 a major site of PFOS accumulation, PFOS crosses the blood-brain barrier, and is found in the
- 17 brain in humans and rodents. In the serum, PFOS is almost totally bound to albumin and other
- 18 proteins. Since it is chemically non-reactive, it is not metabolized. Since it is chemically non-
- 19 reactive, it is not metabolized. PFOS is slowly excreted in humans, and, with the exceptions of
- 20 lactation and menstrual blood loss, urine is the most significant route of PFOS elimination in
- 21 humans. The rate of excretion is likely dependent on the extent of secretion and reabsorption by
- 22 organic anion transporters in the kidney. Although a significant fraction of PFOS is found in the
- 23 bile in humans, PFOS is reabsorbed from the bile in the gastrointestinal tract, and, therefore, the
- 24 feces is not a significant route of elimination. In rodents, however, the feces appears to be
- 25 significant route of PFOS elimination.
- 26 The human half-life of PFOS is estimated at about five years. Because of its long half-life, it
- 27 remains in the human body for many years after exposures ceases. The half-life of PFOS in
- 28 laboratory animals is shorter than in humans, and varies widely among species. Because of the
- 29 large variation in half-lives, the internal dose resulting from a given administered dose varies
- 30 widely among species and, in some cases, genders of the same species. For this reason,
- 31 interspecies (e.g. animal-to-human) comparisons are made on the basis of internal dose, as
- 32 indicated by serum level, rather than administered dose.

33 Relationship between drinking water exposure and human serum levels

- 34 A human clearance factor for PFOS of 8.1 x 10^{-5} L/kg/day was developed by USEPA (2016a) to
- 35 relate serum PFOS concentration to administered dose. Assuming an average U.S. daily water
- 36 consumption rate, the clearance factor predicts a serum:drinking water ratio of 197:1.
- 37
- 38 Continued exposure to even low drinking water concentrations results in substantially increased
- 39 serum PFOS levels. Based on the clearance factor, each 10 ng/L in drinking water is predicted to

- 1 increase serum PFOS by 2.0 ng/ml with an average water consumption rate, and 3.6 ng/ml with
- 2 an upper percentile water consumption rate. These increases in serum PFOS from drinking water
- 3 can be compared to the most recent NHANES medians, 5.2 ng/ml, and 95th percentile, 18.5
- 4 ng/ml, serum PFOS concentrations. Increases in serum PFOS levels predicted from average and
- 5 upper percentile drinking water consumption at various drinking water PFOS concentrations are
- 6 shown in Figure E-1.

⁷

8 Figure E-1. Increases in serum PFOS concentrations predicted from mean and upper percentile

9 consumption of drinking water with various concentrations of PFOS, as compared to U.S median and

10 95th percentile serum PFOS levels (NHANES, 2013-14).

11

12 Exposures to infants

13 In humans, PFOS has been measured in amniotic fluid, maternal serum, umbilical cord blood,

14 and breast milk. Serum PFOS concentrations in infants at birth are lower than those in maternal

- 15 serum. Both breast-fed infants whose mothers ingest contaminated drinking water and infants
- 16 fed with formula prepared with contaminated drinking water receive much greater exposures to
- 17 PFOS than older individuals who consume drinking water with the same PFOS concentration.
- 18 PFOS exposure in breast-fed infants is greatest during the first few months of life because both
- 19 PFOS concentrations in breast milk and the rate of fluid consumption are highest then. As a
- 20 result, serum PFOS concentrations in breast-fed infants increase several-fold from levels at birth
- 21 within the first few months of life. Exposures to infants who consume formula prepared with
- contaminated water are also highest during this time period. While serum PFOS levels peak
- 23 during the first year of life, they remain elevated for several years. These elevated exposures
- 24 during infancy and early childhood are of particular concern because early life may be a sensitive
- time period for the toxicity of PFOS.

Drinking Water Concentration (ng/L)

1

2 <u>Health Effects</u>

3 Literature Search and Screening

- 4 A comprehensive literature search was conducted for literature published through the end of
- 5 2014 using the PubMed and Toxline databases and was updated with relevant literature through
- 6 2016. Additional databases or websites of other state, federal, and international regulatory or
- 7 authoritative health entities were searched for relevant references. This literature search aimed to
- 8 identify all references relevant to health effects of PFOS in animals or humans.
- 9 Based on screening of the approximately 2860 references identified in the literature search,
- 10 approximately 700 references were ultimately considered as potentially useful for the assessment
- 11 of the health effects of PFOS.

12 Hazard Identification

- 13 Animal toxicology studies identified from the literature search and screening were categorized
- 14 into different levels of review for use in risk assessment. Approximately 75 studies that fulfilled
- 15 a set of criteria (for example, but not limited to, subchronic or greater exposure duration or *in*
- 16 *utero* exposure, multiple dose groups, assessment of appropriate observable endpoints) were
- 17 reviewed in detail and summarized in evidence tables. These studies were used to identify
- 18 potential health hazards (i.e., hazard identification) and were evaluated for potential use for dose-
- 19 response modeling. The remaining approximately 40 animal studies that did not meet the criteria
- 20 mentioned above, but were nonetheless potentially useful as supporting studies underwent a less
- 21 intensive review and were summarized in tabular form. These studies were used to further
- 22 inform the weight of evidence for identified health hazards.
- 23 All human (epidemiology) studies that were identified (approximately 120) were reviewed in
- 24 detail and summarized in evidence tables for use in identifying potential health hazards.
- 25 The mode of action evaluation of PFOS was based on relevant studies identified through the
- 26 literature search, as well as other sources (e.g., previous evaluations by NJDEP and DWQI,
- 27 review articles, other regulatory or health effects documents).
- 28 <u>Non-cancer endpoints</u>
- 29 The toxicological effects of oral PFOS exposure were assessed in studies of varying duration in
- 30 several species including mice, monkeys, rabbits, and rats. In adult animals,
- 31 endocrine/metabolic (e.g., thyroid hormone), hepatic (e.g., liver enlargement, histopathological
- 32 lesions, and changes in serum chemistry), immune, and neurological effects were determined to
- 33 be toxicologically important endpoints based on consistency across studies and appropriate for
- 34 consideration of dose-response analysis. Following gestational exposure to PFOS, increased
- 35 mortality, body weight, developmental (e.g., delays in eye opening, neurotoxicity, structural
- 36 defects), endocrine/metabolic (e.g., changes in thyroid hormone levels, insulin resistance,

- 1 increased fasting serum glucose), hepatic, and immune effects were observed in perinatal or
- 2 adult offspring and were determined to be toxicologically important endpoints appropriate for
- 3 consideration of dose-response analysis.

4 A number of human populations have been investigated for potential health effects from PFOS

- 5 exposure in epidemiology studies. Such investigations have included the general population,
- 6 occupationally exposed individuals, and people living within communities contaminated with
- 7 high levels of PFOA but with general population level exposures to PFOS. Notably,
- 8 epidemiological studies have not been conducted in communities with drinking water
- 9 contaminated by PFOS. In most studies, serum PFOS levels are used as the exposure metric.
- 10 Epidemiologic studies of PFOS have investigated associations with developmental,
- 11 endocrine/metabolic, hepatic, immune, lipid metabolism, renal, and reproductive effects.
- 12 However, some of these studies have yielded inconsistent results, lacked proper controlling for
- 13 confounding, or could only provide weak suggestions of causality. Among the epidemiologic
- 14 studies, the studies of immune effects, and most particularly those investigating effects on
- 15 vaccine response, were generally consistent in showing adverse responses to PFOS. There was
- 16 also a consistency of findings among studies of PFOS exposure and increased serum uric
- 17 acid/hyperuricemia as well as increased total cholesterol.
- 18 The epidemiologic data for PFOS are notable because of the consistency between results among
- 19 human epidemiologic studies in different populations, the concordance with toxicological
- 20 findings from experimental animals, the use of serum concentrations as a measure of internal
- 21 exposure, the potential clinical importance of the endpoints for which associations are observed,
- 22 and the observation of associations within the exposure range of the general population. These
- 23 features of the epidemiologic data distinguish PFOS from most other organic drinking water
- 24 contaminants and justify concerns about exposures to PFOS through drinking water.
- 25 Notwithstanding, the human data have limitations and therefore are not used as the quantitative
- 26 basis for the Health-based MCL. Instead, the Health-based MCL is based on a sensitive and
- 27 well-established animal toxicology endpoint, decreased plaque forming cell respose which is an
- 28 indicator of decreased immune response. This effect is considered relevant to humans based on
- 29 epidemiological and mode of action data.
- 30
- 31 <u>Cancer endpoints</u>
- 32 In animals, only one study was identified that assessed tumor formation following PFOS
- 33 exposure. Following chronic PFOS exposure, hepatocellular tumors in male and female rats, and
- 34 thyroid tumors in male rats, were observed.
- 35
- 36 In humans, a limited number of epidemiological studies assessed cancer risk from PFOS
- 37 exposure in occupationally exposed populations or in the general population. Although
- 38 individual studies have shown borderline or weak (albeit statistically significant) associations
- 39 between PFOS exposure and specific cancer types (e.g., bladder, breast, prostate) or cancer-

- 1 related mortality (e.g., liver), there is no consistent indication of an association between PFOS
- 2 exposure and cancer in general, or any specific form of cancer. Nonetheless, the database cannot
- 3 be considered strong. Exposure characterization and case ascertainment was problematic in the
- 4 occupational studies with high levels of exposure, and the non-occupational studies generally
- 5 had small sample sizes.
- 6 Based on the tumors observed in rats, DWQI concluded that the designation of "Suggestive
- 7 Evidence of Carcinogenic Potential" as described the 2005 USEPA Guidelines for Carcinogen
- 8 Risk Assessment is appropriate for PFOS.

9 Mode of Action

- 10 At a minimum, strong evidence exists from animal and/or epidemiological studies for effects on
- 11 the liver, the immune system, birth weight, and neonatal survival. In addition, PFOS causes liver
- 12 tumors and possibly thyroid tumors in rats. The breadth of these effects suggests that PFOS may
- 13 cause toxicity through multiple modes of action (MOAs). However, the mode(s) of action of
- 14 PFOS have not been fully characterized. Based on the information reviewed by the Health
- 15 Effects Subcommittee, the toxicological effects of PFOS are considered relevant to humans for
- 16 the purposes of risk assessment.
- 17 PFOS is not chemically reactive. Thus, it is not metabolized to reactive intermediates and does
- 18 not covalently bind to nucleic acids and proteins. Consistent with these properties, available data
- 19 indicate that it is not genotoxic.

20 <u>Hepatic effects</u>

- 21 Much attention has been focused on the potential human relevance of hepatic effects of
- 22 xenobiotics that occur through activation of the nuclear receptor, peroxisome proliferator-
- 23 activated receptor-alpha (PPARα). Since many PPARα activating compounds cause rodent liver
- tumors; the human relevance of these tumors is subject to debate due to lower levels and/or
- 25 differences in intrinsic activity of PPARα in human liver. While MOA data are most abundant
- 26 for PFOS effects on the liver, most of the evidence relates to ruling out PPAR α -dependent
- 27 MOAs. Based on some hepatic effects (e.g., increased liver weight) in rodents that are similar to
- those caused by potent PPARα activators, cancer and non-cancer liver effects of PFOS have
- 29 sometimes been assumed to be PPAR α -dependent. However, several lines of evidence do not
- 30 support a conclusion that liver effects due to PFOS exposure are PPARα-dependent. For some
- 31 PPAR α activators, non-cancer and cancer liver effects are clearly linked to PPAR α activation. In
- 32 contrast, PFOS effects on the rodent liver do not appear to primarily operate through a PPAR α -
- dependent MOA, including at doses resulting in liver tumors. PPARα may make only a minor
- 34 contribution, if any, to PFOS liver effects in rodents. Thus, there does not appear to be clear
- 35 evidence to discount the human relevance of PFOS to cause hepatic effects in rodents. Other
- 36 receptors including PPAR β/δ , PPAR γ , constitutive activated receptor (CAR), pregnane X

- 1 receptor (PXR), hepatocyte nuclear factor 4- α (HNF-4 α), and possibly estrogen receptor α
- 2 (ERα), may also be activated by PFOS, suggesting alternative, non-PPARα-dependent MOAs.
- 3 <u>Immune effects</u>
- 4 Following PFOS exposure in animals, immunosuppression as well as effects on immune organs,
- 5 cell populations, and mediators have been observed. In humans, an association with suppression
- 6 of vaccine response has been reported. Despite research efforts, the mode(s) of action by which
- 7 PFOS exposure results in immune effects is unclear.
- 8 It appears that PPARα may play a role in some immune effects caused by PFOS in rodents.
- 9 Unlike the case for liver effects, there are no data to suggest that immune effects mediated by
- 10 PPAR α are not relevant to humans. Therefore, these effects are assumed relevant to humans for
- 11 the purposes of risk assessment. In addition to the possible role of PPAR α , other mechanistic
- 12 considerations may inform the MOA for PFOS-mediated immunotoxicity. Some evidence
- 13 suggests a possible involvement of an alteration of cell signaling response. Stress is known to
- 14 influence immune effects following chemical exposure. However, as reviewed in this
- 15 assessment, an increase in serum corticosterone, a marker of stress, was a high dose
- 16 phenomenon, whereas immune effects (i.e., decrease in plaque forming cell response) occurred
- 17 at lower PFOS doses. The possibility has also been suggested that changes in lipid balance
- 18 resulting from PFOS activity in the liver could affect the immune response. However, there does
- 19 not appear to be specific evidence to support this hypothesis.
- 20 <u>Developmental/fetal effects</u>
- 21 Gestational exposure to PFOS is associated with several different endpoints, including decreased
- 22 birth weight, malformations, and most notably, neonatal mortality. The MOAs for these effects
- are not known. However, it appears that the observed developmental effects do not necessarily
- 24 share similar MOAs.
- 25 Research in WT and PPARα null mice suggests that developmental effects following gestational
- 26 PFOS exposure are PPARα-independent. Neonatal mortality following gestational PFOS
- 27 exposure has been noted in several rodent studies and is a striking and salient endpoint. The
- 28 underlying toxicity for this effect occurs with maternal exposure during late gestation. Due to
- the observation of labored breathing associated with this mortality and the late developmental
- 30 nature of the toxicity, immature lung development, possibly related to PFOS interference with
- 31 lung surfactant has been suggested as a possible MOA. Oxidative stress and apoptosis have also
- 32 been implicated in offspring lung injury that may be responsible for neonatal mortality.
- 33 Additionally, defects in cardiopulmonary function observed following gestational PFOS
- 34 exposure have also been postulated as possible contributors to neonatal mortality. Nonetheless,
- 35 there is no clear MOA responsible for PFOS-mediated newborn mortality.
- 36
- 37

1 <u>Carcinogenicity</u>

2 <u>Hepatocellular</u>

- 3 PFOS does not appear to be genotoxic or mutagenic. There is limited evidence that the
- 4 formation of hepatocellular tumors from PFOS exposure may operate through a MOA involving
- 5 sustained cell proliferation and inhibited apoptosis. However, given the lack of additional
- 6 PFOS-specific data, it is not clear that this hypothesized MOA is either necessary or relevant. In
- 7 rats, in addition to hepatic tumors, many PPARα activators produce Leydig cell and pancreatic
- 8 acinar cell tumors. These tumor types are commonly referred to as the tumor triad. Although
- 9 hepatic tumors were observed in the single chronic exposure study in rats there was no increased
- 10 incidence of either Leydig cell or pancreatic acinar cell tumors. Along with other data discussed
- 11 above, this provides further evidence for a PPAR α -independent hepatic cancer MOA. In
- 12 addition, similar to the discussion of the potential role of PPAR α in non-cancer liver toxicity,
- 13 PFOS does not demonstrate key molecular markers of PPARα activity/peroxisome proliferation.
- 14 Further, PFOS and WY-14,643, a strong PPARα agonist and peroxisome proliferator that is
- 15 often used as a model for PPAR α -related liver effects cause grossly different effects on gene
- 16 expression in mice. In summary, there is little evidence that PFOS operates through a PPAR α -
- 17 dependent MOA, at least at the doses that have been observed to cause liver tumors. As with
- 18 non-cancer liver effects, other nuclear receptors, such as PXR and CAR, may play a role. In all,
- 19 there does not appear to be evidence to suggest that the (unknown) MOA that is operative in rat
- 20 liver tumors is not relevant to human cancer risk.

21 <u>Thyroid follicular cell</u>

- 22 In the only chronic PFOS exposure study, thyroid follicular cell tumors were observed in male
- rats only at the highest dose following recovery from dosing. The human relevance of these
- 24 PFOS-mediated tumors is not clear and there is no evidence to inform a possible MOA.

25 Identification of Most Sensitive Endpoints

- 26 Dose-response analysis focused on health endpoints from animal studies with exposure durations
- 27 greater than 30 days, as well as on shorter-term reproductive and developmental endpoints from
- 28 animal studies involving exposures during gestation and/or the immediate post-natal period (i.e.,
- 29 reproductive/developmental studies). Endpoints were selected for dose-response analysis based
- 30 on their reporting of serum PFOS concentrations at relevant timepoints. Only those endpoints in
- 31 the animal studies associated with LOAELs in the lower end of the range of serum PFOS
- 32 concentrations were considered for dose-response modeling, and potentially for RfD derivation.
- 33 These most sensitive endpoints were identified by stratifying the endpoints from animal studies
- 34 into quartiles of serum PFOS concentrations. In the lowest quartile, the maximum LOAEL serum
- 35 PFOS concentration was approximately 24,000 ng/mL. Within that quartile, there was a general
- 36 clustering of animal endpoints with a LOAEL serum PFOS concentration \leq 10,000 ng/mL.
- 37 Endpoints occurring at or below this serum PFOS concentration were considered to be within the
- 38 group of most sensitive animal endpoints (n = 21). Not all of these endpoints were considered

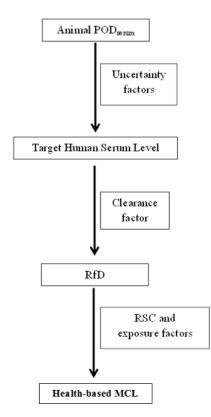
- 1 for dose-response modeling due to study-specific concerns and/or lack of biological significance.
- 2 Ultimately, four endpoints were carried forward to non-cancer dose-response analysis:
- increased relative liver weight, adult mice (Dong et al., 2009)
- decreased plaque forming cell response, adult mice (Dong et al., 2009)
- increased hepatocellular hypertrophy, adult rats (Butenhoff et al., 2012)
- increased relative liver weight, adult mice (Dong et al., 2012a)
- 7 For the cancer endpoints, dose-response analysis was performed on the incidence of
- 8 hepatocellular tumors in male and female rats in Butenhoff et al. (2012). The thyroid follicular
- 9 cell tumors in rats were excluded from dose-response assessment due to questionable biological
- 10 significance and inconsistencies in dose-response.

11 Dose-Response Analysis for non-cancer endpoints

- 12 For PFOS and other contaminants for which animal-to-human comparisons are based on serum
- 13 concentrations (internal dose), dose-response analysis is based on serum PFOS concentrations
- 14 (internal dose) rather than administered doses. The dose-response for the non-cancer and cancer
- 15 endpoints was investigated using USEPA benchmark dose modeling (BMD) software (ver.
- 16 2.6.0.1). Fitting and assessing the benchmark dose model fit was carried out using USEPA
- 17 benchmark dose modeling guidance.
- 18 For the non-cancer increased hepatocellular hypertrophy endpoint and the hepatocellular tumors,
- 19 from Butenhoff et al. (2012), serum PFOS concentrations measured over the course of this 105-
- 20 week study rose and then declined. The serum PFOS concentration at each dose was
- summarized across the study duration based on area under the curve (AUC) of serum
- 22 concentration and time. For quantal data, the recommended benchmark response (BMR) value
- 23 of 10% was used. For continuous data, except for liver weight endpoints, the recommended
- BMR of 1 SD was used. For liver weight endpoints, a BMR of 10% was used to accommodate
- 25 relatively small increases in liver weight that could be considered adaptive. All available models
- 26 in the USEPA software were evaluated.

27 <u>Non-cancer</u>

33


- 28 Data for two of the four endpoints provided acceptable fits to one or more of the available dose-
- response models included in the BMD software. The following BMDLs (as serum PFOS
- 30 concentrations) were derived and were considered as points of departure (PODs) for potential
- 31 Reference Dose (RfD) development:
- Relative liver weight increase 5,585.5 ng/ml (Dong et al., 2009)
 - Hepatocellular hypertrophy 4,560.8 ng/ml (Butenhoff et al., 2012)

For two other endpoints, BMD modeling did not yield a valid POD. The PODs for these studieswere based on the NOAELs:

- Relative liver weight increase 4,350 ng/ml NOAEL (Dong et al., 2012a)
 - Decreased plaque-forming cell response 674 ng/ml NOAEL (Dong et al., 2009)
- 3 There were PODs for relative liver weight from two studies, both from the same laboratory
- 4 (Dong et al., 2009; Dong et al., 2012a). The POD from Dong et al. (2012a) was lower than the
- 5 POD from Dong et al. (2009) and was therefore carried forward for RfD development.
- 6 Dose-response analysis for hepatocellular tumors is presented in the section on <u>Estimation of</u>
 7 Cancer Risk from PFOS in Drinking Water below.

8 Health-based MCL Derivation

9 The following graphic describes the process followed in criterion derivation.

10

2

- 11 Figure E-2. Graphical representation of representation of the approach used to derive the Health-based
- 12 MCL
- 13
- 14 Non-Cancer Endpoints
- 15 Development of Target Human Serum Levels and Reference Doses
- 16 Target Human Serum Levels are analogous to Reference Doses (RfDs) but in terms of internal
- 17 dose rather than administered dose. While Reference Doses (RfDs) are developed by applying
- 18 uncertainty factors (UFs) to PODs (NOAELs, LOAELs, or BMDLs) based on administered dose

1 (mg/kg/day), Target Serum Levels are developed by applying UFs are applied to POD serum

- 2 concentrations.
- 3 For each of the three candidate non-cancer PODs, a UF of 3 was applied to account for
- 4 interspecies differences in toxicodynamics. The typical UF of 3 for toxicokinetic variability
- 5 between species was not included because the risk assessment is based on comparison of internal
- 6 dose (serum levels) rather than administered dose. In addition, for each of the candidate studies
- 7 the default UF of 10 was applied to account for potential differences in sensitivity to PFOS
- 8 among humans including sensitive sub-populations. These two UFs result in a total UF of 30.
- 9 For the POD for increased liver weight, a UF of 3 was also applied. This POD was derived
- 10 from a study that was of less than chronic duration, and longer duration exposures could
- 11 potentially result in the same or additional effects at lower doses. Since two UFs of 3 are
- 12 considered to be equivalent to a UF of 10, the additional UF of 3 applied to this endpoint yielded
- 13 a total UF of 100.
- 14 Although the POD for decreased plaque forming cell response is from a subchronic study, a UF
- 15 for the less than chronic duration of the endpoint was not applied because the dose-response for

16 this effect was similar in several studies of shorter duration. This suggests that this effect does

- 17 not become more severe or occur at lower internal doses with longer durations of exposure.
- The following table shows the POD, total UF and Target Human Serum Level for each of theseendpoints.

Table E-1. Calculation of Target Human Serum Levels				
Study	Animal POD _{serum} (ng /ml)	UFTOTAL	Target Human Serum Level (ng/ml)	
Butenhoff et al. (2012)	4,561	30	152	
(Hepatocellular hypertrophy)				
Dong et al. (2012a)	4,350	100	43.5	
(Increased relative liver weight)				
Dong et al. (2009)	674	30	22.5	
(Decreased plaque forming cell				
response)				

- 20
- 21 Deriving an RfD as a human intake dose that corresponds to the Target Human Serum Level at
- steady state requires a constant that relates the two parameters. This constant is referred to as the
- 23 Clearance Factor (CL). USEPA derived a CL for PFOS of 8.1×10^{-5} L/kg/day based on
- 24 empirical data. This value was used to derive the RfD for each of the candidate studies.

25 The following table shows the Target Human Serum Level and corresponding RfD for each of

26 the candidate studies after application of the CL.

Study	Target Human Serum Level (ng/ml)	RfD (ng/kg/day)	RfD (mg/kg/day)
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	152	12.3	1.23 x 10 ⁻⁵
Dong et al. (2012a) (Increased relative liver weight)	43.5	3.5	3.5 x 10 ⁻⁶
Dong et al. (2009) (Decreased plaque forming cell response)	22.5	1.8	1.8 x 10 ⁻⁶

1

2 <u>Relative Source Contribution Factor (RSC)</u>

3 A Relative Source Contribution (RSC) factor that accounts for non-drinking water sources

4 including food, soil, air, water, and consumer products is used by USEPA, NJDEP, and the

5 DWQI in the development of health-based drinking water concentrations based on non-

6 carcinogenic effects. The default value for the RSC is 20%, meaning that 20% of total exposure

7 is assumed to come from drinking water and 80% from non-drinking water sources. If supported

8 by available data, a higher chemical-specific value (up to 80%) can be used. The Health Effects

9 Subcommittee concluded that there are insufficient data to develop a chemical-specific RSC for

10 PFOS. USEPA UCMR3 monitoring shows that PFOS occurs (at concentrations greater than 40

11 ng/L) more frequently in PWS located throughout New Jersey (3.4%) than nationwide (1.9%),

12 and PFOS has also been found in additional NJ PWS in NJDEP occurrence studies and other

13 data reported to NJDEP.

14 There are no New Jersey-specific biomonitoring data for PFOS, and the more frequent

15 occurrence in NJ PWS suggests that New Jersey residents, particularly in communities with

16 contaminated drinking water, may also have higher exposures from non-drinking sources, such

17 as contaminated soils, house dust, or other environmental media, than the U.S. general

18 population. Importantly, residents may be exposed through consumption of recreationally

19 caught fish from contaminated waters.

20

Additionally, the default RSC of 20%, while not explicitly intended for this purpose, also

22 partially accounts for the greater exposures to infants who are breast-fed or consume formula

23 prepared with contaminated drinking water, as compared to older individuals. These higher

24 exposures during infancy must be considered because short term exposures to infants are

25 relevant to the most sensitive effect (decreased immune response). Therefore, the default RSC

26 of 20% was used to develop the Health-based MCL.

- 27
- 28

- 1 <u>Potential Health-based MCLs (Health-based Maximum Contaminant Levels)</u>
- 2 The Health-based MCL is calculated based on the following equation, using default exposure
- 3 assumptions of 2 L/day drinking water consumption, 70 kg adult body weight, and 20% (0.2)
- 4 Relative Source Contribution (RSC).
- 5

6
$$MCL(ng/L) = \left(\frac{RfD(ng/kg/day) \times Body weight(kg)}{Daily drinking water intake(L/day)}\right) \times RSC$$

7 For each of the three candidate endpoints, the following table gives the RfD and corresponding

8 potential Health-based MCL.

Table E-3. Calculation of Potential Health-based MCLs					
Study	Endpoint	RfD (ng/kg/day)	Health-based MCL (ng/L = ppt)		
Butenhoff et al. (2012)	Hepatocellular hypertrophy	12.0	84		
Dong et al. (2012a)	Increased relative liver weight	3.5	25		
Dong et al. (2009)	Decreased plaque forming cell response	1.8	13		

9

10 Health-based MCL

- 11 The Health-based MCL of 13 ng/L value based on decreased plaque forming cell response from
- 12 Dong et al. (2009) is the lowest of the potential Health-based MCLs for non-carcinogenic effects.
- 13 This endpoint is an appropriate basis for the Health-based MCL because of the clear
- 14 toxicological relevance of decreased immune response to foreign antigens and the substantial
- 15 epidemiological evidence for the association of decreased vaccine response with general
- 16 population level exposure to PFOS. Due to the uncertainties associated with the cancer risk
- 17 assessment of PFOS (discussed below), the non-cancer endpoint (immune system toxicity) was
- 18 judged to be the most appropriate basis for the Health-based MCL.

19 Estimation of cancer risk from PFOS in drinking water

- 20 The Health Effects Subcommittee concluded that PFOS is most appropriately described as
- 21 having "Suggestive Evidence of Carcinogenic Potential," and that estimated cancer risks for
- 22 PFOS are too uncertain for use as the basis of a Health-based MCL. The only chronic study of
- 23 PFOS reported an increased incidence of liver and thyroid tumors in rats (Butenhoff et al., 2012).
- 24 The hepatocellular tumor data is appropriate for dose-response analysis to develop a cancer slope
- 25 factor, while the thyroid tumor data could not be used for cancer slope factor development. The
- 26 cancer risk estimates were based on data from female rats, since the cancer slope factor for male
- 27 rats is highly uncertain because liver tumors occurred only in the high dose group, while they
- 28 occurred in all dosed groups in females.

- 1 The cancer potency factor for hepatocellular tumors in female rats was $9.0 \times 10^{-6} (ng/kg/day)^{-1}$.
- 2 Among the uncertainties associated with the cancer slope factor for liver tumors in females are
- 3 uncertainties regarding inclusion of the recovery group data in dose-response analysis and
- 4 uncertainties about the dose metric based on AUC serum levels.
- 5 The lifetime cancer risk at the recommended Health-based MCL of 13 ng/L, based on default
- 6 assumptions for body weight (70 kg) and drinking water consumption (2 L/day), was estimated
- 7 as $3 \ge 10^{-6}$ (3 in one million)
- 8
- 9 The estimated cancer risk of 3 in one million is slightly above the cancer risk goal for New
- 10 Jersey MCLs of one in one million. DWQI and the NJ Drinking Water Quality Institute have a
- 11 policy of applying an additional uncertainty factor of 10 to an RfD for a non-cancer endpoint to
- 12 account for potential cancer risk when a cancer potency factor (slope factor) is not available or is
- 13 considered uninformative. However, since the estimated cancer risk at the Health-based MCL
- based on a sensitive non-carcinogenic effect is close to the New Jersey cancer risk goal of one in
- 15 one million, application of this uncertainty factor is not necessary.
- 16

17 **Potential for additive toxicity with other PFCs**

- 18 The Health Effects Subcommittee notes that available information indicates that the target organs
- 19 and modes of action may be generally similar for PFOS and some other PFCs. Therefore, the
- 20 toxicity of PFOS and other PFCs may be additive. Although PFOS and other PFCs are known to
- 21 co-occur in some NJ public water supplies, the potential for additive toxicity of PFOS and other
- 22 PFCs was not considered in development of the Health-based MCL.

23 The recommended Health-based MCL is 13 ng/L (0.013 μ g/L).

- 24
- 25
- 26
- 27

1 INTRODUCTION

2

3 Development of Health-based MCLs by New Jersey Drinking Water Quality Institute

- 4 The New Jersey Drinking Water Quality Institute (DWQI) was established by the 1984
- 5 amendments to the New Jersey Safe Drinking Water Act (SDWA) at N.J.S.A. 58:12A-20. It is
- 6 charged with developing standards (Maximum Contaminant Levels; MCLs) for hazardous
- 7 contaminants in drinking water and for recommending those standards to the New Jersey
- 8 Department of Environmental Protection (NJDEP). The Health Effects Subcommittee (formerly
- 9 "Lists and Levels Subcommittee") of the DWQI is responsible for developing health-based
- 10 drinking water levels (Health-based MCLs) as part of the development of MCL
- 11 recommendations (e.g. DWQI, 1987; 1994; 2009; 2015a; 2017).
- 12
- 13 Health-based MCLs are based on the goals specified in the 1984 Amendments to the NJ SDWA.
- 14 For carcinogens, it is generally assumed that any level of exposure results in some level of
- 15 cancer risk, and a one in one million (10^{-6}) risk level from lifetime exposure is specified in the
- 16 statute. Health-based MCLs for carcinogens are thus set at levels that are not expected to result
- 17 in cancer in more than one in one million persons ingesting the contaminant for a lifetime. For
- 18 non-carcinogenic effects, it is generally assumed that exposure below a threshold level will not
- 19 result in adverse effects. As specified in the statue, Health-based MCLs are set at levels which
- 20 are not expected to result in "any adverse physiological effects from ingestion" for a lifetime.
- 21 The risk assessment approach used to develop Health-based MCLs is generally consistent with
- 22 USEPA risk assessment guidance.
- 23 Other factors such as analytical quantitation limits and availability of treatment removal
- technology are also considered in the final MCL recommendation. For carcinogens, the 1984
- 25 Amendments to the NJ SDWA require that MCLs are set as close to the one in one million
- 26 lifetime risk goal as possible "within the limits of medical, scientific and technological
- 27 feasibility." For non-carcinogens, MCLs are set as close to the goal of no adverse effects as
- 28 possible "within the limits of practicability and feasibility."
- 29 To support the development of an MCL recommendation by the DWQI, the Health Effects
- 30 Subcommittee has developed a draft Health-based Maximum Contaminant Level for PFOS. As
- 31 specified in the 1984 Amendments to the NJ SDWA, this Health-based MCL is intended to be
- 32 protective for chronic (lifetime) drinking water exposure.

33 Document Development Process

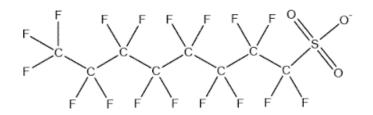
34 Timeline

- 35 On March 21, 2014, New Jersey DEP Commissioner Bob Martin requested that the DWQI
- 36 recommend MCLs for three perfluorinated compounds: perfluorononanoic acid (PFNA, C9),
- 37 PFOA, and perfluorooctane sulfonic acid (PFOS). The Health Effects Subcommittee

- 1 commenced its evaluation of PFOS after completing its work on PFNA and PFOA (DWQI,
- 2 2015a; 2017).
- 3 The 1984 Amendments to the New Jersey Safe Drinking Water Act provide that the services of
- 4 employees of New Jersey state agencies are to be available to the DWQI. As such, NJDEP staff
- 5 have historically developed initial drafts of DWQI Health-based MCL Support Documents
- 6 (DWQI, 1987; 1994), as well as providing ongoing technical support to other DWQI
- 7 Subcommittees. Accordingly, toxicologists from the NJDEP Division of Science, Research and
- 8 Environmental Health (DSREH) completed an initial draft risk assessment for chronic exposure
- 9 to PFOS in drinking water in 2017. The current document was developed by the Health Effects
- 10 Subcommittee based on review of the earlier DSREH document. The literature search and
- 11 screening process used to develop the Health-based MCL Support Document is described below.

12 Literature Search and Screening

- 13 A comprehensive literature search was conducted for literature published through the end of
- 14 2014 using the PubMed and Toxline databases and was updated with relevant literature through
- 15 2016. Additional databases or websites of other state, federal, and international regulatory or
- 16 authoritative health entities were searched for relevant references. This literature search aimed to
- 17 identify all references relevant to health effects of PFOS in animals or humans. Detailed
- 18 documentation of the database and website literature searches can be found in Appendix 1
- 19 (Tables A-1 and A-2).
- 20 Approximately 2860 references were identified from the literature search. These references were
- 21 manually screened (i.e., by title, abstract and/or full text) for relevance to the areas of hazard
- 22 identification, toxicity value derivation, or human exposure to determine whether they provided
- 23 information on at least one of the following: effects in animals or humans; toxicokinetics;
- 24 exposure to humans; or mode of action. References considered relevant to informing these areas
- 25 were selected for further consideration during the preparation of this document. Table A-3 in
- 26 Appendix 1 describes the criteria used to decide whether each reference will be further
- considered or excluded.
- 28 Backward searches (i.e., searches of citations to identified previously unidentified references) of
- 29 selected key references (i.e., review articles or health assessments published from 2012 onwards)
- 30 identified from the literature screening were employed to augment the database and website
- 31 searches (Appendix 1, Table A-4).
- 32 Based on this screening, approximately 700 references were ultimately considered as potentially
- 33 useful for the assessment of the health effects of PFOS. Some references that were excluded as
- 34 not being relevant to hazard identification, toxicity values derivation, or human exposure were
- 35 used to inform supporting sections of this assessment, such as the "Background Information" and
- 36 "Environmental Sources, Fate, and Occurrence" sections.


- 1 Additional references, including general background references (e.g., review articles) not
- 2 specific to PFOS but germane to relevant scientific issues, guidance documents, and other health
- 3 assessments not identified from the above literature search, were identified based on previous
- 4 knowledge or *ad hoc* literature or website searches.
- 5 Figure A-1 in Appendix 1 summarizes the results of the literature search and screening.
- 6

7 BACKGROUND INFORMATION

- 8 PFOS is a member of a class of anthropogenic chemicals called perfluorinated chemicals (PFCs)
- 9 or perfluoroalkyl acids (PFAAs). These chemicals have structures consisting of a totally
- 10 fluorinated carbon chain of varying length and a charged functional group, such as carboxylate
- 11 or sulfonate (Lindstrom et al., 2011). PFCs are members of a larger class of compounds, poly-
- 12 and perfluoroalkyl substances (PFAS) which also includes fluorinated compounds with
- 13 structures that differ from PFCs (Buck et al., 2011). The eight- carbon PFCs, PFOA and PFOS,
- 14 were the most extensively investigated compounds in earlier studies, while current research
- 15 focuses on a wider range of PFAS.
- 16

17 Physical and Chemical Properties

- 18 ATSDR (2015) and USEPA (2016a) have summarized the physical and chemical properties of
- 19 PFOS. The backbone of the PFOS molecule is an eight-carbon chain that is fully fluorinated
- 20 except for a terminal carbon, two of whose available bonds are fluorinated and the remaining
- 21 bond of which forms a sulfonate. PFOS has a molecular weight of 500.03 Da, and its molecular
- 22 structure of PFOS:
- 23

24

The fluorocarbon portion of the molecule is hydrophobic and lipophilic. However, the sulfonate end of the molecule is hydrophilic. The combination of these properties allows PFOS to bridge

- 27 lipid/water interfaces and to act as a surfactant. PFOS is a fully fluorinated sulfonic acid.
- 28 Because carbon-fluorine bonds are among the strongest found in organic chemistry due to
- 29 fluorine's electronegativity, PFOS and other PFCs are extremely stable and resistant to chemical
- 30 reactions. Therefore, PFOS is extremely stable in the environment, and it is resistant to
- 31 biodegradation, direct photolysis, atmospheric photooxidation, and hydrolysis. Its melting
- 32 temperature is \geq 400°C. The potassium salt of PFOS is relatively soluble in water (570 mg/L
- 33 (ATSDR, 2015); 680 mg/L (USEPA, 2016a). Its vapor pressure is very low, and has been
- reported variously as 2.48 x 10^{-6} mm Hg at 20° C (ATSDR, 2015) and 2.0 x 10^{-3} mm Hg at 25° C

- 1 (USEPA, 2016a). The octanol-water partition coefficient (log K_{ow}) for PFOS is not measurable
- 2 (USEPA, 2016b). Its pK_a is reported as <1 (PubChem, 2017).

3 **Production and Use**

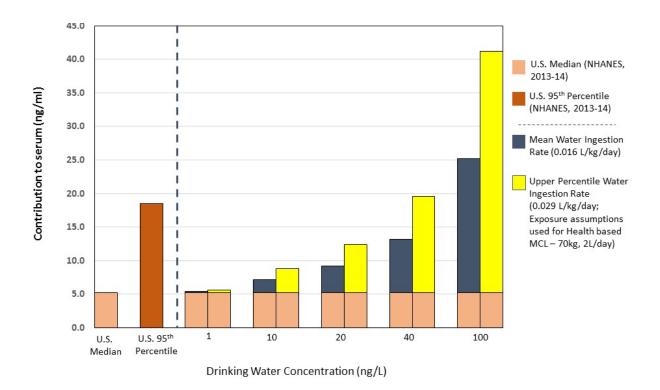
- 4 The main worldwide producer of PFOS began production of "PFOS equivalents" (PFOS and/or
- 5 starting materials such as perfluorooctane sulfonyl fluoride [POSF] that are used to produce to
- 6 PFOS) in 1949 and completed phasing out the manufacture of these compounds in 2002
- 7 (Lindstrom et al., 2011). In 1994 and in 2002, the U.S. production of PFOS as reported in the
- 8 USEPA Inventory Update Rule was 10,000-500,000 lbs (ATSDR, 2015). USEPA has also taken
- 9 several actions (Significant New Use Rules; SNURs) to require EPA notification and review of
- 10 the manufacture or import of a number of chemicals that related to PFOS or can degrade to
- 11 PFOS, with exceptions for "a few specifically limited, highly technical uses of these chemicals
- 12 for which no alternatives were available, and which were characterized by very low volume, low
- 13 exposure, and low releases." (USEPA, 2017). As of the 2015 ATSDR review, the only country
- 14 still producing PFOS was China.

15 Many of the uses of PFOS stem from its surfactant properties and from its ability to repel both

water and fats/oils. The USEPA (2016a) reports the following as among the significant uses ofPFOS:

- 18 Stain/water repellants on clothing, bedding materials, upholstered furniture, carpets, • 19 and automobile interiors (e.g., ScotchGardTM); these materials can be a particularly 20 important exposure route for infants and children because of their hand-to-mouth 21 behaviors. 22 • Metal plating and finishing (continuing use) 23 • AFFF (continuing use; used for firefighting) 24 • Photograph development (continuing use) 25 • Aviation fluids (continuing use)
- Semiconductor industry
- Flame repellants
 - Food containers and contact paper
- Oil and mining
- 30• Cleaning products
- Paints, varnishes, sealants
- **32** Textiles and leather
- 33

28


- 34 Of particular note on this list, is the use of PFOS in AFFF. Whereas the U.S. no longer produces
- 35 or imports PFOS-based AFFF, the use of existing stocks of these foams continues (Seow, 2013).
- 36 As discussed in the section on Environmental Fate and Transport, discharge of AFFF to the
- 37 environment is a major source of PFOS drinking water contamination.

38

4

1	GUIDANCE AND STANDARDS DEVELOPED BY USEPA AND OTHER STATES
2	
3	USEPA Drinking Water Health Advisory
4	In May 2016, the USEPA Office of Water finalized a drinking water Health Advisory for PFOS
5	of 70 ng/L (USEPA, 2016a). This Health Advisory is intended to apply to both lifetime
6	exposure and short-term exposure. It replaces the earlier 2009 USEPA Office of Water (USEPA,
7	2009) Provisional Health Advisory for PFOS of 200 ng/L which was intended to protect for
8	"short-term exposure" (defined by the USEPA Integrated Risk Information System (IRIS) as up
9	to 30 days; USEPA, 2011a).
10	
11	USEPA (2016c) also finalized a Health Advisory for PFOA of 70 ng/L, and USEPA (2016d)
12	states that the total combined concentration of PFOS and PFOA in drinking water should not
13	exceed 70 ng/L.
14	
15	A detailed discussion of the basis for the USEPA (2016a) Health Advisory for PFOS and a
16	comparison with the recommended DWQI Health-based MCL are provided in Appendix 2. In
17	summary, the USEPA Health Advisory is based on a Reference Dose (RfD) of 20 ng/kg/day
18	based on decreased neonatal body weight in the F_2 generation (Luebker et al., 2005a). The
19	default Relative Source Contribution factor of 20% was used to account for non-drinking water
20	exposures. The USEPA Health Advisory uses a drinking water consumption rate of 0.054
21	L/kg/day, based on the 90 th percentile for lactating women, which is higher than the default
22	consumption rate based on adult exposure factors.
23	
24	Figure 1 shows the predicted increases in serum PFOS levels from ongoing exposure in drinking
25	water at the USEPA Health Advisory (70 ng/L) and the Health-based MCL (13 ng/L)
26	recommended in this document. Predictions based on both average (0.016 L/kg/day) and upper
27	percentile (0.029 L/kg/day) drinking water ingestion rates are shown. A clearance factor (1.4 x
28	10 ⁻⁴ L/kg/day) developed by USEPA (2016d) to relate human PFOS exposures to human serum
29	PFOS levels was used to predict the increases in serum PFOS from exposures to these levels in
30	drinking water. With average water consumption, ongoing exposure to 70 ng/L (the USEPA
31	Health Advisory) is predicted to increase serum PFOS by 13.8 ng/ml, a 3.7-fold increase from
32	the U.S. general population (NHANES) median of 5.2 ng/ml (CDC, 2017). With upper percentile
33	water consumption, the increase in serum PFOS level from 70 ng/L is predicted as 25.1 ng/ml,

34 resulting in a 5.8-fold increase from the general population (NHANES) median.

3 Figure 1. Increases in the median U.S. serum PFOS concentration (right of dotted line) predicted

- 4 from mean and upper percentile consumption of drinking water for PFOS concentrations in
- 5 drinking water at the Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L)
- 6 levels, as compared to U.S median and 95th percentile serum PFOS levels (NHANES, 2013-14).
- 7 Mean and upper percentile water ingestion rates are based on consumers of community water
- 8 (USEPA, 2011b). The upper percentile consumption rate is between the 75th and 90th percentile.
- 9

10 **<u>Guidance and standards of other states</u>**

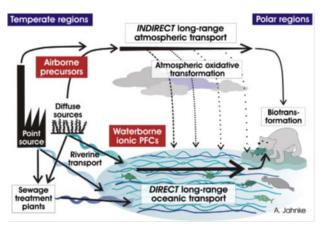
- 11 Vermont has adopted drinking water and ground water standards (Vermont DEC, 2017) for
- 12 PFOS, PFOA, and the total of the two compounds of 20 ng/L. These Vermont values are based
- 13 on the Reference Dose (RfD) of 2×10^{-5} mg/kg/day from the draft USEPA (2014) PFOS Health
- 14 Advisory (which is the same as the RfD in the final USEPA [2016a] PFOS Health Advisory),
- 15 drinking water exposure assumptions for a child less than 1 year of age (instead of default adult
- 16 exposure assumptions), and the default Relative Source Contribution (RSC) factor of 20%.
- 17
- 18 Minnesota Department of Health (2017) has updated its earlier Health Risk Limit (HRL) for
- 19 PFOS in drinking water to 27 ng/L. This value is based on a Reference Dose of 5.1 ng/kg/day
- 20 and exposure modeling for breast-fed and formula-fed infants. The Reference Dose was derived
- 21 by incorporation of an additional database uncertainty factor of 3, for potentially more sensitive
- 22 immunotoxic effects, into the USEPA PFOS Reference Dose which is based on decreased
- 23 offspring weight as described above.
- 24

1 Several other states use the USEPA (2016) Health Advisory of 70 ng/L for PFOS, PFOA, or the

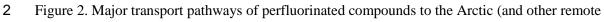
- 2 total of both compounds as drinking water guidance or have adopted it as an enforceable
- 3 standard.

5 ENVIRONMENTAL FATE, TRANSPORT, AND OCCURRENCE

6


4

7 <u>Environmental Fate and Transport</u>


- 8 PFOS and other perfluorinated compounds are found in many environmental media (e.g.
- 9 drinking water, surface water, groundwater, air, sludge, soils, sediments, outdoor and indoor
- 10 dust, and ice caps) in locations around the world including remote polar regions (Lau et al.,
- 11 2007). PFOS in these environmental media arises from discharges of both PFOS and precursors
- 12 that can convert to PFOS in the environment (Paul et al., 2017). Because of the extreme stability
- 13 of their carbon-fluorine bonds, PFOS and other PFCs are extremely resistant to degradation in
- 14 the environment and thus persist indefinitely (Buck et al., 2011; Lindstrom et al., 2011).
- 15 Although the production of PFOS and its starting materials (e.g., perfluorooctanesulfonyl
- 16 fluoride, POSF) were voluntarily phased-out by the major global manufacturer of PFOS (USEPA
- 17 2000a), environmental contamination and resulting human exposure to PFOS are anticipated to

18 continue for the foreseeable future due to its environmental persistence, formation from precursor

- 19 compounds, and continued production by other manufacturers.
- 20 PFOS has been found in soil, surface water, and groundwater near fluorochemical manufacturing
- 21 facilities and disposal sites (USEPA, 2016a). Similarly, PFOS contamination has been observed
- in soil, surface water, and groundwater near sites where AFFF was used, such as civilian and
- 23 military airports, industrial sites, and firefighting training facilities (Health Canada, 2016;
- 24 USEPA, 2016a). Wastewater treatment plants are another source of PFOS to the environment as
- 25 PFOS has been detected in treatment plant effluent and receiving waters (Health Canada 2016;
- 26 USEPA, 2016a). Additionally, the land application of PFOS-containing biosolids from
- 27 wastewater treatment plants has resulted in the contamination of agricultural fields and nearby
- surface and well water (USEPA, 2016a).
- 29 Two major pathways have been proposed for long-range transport of PFOS and other
- 30 perfluorinated compounds to remote locations worldwide, including the Arctic (Figure 2; Lau et
- al., 2007, 2012; Butt et al., 2010). The relative contributions of each of these pathways are not
- 32 known. The first pathway involves the atmospheric transport of volatile precursors such as
- 33 perfluorinated sulfonamide alcohols, followed by oxidation of the precursors to PFOS and other
- 34 perfluorinated compounds which are then deposited onto the land or the water. The second
- 35 pathway involves long-range aqueous transport of emitted perfluorinated sulfonates such as
- 36 PFOS in their anionic forms to remote locations by currents on the ocean's surface.
- 37

1

- 3 locations), by Annika Jahnke (Butt et al., 2010)
- 4

5 Perfluorinated compounds are also found in wildlife (fish, birds, mammals) in studies from many

- 6 locations throughout the world including in remote polar regions. PFOS and long chain
- 7 perfluorocarboxylates (e.g., PFNA; perfluoroundecanoic acid, C11; perfluorotridecanoic acid,
- 8 C13) generally predominate in wildlife in remote locations (Butt et al., 2010). PFOS and other
- 9 PFCs with eight or more fluorinated carbons (e.g. PFNA) are considered to be bioaccumulative
- 10 in fish, while those with seven or fewer fluorinated carbons (e.g. PFOA; perfluorohexane
- 11 sulfonate, PFHxS) do not bioaccumulate significantly (Martin et al., 2003; Conder et al., 2008).
- 12 Additionally, PFOS is more bioaccumulative than the perfluorocarboxylate of the same
- 13 fluorinated carbon chain length (i.e., PFNA) (Conder et al., 2008). In fish, PFOS is the PFC
- 14 found most frequently and at the highest concentrations (Houde et al., 2011), although long chain
- 15 perfluorocarboxylates are frequently reported. USEPA conducted a national study of PFCs in
- 16 fish from 164 urban rivers in 38 states in 2008-09 (Stahl et al., 2014). PFOS was detected
- 17 (>5.35 ppb) in 70% of 162 composite samples of 682 fish (skin-on fish fillets; 25 species
- 18 represented with the majority smallmouth bass, largemouth bass, and channel catfish). The
- 19 highest level detected was 127 ppb. PFOS levels in fish can be extremely high (i.e. > 9000 ppb;
- 20 9 ppm) in locations impacted by major contamination (e.g. Wurtsmith AFB, MI MDHHS,
- 21 2015; Barksdale AFB, LA Lanza et al., 2017).

22 Occurrence in drinking water

- 23 PFOS and other PFCs occur in raw and finished drinking water from both groundwater and
- surface water sources in New Jersey, other parts of the United States, and nations around the
- world (reviewed by Mak et al., 2009; Post et al., 2013; Hu et al., 2016). As discussed above,
- sources of PFOS in drinking water can include discharges from industrial facilities, release of
- 27 AFFF, wastewater treatment plant effluent, and contaminated biosolids applied to agricultural
- 28 land.
- 29
- 30 PFOS and other PFCs are not effectively removed from drinking water by standard treatment
- 31 processes such as coagulation/flocculation, sand filtration, sedimentation, medium-pressure

- 1 ozonation, chloramination, and chlorination. However, PFOS and other PFCs can be removed
- 2 from drinking water by granular activated carbon (GAC) or reverse osmosis (Rumsby et al.,
- 3 2009, Tagaki et al., 2011; Eschauzier et al., 2012; Appleman et al., 2014; DWQI, 2015b).
- 4 Therefore, unless specific treatment for removal of PFCs is in place, concentrations of PFOS and
- 5 other PFCs detected in raw drinking water are representative of concentrations in finished
- 6 drinking water (Post et al., 2013).
- 7

8 Occurrence in New Jersey drinking water

- 9 Considerable information is available on the occurrence of PFOS and other PFCs in New Jersey
- 10 public water systems (PWS). This includes data from 53 PWS included in two NJDEP
- 11 occurrence studies of PFCs, substantial additional data submitted to NJDEP by PWS and other
- 12 parties, and data from the nationwide USEPA Unregulated Contaminant Monitoring Rule 3
- 13 (UCMR3) survey. For the two NJDEP occurrence studies and most of the additional data
- 14 submitted to NJDEP, analysis of samples was performed by certified laboratories with Reporting
- 15 Levels (RLs) that were generally 4-5 ng/L or lower. To the knowledge of the Health Effects
- 16 Subcommittee, statewide drinking water studies of PFOS with sensitive RLs such as these have
- 17 not yet been completed in states other than New Jersey. In contrast, the RL for PFOS in USEPA
- 18 UCMR3 is much higher (40 ng/L).
- 19
- 20 <u>NJDEP studies of occurrence in New Jersey public water systems</u>
- 21 Following detection of PFOA in a New Jersey PWS at up to 190 ng/L in a groundwater source
- and up to 64 ng/L in tap water, two statewide studies of the occurrence of PFOA, PFOS, and
- 23 other PFCs in drinking water were conducted by NJDEP in 2006 and 2009-10. The 2006 study
- tested 23 PWS for PFOA and PFOS, and the 2009-10 study tested 33 additional PWS for PFOA,
- 25 PFOS, and eight other PFCs (NJDEP, 2007b; NJDEP, 2014; Post et al., 2009a; Post et al., 2013).
- 26
- 27 The 2006 NJDEP study included 29 samples of raw and/or finished water from 23 NJ PWS
- 28 including 14 with groundwater sources, 8 with surface water sources, and one using both
- 29 groundwater and surface water. Of the PWS in this study, PFOS was detected in both surface
- 30 water and ground water sources, with the highest detected concentration of 19 ng/L. It was
- found in 7 of 23 systems (30%) at or above the RL (4 ng/L), and in 6 of 23 systems (27%) below
- 32 the RL. In this study, PFOA was detected (>4 ng/L) more frequently (65% of PWS) than PFOS
- 33 (NJDEP, 2007; Post et al., 2009a).
- 34
- 35 The 2009-2010 NJDEP study tested raw water from 30 PWS for PFOA, PFOS, and 8 other
- 36 PFCs. The sites for this study were chosen for geographic diversity, representing 19 of NJ's 21
- 37 counties. The study included 18 PWS with groundwater sources (17 unconfined, one confined)
- and 12 PWS with surface water sources. One or more PFC was detected (>5 ng/L) at 21 sites
- 39 (70%), with the number of individual compounds detected varying from one (in 8 samples) to a
- 40 maximum of 8 in one sample. PFOS was found in 8 of 29 PWS sampled (28%), including in 5

- of 18 ground water sources (28%) at up to 12 ng/L and 3 of 11 surface water sources (27%) at up 1
- 2 to 43 ng/L. As in the 2006 study, PFOA was the most commonly detected PFC (55% of the
- 3 PWS tested).
- 4
- 5 NJDEP database of PFCs in New Jersey public water systems
- 6 The NJDEP Division of Science, Research, and Environmental Health maintains an internal
- 7 database of PFC results from NJ PWS including the two NJDEP occurrence studies, additional
- 8 raw and finished water data submitted to NJDEP by PWS and other parties, and detections from
- 9 UCMR3 data. As of January 2016, the database included 1035 samples (423 raw water, 549
- 10 finished water, and 63 distribution system) from 282 sampling locations in 80 PWS (including
- 11 72 PWS with data from NJDEP studies and/or submitted to NJDEP, and 8 additional PWS with
- 12 PFC detections in UCMR3). Of these samples, 374 were analyzed for only PFOA and PFOS,
- 13 and 661 were analyzed for a broader suite of PFCs.
- 14

Table 1. PFOS concentration in included in NJDEP database*	raw or finished water	from PWS
PFOS Concentration (ng/L)	Number of PWS	% of PWS
ND**	44	57.89%
RL-<10**	14	18.42%
10-<20**	8	10.53%
20-<40**	3	3.95%
>40	7	9.21%

15 *Data shown are highest concentration found in raw or finished water from the PWS. Levels in finished water from some water 16 supplies included may be lower because several raw water sources are blended in the treatment plant.

17 **Reporting levels (RLs) vary among samples and range from 1-40 ng/L. Therefore, the percentage of PWS with RL-<10, 10-

- 18 <20, 20-<40 may actually be higher than shown.
- 19

20 Comparison of NJ occurrence to nationwide UCMR3 data and studies from other nations

21 Data on PFOS in PWS in New Jersey and nationwide is available through the USEPA UCMR3.

22 Under UCMR3, nationwide monitoring of finished water for 30 unregulated contaminants,

including PFOS and five other PFCs, was conducted in 2013–2015 by all large PWS (serving 23

24 more than 10,000 people) and 800 representative smaller PWS (serving less than 10,000 people)

25 (USEPA, 2012b). UCMR3 data therefore provide useful information on occurrence of PFCs in

NJ in comparison to the rest of the United States. However, comparison of the UCMR3 PFC 26

data with other New Jersey PFC occurrence data is complicated by the fact that the UCMR3 RLs 27

28 for PFOS (40 ng/L) and other PFCs (generally 10-90 ng/L) are much higher than the RLs for

- 29 other PFC data in the NJDEP database (generally < 5 ng/L).
- 30

31 UCMR3 monitoring in New Jersey includes all 165 large community PWS and a small number

- 32 of small community PWS. A comparison of national versus New Jersey PFC data from UCMR3
- is shown in Table 2 (data obtained from USEPA, 2016e). PFOS was detected (> 40 ng/L) in 6 33
- of 175 PWS tested at locations throughout the state, including PWS using ground water and 34

- 1 surface water sources. The occurrence frequency of PFOS in NJ PWS was 3.4%, which is
- 2 slightly higher than the national frequency of 1.9%. In contrast, PFOA and PFNA were found
- 3 much more frequently (5-10 fold) in NJ than nationally.
- 4

Table 2. New	Jersey versu	us national	UCMR3 PI	FC occurrent	e data as of	January 2	016
	Reporting		New Jersey	V	United States (other than NJ)		
Compound*	Level (RL) (ng/L)	Number of PWS	Number above RL	Percent above RL	Number of PWS	Number above RL	Percent above RL
PFOA	20	175	18	10.2 %	4734	90	1.9 %
PFNA	20	175	4	2.3 %	4734	10	0.2 %
PFHpA	10	175	6	3.4 %	4734	79	1.7 %
PFOS	40	175	6	3.4 %	4734	89	1.9 %
PFHxS	30	175	2	1.1 %	4734	53	1.1 %
PFBS	90	175	0	0 %	4734	8	0.2 %

- 5 *PFHpA perfluoroheptanoic acid (C7); PFBS perfluorobutane sulfonate
- 6
- 7 <u>Occurrence in NJ private wells</u>
- 8 A statewide study of PFOS or other PFCs in New Jersey private wells has not been conducted.
- 9 Information from the NJDEP Site Remediation Program shows that PFOS has been found at
- 10 levels above the USEPA Health Advisory (total of PFOA and PFOS of 70 ppt), and above the
- 11 recommended Health-based MCL (13 ng/L), in several private wells near New Jersey sites where
- 12 groundwater has been contaminated by PFOS through discharge of AFFF.
- 13

14 HUMAN BIOMONITORING

- 15 Human biomonitoring studies show that exposure to PFOS and/or its precursors is ubiquitous in
- 16 the U.S. and throughout the world. PFOS has a human half-life of several years and remains in
- 17 the body for many years after exposure ends. Data on blood serum concentrations from the
- 18 general population, communities with contaminated drinking water, and workers with
- 19 occupational exposure are summarized below. PFOS is detected in human breast milk, amniotic
- 20 fluid, and umbilical cord blood, demonstrating that exposure occurs during prenatal and postnatal
- 21 development, and it has also been detected in human seminal fluid.
- 22

23 <u>Blood serum</u>

24

25 General population

- 26 PFOS and other long chain perfluorinated chemicals are persistent in the human body and are
- 27 found ubiquitously in various world-wide populations. This topic was recently comprehensively
- reviewed by Kato et al. (2015). Through 2007-2008, PFOS was found in over 99% of a
- representative sample of the general U.S. population ages \geq 12 years old (Kato et al., 2011).

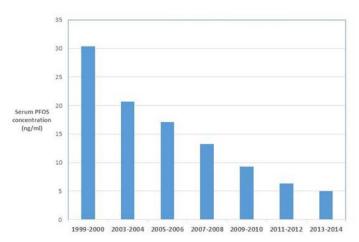

- 1 PFOS was also detected in essentially 100% of blood samples from individuals living in Asia,
- 2 Europe, and or South America (Kannan et al., 2004).
- 3
- 4 The U.S. Centers for Disease Control and Prevention (CDC) conducts an ongoing assessment of
- 5 health and nutrition of adults and children in the U.S., the National Health and Nutrition
- 6 Examination Survey (NHANES). NHANES generates data on demographic, socioeconomic,
- 7 dietary, and health-related parameters as well as medical, dental, and physiological
- 8 measurements, and laboratory tests. The data collected from NHANES is intended to provide a
- 9 cross-sectional view of selected health and nutrition data for the entire U.S. population. This is
- 10 accomplished by a complex sampling scheme that begins with 15 nationwide counties identified
- 11 on the basis of a series of characteristics and proceeds through selected areas in each county to
- 12 individual selected households (CDC, 2016). Because the 15 counties are selected to be
- 13 representative of pre-selected population and geographic characteristics rather than individual
- 14 states, the aggregate data generated provide an estimate that is intended to be generalizable to the
- 15 U.S. population, but is not necessarily specific to any given state (including New Jersey).
- 16 One component of NHANES has consisted of measurement of human exposure to selected
- 17 environmental chemicals (CDC, 2017). Measurement of exogenous substances in human media
- 18 is referred to as biomonitoring. This component analyzes blood and urine samples collected as
- 19 part of the larger NHANES effort to determine the concentration of these chemicals using state
- 20 of the art analytical methods and quality control procedures. Serum PFOS concentration data
- 21 have been included since 1999. The most currently available NHANES serum PFOS data are
- from 2013-2014 (CDC, 2017). The 2013-2014 NHANES serum PFOS data are provided for
- total PFOS, linear (n-PFOS), and branched PFOS isomers. Unless otherwise indicated, PFOS
 serum concentrations discussed in this document refer to total PFOS. Because the population
- 25 selected for NHANES is selected without reference to specific sources of PFOS exposure, it is
- 26 assumed that serum PFOS concentrations reported by NHANES reflect general population level
- 27 exposures. That is, they represent exposure to essentially ubiquitous levels of PFOS in the
- environment (e.g., from consumer products, food, soil, air, and water) and do not represent PFOS
- 29 exposure from specific sources of release (e.g. industrial facilities that made or used PFOS;
- 30 discharge of AFFF at airports, military bases, or fire training facilities). Table 3 presents a
- 31 summary of the 2011-2012 and 2013-2014 data taken from the NHANES Fourth Annual Report
- 32 on Human Exposure to Environmental Chemicals (CDC, 2017). In 2013-14, the median and 95th
- 33 percentile serum PFOS concentrations were 5.2 ng/L and 18.5 ng/L, respectively.
- 34
- 35
- 36

Table 3. Total serum PFOS concentrations reported by NHANES for 2011-2012 and 2013-	
2014 (CDC, 2017)	

	Survey years	Geometric mean (95% conf. interval)	50th Percentile (95% conf. interval)	75th Percentile (95% conf. interval)	90th Percentile (95% conf. interval)	95th Percentile (95% conf. interval)	Sample size
Total	11-12	6.31 (5.84-6.82)	6.53 (5.99-7.13)	10.5 (9.78-11.1)	15.7 (14.7-17.5)	21.7 (19.3-23.9)	1904
	13-14‡	4.99 (4.50-5.52)	5.20 (4.80-5.70)	8.70 (7.90-9.40)	13.9 (11.9-15.5)	18.5 (15.4-22.0)	2165
Age group							
12-19 years	11-12	4.16 (3.70-4.68)	4.11 (3.48-4.65)	5.90 (5.14-7.25)	9.05 (6.49-10.8)	10.8 (8.52-14.2)	344
	13-14‡	3.54 (3.17-3.96)	3.60 (3.10-4.20)	5.20 (4.60-6.20)	7.80 (7.00-8.90)	9.30 (7.90-11.7)	401
20 years and older	11-12	6.71 (6.24-7.20)	7.07 (6.65-7.52)	11.0 (10.4-11.9)	17.0 (15.3-18.5)	22.7 (20.4-24.8)	1560
	13-14‡	5.22 (4.70-5.81)	5.60 (5.10-6.00)	9.10 (8.20-10.2)	14.5 (12.9-16.1)	19.5 (15.8-23.0)	1764
Gender				. ,			
Males	11-12	7.91 (7.19-8.70)	8.31 (7.35-9.15)	12.5 (11.4-13.5)	19.3 (15.7-21.4)	24.1 (22.2-28.5)	966
	13-14‡	6.36 (5.62-7.20)	6.40 (5.70-7.30)	10.2 (8.70-11.5)	15.5 (13.2-19.8)	22.1 (16.7-26.9)	1031
Females	11-12	5.10 (4.70-5.53)	5.27 (4.67-5.64)	8.57 (7.87-9.30)	12.5 (11.0-14.9)	17.5 (14.9-20.5)	938
	13-14‡	3.96 (3.60-4.35)	4.00 (3.60-4.60)	7.20 (6.40-7.70)	11.8 (9.70-13.6)	15.1 (13.9-17.3)	1134
Race/ethnicity							
Mexican Americans	11-12	4.79 (4.07-5.64)	5.18 (3.92-6.33)	7.91 (6.18-9.48)	10.5 (8.50-12.6)	12.1 (10.0-14.4)	211
	13-14‡	3.47 (2.90-4.16)	3.70 (3.00-4.40)	5.20 (4.60-6.40)	8.80 (6.40-10.3)	10.8 (9.20-11.8)	332
Non-Hispanic blacks	11-12	6.35 (5.41-7.46)	6.57 (5.71-7.65)	11.3 (9.74-13.9)	21.8 (13.9-31.3)	30.7 (21.6-45.1)	485
	13-14‡	5.32 (4.12-6.88)	5.30 (4.30-6.80)	10.2 (7.60-13.7)	17.4 (12.4-24.5)	24.5 (16.3-39.7)	455
Non-Hispanic whites	11-12	6.71 (6.15-7.32)	6.83 (6.07-7.73)	10.7 (9.89-12.2)	15.7 (14.8-18.1)	21.3 (18.7-23.5)	666
	13-14‡	5.31 (4.72-5.98)	5.70 (5.10-6.40)	8.90 (8.20-9.90)	14.1 (12.2-15.6)	18.0 (15.5-20.4)	861
All Hispanics	11-12	4.63 (3.86-5.55)	5.18 (4.41-6.19)	8.10 (6.64-9.78)	11.0 (9.96-12.6)	13.4 (11.5-16.1)	406
	13-14‡	3.51 (3.09-3.98)	3.70 (3.20-4.20)	5.50 (4.90-6.40)	8.80 (8.00-9.70)	10.8 (9.70-12.1)	537
Asians	11-12	7.10 (5.80-8.68)	7.53 (5.96-9.25)	12.6 (10.8-17.0)	24.6 (19.1-33.3)	35.1 (26.4-42.3)	291
	13-14±	6.18 (5.08-7.52)	6.30 (5.00-7.90)	13.2 (9.40-15.4)	23.8 (15.2-33.9)	33.6 (20.1-69.0)	234

1

- 2 Figure 3 below presents the geometric mean serum PFOS concentration for the total NHANES
- 3 (CDC, 2017) biomonitoring population from the NHANES biomonitoring data from 1999-2000;
- 4 2003-2004; 2005-2006; 2007-2008; 2009-2010; 2011-2012; and 2013-2014.

- Figure 3. Geometric mean serum PFOS concentraton as reported by NHANES by reporting cycle, 1999-2014.
- 8

- 9 Starting from the first PFOS serum data collected under NHANES in 1999, the geometric mean
- 10 PFOS concentration for the total sample population has decreased continuously. The 2013-2014
- 11 value represents an approximately 84% decrease from 1999.

- 1 A similar pattern of decreasing serum PFOS concentrations over time was seen in three studies
- 2 of American Red Cross blood donors in 2000-2001, 2006, 2010, and 2015 (Olsen et al., 2017).
- 3 Each study included samples from 600-645 subjects from six locations throughout the U.S., with
- 4 an approximately equal number in each of five 10-year age categories (20-29 through 60-69
- 5 years of age) from each location. Age and sex-adjusted geometric means were 35.1 ng/ml in
- 6 2000-01, 14.5 ng/ml in 2006, 8.4 ng/ml in 2010, and 4.3 ng/ml in 2015. This represents an
- 7 approximately 88% decrease between 2000-01 and 2015.
- 8
- 9 For perspective, a phase-out of PFOS production was completed in 2002 by the principal
- 10 worldwide manufacturer of PFOS (ATSDR, 2015). However, manufacture of PFOS has
- 11 continued in some locations, primarily in China (ATSDR, 2015). As discussed above, NHANES
- 12 data are an estimate of the PFOS exposure in the U.S. as a whole and likely reflect relatively
- 13 ubiquitous and non-specific sources of exposure. It is not clear to what extent they can be
- 14 applied to any particular region or sub-population, including New Jersey. At present, PFOS
- 15 biomonitoring studies have not been conducted in the New Jersey population.

16 Communities with drinking water exposure

- 17 As shown in Figure 1, continued exposure to even relatively low concentrations of PFOS in
- 18 drinking water concentrations results in substantial increases in serum levels. The quantitative
- 19 relationship between drinking water exposure and human serum PFOS levels is discussed in the
- 20 <u>Toxicokinetics</u> section.
- 21

22 Mean and/or median PFOS serum levels were higher than in the general population in several

communities with drinking water contaminated by PFOS from industrial discharge and waste

disposal (MDH, 2013), contaminated biosolids applied to agricultural land (ATSDR, 2013), and

- use of AFFF (NH DHHS, 2015).
- 26

27 A recent study (Hurley et al., 2016) found substantially increased serum PFOS levels in

- 28 individuals served by PWSs reporting detection of PFOS in UCMR3 monitoring. PFOS
- 29 detections were relatively low, ranging from 41 ng/L (the UCMR3 RL=40 ng/L) to 156 ng/L,

30 with a mean of 58 ng/L. The study group consisted of middle aged and older California women

- 31 (n=1,333; 70% between 60 and 79 years of age). Of this group, 5.9% resided in a zipcode where
- 32 a PWS reporting detection of PFOS in UCMR3 monitoring is located. The distribution of serum
- 33 concentrations differed significantly (p = 0.0007) in those served by a PWS where PFOS was
- 34 detected ("exposed") as compared to those served by a PWS without a detection ("unexposed").
- 35 The median serum PFOS concentrations in the "exposed" group was 29% higher (9.11 ng/ml)
- than in the "unexposed" group (7.08 ng/ml). The authors note that the contribution of drinking
- 37 water to serum PFOS is actually likely to be greater than the increase reflected in the study
- 38 results. Some subjects who were been classified as "exposed" because their PWS reported
- 39 detection of PFOS may have received their drinking water from a point of entry (e.g. treatment
- 40 plant) within the PWS that is not contaminated with PFOS. Additionally, the serum PFOS levels

- 1 of some participants classified as "not exposed" may have been increased by PFOS in drinking
- 2 water at concentrations below the UCMR3 RL of 40 ng/L.
- 3

4 Occupationally exposed workers

- 5 Serum PFOS levels in workers at facilities where PFOS or its starting material POSF were made
- 6 or used were much higher than in the general population. Biomonitoring data from workers at
- 7 such facilities were reviewed by Olsen (2015). Mean or median serum concentrations of several
- 8 hundred ng/ml were reported for some job categories at some facilities, with maximum serum
- 9 concentrations of over 10,000 ng/ml (10 ppm).
- 10

11 Other human biological matrices

12 Seminal plasma

- 13 PFOS and other PFCs were found in human seminal plasma in a study of Sri Lankans. The mean
- 14 and median PFOS concentrations were 0.118 and 0.103 ng/ml, respectively, and PFOS sermina
- 15 plasma concentrations were significantly correlated with serum PFOS concentrations (Guruge et
- 16 al., 2005).
- 17

18 Amniotic fluid

- 19 PFOS was detected in amniotic fluid in a study in the United States (Stein et al., 2012). The
- 20 median blood serum:amniotic fluid concentration ratio was about 20:1.
- 21
- 22 <u>Umbilical cord blood serum and breast milk</u>
- 23 PFOS and other PFCs were detected in numerous studies of umbilical cord blood from the
- 24 general population worldwide, as reviewed by Kato et al. (2015) and MDH (2017). The ratio of
- 25 serum PFOS levels in cord blood:maternal blood in these studies was reported by Kato et al.
- 26 (2015) as about 0.5:1, and MDH (2017) reported that the average ratio in studies reviewed was
- 27 0.42:1. These lower levels in cord blood than maternal blood for PFOS, are in contrast to PFOA,
- 28 for which serum levels in cord blood and maternal blood were similar.
- 29

30 Breast milk

- 31 PFOS has been detected in human breast milk in studies from locations worldwide. ATSDR
- 32 (2015) summarized data from studies from Massachusetts, Sweden, Germany/Hungary, and
- 33 China published between 2006 and 2008. Concentrations in breast milk were generally similar
- in these studies from different parts of the world. PFOS was detected in almost all samples, with
- 35 minimum concentrations in the four studies ranging from <32 60 ng/L, and maximums ranging
- **36** from 360-639 ng/L.
- 37
- 38
- 39
- 40

1 SOURCES OF HUMAN EXPOSURE

- 2 The human body burden of PFOS results from exposure to both PFOS itself and to precursor
- 3 compounds such as perfluorooctane sulfonamidoethanols (FOSEs) and perfluorooctane
- 4 sulfonamides (FOSAs) used in consumer products that can be metabolized to PFOS. Sources of
- 5 exposure to PFOS and/or its precursors include food, drinking water, treated fabrics (carpets,
- 6 upholstery, and clothing), food packaging, house dust, and indoor air (USEPA, 2016a). Gebbink
- 7 et al (2015) assessed the daily exposure to PFOS arising from PFOS and PFOS precursors and
- 8 estimated that between 11 and 33% of daily PFOS exposure results from precursors that are
- 9 metabolized into PFOS.
- 10

11 **Food**

- 12 Egeghy and Lorber (2011), as reviewed by USEPA (2016a), suggest that food may be the
- 13 primary route of exposure to PFOS in the general U.S. population, and Gebbink et al. (2015) also
- 14 concluded that diet is the major pathway of exposure to PFOS. It appears that, in part, this is due
- 15 to the historic use of PFOS in food packaging. D'Hollander et al. (2010), in a review of sources
- 16 of human exposure to perfluorinated compounds note that among food items, the highest PFOS
- 17 concentration was found in microwave popcorn (3.6 ng/g). They also note that in a Canadian
- 18 study, a concentration of 2.7 ng/g was found in beef steak.
- 19

20 As mentioned above, PFOS is bioaccumulative in fish. It bioaccumulates in both freshwater and

- 21 marine food chains, and is the PFC found most frequently in studies from worldwide locations.
- 22 PFOS levels in fish can be extremely high (i.e. > 9000 ppb; 9 ppm) in locations impacted by
- 23 major contamination (e.g. Wurtsmith AFB, MI. MDHHS, 2015; Barksdale AFB, LA. Lanza et
- al., 2017). Consumption of fish from such impacted waters can result in high exposures, and fish
- consumption advisories for PFOS have been issued by several states (ADPH, undated; MDH,
- 26 2008; MDHHS (2015); WDNR, 2011).
- 27

As reviewed by the USEPA (2016a), PFOS has been found in plants grown in contaminated soil.

- 29 Available information suggests that PFOS levels in roots and shoots of plants are higher than in
- 30 other compartments. Consumption of plants grown in soil contaminated with PFOS may serve
- 31 as a source of exposure to PFOS.
- 32

33 House dust

- 34 Exposure to PFOS in house dust is believed to occur through the ingestion route (Egeghy and
- Lorber, 2011; Gebbink et al., 2015; Trudel et al., 2008). D'Hollander et al. (2010) discuss the
- 36 occurrence of PFOS in house dust. Dust samples were generally collected from vacuum cleaner
- 37 bags. The median PFOS levels from North Carolina and Ohio homes and day care facilities was
- 38 201 ng/g and the maximum level was 12,100 ng/g. Median levels of PFOS in house dust from
- 39 Canada and western Europe cited by D'Hollander et al. (2010) ranged from 16-85 ng/g. Thus,
- 40 house dust can also constitute an ongoing source of exposure. D'Hollander et al. (2010) suggest

- 1 that PFOS in house dust in locations without specific sources of contamination can arise from
- 2 perfluorinated compound-treated materials in the home such as stain resistant coatings on carpets
- 3 and furniture. However, as shown by Su et al., (2016), in homes impacted by specific significant

4 sources of perfluorinated compound release to soil and/or air, such as industrial releases, house

5 dust concentrations and exposures from house dust can be much greater.

6 <u>Air</u>

- 7 PFOS has low volatility, and inhalation exposure is primarily to PFOS bound to aerosol particles
- 8 (Trudel et al., 2010). Data on PFOS concentration in ambient air are very limited. EPA (2016a)
- 9 cites data from summertime air sampling in Albany, New York showing a concentration of 1.7
- 10 pg/m^3 in the vapor phase and 0.6 pg/m^3 in the particulate phase.

11 Exposures from drinking water

- 12 As discussed in the <u>Biomonitoring</u> section (above), serum levels higher than those prevalent in
- 13 the general population have been observed in communities with highly contaminated drinking
- 14 water resulting from environmental discharges, as well as in communities with relatively low
- 15 levels of PFOS in drinking water identified through UCMR3. As discussed in <u>Toxicokinetics</u>
- 16 (below), continued exposure to even relatively lower drinking water concentrations can
- 17 substantially increase total human exposure, as indicated by serum PFOS levels.
- 18
- 19 PFOS exists in drinking water in its non-volatile anionic form, and the formation of inhalable
- 20 water droplets during showering or bathing is minimal. Therefore, inhalation exposure is not
- 21 expected to be significant from non-ingestion uses of drinking water such as showering, bathing,
- 22 laundry, and dishwashing (USEPA, 2016f). In contrast, these are important exposure routes for
- volatile drinking water contaminants. Although dermal absorption of PFOS has not been
- evaluated, dermal absorption of the related compound PFOA during showering, bathing, or
- swimming is not expected to be significant compared to exposure through ingestion, based on
- 26 analysis by NJDOH (2014) using skin permeability data from Franko et al. (2012).
- 27

28 <u>Summary of sources of human exposure to PFOS</u>

- 29 In the absence of the influence of specific sources of PFOS release to the environment, it appears
- 30 that food and possibly house dust (reflecting consumer products use and breakdown) are the
- 31 primary sources of human exposure to PFOS. For high end consumers of fish and specifically
- 32 consumers of freshwater fish from contaminated waters, fish may be a particular source of PFOS
- in the diet. In communities with drinking water contaminated by PFOS, drinking water can be
- 34 an important exposure source even if PFOS concentrations are relatively low. In locations near
- 35 release of PFOS to the environment (e.g. from manufacturing facilities), house dust may be a
- 36 source of significant PFOS exposure.
- 37
- 38

1 TOXICOKINETICS

2

3 Absorption

- 4 Data on PFOS oral absorption are limited. Chang et al. (2012) reports that in rats, a single oral
- 5 dose of 4.2 mg/kg of radiolabeled PFOS was 99% absorbed based on whole body recovery. This
- 6 dose is at least five orders of magnitude greater than the Reference doses derived for the
- 7 candidate critical effects in this assessment. Thus, at these much smaller doses, oral absorption
- 8 of at least 99% can reasonably be assumed. Consistent with this estimate, ATSDR (2015) cites
- 9 an estimate of >95% absorption of radiolabeled PFOS in rats at the same gavage dose as in
- 10 Chang et al. (2012) from unpublished data submitted to the USEPA. Despite the absence of
- 11 additional data, it is reasonable to assume that PFOS is systemically absorbed in rodents and
- 12 humans with close to 100% efficiency.
- 13 No pharmacokinetic data for inhalation of PFOS were located. However, USEPA (2016b)
- 14 reports that an acute inhalation study conducted by Rusch et al. (1979) identified an LC_{50}
- 15 (concentration lethal to 50% of animals), indicating that PFOS is absorbed through inhalation.
- 16 Additionally, ATSDR (2015) reports that "higher serum levels in [fluoropolymer production]
- 17 workers compared to the general population probably reflects a predominant contribution from
- 18 inhaled perfluoroalkyls."
- 19 ATSDR (2015) summarizes a dermal absorption study in which Johnson (1995a, 1995b) applied
- single doses up to 0.3 mg/kg of potassium PFOS and up to 20 µg/kg of the diethanolamine salt of
- 21 PFOS to clipped, intact skin of rabbits. Total organic fluoride in the liver was not increased in
- treated animals compared to controls 28 days after dosing, indicating that dermal absorption was
- 23 not substantial.

24 **Distribution**

25 Transport and binding

- 26 PFOS binds strongly, but non-covalently to plasma (serum) proteins, including albumin, gamma-
- 27 globulin and alpha globulin. USEPA (2016b) has summarized the information on the initial
- 28 binding sites of PFOS to these plasma proteins. Chen and Gao (2009) report a binding constant
- 29 of PFOS to human albumin of $2.2 \times 10^4 \text{ M}^{-1}$ and a PFOS/human albumin molar ratio of 14.
- 30 USEPA (2016b) cites an unpublished study by Kerstner-Wood, et al. (2003) indicating that,
- 31 similar to the case with human serum, PFOS also binds strongly to serum proteins in rats and
- 32 monkeys.

33 Organ distribution

- 34 Unlike many other biopersistent and bioaccumulative compounds, PFOS does not accumulate in
- 35 adipose tissue. In humans and rodents, the highest concentrations of PFOS were found in liver.

- 1 Pérez et al. (2013) analyzed PFOS concentrations in tissue samples from human autopsies of
- 2 organ donors (n = 20 subjects) in Catalonia, Spain. PFOS concentrations by tissue (in mean ng/g
- 3 wet weight) were liver (102 ng/g) > kidney (75.6 ng/g) > lung (29.1 ng/g) > brain (4.9 ng/g).
- 4 In rats (Cui et al., 2008), following a 28-day exposure to 5 mg/kg/day, PFOS concentration was
- 5 highest in liver > kidney > blood > lung > testis, spleen > brain. In male mice (Bogdanska et al.
- 6 (2011)), following 5 days of exposure to 23 mg/kg/day PFOS through feed, the highest
- 7 concentration was observed in the liver > lung > blood > whole bone.
- 8 Although the fraction of the absorbed dose that deposits in the brain is relatively low, the
- 9 presence of PFOS in the brains of humans and rodents provides clear evidence that PFOS crosses
- 10 the blood-brain barrier.

11 Sex differences

- 12 In human liver and serum samples from organ donors, there do not appear to be significant
- 13 differences in tissue distribution between men and women, or by age (5-74 years old) (Olsen et
- 14 al., 2003a). Based on 2013-2014 NHANES data (see Table 3), the geometric mean serum PFOS
- 15 concentration in men (n = 1031) is 6.36 ng/ml compared to 3.96 ng/ml in women (n = 1134). It
- 16 is not clear whether this reflects a sex dependent difference in toxicokinetics and/or a difference
- 17 in exposure.
- 18 In cynomolgus monkeys (Seacat et al., 2002), following 183 days of exposure, serum PFOS
- 19 concentrations were equivalent in males and females for exposure to 0.03 mg/kg/day. With
- 20 higher levels of exposure (0.15 and 0.75 mg/kg/day), serum PFOS concentrations in males
- 21 became somewhat higher than in females as the exposure time increased. However, even for the
- high dose, the difference at 26 weeks of exposure was only on the order of 10%.
- 23 In contrast to the monkey data discussed above, serum levels were much higher in female rats
- than male rats at the end of a study in which males and females were given the same doses of
- 25 PFOS for 105 weeks. In this study, the serum and liver concentrations had decreased by 2-fold
- or more at 105 weeks from the levels at the latest previous time point sampled (14 weeks or 53
- 27 weeks, depending on the dose). In contrast, this striking increase in serum levels at 105 weeks
- 28 was not observed in females. This decrease in males, but not females, is consistent with the age
- 29 dependent chronic progressive loss of kidney function known to occur in male rats (Goldstein et
- al., 1988; Hard et al., 2013) and is not necessarily associated with the PFOS exposure of the rats
- 31 in this study.

32 <u>Metabolism</u>

- 33 Because of its carbon-fluorine bonds, PFOS is chemically stable and does not undergo chemical
- 34 reactions even under severe conditions. Therefore, PFOS is not metabolized, as reviewed by
- 35 USEPA (2016b).

36

1 <u>Elimination</u>

2 Routes of elimination

3 <u>Humans</u>

4 Data on the mechanism of PFOS elimination are sparse and PFOS-specific mechanisms have not 5 yet been established (USEPA, 2016b). It appears reasonable that the organic anion transporter 6 (OAT) family of proteins that function in the renal tubular reabsorption processes for PFOA also 7 function in the reabsorption of PFOS. ATSDR (2015) has summarized the human data on the 8 routes of clearance and elimination of PFOS. With the exceptions of lactation and menstrual 9 blood loss. PFOS is cleared primarily through urine. However, in humans, the PFOS bound to 10 serum proteins is not filtered by the kidneys, and only about 1% of the serum PFOS is unbound 11 and available for glomerular filtration. Of this, less than 0.1% of the glomerular filtered PFOS is 12 excreted in the urine per day. This indicates substantial renal tubular reabsorption. A significant fraction of the PFOS in the body is contained in the bile. However, the bile clearance rate 13 14 greatly exceeds the total body clearance rate. This occurs because bile PFOS is reabsorbed in the gastrointestinal tract with an estimated efficiency of 97%. This suggests that biliary excretion in 15 16 the feces may also play a minor role in PFOS elimination.

- 17 Loss of serum through menstruation can be a significant route of elimination of PFOS in younger
- 18 (as opposed to post-menopausal) women. This is suggested both by the simple calculation of
- 19 fractional serum loss, and pharmacokinetic modeling, (USEPA, 2016b). Although NHANES
- 20 data indicate that the PFOS serum concentration is higher in men compared to women in the U.S.
- 21 (see Table 3), it is unclear to what extent this reflects differences in exposure versus sex
- 22 differences in half-life of elimination.
- As reviewed by ATSDR (2015), transfer from serum to breast milk is a substantial route of
- elimination for perfluorinated compounds in general. Specifically, lactation reduces the maternal
 serum concentration of PFOS by 2-3% per month of breastfeeding.
- 26
- 27 <u>Rats</u>
- 28 Chang et al. (2012) compared the fraction of the total radiolabeled single IV dose (4.2 mg/kg) of
- 29 PFOS administered to male Sprague-Dawley rats that was recovered in urine and feces during 89
- 30 days post-dose. Although urine was the predominant route of elimination (30.2% of the dose),
- 31 feces (12.6% of the dose) was a significant route of elimination. In contrast, 48 hours after a
- 32 single oral PFOS dose of 4.2 mg/kg, a larger fraction of the total dose (3.24%) was recovered in
- the feces compared to urine (2.52%). Given the very high rate of absorption of PFOS from the
- 34 rat GI tract (see above), PFOS recovered in the feces presumably reflects absorbed PFOS
- 35 eliminated via the bile.
- 36
- 37 <u>Mice</u>
- 38 Chang et al. (2012) similarly compared the fraction recovered in urine and feces after a single

- 1 oral dose (1 or 20 mg/kg) of radiolabeled PFOS was given to male and female CD-1 mice.
- 2 Although the authors did not report the cumulative recovery, the graphs of percent recovery over
- 3 time indicate a similar distribution to that observed in the rats in this study.
- 4
- 5 Thus, in rodents, in contrast to humans, feces, via bile, appears to be a significant route of
- 6 elimination and may contribute to the shorter half-life of PFOS in rodents compared to humans.
- 7

8 Half-life of elimination

- 9 EPA (2016b) has summarized the available data for the half-life of elimination of PFOS by
- 10 species. This is presented in Table 4.
- 11

Source	Human	Monkey	Rat	Mouse	Strain
Spliethoff et al. 2008	4.1 years	ND	ND	ND	Infants
3M Company 2000	4-8.67 years	ND	ND	ND	Occupational
Olsen et al. 2007	5.4 years	ND	ND	ND	Occupational
Butenhoff and Chang 2007	ND	ND	48.2 days (M) 46.9 days (F)	ND	SD; 28 days oral
Chang et al. 2012	ND	ND	39.8 days (M) 66.7 days (F)	ND	SD; single oral dose
	ND	ND	ND	39.6 days (M) 34.2 days (F)	CD-1; single oral dose
	ND	132 days (M) 110 days (F)	ND	ND	Cynomolgus; single IV dose
Seacat et al. 2002	ND	200 days (M/F)	ND	ND	Cynomolgus; oral, 182 days

12

Regarding the human data in Table 4, it should be noted that the Spliethoff et al (2008) data are based on changes in population levels in infant PFOS blood concentration over time and do not directly reflect longitudinal measurements in individuals. Additionally, the estimates of human half-life in adults are derived from occupational cohorts that are mostly composed of retired workers and contain few women. There do not appear to be any estimates of the half-life of elimination from the general population.
PFOS's half-life in humans is several years and is similar in males and females. Because of its long half life it remains in the human hody for menu years after exposures cases. Because of

21 long half-life, it remains in the human body for many years after exposures cease. Because of

the large variation in half-lives, the internal dose resulting from a given administered dose varies

23 widely among species. For this reason, interspecies (e.g. animal-to-human) comparisons are

24 made on the basis of internal dose, as indicated by serum level, rather than administered dose.

1 Because PFOA is very rapidly eliminated in female rats with a half-life of 2-4 hours, the rat is

2 not an ideal model for evaluation of developmental effects of PFOA (DWQI, 2017). In contrast,

- 3 PFOS is slowly excreted in female rats, and both rats and mice are suitable models for evaluation
- 4 of developmental effects of PFOS.
- 5

6 <u>Toxicokinetics relevant to developmental exposure</u>

7

8 Summary

9 It is important to consider toxicokinetics relevant to developmental exposures of PFOS since

10 PFOS causes developmental toxicity in experimental animals (see <u>Health Effects</u> section below).

- 11
- 12 Offspring of rodent dams dosed with PFOS during gestation are exposed *in utero* and postnatally
- 13 through breast milk. In humans, PFOS has been measured in amniotic fluid, maternal serum,
- 14 umbilical cord blood, and breast milk. PFOS concentrations are lower in umbilical cord blood
- 15 serum, reflective of serum levels in the newborn, than in maternal serum. PFOS exposure in
- 16 breast-fed infants is greatest during the first few months of life because both PFOS
- 17 concentrations in breast milk and the rate of fluid consumption are highest during this time
- 18 period. As a result, serum PFOS concentrations in breast-fed infants increase several-fold from
- 19 levels at birth within the first few months of life. Exposures to infants who consume formula
- 20 prepared with contaminated water are also highest during this time period. These greatly
- 21 elevated exposures during the first months of life are of special concern because the neonatal
- 22 period may be a sensitive time period for the toxicological effects of PFOS.
- 23

24 Trans-placental transfer

- 25 Trans-placental transfer of PFOS occurs in humans, as demonstrated by the presence of PFOS in
- cord blood and by studies comparing maternal and cord blood PFOS concentrations. The PFOS
- 27 concentration in the cord blood, on average, is lower than in maternal blood, although the ratio
- 28 between levels in cord blood and maternal blood varies among individuals. A recent review of
- the current literature (Kato et al., 2015) concluded that, overall the serum PFOS levels in cord
- 30 blood were about 50% of the concentration in maternal blood in these studies. Zhang et al.
- 31 (2013) found that in paired maternal blood and cord blood samples, the cord blood concentration
- 32 of PFOS was, on average, 21% of the maternal blood concentration at delivery, and the
- 33 correlation coefficient was 0.9. Fei et al. (2007) found a correlation coefficient of 0.72
- 34 comparing cord blood and second trimester maternal blood PFOS concentrations. On average,
- 35 the cord blood PFOS concentration was 29% of the first trimester maternal blood concentration
- and 34% of the second trimester maternal concentration.
- 37
- 38 Trans-placental transfer of PFOS also occurs in rodents. In contrast to humans, it appears that
- 39 fetal serum concentrations of PFOS in rats and mice are equal to or greater than maternal serum
- 40 concentrations. Luebker et al. (2005a) found a variable ratio on GD 20 between rat maternal and

- 1 fetal serum PFOS concentrations for maternal gestational doses between 0.1 and 3.2 mg/kg/day.
- 2 For three of the four doses, the fetal/maternal ratio was 2.0-1.1. However, for an intermediate
- 3 maternal dose of 1.6 mg/kg/day, the ratio was 0.74. Chang et al. (2009) found fetal maternal
- 4 ratios on GD 20 of 2.3, 1.7 and 1.2 for maternal gestational PFOS doses of 0.1, 0.3 and 1.0
- 5 mg/kg/day, respectively. In mice, Borg et al. (2010) comparing maternal and fetal blood PFOS
- 6 concentrations following a single maternal dose of 12.5 mg/kg on GD 16, found a mean
- 7 fetal/maternal ratio of 2.3 on GD 18 and 1.1 on GD 20. For both rats and mice, it is not clear
- 8 how, or to what extent the maternal/fetal serum (blood) ratio varies by maternal dose and/or
- 9 length of gestation. Maternal-to-fetal transfer of PFOS results in a reduced maternal body
- 10 burden during gestation under conditions of constant exposure.

11 Exposure to infants through breast milk and infant formula

- 12 As mentioned in the <u>Biomonitoring</u> section above, PFOS is detected in human breast milk
- 13 worldwide. Factors which may potentially affect the concentration of PFOS in breast milk
- 14 include whether the mother has previously nursed other infants and how soon after birth the
- 15 sample is taken (Tao et al., 2008a; Haug et al., 2011; Thomsen et al., 2010). Thomsen et al.
- 16 (2010) found that average PFOS breast milk concentrations were highest initially and decreased
- 17 by about 3.1% per month, or about 37% during the first year of breast feeding, presumably due
- 18 to decreased maternal body burden resulting from excretion into breast milk.
- 19

20 PFOS is also transferred to offspring through breast milk in rodents, as shown by Luebker et al.

- 21 (2005a). This study used a cross-fostering design in which litters from treated and untreated
- 22 dams were fostered after birth, resulting in four treatment groups: untreated dam with unexposed
- 23 pup, treated dam with unexposed pup, untreated dam with pup exposed during gestation, and
- treated dam with pups exposed during gestation. For treated dams with a serum PFOS
- 25 concentration at the end of lactation of 83 μ g/ml, and pups born to unexposed dams (litter
- average), the pup:maternal PFOS serum ratio was 0.27.
- 27 Minnesota Department of Health (MDH, 2017) reviewed the current literature on the relationship
- 28 between PFOS concentrations in maternal serum and breast milk. They found that the mean
- breast milk:serum ratios reported in these studies ranged from 0.018 to 0.026, with an average
- among studies of 0.013 (i.e. 1.3:100 or 2.6:200). Based on a breast milk:maternal serum ratio
- and a serum: drinking water ratio of 200:1 or greater (discussed below), the initial PFOS
- 32 concentration in breast milk is expected to be greater the concentration in the maternal drinking
- 33 water source (See similar analysis for PFOA in Post et al., 2012 and DWQI, 2017).
- 34
- 35 Exposures to infants to PFOS from breast milk or formula are higher than in older individuals
- 36 exposed to the same concentration of PFOS in drinking water. Mean breast milk consumption is
- 37 150 ml/kg/day during the first post-partum month when PFOS levels in breast milk are highest
- 38 (Thomsen et al., 2010), and it is 83 ml/kg/day from 6-12 months of age (USEPA, 2008).
- 39 Similarly, the mean drinking water intakes in infants who consume drinking water (e.g. in formula

- 1 prepared with water) are 137 ml/kg/day from birth to 1 month of age, and 53 ml/kg/day at 6-12
- 2 months of age (USEPA, 2011b). These fluid intakes are much higher than the mean drinking
- 3 water consumption rates in lactating women, 26 ml/kg/day (USEPA, 2011b), and the general
- 4 population (11 years of age or older), 13 ml/kg/day (USEPA, 2008). Although breast milk or
- 5 formula consumption on a body weight basis decreases as the infant gets older, it remains much
- 6 higher than adult water consumption throughout infancy.
- 7
- 8 As noted above, serum PFOS levels are generally lower in newborns than in their mothers.
- 9 Several studies, summarized below, have consistently demonstrated that serum PFOS
- 10 concentrations in breast-fed infants increase by several fold during the first few months of life,
- 11 presumably because both breast milk PFOS concentrations and intake of breast milk on a body
- 12 weight basis are highest during this time period. Infants fed with formula prepared with
- 13 contaminated drinking water also receive the greatest exposures during the first few months of
- 14 life because the rate of fluid intake is highest then.
- 15

16 Serum PFOS levels were measured in umbilical cord blood at delivery and at 6 month and 19

17 months of age in infants from the German general population (Fromme et al., 2010). Average

18 body burdens, as indicated by serum levels, increased by several-fold from birth to 6 months in

- 19 most infants, as a result of exposure through breast milk. Levels generally declined between 6
- 20 months and 19 months, a time point at which breast feeding had stopped or was decreased, but
- 21 generally remained higher at 19 months than at birth (Figure 4).

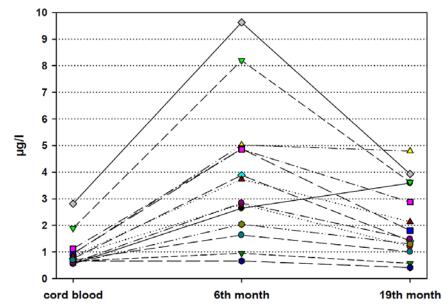
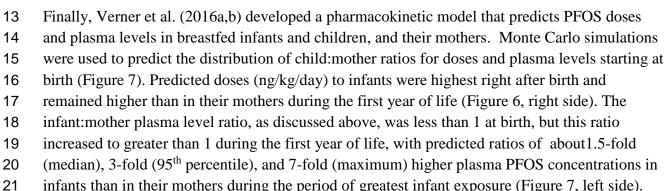


Figure 4. PFOS concentration in cord blood and blood collected in infants around six and nineteen months afterbirth (Fromme et al., 2010)

25

- Similarly, a study of Faroese infants (n= 80) with serum PFOS data at birth and 11, 18, and 60
- 27 months estimated an increase in serum PFOS concentrations of about 29% per month during the


- 1 period of exclusive breast feeding (median of 4.5 months in the study group) and about 4% per
- 2 month during the period of partial breast feeding (median of 4 additional months) (Mogensen et
- al., 2015). Serum PFOS concentration increased little or not at all during periods when the
- 4 infants being studied were not breast fed (e.g. were formula-fed); presumably, the drinking water
- 5 in this location was not contaminated with PFOS. Data for 12 infants from the study are shown
- 6 in Figure 5.
- 7
- 8

9

Figure 5. Serum PFOS concentrations over time in 12 infants from Mogensen et al. (2015). Data shownby dotted blue line are from an infant who was not breastfed.

12

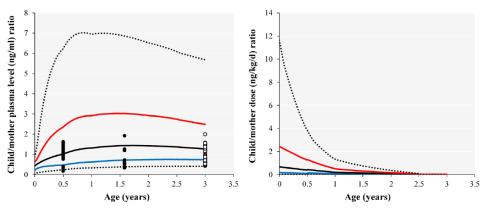


Figure 6. Monte Carlo simulations (n = 10 000) of child/mother ratios of plasma PFOS levels (ng/ml;
right side of figure) and doses (ng/kg/day; left side of figure) for a breastfeeding period of 30 months. The
black line represents the 50th percentile, the blue line represents the 5th percentile, the red line represents the 95th
percentile, and the dotted lines represent minimum and maximum values (Verner et al., 2016a,b).

6 While peak serum PFOS concentrations occur during the first year of life, levels remain elevated

7 for at least several additional years. In the study of Faroese children (Mogensen et al., 2015),

8 serum PFOS levels declined after their peak in infancy but remained elevated above initial levels

9 at birth until at least age 5 years, the last time point assessed. Similarly, the model developed by

10 Verner et al. (2016a) predicts that plasma PFOS concentrations will remain several fold higher

11 than at birth until at least age 3 years, the last time point modeled.

12

1

13 In summary, both breast-fed and formula-fed infants receive greater exposures to PFOS from

14 contaminated drinking water (directly or indirectly) than older individuals. Serum PFOS levels

15 peak during the first year of life and remain elevated for several years. These elevated exposures

16 during early life are of concern because effects from neonatal exposure may be sensitive

- 17 endpoints for the toxicity of PFOS.
- 18

19 Relationship between dose and serum concentration

- 20 A chemical-specific clearance factor (CL) of 8.1×10^{-5} L/kg/day (8.1×10^{-2} ml/kg/day) that
- 21 relates PFOS serum levels to dose in humans at steady-state was developed by USEPA (2016b).

22 Dose
$$(ng/kg/day) =$$
 Serum Level $(ng/ml) \times CL (ml/kg/day)$

23 The clearance factor was based on the human half-life $(t_{1/2})$ from a study of retired workers

24 (Olsen et al., 2007) and the volume of distribution (V_d) from Thompson et al. (2010a, b) using

25 the equation below

26 $CL = V_d x (ln 2 / t_{1/2})$

27 Where:

28 $V_d = 0.23 L/kg$

- 29 $\ln 2 = 0.693$
- 30 $t_{1/2} = 5.4$ years = 1,971 days

- 1 Thompson et al. (2010a,b) based the PFOS V_d value on a previously developed V_d for PFOA of
- 2~ 0.17 L/kg that had been calibrated with human data. The PFOA V_d was adusted by 35%, based
- 3 on the observation of Andersen et al. (2006) that the V_d for PFOS can be 20 to 50% greater than
- $4 \qquad \mbox{for PFOA in monkeys. Thompson et al. (2010a) used the PFOS V_d of 0.23 L/kg in a steady-state}$
- 5 toxicokinetic model to predict PFOS intake in a study of Australian drinking water consumers
- 6 with mean serum PFOS concentration of 21.3 ng/ml (Thompson et al., 2010b), which is
- 7 comparable to 95th percentile adult serum PFOS concentration reported from NHANES for
- 8 2013-2014 of 19 ng/ml (CDC, 2017).
- 9 The V_d of 0.23 L/kg for PFOS is supported by the observations of Egeghy and Lorber (2011).
- 10 Using high (3 L/kg) and low (0.2 L/kg) bounding estimates of the V_d, Egeghy and Lorber (2011)
- 11 compared predicted modeled PFOS intake with estimates of intakes based on the analyses of
- 12 exposure pathways. The lower estimate (0.2 L/kg) provided modeled intake predictions similar
- 13 to modeled intake based on exposure assessment. The derivation of this relationship involves
- 14 several parameters whose values were estimated based on data for related chemicals or related
- 15 species. See also Appendix 3 for an alternate derivation of the CL that does not require the
- $\label{eq:constraint} 16 \qquad \text{estimation of V_d}. \ This alternate derivation produces an estimate of CL that is in close agreement$
- 17 with the value derived by the USEPA (2016b).

18 Estimated increases in serum levels associated with PFOS in drinking water

- 19 The serum:drinking water ratio from ongoing exposure to a given concentration of PFOS in
- 20 drinking water can be estimated as follows:
- 21 Human Dose ($\mu g/kg/day$) = Drinking Water Concentration ($\mu g/L$) x 0.016 L/kg/day
- Where: 0.016 L/kg/day is the mean daily water ingestion rate in the U.S. (USEPA, 2011b).
- 24 Therefore:
- 25 Drinking Water Conc. (μ g/L) x 0.016 L/kg/day = Serum Conc. (μ g/L) x Clearance (8.1 x 10⁻⁵ L/kg/day)
- 26
- 27 And:

28 <u>Serum Concentration (μ g/L)</u> = <u>0.016 L/kg/day</u> = **197:1** 29 Drinking Water Concentration (μ g/L) 8.1 x 10⁻⁵ L/kg/day

30

31 The daily water ingestion rate based on the upper percentile factors (2 L/day water consumption;

32 70 kg body weight) used to derive Health-based MCLs is 0.029 L/kg/day. Using the same

33 equation shown above, the serum:drinking water ratio from **upper percentile** consumption is

34 estimated as **358:1**.

- 1 For each 10 ng/L in drinking water, on average, ongoing exposure at the mean ingestion and
- 2 upper percentile ingestion rates are predicted to increase serum PFOS by 2.0 ng/ml and 3.6
- 3 ng/ml, respectively. Increases in serum levels from various concentrations of PFOS in drinking
- 4 water, and the percent increases from the most recent median serum level, 5.2 ng/ml, from
- 5 NHANES (2013-14; CDC, 2015) are shown in Table 5 and Figure 7.
- 6
- 7

Table 5. Increase in serum PFOS concentrations predicted from various concentrations of PFOS in drinking water

11 00 m 0	ininking wa	.01						
Drinking	Mea	ın Water Ir	gestion Rate	Upper Percentile Water Ingestion Rate				
Water		(0.016 L/kg/day)			(0.029 L/kg/day)			
Conc.	Increase	Total	% increase from	Increase	Total	% increase from		
(ng/L)	in serum	serum*	drinking water*	in serum	serum*	drinking water*		
	(ng/ml)	(ng/ml)		(ng/ml)	(ng/ml)			
1	0.2	5.4	4%	0.4	5.6	8%		
10	2.0	7.2	38%	3.6	8.8	69%		
20	3.9	6.1	75%	7.2	12.4	138%		
40	7.9	13.1	152%	14.3	19.5	275%		
70	13.8	19.0	265%	25.1	30.3	483%		
200	39.4	44.6	758%	71.6	76.8	1377%		

*Total serum concentrations and % increases from drinking water are based on assumption of 5.2 ng/ml in serum

(U.S. median value from NHANES, 2013-14; CDC, 2017) from non-drinking water exposures.

45.0 L 40.0 U.S. Median (NHANES, 2013-14) Contribution to serum (ng/ml) 35.0 U.S. 95th Percentile (NHANES, 2013-14) 30.0 Mean Water Ingestion Rate (0.016 L/kg/day) 25.0 Upper Percentile Water 20.0 Ingestion Rate (0.029 L/kg/day; Exposure assumptions 15.0 used for Health based MCL-70kg, 2L/day) 10.0 5.0 L L 0.0 1 10 20 40 100 U.S. 95th U.S. Median Percentile

12

- Drinking Water Concentration (ng/L) 13 Figure 7. Increases in serum PFOS concentrations predicted from mean and upper percentile
- 14 consumption of drinking water with various concentrations of PFOS, as compared to U.S median and

15 95th percentile serum PFOS levels (NHANES, 2013-14).

- 1 It is evident from Table 5 and Figure 7 that relatively low concentrations of PFOS in drinking
- 2 water are associated with substantial increases in serum PFOS concentrations; this has recently
- 3 been observed in a study of serum PFOS levels in individuals served by PWS with PFOS
- 4 detections in UCMR3 (mean UCMR3 detection 58 ng/L; Hurley et al., 2016). For example,
- 5 ongoing exposure to 40 ng/L (the UMCR3 Reporting Level) at the upper percentile ingestion rate
- 6 is predicted to result in a serum concentration of 19.5 ng/ml, which is above the 95th percentile in
- 7 the U.S population of 18.5 ng/ml (NHANES, 2013-14; CDC, 2017). With an average (mean)
- 8 water ingestion rate, exposure to 70 ng/L (the USEPA Health Advisory) is expected to result in
- 9 an elevation in serum level to 19.0 ng/ml, also above the 95th percentile from NHANES.
- 10 Additionally, it should be kept in mind that (as discussed above), the increases in serum levels in
- 11 infants who consume formula prepared with contaminated water are expected to be substantially
- 12 higher than those shown in Table 5 and Figure 7.
- 13

14 HAZARD IDENTIFICATION

15

16 <u>Review of animal toxicology studies</u>

- 17 As described in Literature Search and Screening, approximately 700 studies were identified as
- 18 potentially useful for assessment of health effects of PFOS, including studies of effects in
- 19 humans and animals, toxicokinetics, human exposure, and mode of action. Of these studies, 76
- 20 animal studies were considered further for use in hazard identification based on their use of
- 21 typical laboratory species (e.g., rodents, non-human primates, and rabbits). Due to the relatively
- 22 robust database for animal studies, studies were categorized for different levels of review for use
- 23 in identifying possible health hazards and potentially dose-response analyses.

Of the 76 studies, 34 studies were reviewed and summarized in evidence tables. An evidencetable was developed for studies that met all of the following criteria:

- Assessed an apical endpoint (i.e. an observable outcome in a whole organism, such as a clinical sign of pathologic state that is indicative of a disease state that can result from exposure to a toxicant (Krewski et al., 2010). These can include, but are not limited to: effects on body or organ weight, hematological, blood chemistry, or urinary markers, histopathology, pre-neoplastic or neoplastics lesions, reproductive indices, immunologic competence, results of neurobehavioral tests, or teratogenic outcomes);
- Was peer-reviewed (technical reports were considered if a corresponding peer-review
 publication was available);
- Contained primary data (i.e., not a review article or re-publication of data);
- Employed oral route of exposure (e.g., by drinking water, food, gavage, pill);
- Utilized a relevant duration of exposure (i.e., subchronic or greater [>30 days] exposure
 regimen or reproductive/developmental study);
- Contained >1 dose groups (i.e., a control group and at least 2 additional dose groups);
- Used a relevant animal model (i.e., mice, rats, non-human primates, rabbits).

- 1 Evidence tables for animal studies are found in Appendix 4. These tables briefly summarize
- 2 important methodological information and salient results for each appropriate study. In addition,
- 3 comments that might influence the interpretation and usefulness of data for health endpoints are
- 4 noted for each study.
- 5 Studies that were reviewed and summarized in evidence tables were the primary sources for
- 6 identifying potential hazards resulting from PFOS exposure. Additionally, the studies that were
- 7 considered for dose-response analyses and potentially, criterion development, were chosen from
- 8 this set of studies. For some studies, multiple evidence tables were prepared because that study
- 9 reported the results from multiple species (e.g., both rats and mice were exposed) and/or multiple
- 10 study designs (e.g., a study reporting the results following a multi-generation exposure in one
- 11 cohort of animals and the results from a cross-fostering exposure in a different cohort of animals)
- 12 Of the 76 animal studies that were identified, 41 studies did not fulfill all of the above criteria
- 13 and underwent a less detailed review. While these studies were not used for quantitative aspects
- 14 of this assessment, they were used to further inform the weight of evidence for identified health
- 15 hazards. These studies are summarized in tabular review tables; one study (Zeng et al., 2011)
- 16 was not included in either type of table because, based on in-depth review, it only reported
- 17 mechanistic information.
- 18 While tabular review tables provided less methodological detail and study commentary than
- 19 evidence tables, they include NOAEL/LOAELs for relevant endpoints reported in the study.
- 20 Tabular review tables for animal studies can be found in Appendix 5.
- 21 A synthesis of the information from the evidence tables and the tabular review tables was then
- 22 prepared in order to identify health effects following PFOS exposure. In considering the health
- 23 hazards of PFOS, endpoints were categorized into general groupings.
- 24 For animal, the following effect groups were utilized:
- Body weight effects
- Endocrine/metabolic effects
- Hepatic effects
- Immune effects
- Neurological effects
- **30** Renal effects
- Other systemic effects (e.g., clinical chemistry, hematology)
- 32 For reproductive/developmental studies in which offspring were assessed following gestational
- 33 exposure, the same categories of effects listed above were utilized, as well as reproductive
- 34 competency, offspring survival, and markers of development (e.g., eye opening). Also
- 35 considered within the reproductive/developmental section are studies in which adult animals
- 36 were exposed with subsequent assessment of reproductive organs.

- 1 Following the text describing the results from animal studies of PFOS, study summary tables
- 2 provide salient information extracted from the evidence tables in Appendix 4, including
- 3 endpoint, NOAEL/LOAELs, and serum PFOS concentrations at the LOAEL. While information
- 4 from tabular review tables is not included in the summary, information from these tables is
- 5 discussed as appropriate in the narrative synthesis for each category of endpoint. Multiple
- 6 endpoints investigated in a single study are included in a single evidence table, but they may be
- 7 summarized in multiple summary tables and discussed in narrative syntheses for multiple
- 8 endpoints as appropriate.

9 Reporting of exposure levels in animal studies

- 10 For animal studies reported in the Hazard Identification section, the goal is to identify adverse
- 11 endpoints of potential human relevance. For that purpose, exposure metrics are reported as given
- 12 by the study authors (e.g., mg/L-water, mg/kg/day, mg/kg-feed). In contrast, in the Dose-
- 13 Response section, studies are compared on the basis of the common metric of serum PFOS
- 14 concentration.

15 **<u>Review of human epidemiology studies</u>**

- 16 Following literature screening, 121 studies were identified which assessed associations between
- 17 human health effects and PFOS and were included in epidemiology evidence tables (Appendix
- 18 6). An individual evidence table for each study summarizes the design, location, study
- 19 population characteristics, outcome and exposure assessment, study population exposure,
- 20 statistical methods, results, and comments that might influence the interpretation and usefulness
- of data for health endpoints. Summaries of the studies evaluating each endpoint are provided
- 22 below in tables following the relevant section.
- 23 The studies were conducted on populations in the U.S., Canada, and several European and Asian
- 24 countries. The epidemiological studies come from populations with exposure levels prevalent in
- 25 the general population and from workers with higher occupational exposures. In contrast to
- 26 PFOA (DWQI, 2017), epidemiological data are not available from communities with elevated
- 27 exposures to PFOS from drinking water or other environmental media. However, studies of
- 28 people living within communities whose drinking water is contaminated with PFOA, but with
- 29 general population level exposures to PFOS, have contributed to the epidemiological database
- 30 for PFOS.
- 31 Epidemiologic studies of PFOS have investigated associations with developmental,
- 32 endocrine/metabolic, hepatic, immune, lipid metabolism, renal, and reproductive effects. Among
- 33 the epidemiologic studies, the studies of immune effects, and most particularly those
- 34 investigating effects on vaccine response, were generally consistent in showing adverse
- 35 responses to PFOS. There was also a consistency in findings between PFOS exposure and
- 36 increased serum uric acid/hyperuricemia as well as increased total cholesterol.

- 1 The epidemiologic data for PFOS are notable because of the consistency between results among
- 2 human epidemiologic studies in different populations, the concordance with toxicological
- 3 findings from experimental animals for immune effects, the use of serum concentrations as a
- 4 measure of internal exposure, the potential clinical importance of the endpoints for which
- 5 associations are observed, and the observation of associations within the exposure range of the
- 6 general population. These features of the epidemiologic data distinguish PFOS from most other
- 7 organic drinking water contaminants and justify concerns about exposures to PFOS through
- 8 drinking water. Notwithstanding, the human data have limitations and therefore are not used as
- 9 the quantitative basis for the Health-based MCL. Therefore, the Health-based MCL is based on a
- 10 sensitive and well-established animal toxicology endpoint that is considered relevant to humans
- 11 based on epidemiological and mode of action data.
- 12 In human environmental health effect studies in general, confounding by co-exposure to
- 13 contaminants other than the one being evaluated may be particularly important since it may bias
- 14 results. In some instances, PFOS has been shown to be strongly correlated with other co-
- 15 occurring PFCs which may not have been controlled for, and the same may be true for
- 16 cooccruence with other environmental contaminants.
- 17 As is the case for epidemiologic studies of environmental contaminants in general, the nature of
- 18 these observational epidemiology studies, in contrast to experimental studies, limits our ability to
- 19 definitively conclude that PFOS causes health effects. However, the findings from observational
- 20 epidemiology studies are useful in assessing consistency, strength of association,
- 21 exposure response, temporality, specificity, and biologic plausibility criteria which are useful in
- 22 assessing causation.

23 Studies of exposure levels found in the general population

- 24 The majority of studies evaluated the general population and/or study populations with general
- 25 population-level exposures to PFOS. The serum PFOS concentrations (based on a measure of
- central tendency, which was presented as median, mean, or geometric mean) in these studies
- 27 range from 1.6-51.9 ng/L.
- 28 A number of studies involved the C8 Health Project which is a community health study of
- 29 approximately 70,000 Ohio and West Virginia residents of all ages (infants to very elderly) with
- 30 at least one year of exposure to drinking water contaminated with PFOA at >50 ng/L to over
- 31 3000 ng/L (Frisbee et al, 2009; C8 Science Panel, 2014). The C8 Health Project was conducted
- 32 by the C8 Science Panel, which consisted of three epidemiologists chosen jointly by the parties
- 33 involved in the legal settlement. This study, primarily interested in evaluating effects of PFOA
- 34 exposure, is notable because of its large size, the wide range of exposure levels, and the large
- 35 number of parameters evaluated. Data collected included serum levels of PFOA and other PFCs
- 36 (including PFOS), clinical laboratory values, and health histories. The median serum PFOA
- 37 concentration in this population was 28 ng/ml (ppb), yet serum concentrations of PFOS were
- 38 reflective of general population level exposure (median 5.2 ppb).

- 1 A strength of the general population studies is their use of serum PFOS levels as the basis for
- 2 exposure assessment. Because of the long human half-life of PFOS, serum levels do not rapidly
- 3 fluctuate with short term variations in exposure, and serum levels taken at a single time therefore
- 4 reflect long-term exposures. Serum levels thus provide an accurate measure of internal exposure
- 5 for each study participant, an advantage over studies based on external exposure metrics such as
- 6 drinking water concentrations.
- 7 Among these studies, the large majority are cross-sectional. A general limitation of cross-
- 8 sectional studies is that they evaluate information on both exposure and outcome at the same
- 9 point in time, limiting their ability to establish temporality.

10 Occupational studies

- 11 Occupational studies are often considered useful for evaluating effects of environmental
- 12 contaminants because exposure levels are generally higher than in general population or in
- 13 communities exposed through site-specific environmental contamination. Mean or median serum
- 14 PFOS levels in occupational studies reviewed in this report were generally over 1,000 ng/ml
- 15 (ppb), several orders of magnitude higher than the median concentrations in the general
- 16 population.
- 17 Occupational studies may also have a selection bias from a "healthy worker effect" whereby
- 18 workers usually have lower overall mortality and morbidity than individuals of the same age as a
- 19 whole, since severely ill and disabled persons are typically not included in the workforce,
- 20 especially in industrial settings (Shah, 2009). Longer duration of employment may also increase
- 21 the effects of this bias, since sick people will be more likely to leave or change to safer work.
- 22 Therefore, data based on duration of employment may not accurately reflect higher prevalence or
- 23 larger magnitude of effects that are associated with longer exposures to the contaminant being
- evaluated.
- 25 Another issue with occupational studies of PFOS is the small number of exposed female
- 26 employees which limits the ability of the occupational epidemiology to adequately address
- 27 specific effects among women. An additional issue is the possibility of effect modification due to
- exposure to other chemicals. Exposure to other PFCs, including PFOS at the 3M Decatur plant,
- 29 may have played a role in the observed associations. Differences in exposures to other chemicals
- 30 among manufacturing facilities may result in differences in degree of association with various
- 31 effects.
- 32 Some occupational studies are also noted to have used alternative estimates of PFOS exposure
- 33 (e.g., air concentrations, exposure to relative concentrations based on job title), instead of serum
- 34 concentrations which provide a more accurate exposure assessment.
- 35
- 36

1 <u>Hazard Identification for Specific Endpoints</u>

2 **Body weight**

3 Animal studies

- 4 A summary of body weight effects in animals can be found in the study summary tables at the
- 5 end of the following review (Table 6). Detailed methodological information and additional study
- 6 results can be found in the corresponding tables in Appendices 3 or 4.
- 7 In general, terminal body weight and body weight changes were assessed in rats and mice
- 8 following dietary and oral gavage exposures. For some studies, data on food consumption were
- 9 available, which may inform whether changes in animal body weight were due to poor
- 10 palatability of PFOS (e.g., in dietary studies) or a potentially toxic effect of PFOS. Not
- 11 discussed in this section are body weight data of female animals exposed to PFOS during
- 12 pregnancy.

13 <u>Rats</u>

- 14 Following exposures of >30 days to PFOS, decreases in body weight were observed in rats
- 15 exposed via diet (Kawamoto et al. 2011; LOAEL = 2.1 mg/kg/day) and gavage (Luebker et al.
- 16 2005a; LOAEL = 0.4 mg/kg/day in F₀ prior to mating). In both studies, decreases in food
- 17 consumption were reported at the corresponding LOAEL for decreased body weight. No
- 18 decrease in body weight was reported following dietary exposures ≤ 1.6 mg/kg/day, even when
- 19 decreases in food consumption were reported (Seacat et al. 2003; Butenhoff et al. 2012).
- 20 Additionally, no change in body weight was observed in rats exposed to PFOS via drinking
- 21 water for 91 days (Yu et al. 2009a; NOAEL = 15.0 mg/L). Food consumption data were not
- 22 reported for this study.
- 23 With shorter durations of dietary exposure (≤ 28 days), decreases in body weight were reported
- 24 with > 3 mg/kg/day (Curran et al., 2008; Lefebvre et al., 2008), and Elcombe et al. (2012a)
- reported decreased body weight with exposure to 5.6 mg/kg/day. Concurrent decreases in food
- consumption were also observed in these studies (Curran et al., 2008; Elcombe et al., 2012a;
- 27 Lefebvre et al., 2008). Elcombe et al. (2012b) reported decreased body weight following 7 days
- of dietary exposure to 1.9 mg/kg/day but no change in food consumption (NOAEL = 9.7
- 29 mg/kg/day).
- 30 Following gavage exposure, decreases in body weight and food consumption were reported
- 31 following 28 days of exposure \leq 20 mg/kg/day (Cui et al., 2009; Kim et al., 2011). Following a
- 32 single exposure to 250 mg/kg, decreased body weight was observed 14 days after exposure;
- 33 however, information on food consumption was not reported (Sato et al., 2009). No decrease in
- body weight was observed in male rats exposed to PFOS for 28 (Kim et al., 2011; NOAEL = 10
- 35 mg/kg/day) or 5 days (Martin et al., 2007; NOAEL = 10 mg/kg/day).

- 1 A decrease in body weight and food consumption was observed in rats exposed to 10 mg/kg/day
- 2 via intraperitoneal injection for 14 days (Austin et al., 2003).
- 3 In total, some studies, but not all, report a decrease in adult rat body weight following PFOS
- 4 exposure via diet, gavage, or intraperitoneal injection. In addition, there is evidence that a
- 5 decrease in body weight following dietary PFOS is accompanied with decreased food
- 6 consumption. This evidence suggests that rats may have avoided their food (i.e., ate less) due to
- 7 the presence of PFOS in their chow, which could have caused the decreased body weight.
- 8 However, concurrent decreases in rat body weight and food consumption following non-dietary
- 9 PFOS exposures (i.e., gavage and intraperitoneal) suggest that PFOS may have affected appetite,
- 10 which may have led to the decreased body weight.
- 11 <u>Mice</u>
- 12 With dietary exposure, decreased body weight in mice was observed following either 10 days
- 13 (Qazi et al., 2009a, 2009b; 2012; LOAEL = ~40 mg/kg/day) or 28 days (Qazi et al., 2010a;
- 14 LOAEL = 0.25 mg/kg/day) of exposure to PFOS, with a decrease in food consumption only
- 15 occurring with the 10-day exposures. In contrast, no effect on body weight and food
- 16 consumption was observed in mice exposed to PFOS in the diet for up to 6 weeks (Bijland et al.,
- 17 2011; NOAEL = 3 mg/kg/day) or in mice exposed to 6 mg/kg/day for 10 days (Qazi et al., 2013).
- 18 Following gavage exposure to PFOS, decreased body weight in mice was observed following 60
- 19 days of exposure to ≥ 0.42 mg/kg/day PFOS (Dong et al., 2009, 2011, 2012a, 2012b). In these
- studies, a decrease in food consumption was also observed. With shorter durations (\leq 28 days)
- 21 of gavage exposure to PFOS, decreased body weight was observed with doses $\geq 10 \text{ mg/kg/day}$
- 22 (Zheng et al., 2009; Mollenhauer et al., 2011; Wang et al., 2011a; Zheng et al., 2011; Wan et al.,
- 23 2012; Wang et al., 2014a). When data were available, a decrease in food consumption was also
- observed (Zheng et al., 2009; Wang et al., 2011a; Zheng et al., 2011; Wang et al., 2014a).
- Following a single exposure to 250 mg/kg, decreased body weight was observed 14 days after
- 26 exposure; however, information on food consumption was not reported (Sato et al., 2009).
- 27 In contrast, no significant change in body weight was observed in mice exposed up to 0.17
- 28 mg/kg/day PFOS for between 21 to 28 days (Peden-Adams et al., 2008; Guruge et al., 2009; Fair
- et al., 2011). Additionally, no change in body weight was observed in 4-week old mice exposed
- 30 once to 11.3 mg/kg at age 10 days (Johansson et al., 2008). No information on food
- 31 consumption was provided in these studies.
- 32 In total, some studies, but not all, report a decrease in adult mouse body weight following PFOS
- 33 exposure via diet or gavage. As with rats, a concurrent decrease in mouse body weight and food
- 34 consumption following non-dietary (i.e., gavage) PFOS exposures suggests that PFOS may
- 35 affect appetite and/or metabolism and ultimately body weight.
- 36

1 <u>Monkeys</u>

- 2 In monkeys, a decrease in body weight gain (LOAEL = 0.75 mg/kg/day) was observed in males
- 3 and females exposed to PFOS for 182 days via intragastric intubation of a capsule (Seacat et al.,
- 4 2002). Data on food consumption were not reported.
- 5 <u>Overall Summary of body weight effects in animals</u>
- 6 In summary, data are mixed regarding the ability of PFOS to affect the body weights of rats and
- 7 mice. In monkeys, a decrease in body weight gain was observed. Studies that report decreased
- 8 animal body weight and decreased food consumption following non-dietary exposures suggest
- 9 that PFOS may have an effect on appetite and/or metabolism that may then lead to a decrease in
- 10 body weight.

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	≤104 weeks	Body weight (final) for males and females (overall mean daily food intake reported to increase linearly with PFOS dose)	Males: 1.0 Females: 1.3		Serum and liver PFOS concentrations determined	
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	 ↓ final body weight and body weight change (↓ food intake reported for ≥833.33 ug/kg/day) (determined at day 61) 	0.083	0.417	Serum PFOS concentrations determined Only males used	21,640 (serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day	60 days	↓ final body weight change			Serum PFOS concentrations determined	(day assessed)
		Oral gavage		(↓ reported for day 60 to day 61 [day of sacrifice] for 0.8333 ug/kg/day)	0.4167	0.8333	Only males used Small sample size (n=6)	51,710 (serum collected on day 61)
Dong et al. (2012b)	Mice, C57BL/6	0, 0.0167, 0.0833, 0.833 mg/kg/day	60 days	(determined at day 61) ↓ change in body weight (over 60			Serum PFOS concentrations	
		Oral gavage		(↓ food intake on day 60 with 0.833 mg/kg/day)	0.0833	0.833	determined Only males used	59,740 (serum collected on day 61)
				(determined at day 60)				
Dong et al. (2012a)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day	60 days	↓ change in body weight (over 60 days of exposure)			Serum PFOS concentrations determined	
		Oral gavage		(↓ food intake on day 60 with≥0.4167 mg/kg/day)	0.0833	0.4167	Only males used Small sample size (n=6)	24,530 (serum collected on day 61)
				(determined at day 60)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm 13 weeks		Serum, brain, liver, and kidney PFOS				
		Dietary					concentrations determined	
		Daily PFOS dose		(↓ food			determined	(serum samples
		(estimated as the mean of the daily PFOS		consumption with ≥32 ppm)	0.5	2.1	Only males used	collected after 13 weeks)
		doses reported weekly by study authors)		(determined after 13 weeks)			Internal PFOS concentrations not	
		0, 0.1, 0.5, 2.1, 8.5 mg/kg/day		13 WEEKS)			reported for controls	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Luebker et al. (2005a)	Rats, CrI:CD® (SD)IGS BR VAF®	0, 0.1, 0.4, 1.6, 3.2 mg/kg/day Oral gavage	F0 males: pre- mating (42 days) and mating (≤14 days)	 ↓ overall body weight gain (day 0 to termination) (statistically significant reductions in body weight gain at various time points and terminal body weight observed at higher doses) (statistically significant reductions in absolute and relative feed consumption observed during exposure) (termination was 42 to 56 days of exposure) 	0.1	0.4	Serum and liver PFOS concentrations determined Control values for internal PFOS measurements not reported Offspring effects summarized elsewhere in appropriate summary table	(day assessed) 45,400 (determined after 42 to 56 days of exposure)
Seacat et al. (2002)	Monkeys, cynomolgu s	0, 0.03, 0.15, 0.75 mg/kg/day capsule	26 weeks	↓ body weight change (from day 0 to sacrifice, males and females) (sacrifice was following 26 weeks of exposure)	0.15	0.75	Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with multiple measurements during	Males: 173,000 Females: 171,000 (determined after 183 days of exposure)
				Body weight (at sacrifice)	0.75		course of exposure	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS BR	0, 0.5, 2.0, 5.0, 20 ppm Dietary Estimated daily dose of PFOS (as reported by study authors) Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day	14 weeks	Body weight (↓ food consumption with 20 ppm, no effect on food efficiency)	Males: 1.3 Females: 1.6		Serum and liver PFOS concentrations determined Sample size ≤5 rats per endpoint	
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	Body weight	15.0 mg/L		Serum PFOS concentrations determined Only males used	
dose with stat doses than the	defined hereir istically signific e LOAEL. ; ↓ = decrease	as the highest dose that d ant (e.g., p<0.05) effects. I		e a statistically signification	ant (e.g., p<0.0	5) effect and	Only males used LOAELs are defined here	

1 Human epidemiology studies

- 2 A summary of body weight effects in humans can be found in Table 7 (below). Detailed
- 3 methodological information and additional study results can be found in the corresponding
- 4 individual study tables in Appendix 6. Studies of PFOS exposure and associations with body
- 5 weight and body mass index (BMI) are discussed here, while studies that reported on endpoints
- 6 relevant to endocrine/metabolic effects (e.g., glucose homeostatis, metabolic syndrome) are
- 7 discussed in the <u>Endocrine/Metabolic</u> section below.
- 8 Few epidemiology studies investigated body weight/BMI and other body weight related
- 9 endpoints associations with PFOS. One study (Nelson et al., 2010) suggests an association with
- 10 *increased* body weight in older adults only. Another study found no association of BMI, skinfold
- 11 thickness, waist circumference or leptin with PFOS exposure in children (Timmermann et al.,
- 12 2014).

Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Body weight	BMI↑ (M 60-80 yrs old only, not younger M or F)	Med. 21.0	Nelson et al. (2010)
	BMI = (children)	Med. 41.5	Timmermann et al. (2014)
	Skinfold thickness = (children)	Med. 41.5	Timmermann et al. (2014)
	Waist circumference = (children)	Med. 41.5	Timmermann et al. (2014)
	Leptin = (children)	Med. 41.5	Timmermann et al. (2014)
↓ statistically signi = no statistically si	ficant positive association ficant negative association gnificant association/equivoc		

(Statistical significance reflects reporting by authors – generally p < 0.05)

13

14 Overall conclusions regarding the hazard identification for body weight effects

15 Both animal and human data provide little support for an effect of PFOS exposure on body

16 weight. The overall weight of evidence does not appear to justify the identification of body

17 weight effects as critical endpoints for consideration of dose-response.

18

19

1 <u>Endocrine/metabolic effects</u>

2 Animal studies

- 3 A summary of endocrine/metabolic effects in animals can be found in Table 8 at the end of the
- 4 following review. Detailed methodological information and additional study results can be
- 5 found in the corresponding tables in Appendices 3 or 4.
- 6 Changes in the thyroid (e.g., histopathology, weight) and thyroid hormones were assessed in
- 7 animals. Effects on other endocrine and metabolic organs and tissues (e.g., adipose tissue,
- 8 adrenal glands, hypothalamus, and pituitary glands) and hormones (e.g., corticosterone, estradiol,
- 9 and testosterone) were also investigated following PFOS exposure. These findings are briefly
- 10 reviewed below. In addition, data regarding changes in glucose and urea levels are discussed as
- 11 clinical chemistry parameters relevant to endocrine and metabolic effects.

12 <u>Thyroid</u>

- 13 *<u>Thyroid gland weight and histopathology</u>*
- 14 Effects of PFOS on weight and histopathology of the thyroid gland were assessed in rats.
- 15 Following 52 weeks of exposure to 1.0 mg/kg/day PFOS, a decrease in relative (to brain) weight
- 16 of the left thyroid gland was observed in male, but not female, rats (Butenhoff et al., 2012). In
- 17 this study, no effect was observed in the right thyroid gland of either sex. Increased relative
- 18 thyroid weight was observed in rats exposed to 100 mg/kg feed (> 6.3 mg/kg/day) of PFOS for
- 19 28 days (Curran et al., 2008). Yu et al. (2009a) observed no effect on relative thyroid weight in
- rats exposed for 91 days \leq 15.0 mg/L PFOS in drinking water. Yu et al. (2009a) do not provide
- 21 an estimate of the intake dose of rats in this study. No histopathological effects were observed in
- rat thyroid glands following chronic (NOAEL = 1.0 mg/kg/day; Butenhoff et al., 2012) or 7-day
- 23 (NOAEL = 9.7 mg/kg/day; Elcombe et al., 2012b) exposures to PFOS. However, as reviewed in
- 24 the cancer hazard identification section, an increase in the incidence of thyroid follicular cell
- tumors was observed in male rats exposed to 1.0 mg/kg/day (20 ppm) for 52 weeks followed by
- 26 52 weeks of recovery (Butenhoff et al., 2012).

27 <u>Thyroid hormones</u>

- 28 Levels of thyroid hormones were assessed in rats, mice, and monkeys following PFOS exposure.
- 29 Several studies in rats assessed the effect of PFOS on the levels of thyroid hormones. Following
- 30 91 days of drinking water exposure to PFOS, total thyroxine levels were decreased with doses \geq
- 31 1.7 mg/L (Yu et al., 2009a). In contrast to this decrease, Yu et al. (2009a) observed no consistent
- 32 effect on free T4, total triiodothyronine (T3), and thyroid stimulating hormone (TSH) across
- dose groups (NOAEL = 15.0 mg/L). With a shorter duration of exposure (28 days), decreases in
- total T4 were observed in male and female rats exposed ≥ 1.3 mg/kg/day PFOS (Curran et al.,
- 35 2008). Decreases in total T3 were also observed in males and females but at doses \geq 50 mg/kg
- 36 feed; TSH was not assessed in these rats. Decreased total and free T4 and total T3 were

- 1 observed in rats exposed to 10 mg/kg/day PFOS for 5 days (Martin et al., 2007). Following a
- 2 single oral dose of 15 mg/kg, decreases in total T4 and total and reverse T3 were observed with
- 3 no effect on free T4 (Chang et al., 2008).
- 4 In mice, PFOS was reported to have no effect on total T3 and T4 levels following 28 days of
- 5 exposure to 0.17 mg/kg/day (Fair et al., 2011).
- 6 In monkeys, thyroid hormone levels were assessed after 182 days of exposure to PFOS (Seacat et
- 7 al., 2002). While there were no effects on free and total T4 (NOAEL = 0.75 mg/kg/day), both
- 8 free T3 and total T3 levels decreased at 0.75 and 0.15 mg/kg/day, respectively, in males and
- 9 females. Additionally, TSH levels increased following exposure to 0.75 mg/kg/day. These
- 10 thyroid hormone effects were observed in the absence of any change in thyroid gland
- 11 histopathology.
- 12 Effects on other endocrine and metabolic organs and tissues
- 13 The effect of PFOS on adipose tissue, the adrenal glands, hypothalamus, and the pituitary glands
- 14 were investigated in animals.
- 15 Studies in mice have assessed the effect of PFOS exposure on adipose tissue. Decreases in
- 16 epididymal fat weight have been observed in mice exposed for 10 days to 0.02% PFOS in feed
- 17 (~40 mg/kg/day; Qazi et al., 2009a, 2009b, 2012). This decrease was not observed in PPARα
- null mice (Qazi et al. (2009b) or in mice exposed to lower doses of PFOS for either 10 (6
- 19 mg/kg/day) or 28 days (0.14 mg/kg/day; Qazi et al., 2013). When fed a regular (i.e., non-high
- 20 fat) diet, mice exposed to 20 mg/kg/day PFOS for 14 days had decreased relative fat weight
- 21 compared to controls (Wang et al., 2011a, 2014a).
- 22 The effects of PFOS on the adrenal glands were assessed in rats and mice. Following 52 weeks
- 23 of exposure, relative (to brain weight) adrenal gland weights were reduced in female rats
- exposed to 1.3 mg/kg/day PFOS, whereas such a decrease was not observed in male rats exposed
- to 1.0 mg/kg/day (Butenhoff et al., 2012). Decreased relative adrenal gland weight was observed
- in male rats exposed to 0.5 to 6.0 mg/kg/day PFOS for 28 days (Pereiro et al., 2014). However,
- 27 decreased relative adrenal gland weight was not observed in male and female rats exposed ≤ 6.34
- 28 mg/kg/d for males or 7.58 mg/kg/d for females for 28 days, although there was a shallow, but
- 29 statistically significant trend toward increased adrenal weight across doses from 0.14-7.58
- 30 mg/kg/day (Curran et al., 2008). In mice, exposure to PFOS of ≤ 0.17 mg/kg/day had no effect
- 31 on adrenal gland histopathology (Fair et al., 2011).
- 32 Effects on the hypothalamus were assessed in rats and mice following PFOS exposure. No effect
- on relative hypothalamus weight was observed in rats exposed $\leq 6.0 \text{ mg/kg/day PFOS}$ for 28
- days (Lopez-Doval et al., 2014; Pereiro et al., 2014). To assess the effect of PFOS exposure on
- 35 the hypothalamus, rats and mice were exposed to PFOS via intracerebroventricular injection
- 36 (Asakawa et al., 2007). Exposed animals experienced a decrease in food intake (LOAEL = 0.1

- 1 mg/kg) as well as changes in gastro-duodenal motility and rate of gastric emptying (LOAEL =
- $2 \quad 0.3 \text{ mg/kg}).$
- 3 The effect of PFOS on the pituitary glands was investigated in rats. After 28 days of exposure,
- 4 histopathological changes were observed in the pituitary glands of male rats exposed to 0.5

5 mg/kg/day (Lopez-Doval et al., 2014). However, no change in relative pituitary weight was

- 6 observed after 28 days exposure to \leq 6.0 mg/kg/day PFOS (Lopez-Doval et al., 2014; Pereiro et
- 7 al., 2014).
- 8 Effects on other endocrine and metabolic hormones
- 9 In addition to thyroid hormone, the effect of PFOS on various other hormones were investigated
- 10 in animals. Data are mixed for an effect of PFOS on corticosterone levels in mice, as both an
- 11 increase (LOAEL = 0.83 mg/kg/day; Dong et al., 2009) and no change (NOAEL = 0.83
- 12 mg/kg/day; Dong et al., 2011) in this hormone was observed following 60 days of exposure.
- 13 A decrease in estradiol was observed in male monkeys but not females following 182 days of

14 PFOS exposure at 0.75 mg/kg/day (Seacat et al., 2002). Decreased leptin was observed in rats

- 15 following 2 weeks of exposure to 10 mg/kg/day (Austin et al., 2003).
- 16 Lopez-Doval et al. (2014) observed decreased luteinizing hormone and increased follicle
- 17 stimulating hormone in rats following 28 days of exposure to 0.5 mg/kg/day.
- 18 A decrease in testosterone was observed in rats following 28 days of exposure to 0.5 mg/kg/day
- 19 (Lopez-Doval et al., 2014), whereas no change in testosterone was reported for rats exposed ≤ 5
- 20 days to 10 mg/kg/day (Martin et al., 2007). No effect on testosterone levels was found in
- 21 monkeys exposed to 0.75 mg/kg/day PFOS for 182 days (Seacat et al., 2002).
- 22 <u>Glucose</u>
- 23 In monkeys, no effect on serum glucose levels was observed following 182 days of exposure
- 24 (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day).
- 25 In rats, decreased serum glucose levels were observed in males (LOAEL = 1.0 mg/kg/day) and
- females (LOAEL = 0.1 mg/kg/day) following 53 weeks of exposure (Butenhoff et al., 2012).
- 27 Curran et al. (2008) reported that 28 days of PFOS exposure caused a decrease in serum glucose
- in female (LOAEL = 7.6 mg/kg/day) but not male (NOAEL = 6.3 mg/kg/day) rats. Elcombe et
- al. (2012a) reported decreased glucose in male rats exposed to 5.6 mg/kg/day for 28 days.
- 30 In mice, no effect on serum glucose was observed in females exposed to PFOS for 28 days (Fair
- et al., 2011; NOAEL = 0.17 mg/kg/day). However, decreased serum glucose was observed in
- 32 males exposed for 14 days (Wang et al., 2014a; LOAEL = 20 mg/kg/day).
- 33 In total, animal studies have reported either no effect or a decrease in serum glucose levels
- 34 following PFOS exposure.

1 <u>Urea/ Blood Urea Nitrogen</u>

- 2 Effects on urea levels in blood/serum (often reported as blood urea nitrogen; BUN) can result
- 3 from changes in liver metabolism or kidney function. For simplicity of presentation, changes in
- 4 blood/serum urea in animals in response to PFOS exposure are addressed here. Following 182
- 5 days of PFOS exposure in monkeys, no effect on blood urea nitrogen (BUN) was observed
- 6 (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day). Increased BUN was observed in male (LOAEL
- 7 = 0.1 mg/kg/day) and female (LOAEL = 0.3 mg/kg/day) rats following 53 weeks of exposure
- 8 (Butenhoff et al., 2012). At an interim observation (14 weeks of exposure) in the Butenhoff et al
- 9 (2012) study, increased BUN was observed at \geq 1.3 mg/kg/day in males and females (Seacat et
- al., 2003). Following 28 days of exposure, Curran et al. (2008) reported a statistically significant
- 11 decrease in serum urea in female rats exposed to 3.7 mg/kg/day. At 7.6 mg/kg/day, a decrease
- 12 was also observed in females, but was not statistically significant. In male rats, no effect on
- 13 serum urea was observed (NOAEL = 6.3 mg/kg/day).
- 14 In total, data are mixed for the effect of PFOS on urea in animals. Available data suggest no
- 15 effect in monkeys and mice; however, increased and decreased urea levels in serum have been
- 16 observed in rats.
- 17 <u>Summary of endocrine/metabolic effects in animals</u>
- 18 In summary, studies in multiple species with differing durations of exposure have demonstrated
- 19 that PFOS can cause endocrine and metabolic effects in animals. Data are mixed regarding an
- 20 effect of PFOS on the thyroid gland with some studies, but not all, finding changes in thyroid
- 21 weight. Although a lack of histopathological changes have been observed in the thyroid gland
- following PFOS exposure, an increased incidence of thyroid follicular cell tumors was noted
- following chronic exposure (Butenhoff et al., 2012). While not always consistent, PFOS has
 been reported to affect the level of thyroid hormones. In some studies, decreases in T3 and T4
- 24 been reported to affect the level of myroid normones. In some studies, decreases in 15 and 14 25 were not accompanied by a compensatory increase in TSH, which is a classical indicator of
- 26 hypothyroidism. Additionally, some thyroid hormone measurements need to be interpreted with
- 27 caution, as analytical methods may influence free T4 measurements (Chang et al., 2007).
- 28

Aside from the thyroid gland, PFOS can have an effect on adipose tissue and may affect some

30 functions associated with the hypothalamus. There are few data regarding an effect on the

- 31 adrenal and pituitary glands although there is a suggestion of histopathological effects. For
- 32 corticosterone and testosterone, the data are contradictory and it is unclear whether PFOS has a
- 33 substantive effect on these hormones. There is only one study each for the effect of PFOS on
- 34 levels of estradiol, leptin, luteinizing hormone, and follicle stimulating hormone. Thus, there is
- 35 insufficient information to draw clear conclusions. Glucose levels in animals following PFOS
- 36 exposure have either been decreased or unchanged. The effect of PFOS on serum levels of urea
- 37 is unclear as no effect, increases, and decreases have all been observed in animals.

38

Reference	Species/ Strain	table for endocrine/me Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	 ↓ adrenal gland absolute weight (left) and relative to brain weight (left and right), females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure 	Males: 1.0 Females: - 	Males: Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	(day assessed) Males: Females: 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
				 ↓ thyroid (left, with parathyroid) absolute weight and relative to brain weight, males only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 	Males: Females: 1.3	Males: 1.0 Females: - 		Males: 146,000 Females: (determined at week 53)

Table 8. Stu	dy summary	table for endocrine/me	etabolic effe	ects in animals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	<53 weeks	↑ follicular cell adenoma (thyroid), males only following <53 weeks of exposure then exposure to control diet until terminal sacrifice between weeks 103 and 106	(doses <20 ppm not part of recovery study)	Males: 1.0 Females: - 	Serum and liver PFOS concentrations determined Due to conflation of interim and term data in outcome reporting for thyroid adenomas, neither significance, nor dose-response for term outcomes are interpretable	Males: 2,420 Females: (determined at week 106)
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	↑ serum corticosterone (after 60 days of exposure)	0.417	0.833	Serum PFOS concentrations determined Only males used	65,430 (serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	Serum corticosterone	0.8333		Serum PFOS concentrations determined Only males used Small sample size (n=6)	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Seacat et al. (2002) 1-year recovery data not summarized herein	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day Capsule	26 weeks	 adrenal gland weight (left, relative to body weight, males only) (limited sample size prevented determination of NOAEL and LOAEL) 			Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with increased frequency of endpoint measurements	(day assessed)
				↑ TSH (males and females) (determined on days 182 and 184)	0.15	0.75		Males: 173,000 Females: 171,000 (determined after 183 days of exposure)
				Total T4 0.75 (no consistent 0.75 changes with dose or duration)				
				↓ Total T3 (males and females) (on days 182 and 184)	0.03	0.15		Males: 82,600 Females: 66,800 (determined after 183 days of exposure)
				Free T4 (only measured on day 184)	0.75			

14010 0. 50		table for endocrine/me			NOAEL*	LOAEL*		Serum PFOS concentration (in ng/mL)
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	(mg/kg/d unless noted)	(mg/kg/d unless noted)	Comment(s)	corresponding to the LOAEL
								(day assessed)
				\downarrow free T3 (males and females)	0.15	0.75		Males: 173,000 Females: 171,000
				(only measured on day 184)	0.15	0.75		(determined after 183 days of exposure)
				↓ estradiol (males only)	Males: 0.15	Males: 0.75		Males: 173,000 Females:
				(on day 182)	Females: 0.75	Females: - 		(determined after 183 days of exposure)
				Testosterone				
				(for entire duration of exposure)	0.75			
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	Thyroid weight (absolute and relative)	15.0 mg/L		Serum PFOS concentrations determined	
			Total T3 (statistically significant increase with 1.7 mg/L but no statistically significant effects at higher doses)	15.0 mg/L		Only males used Unclear whether thyroid hormone measurements were subject to negative bias due to analytical method used		
				↓ Total T4		1.7 mg/L		5,000 (determined after
				(determined after 91 days of exposure)		1.7 mg/L		91 days of exposure)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				Free T4 (statistically significant decrease at 5.0 mg/L but no statistically significant effects at other doses)	15.0 mg/L			
				TSH	15.0 mg/L			
with statistically than the LOAE	y significant (e.g L.	as the highest dose that dic g., p<0.05) effects. For son roxine; TSH = thyroid stime	ne endpoints,	there were dose-related				

 \uparrow = increased; \downarrow = decreased ------ = not applicable

1 Human epidemiology studies

- 2 A summary of endocrine/metabolic effects in humans can be found in Tables 9 to 11 at the end
- 3 of the following review. Detailed methodological information and additional study results can
- 4 be found in the corresponding tables in Appendix 6.

5 <u>Thyroid hormones/thyroid disease</u>

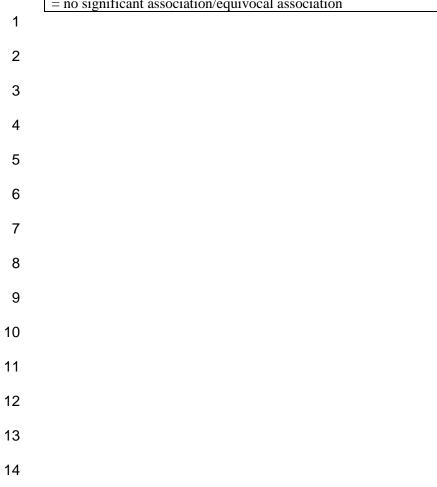
- 6 Nine studies were identified that investigated a possible association between free T4 and PFOS
- 7 exposure in adults. The central tendency serum PFOS concentration in these studies was mostly
- 8 in the range of 8-20 ng/ml, consistent with general population exposure. However, one study of
- 9 an occupational cohort (Olsen et al., 2003b) had mean serum PFOS concentrations of 800-1,320
- 10 ng/ml. With one exception, these studies did not find a statistically significant association
- 11 between serum PFOS and serum free T4. Dallaire et al. (2009), found a significant positive
- 12 association between serum PFOS and free T4 in an Inuit population in Nunavik, Quebec,
- 13 Canada.
- 14 Six studies investigated the possible association between serum PFOS and total T4. An
- 15 additional study, Kim et al. (2000) included PFOS and total T4 in cord blood serum as well as
- 16 maternal serum. In general, the central tendency PFOS exposure in the populations in these
- 17 studies were consistent with general population exposures. However, the C8 Study population in
- 18 Knox et al. (2011) (median concentration 21-26 ng/ml) and the population in several northern
- 19 New York State counties (Shrestha et al., 2015) (geom. mean 31.6 ng/ml) had serum PFOS
- 20 levels that were somewhat higher. One of these studies (Lopez-Espinosa et al., 2012a) reported a
- 21 statistically significant positive association of total T4 with serum PFOS. None of the other
- studies reported a statistically significant association. A study of children, de Cock et al. (2014b),
- 23 also did not find a significant association.
- 24 Two studies (Dallaire et al., 2009); Kim et al., 2011) reported a significant negative association
- between total T3 and adult serum PFOS. The significant association of PFOS and T3 in the Kim
- et al. (2011) study was specific to T3 in maternal serum. Linked results for T3 in fetal cord
- 27 serum did not yield a significant association with PFOS. A third study that examined T3 uptake
- 28 (Knox et al., 2011) found a significant negative association with serum PFOS. Two additional
- studies, Jain et al (2013b), and the previously mentioned Shrestha et al. (2015) study with
- 30 elevated PFOS serum concentrations did not find a significant association between serum PFOS
- and total T3.
- 32 Eleven studies evaluated the association between adult serum PFOS and thyroid stimulating
- 33 hormone (TSH). In addition, the aforementioned Kim et al. (2011) study also investigated the
- 34 association of TSH in fetal cord serum with fetal cord serum PFOS. Dallaire et al. (2009) found
- a significant negative association, while the study of Lopez-Espinosa et al. (2012a) found a
- 36 significant positive association. The remaining studies found no significant associations between
- 37 serum PFOS and TSH.

- 1 Two studies addressed the association between adult serum PFOS and thyroxine binding
- 2 globulin (TBG). Dallaire et al. (2009) found a significant negative association, while Jain et al.
- 3 (2013b) found no significant association.
- 4 Lopez-Espinosa et al. (2012a) investigated the association between serum PFOS and clinical
- 5 hypothyroidism, sub-clinical hypothyroidism and sub-clinical hyperthyroidism. None of these
- 6 conditions was significantly (positively or negatively) associated with serum PFOS. Melzer et
- 7 al. (2010) found no significant associations between serum PFOS and self-reported ever or
- 8 current thyroid disease.
- 9 <u>Summary of thyroid hormones/thyroid disease studies</u>
- 10 With the possible exception of T3, none of the thyroid hormones or measures of thyroid function
- 11 showed consistent evidence of an association with PFOS exposure. There is a suggestion that
- 12 PFOS exposure is associated with decreased total T3 and/or T3 uptake. However, the
- 13 significance of this observation is not clear.
- 14 <u>Metabolic function</u>
- 15 <u>Glucose homeostasis</u>
- 16 Several studies examined the association between PFOS exposure and insulin levels. Lin et al.
- 17 (2009) found a significant positive association in adults, and Timmermann et al. (2014) found a
- 18 significant positive association for overweight children, but not for normal weight children. In
- 19 the Timmermann et al. study, the central tendency level of PFOS in serum (median 41.5 ng/ml)
- 20 is higher than in other studies that reflect general population exposure. In contrast, Fisher et al.
- 21 (2013) found no significant association of PFOS with insulin in adults.
- 22 No significant associations were observed between serum glucose (adults or children) in three
- studies (Fisher et al. (2013); Lin et al. (2009); Timmermann et al. (2014)), or in a single study of
 glucose homeostasis (Lin et al., 2011).
- 25 Several studies addressed PFOS and HOMA-IR (Homeostatic model assessment-Insulin
- 26 resistance). This is essentially a measure of the efficiency of insulin utilization and β cell
- 27 production of insulin, with higher insulin resistance values indicating less efficient insulin
- efficiency/glucose utilization. Lin et al. (2009) found a significant positive association of
- 29 HOMA-IR and serum PFOS in adults. Timmermann et al. (2014) found a significant positive
- 30 association for overweight (but not for normal weight) children. Two other studies in adults
- 31 (Fisher et al., 2013; Nelson et al., 2010) found no significant associations. Lin et al. (2009)
- 32 found that β cell function was significantly positively associated with adult serum PFOS. Since
- 33 decreased β cell function is a component of an increased value for HOMA-IR, this appears to
- 34 contradict the findings from the same study regarding HOMA-IR. Adolescent β cell function in
- 35 this study, however, was negatively associated with serum PFOS with borderline statistical
- 36 significance. Lind et al. (2014) did not observe a significant association between the pro-
- 37 insulin/insulin ratio (a measure of insulin secretion) in a population of 70 year-olds.

1 <u>Metabolic syndrome/body weight/obesity</u>

- 2 Metabolic syndrome is a cluster of conditions increased blood pressure, high blood sugar,
- 3 excess body fat around the waist, and abnormal cholesterol or triglyceride levels that are
- 4 predictive of the risk of heart disease, stroke and diabetes. Two studies, Fisher et al. (2013) and
- 5 Lin et al. (2009) examined the association of metabolic syndrome with serum PFOS in adults,
- 6 defining metabolic syndrome as having at least three of the five contributing definitions. Neither
- 7 study found a significant association with serum PFOS.
- 8 Nelson et al. (2010) found that serum PFOS was significantly positively associated with body
- 9 weight for the portion of their NHANES sample 60-80 years-old, but not for other adult ages.
- 10 Timmermann et al (2014) did not find a significant association between children's serum PFOS
- 11 and either BMI, skinfold thickness, or waist circumference.
- 12 Adiponectin and leptin are both hormones that function (at least in part) in the regulation of fat
- 13 stores. Adiponectin is also involved in glucose regulation. No significant association was found
- between serum PFOS and adiponectin (Lin et al. (2011), 12-30-year-olds); Timmermann et al.
- 15 (2014), children) or leptin (Timmermann et al. (2014), children). Obesity is associated with low-
- 16 grade chronic inflammation, which inhibits adiponectin. In the Lin et al. (2011) study, no
- 17 association was found between inflammatory markers and serum PFOS.

18 <u>Uric acid</u>


- 19 Uric acid is the final product of purine metabolism and may be associated with decreased kidney
- 20 function or other underlying toxicity. For simplicity of presentation, epidemiology studies
- 21 investigating associations between uric acid and/or hyperuricemia and PFOS exposure are
- addressed here. Geiger et al. (2013) (children) and Gleason et al. (2015) (adolescents and adults)
- 23 found that uric acid concentration in blood was positively associated with serum PFOS.
- 24 Steenland et al. (2010), also found a significant positive association of both serum uric acid and
- 25 hyperuricemia with serum PFOS in a very large population of adults. Geiger et al. (2013) found
- 26 that having hyperuricemia is positively associated with serum PFOS.
- 27 <u>Summary of metabolic function studies</u>
- 28 There is a suggestion that PFOS is associated with inhibition of insulin function and utilization.
- 29 However, the evidence for this comes from only two studies (Lin et al., 2009, Timmermann et
- 30 al., 2014). Other studies did not find these associations. There is also a suggestion that PFOS is
- 31 associated with increased uric acid levels and an increased risk of hyperuricemia. The evidence
- 32 for the association of elevated serum uric acid with PFOS exposure is supported by three studies
- 33 (Geiger et al., 2013; Gleason et al., 2015; Steenland et al., 2010). The evidence for an
- 34 association of PFOS exposure with hyperuricemia is supported by Geiger et al. (2013) and
- 35 Steenland et al. (2010). There is a relatively strong consistency in findings among these studies,
- 36 all of which are relatively large studies (particularly the Steenland et al. (2010) study, n =
- 37 53,454). Overall there is moderately strong evidence that PFOS exposure in humans is

- 1 associated with elevated serum uric acid including the potential for progression to
- 2 hyperuricemia.
- 3 <u>Sex Hormones</u>
- 4 A number of epidemiology studies have investigated the potential association between serum
- 5 PFOS and sex hormones. These include, testosterone (5 studies), estradiol (5 studies), sex
- 6 hormone binding globulin (SHBG) (5 studies), follicle stimulating hormone (FSH) (4 studies),
- 7 luteinizing hormone (LH) (4 studies), inhibin-B (3 studies), free androgen index (4 studies),
- 8 dehydroepiandrosterone, anti-Müllerian hormone, and gonadotrophin hormones (1 study each).
- 9 One study which found statistically significant negative association with total and free
- 10 testosterone and free androgen index (Joensen et al. 2013), while the other studies did not find a
- 11 significant association between these sex hormones and serum PFOS (Table 11).

	ary of Epidemiology Studies	of Thyroid Function	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
T4	transthyretin-bound T4 =	Geo. mean 10.92	Audet-Delage (2013)
	Free T4 =	Geo. mean 19.57	Bloom et al. (2010)
	Free T4 =	Geo. mean cases 7.08 controls 7.50	Chan et al. (2011)
	Free T4 ↑	Geo. mean 18.28	Dallaire et al. (2009)
	Free T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Free T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Free T4 =	Geo. mean 31.60	Shrestha et al. (2015)
	Free T4	Geo. mean 7.78	Lin et al. (2013a)
	Free T4 =	Mean 800-1,320	Olsen et al. (2003b)
	Total T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Total T4 =	Med. 7.16- 9.58	Ji et al. (2012)
	Total T4 = (maternal and fetal serum)	Mean 2.93 (maternal)	Kim et al. (2011)
	Total T4 =	Med. 20.97-26.15	Knox et al. (2011)

Endpoint	Effect and Direction	of Thyroid Function Serum PFOS	Study reference
Liupoint		concentration (ng/ml) (mean, median, etc.)	Study reference
	Total T4 ↑	Med. 20	Lopez-Espinosa et al. (2012a)
	Total T4 =	Mean 800-1,320	Olsen et al. (2003b)
	Total T4 =	Geom. mean 31.60	Shrestha et al. (2015)
	T4 (apparently total) = (children)	Med. 1.6 (maternal)	de Cock et al. (2014b)
Т3	T3↓	Geo. mean 18.28	Dallaire et al. (2009)
	Free T3 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	T3 \downarrow (maternal serum, not sig for fetal serum)	Mean 2.93	Kim et al. (2011)
	T3 uptake =	Med. 20.97-26.15	Knox et al. (2011)
	T3 ↑ (M only)	Mean 800-1,320	Olsen et al. (2003b)
	T3 =	Geo. mean 31.60	Shrestha et al. (2015)
TSH	=	Geo. mean 9.57	Bloom et al. (2010)
	=	Geo. mean cases 7.08 controls 7.50	Chan et al. (2011)
	Ļ	Geo. mean 18.28	Dallaire et al. (2009)
	=	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	=	Med. 7.16- 9.58	Ji et al. (2012)
	=	Mean 2.93	Kim et al. (2011)
	=	Med. 20.97-26.15	Knox et al. (2011)
	=	Geo. mean 7.78	Lin et al. (2013a)
	1	Med. 20	Lopez-Espinosa et al. (2012a)
	=	Mean 800-1,320	Olsen et al. (2003b)
	=	Geo. mean 31.60	Shrestha et al. (2015)

Table 9. Summary o	f Epidemiology Studies	of Thyroid Function	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Thyroxine-binding globulin (TBG)	↓	Geo. mean 18.28	Dallaire et al. (2009)
	=	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
Thyroid disease	Clinical hypothyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Sub-clinical hypothyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Sub-clinical hyperthyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Thyroid disease ever/curren (self-reported) =	Geo. mean = 25.08 - 19.14	Melzer et al. (2010)
↓ statistically significa	int positive association ation/equivocal association	n	

ect and Direction alin = alin \uparrow >20 yrs old alin \uparrow >20 yrs old alin \uparrow >20 yrs old alin \uparrow >20 yrs old acose = acose = acose = MA-IR = MA-IR = MA-IR \uparrow >20 yrs old MA-IR \uparrow >20 yrs old MA-IR \uparrow >20 yrs old MA-IR \uparrow >20 yrs old MA-IR \uparrow >20 yrs old >20 yrs old	Serum PFOS concentration (ng/ml) (mean, median, etc.) Geo. mean 8.40 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 41.5 Geo. mean 8.40 Med. 41.5 Med. 41.5 Geo. mean 8.40 Med. 41.5 Geo. mean 8.40	Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
ulin ↑ >20 yrs old) ulin ↑ : >20 yrs old) ulin ↑ : overweight) : cose = : cose = : cose = : MA-IR = : MA-IR = : MA-IR ↑ : >20 yrs old) : MA-IR ↑ : overweight) tabolic syndrome =	(mean, median, etc.) Geo. mean 8.40 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
ulin ↑ >20 yrs old) ulin ↑ : >20 yrs old) ulin ↑ : overweight) : cose = : cose = : cose = : MA-IR = : MA-IR = : MA-IR ↑ : >20 yrs old) : MA-IR ↑ : overweight) tabolic syndrome =	Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 41.5 Geo. mean 8.40	Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
$\frac{>20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$ $\frac{ }{ } > 20 \text{ yrs old}}{ }$	(diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Timmermann et al. (2014) Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Fisher et al. (2013)
ulin \uparrow • overweight) icose = icose = icose = icose = MA-IR = MA-IR = MA-IR \uparrow • >20 yrs old) MA-IR \uparrow • overweight) tabolic syndrome =	Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 41.5 Geo. mean 8.40	Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
r overweight) acose = meostasis) = meostasis meostasis) = meostasis meostasis) = meostasis meo	Med. 41.5 Geo. mean 8.40 Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 41.5 Geo. mean 8.40	Fisher et al. (2013) Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
cose = $cose =$ $cose =$ $meostasis) =$ $cose =$ $MA-IR =$ $MA-IR =$ $MA-IR ↑$ $coverweight)$ $coverweight)$ $coverweight)$	Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
acose meostasis) = acose = MA-IR = MA-IR ↑ > 20 yrs old) MA-IR ↑ > overweight) tabolic syndrome =	Med. 8.93 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Lin et al. (2011) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
meostasis) = acose = MA-IR = MA-IR = $MA-IR \uparrow$ >20 yrs old $MA-IR \uparrow$ coverweight) tabolic syndrome =	Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
icose = MA-IR = MA-IR = $MA-IR \uparrow$ >20 yrs old) $MA-IR \uparrow$ • overweight) tabolic syndrome =	(diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
acose = MA-IR = MA-IR ↑ > 20 yrs old MA-IR ↑ $\Rightarrow \text{ overweight}$ tabolic syndrome =	(diff age ranges) Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Timmermann et al. (2014) Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
MA-IR = MA-IR = MA-IR ↑ >20 yrs old) MA-IR ↑ overweight) tabolic syndrome =	Med. 41.5 Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
MA-IR = MA-IR = MA-IR ↑ >20 yrs old) MA-IR ↑ overweight) tabolic syndrome =	Geo. mean 8.40 Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Fisher et al. (2013) Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
MA-IR = MA-IR ↑ >20 yrs old) MA-IR ↑ overweight) tabolic syndrome =	Med. 21.0 Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Nelson et al. (2010) Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
MA-IR ↑ >20 yrs old) MA-IR ↑ overweight) tabolic syndrome =	Mean 22.42 - 24.29 (diff age ranges) Med. 41.5 Geo. mean 8.40	Lin et al. (2009) Timmermann et al. (2014) Fisher et al. (2013)
<pre>>20 yrs old) MA-IR ↑ overweight) tabolic syndrome =</pre>	(diff age ranges) Med. 41.5 Geo. mean 8.40	Timmermann et al. (2014) Fisher et al. (2013)
MA-IR ↑ • overweight) tabolic syndrome =	Med. 41.5 Geo. mean 8.40	Fisher et al. (2013)
overweight) tabolic syndrome =	Geo. mean 8.40	Fisher et al. (2013)
tabolic syndrome =		
-		
tabolic syndrome =	Mean 22 42 24 29	\mathbf{L}^{*} (2000)
		Lin et al. (2009)
	(diff age ranges)	
ponectin =	Med. 8.93	Lin et al. (2011)
ponectin =	Med. 41.5	Timmermann et al. (2014)
ell function ↑	Mean 22.42 - 24.29	Lin et al. (2009)
>20 yrs old)	(diff age ranges)	
betes =	Mean 13.2	Lind et al. (2014)
-insulin/insulin o =	Mean 13.2	Lind et al. (2014)
um uric acid ↑	Mean 18.4	Geiger et al. (2013)
um uric acid ↑	Med. 11.3	Gleason et al. (2015)
peruricemia ↑	Mean 18.4	Geiger et al. (2013)
c acid,	Med. 20.2	Steenland et al. (2010)
eruricemia ↑		
ammatory markers	Med. 8.93	Lin et al. (2011)
	betes = -insulin/insulin D = um uric acid \uparrow um uric acid \uparrow peruricemia \uparrow c acid, eruricemia \uparrow ammatory markers	betes =Mean 13.2insulin/insulinMean 13.2 $D =$ Mean 13.2 um uric acid \uparrow Mean 18.4 um uric acid \uparrow Med. 11.3peruricemia \uparrow Mean 18.4c acid,Med. 20.2

Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml)	Study reference	
		(mean, median, etc.)		
Sex hormones	Testosterone =	Med. 24.5	Joensen et al. (2009)	
	Testosterone =	Med. 3.6	Kristensen et al. (2013	
	Testosterone =	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	
	Testosterone =	Med. 21.2 (maternal)	Vested et al. (2013)	
	Testosterone (total and	Mean 8.46	Joensen et al. (2013)	
	free)↓			
	Estradiol =	Med. 24.5	Joensen et al. (2009)	
	Estradiol = Med. 3.6		Kristensen et al. (2013	
	Estradiol =	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	
	Estradiol =	Med. 21.2 (maternal)	Vested et al. (2013)	
	Estradiol =	Mean 8.46	Joensen et al. (2013)	
	SHBG =	Med. 24.5	Joensen et al. (2009)	
	SHBG =	Med. 3.6	Kristensen et al. (2013	
	SHBG =	Mean 8.1-51.9	Specht et al. (2012)	
		(multiple pops.)	, restriction (
	SHBG =	Med. 21.2 (maternal)	Vested et al. (2013)	
	SHBG =	Mean 8.46	Joensen et al. (2013)	
	FSH =	Med. 24.5	Joensen et al. (2009)	
	FSH =	Med. 3.6	Kristensen et al. (2013	
	FSH =	Med. 21.2	Vested et al. (2013)	
		(maternal)	(2010)	
	FSH =	Mean 8.46	Joensen et al. (2013)	
	LH =	Med. 24.5	Joensen et al. (2009)	
	LH =	Med. 3.6	Kristensen et al. (2013	
	LH =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	LH =	Mean 8.46	Joensen et al. (2013)	
	Inhibin B =	Med. 24.5	Joensen et al. (2009)	
	Inhibin B =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	Inhibin B =	Mean 8.46	Joensen et al. (2013)	
	Free androgen index =	Med. 24.5	Joensen et al. (2009)	
	Free androgen index =	Med. 3.6	Kristensen et al. (2013	
	Free androgen index =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	Free androgen index ↓	Mean 8.46	Joensen et al. (2013)	
	Dehydroepiandrosterone=	Med. 3.6	Kristensen et al. (2013	
	Anti-mullerian hormone=	Med. 3.6 n	Kristensen et al. (2013	
	Gonadotrophin hormones =	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	

= no significant association/equivocal association

1

- 1 <u>Overall conclusions regarding the hazard identification of endocrine and metabolic effects</u>
- 2 There is some evidence from animal studies for decreased levels of T4 and T3 due to PFOS
- 3 exposure. The epidemiological literature provides some support for a role of PFOS in reducing
- 4 total T3 and possibly T3 uptake. PFOS may affect thyroid weight, but the direction of the effect
- 5 (decrease/increase) is not consistent. With the exception of thyroid follicular cell tumors,
- 6 histopathological changes of the thyroid have not been noted in thyroid in response to PFOS
- 7 exposure. The observation of thyroid follicular cell tumors in rats with chronic exposure
- 8 contributes to the overall assessment of carcinogenic potential, but there is no suggestion of a
- 9 mode of action for these tumors.
- 10 There is limited evidence for PFOS effects on the hypothalamus. There is limited evidence from
- the epidemiological literature for an association of PFOS with inhibition of insulin function and utilization.
- 13 There is moderately strong evidence for an association of PFOS with increased uric acid levels
- 14 and the occurrence of hyperuricemia. It is unclear whether (or to what extent) the association of
- 15 PFOS with uric acid reflects an underlying toxicity. Despite the suggestion of an association of
- 16 PFOS and uric acid in humans, the lack of data on uric acid levels in animals exposed to PFOS
- 17 makes the identification of an appropriate animal model uncertain.
- 18 Of the endocrine and metabolic endpoints for which there is some evidence for the potential for
- 19 PFOS to cause adverse effects, the strongest evidence from animal studies relates to the thyroid.
- 20 The strongest evidence from epidemiologic studies relates to uric acid. For both thyroid effects
- and uric acid effects, observations in animals are not strongly supported by observations in
- 22 animals and vice-versa. The animal evidence for thyroid effects is sufficient to include this as an
- endpoint for consideration of dose-response. While the human evidence for uric acid effects,
- 24 would suggest that such effects would be an appropriate endpoint for consideration of dose-
- response, the epidemiologic evidence does not support dose response modeling, and the animal
- 26 evidence is insufficiently consistent to support dose-response modeling.

27 Hepatic effects

28 Animal studies

- A summary of hepatic effects in animals can be found in Table 12 at the end of the following
- 30 review. Detailed methodological information and additional study results can be found in the
- 31 corresponding tables in Appendices 3 or 4.
- 32 In general, the following endpoints were identified in animals: increases in liver weight
- 33 (absolute and relative to body weight), changes in liver histopathology (hepatocellular
- 34 hypertrophy and other microscopically observed changes), changes in liver carbohydrate and fat
- 35 content, and increased of incidence tumors (e.g., adenomas and carcinomas). Of these endpoints,
- 36 histopathological effects and liver weight, and tumor findings (although related to
- 37 carcinogenicity) are briefly reviewed below. Cchanges in serum enzymes typically associated

- 1 with liver damage as well as data on bilirubin are also discussed. Note that effects of PFOS on
- 2 blood/serum levels of urea are discussed in the section on Endocrine and Metabolic Effects.
- 3 <u>Liver weight</u>
- 4 Increased liver weight (both absolute and relative to body weight) has been consistently observed
- 5 in mice, monkeys, and rats following subchronic or greater exposure durations to PFOS (see
- 6 Table 12). Similarly, numerous shorter duration (i.e, <30 days) studies have also reported that
- 7 PFOS exposure can cause an increase in relative liver weight in mice (e.g., Qazi et al., 2009b;
- 8 Zheng et al., 2009; Rosen et al., 2010) and rats (e.g., Martin et al., 2007; Elcombe et al., 2012a,
- 9 2012b). In these shorter duration studies, increased relative liver weight was reported to occur
- 10 with 5 or 7 days of exposure in rats (Martin et al., 2007) and mice (Zheng et al., 2009; Rosen et
- 11 al., 2010), respectively.
- 12 Following exposures \geq 30 days, representative LOAELs for increased relative liver weight were
- 13 reported to be 0.083, 0.75, and 1.0 mg/kg/day in mice, monkeys, and rats, respectively (Seacat et
- 14 al., 2002; Dong et al., 2009; Butenhoff et al., 2012). At shorter durations of exposure (<30
- 15 days), representative LOAELs for increased relative liver weight were reported to be 5
- 16 mg/kg/day in mice (Zheng et al., 2011) and 1.3 mg/kg/day in rats (Elcombe et al., 2012a).
- 17 However, some low-dose studies in mice did not observe an increase in relative liver weight with
- 18 PFOS exposures of up to 28 days (e.g., Peden-Adams et al., 2008, NOAEL = 0.17 mg/kg/day;
- 19 Guruge et al., 2009, NOAEL = 0.025 mg/kg/day).
- 20 In addition to studies using standard rat and mouse strains, WT (wild-type) and PPARα null mice
- 21 have been compared with respect to their hepatic effects of PFOS. Rosen et al. (2010) reported
- 22 increased relative liver weights in both WT and PPARα null mice following 7 days of exposure.
- 23 Similarly, Qazi et al. (2009b) reported an increase in absolute liver weight in WT and PPARα
- null mice following 10 days of exposure; relative liver weight was not reported in this study.
- 25 <u>Liver enzymes</u>
- 26 While a number of enzyme parameters can be measured as part of clinical chemistry panels, data
- are reviewed below for alanine aminotransferase (ALT), alkaline phosphatase (ALP), and
- 28 aspartate aminotransferase (AST), which are indicative of liver effects, following PFOS
- 29 exposure. Data on the effects of PFOS exposure on liver enzymes and bilirubin are discussed
- 30 below and summarized in the table for Clinical Chemistry.
- 31 *ALT*
- 32 In male and female monkeys, no effect on ALT levels were reported following 182 days of
- 33 PFOS exposure (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day).
- 34 In rats, increased ALT levels were reported in males exposed to 1.0 mg/kg/day for 53 weeks
- 35 (Butenhoff et al., 2012). This increase was also observed at an interim observation (14 weeks) in
- 36 these male rats (Seacat et al., 2003). In contrast, there was no effect of PFOS exposure on ALT
- 37 levels in female rats (Seacat et al., 2003; Butenhoff et al., 2012; NOAEL = 1.3 mg/kg/day).

- 1 Elcombe et al. (2012a) reported no effect on ALT levels in male rats exposed for \leq 28 days
- 2 (NOAEL = 7.9 mg/kg/day). However, a decrease in ALT was observed in male rats exposed to
- 3 1.9 mg/kg/day for 7 days (Elcombe et al., 2012b).
- 4 In mice, no effect on ALT was observed following exposures up to 28 days or at doses ≤ 6
- 5 mg/kg/day (Qazi et al., 2010b, 2013).

6 ALP

- 7 Data are somewhat limited regarding the effect of PFOS exposure on levels of ALP in animals.
- 8 Seacat et al. (2002) reported no effect of PFOS exposure on ALP in male and female monkeys
- 9 exposed for 182 days (NOAEL = 0.75 mg/kg/day). Curran et al. (2008) observed no effect of
- 10 PFOS exposure on ALP in male (NOAEL = 6.3 mg/kg/day) and female (NOAEL = 7.6
- 11 mg/kg/day) rats exposed for 28 days. Qazi et al. (2010b) found an increase in ALP in male mice
- 12 (LOAEL = 0.005% in feed) exposed for 10 days.

13 *AST*

- 14 No effect on AST levels were observed in male and female monkeys exposed to PFOS for 182
- 15 days (Seacat et al., 2002; NOAEL = 0.7 mg/kg/day).
- 16 In rats, no effect on AST levels were observed in male (NOAEL = 1.0 mg/kg/day) and female
- 17 (NOAEL = 1.3 mg/kg/day) rats exposed for 53 weeks (Butenhoff et al., 2012). However
- 18 following shorter durations of PFOS exposure, data for AST are mixed in rats. Following 28
- 19 days of exposure, Curran et al. (2008) found decreased AST in female (LOAEL = 7.6
- 20 mg/kg/day) but not male (NOAEL =6.3 mg/kg/day) rats, whereas Kim et al. (2011) observed
- 21 increased AST in male (LOAEL = 10 mg/kg/day) but not female (NOAEL = 10 mg/kg/day) rats.
- Additionally, no effect on AST was reported after 28 days (Elcombe et al., 2012a, NOAEL = 1.3
- mg/kg/day) or 7 days (Elcombe et al., 2012b, NOAEL = 9.7 mg/kg/day) of PFOS exposure.
- In mice, no effect on AST was observed following 28 days (Qazi et al., 2013; NOAEL = 0.14
- 25 mg/kg/day) or 10 days (Qazi et al., 2010b; 2013; NOAEL = 6 mg/kg/day) of exposure.
- 26 For the serum enzymes discussed above, effects following PFOS exposure vary. While there is
- some evidence that PFOS can affect ALT levels in animals, data generally suggest no effect on
- this serum enzyme following PFOS exposure. For ALP, the data, while limited, were negative in
- 29 monkeys and rats but indicate an effect in mice. AST levels were generally not affected by
- 30 PFOS exposure; however, some rat studies have reported increased or decreased levels of this
- 31 enzyme.
- 32 <u>Bilirubin</u>
- 33 Various observations on bilirubin have been reported following PFOS exposure. Seacat et al.
- 34 (2002) reported a decrease in total bilirubin in male monkeys following 182 days of exposure to
- 35 0.75 mg/kg/day, whereas no effect was observed in females (NOAEL = 0.75 mg/kg/day). No
- 36 effect on total bilirubin was reported in male (NOAEL = 1.3 mg/kg/day) and female (NOAEL =

- 1 1.6 mg/kg/day) rats following 14 weeks of exposure (Seacat et al., 2003). However, Curran et al.
- 2 (2008) observed an increase in conjugated bilirubin in male (LOAEL = 6.3 mg/kg/day) and
- 3 female (LOAEL = 3.7 mg/kg/day) rats following 28 days of exposure.

4 In total, data are mixed (i.e., increases, decreases, or no effect have been observed) regarding

- 5 whether PFOS exposure affects bilirubin levels in animals.
- 6 <u>Histopathological lesions</u>
- 7 Following PFOS exposure, a number of different histopathological lesions have been reported in
- 8 the liver including cystic hepatocellular degeneration (Butenhoff et al., 2012), hepatocellular
- 9 hypertrophy/hepatomegaly (Seacat et al., 2002, 2003; Martin et al., 2007; Curran et al., 2008;
- 10 Qazi et al., 2010b; Kim et al., 2011; Butenhoff et al., 2012; Elcombe et al., 2012a, 2012b),
- 11 hepatocyte vacuolation (Seacat et al., 2002, 2003; Wang et al., 2014a), and hepatocyte necrosis
- 12 (Butenhoff et al., 2012).
- 13 Of these lesions, hepatocellular hypertrophy and vacuolation have been assessed in multiple
- 14 species. Hepatocellular hypertrophy following PFOS exposure has been observed in mice (Qazi
- 15 et al., 2010b), monkeys (Seacat et al., 2002), and in multiple rat studies (e.g., Martin et al., 2007;
- 16 Butenhoff et al., 2012; Elcombe et al., 2012a, 2012b). Similarly, hepatocellular vacuolation
- 17 following PFOS exposure has been observed in mice (Wang et al., 2014a), monkeys (Seatcat et
- 18 al., 2002) and rats (Seacat et al., 2003). Vacuole formation was observed in both wild-type (WT)
- 19 and PPARα null mice (Rosen et al., 2010) following PFOS exposure.
- 20 While observed following subchronic (i.e., >30 days) and longer exposure durations (see Table
- 21 12), lesions such as hepatocellular hypertrophy have also been reported with PFOS exposures of
- 22 7 days or less in rats (Martin et al., 2007; Elcombe et al., 2012a, 2012b). In mice, vacuole
- formation was observed following 7 days of PFOS exposure (Rosen et al., 2010), whereas
- 24 hypertrophy (Qazi et al., 2010b) and vacuolation (Wang et al., 2014a) were observed following
- 25 14 days of exposure.
- 26 With subchronic and greater exposure durations, hepatic lesions, specifically cystic
- 27 hepatocellular degeneration, in rats have been observed at administered doses as low as 0.02
- 28 mg/kg/day (Butenhoff et al., 2012). At higher doses, hypertrophy (0.1 mg/kg/day) and necrosis
- 29 (1.0 mg/kg/day) have been observed (Butenhoff et al., 2012). In monkeys, centrilobular
- 30 vacuolation and hypertrophy were observed with 0.75 mg/kg/day exposure (Seacat et al., 2002).
- 31 No chronic mouse studies assessed histopathological lesions. At shorter durations of PFOS
- 32 exposure (i.e., <30 days), hepatic lesions occurred at higher doses. For example, 1.3 mg/kg/day
- of PFOS exposure caused hypertrophy in rats (Elcombe et al., 2012a), and vacuolation was
- 34 observed in mice exposed to 5 mg PFOS/kg/day (Wang et al., 2014a).
- 35 While the presence of histopathological lesions in the liver has been a common observation
- 36 following PFOS exposure, some studies assessing hepatic endpoints have reported no
- 37 histopathological changes. For example, Fair et al. (2011) found no histopathological changes in

- 1 the livers of mice exposed up to 0.17 mg/kg/day for 28 days. Additionally, some studies have
- 2 reported histopathological lesions in males but not in female animals following PFOS exposure.
- 3 Butenhoff et al. (2012) reported an increase in cystic hepatocellular degeneration in male rats but
- 4 no increase in females at any dose. Other studies also report that male rats appear to be more
- 5 sensitive than females to the formation of histopathological lesions in the liver following PFOS
- 6 exposure (Seacat et al., 2003; Curran et al., 2008; Kim et al., 2011).

7 <u>Hepatic tumors</u>

- 8 Although they are related to carcinogenicity, tumors are discussed here because they may result
- 9 from a progression that begins with earlier non-neoplastic hepatic damage.
- 10 The Butenhoff et al. (2012) study in male and female rats was the only identified study that
- 11 assessed the formation of liver tumors. In both males and females exposed to PFOS for 104
- 12 weeks, a statistically significant increase in the incidence of hepatocellular adenomas was
- 13 reported for the highest dose groups. No statistically significant increases in hepatocellular
- 14 carcinomas were observed in males or females. However, when adenomas and carcinomas were
- 15 combined, a statistically significant increase in hepatocellular adenomas/carcinomas was
- 16 observed in females only.
- 17 In summary, studies with multiple species and durations have consistently demonstrated hepatic
- 18 effects in laboratory animals following PFOS exposure. The apparent succession of some of
- 19 these lesions occurs in a dose-related manner. For example, as reported in Butenhoff et al.
- 20 (2012), cystic hepatocellular degeneration in male rats was observed in the lowest dose group
- 21 (0.02 mg/kg/day). With increasing dose up to 1.0 mg/kg/day, additional effects were observed
- 22 including hypertrophy, vacuolation, necrosis, and adenomas. This increase in the number of and
- 23 severity of effects with dose suggests that these effects occur along a continuum starting with
- 24 cystic degeneration towards more severe effects (e.g., necrosis and tumors).

25

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	 liver absolute weight (males), relative to body weight (males and females), and relative to brain weight (males) (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 	Males: Females: - 	Males: 1.0 Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	Males: 146,000 Females: 223,000 (week 14) 233,000 (week 105) (male serum PFOS concentrations determined after 53 weeks of exposure, female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	≤104 weeks	↑ cystic degeneration (males only) (determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: Females: 1.3	Males: 0.02 Females: - 	Serum and liver PFOS concentrations determined Other pathological effects reported by study authors but not summarized herein Due to conflation of interim and term data in outcome reporting both significance and dose-response for term outcomes are	(day assessed) Males: 910 (week 4) 4,040 (week 14) 1,310 (week 105) Females: (male serum PFOS concentrations reported for after exposure for 4, 14, and 105

		ry table for hepatic ef		•				Serum PFOS
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				↑ hepatocellular hypertrophy (centrilobular), males and females (determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: 0.02 Females: 0.1	Males: 0.1 Females: 0.3		Males: 4,330 (week 4) 17,100 (week 14) 7,600 (week 105) Females: 12,600 (week 4) 64,400 (week 4) 64,400 (week 14) 75,000 (week 105) (male serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks, female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↑ individual hepatocyte necrosis, males and females (determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: 0.2 Females: 0.3	Males: 1.0 Females: 1.3		(day assessed) Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) 69,300 (week 105) Females: 54,000 (week 14) 223,000 (week 14) 233,000 (week 14) 2000 (week 105) (male serum PFOS concentrations reported for after exposure for 4, 14, and 105

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				↑ hepatocellular adenoma, males and females (presumably determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: 0.2 Females: 0.3	Males: 1.0 Females: 1.3		Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) 69,300 (week 105) Females: 54,000 (week 105) 223,000 (week 14) 233,000 (week 105) (male serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				 hepatocellular adenoma plus carcinoma, combined only for females (presumably determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices) 	0.3	1.3		Males:Females: 54,000 (week 4)223,000 (week 14)233,000 (week 105)(female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	 ↑ liver weight relative to body weight (determined after 60 days of exposure) 	0.008	0.083	Serum PFOS concentrations determined Only males used	7130 (serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	 ↑ liver weight relative to body weight (determined after 60 days of exposure) 	0.0833	0.4167	Serum PFOS concentrations determined Only males used Small sample size (n=6)	21,640 (serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Dong et al. (2012b)	Mice, C57BL/6	0, 0.0167, 0.0833, 0.833 mg/kg/day Oral gavage	60 days	 liver weight relative to body weight (determined after 60 days of exposure) 	0.0167	0.0833	Serum PFOS concentrations determined Only males used	(day assessed) 8,210 (serum collected on day 61)
Dong et al. (2012a)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day Oral gavage	60 days	 Iiver weight relative to body weight (determined after 60 days of exposure) 	0.0167	0.0833	Serum PFOS concentrations determined Only males used Small sample size (n=6)	8,210 (serum collected on day 61)
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm Dietary Daily PFOS dose (estimated as the mean of the daily PFOS doses reported weekly by study authors) 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day	13 weeks	 relative liver weight (1 absolute liver weight at highest dose) (determined after 13 weeks) 	0.5	2.1	Serum, brain, liver, and kidney PFOS concentrations determined Only males used Internal PFOS concentrations not reported for controls	(serum samples collected after 13 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2002) 1-year recovery data not summarized herein	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day Capsule	26 weeks	 ↑ relative liver weight (i.e., relative to body weight) (↑ absolute and relative [to brain] liver weight in females only with 0.75 mg/kg/day) (determined after 183 days of exposure) Cetrilobular 	Males: 0.15 Females: 0.15 (based on relative to body weight)	Males: 0.75 Females: 0.75 (based on relative to body weight)	Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with increased frequency of endpoint measurements	Males: 173,000 Females: 171,000 (determined after 183 days of exposure)
				vacuolation, hypertrophy, mild bile stasis (sex, incidence, and severity not reported) (determined after 183 days of exposure)	0.15	0.75		172,000 (determined after 183 days of exposure)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS BR	0, 0.5, 2.0, 5.0, 20 ppm Dietary Estimated daily dose of	14 weeks	↑ relative liver weight (to body weight, males and females)	Males: 0.3 Females:	Males:1.3 Females:	Serum and liver PFOS concentration determined Sample size ≤5 rats	Males: 148,000
		PFOS (as reported by study authors) Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day		(↑ absolute liver weight males only with 20 ppm) (determined after 14 weeks of exposure)	0.4 (based on relative liver weight)	1.6 (based on relative liver weight)	per endpoint	Females: 223,000 (determined after 14 weeks of exposure)
				Centrilobular hepatocyte hypertrophy, midzonal to centrilobular vacuolation (determined after 14 weeks of exposure)	Males: 0.1 Females: 0.4	Males: 0.3 Females: 1.6		Males: 43,900 Females: 223,000 (determined after 14 weeks of exposure)
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	 ↑ liver weight (absolute and relative) (determined after 91 days of exposure) 	1.7 mg/L	5.0 mg/L	Serum PFOS concentrations determined Only males used	33,600 (determined after 91 days of exposure)

 \uparrow = increased; \downarrow = decreased ------ = not applicable

1 <u>Human epidemiology studies</u>

2 A summary of hepatic effects in humans can be found in Table 13 at the end of the following

- 3 review. Detailed methodological information and additional study results can be found in the
- 4 corresponding tables in Appendix 6.

5 <u>Liver enzymes</u>

- 6 The increase of liver enzymes in serum is generally considered to be an indicator of liver
- 7 toxicity. Several studies investigated the association between serum liver enzymes and PFOS
- 8 exposure. No overall consistent pattern is apparent. While some studies, including Gallo et al.
- 9 (2012) and Olsen et al. (2003b), found significant positive associations of serum ALT with
- 10 serum PFOS at median and mean PFOS concentrations in the study population, other studies by
- 11 Gleason et al. (2015), Olsen et al. (2012), and Jiang et al. (2014) failed to find a significant
- 12 association. There is some suggestion that those studies that did find a significant positive
- 13 association involved cohorts with higher PFOS exposure. Only one study (Olsen et al., 2003b)
- 14 found a positive association of PFOS with gamma glutamyl transferase (GGT; in females only),
- 15 while two other studies did not. The occupational cohort of Olsen et al. (2003b) had a much
- 16 greater exposure than the non-occupational cohorts in the other studies. No significant positive
- 17 associations were found between serum PFOS and AST. Of the three studies that measured
- 18 ALP, only the Olsen et al. (2003b) occupational cohort found a significant positive association.

19 <u>Bilirubin</u>

- 20 Elevated serum bilirubin can be an indirect measure of liver toxicity and/or an indication of bile
- 21 duct blockage (cholestastis). A component of total bilirubin is direct bilirubin, a product of
- 22 hemoglobin metabolism for which increased serum concentrations reflect increases in liver and
- 23 bile duct disease. Therefore, total bilirubin serves only as an inferential measure of liver
- 24 function. The available studies of serum bilirubin in various cohorts showed both significant
- 25 positive and negative associations with no clear pattern.
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33

Endpoint	Effect and Direction	Serum PFOS	Study reference
		concentration (ng/ml)	
		(mean, median, etc.)	
Liver enzymes			
	ALT ↑	Med. 20.3	Gallo et al. (2012)
	ALT =	Med. 11.3	Gleason et al. (2015)
	ALT =	Δ+4.2	Olsen et al. (2012)
	ALT ↑	Mean. 800-1,320	Olsen et al. (2003b)
	(M only)		
	ALT =	Mean 4.75	Jiang et al. (2014)
	GGT =	Med. 20.3	Gallo et al. (2012)
	GGT =	Med. 11.3	Gleason et al. (2015)
	GGT ↑	Mean. 800-1,320	Olsen et al. (2003b)
	(F only)		
	AST =	Med. 11.3	Gleason et al. (2015)
	AST =	Δ+4.2	Olsen et al. (2012)
	AST =	Mean. 800-1,320	Olsen et al. (2003b)
	AST =	Mean 4.75	Jiang et al. (2014)
	ALP =	Med. 11.3	Gleason et al. (2015)
	ALP =	Δ +4.2	Olsen et al. (2012)
	ALP ↑	Mean. 800-1,320	Olsen et al. (2003b)
Bilirubin	Direct ↑	Med. 20.3	Gallo et al. (2012)
	Total ↑	Med. 11.3	Gleason et al. (2015)
	Total ↓	Δ+4.2	Olsen et al. (2012)
	Total ↓, direct ↓	Med. 1,000-3,000	Olsen et al. (1999)
	Total ↓	Mean. 800-1,320	Olsen et al. (2003b)
	Total ↑	Mean 4.75	Jiang et al. (2014)
	(for 2-branched PFOS		
	only)		
statistically signif	icant positive association	·	
	icant negative association		
=no significant asso	ociation/equivocal association	1	
Δ + positive change			

1

2 <u>Overall conclusions regarding the hazard identification of hepatic effects</u>

3 There is evidence from animal studies that the liver is a target organ for PFOS exposure. In

4 animals, PFOS has produced a variety of hepatic effects including histopathological changes,

5 increased liver weight, and tumors. In humans, studies of hepatic effects have focused on

6 changes in serum enzymes that are typically associated with liver damage. Such studies have

7 reported mixed results following PFOS exposure.

8 Based on the strength of the observations from animal studies, hepatic effects are identified as

9 endpoints for consideration of dose-response.

10

1 Immune effects

2 Animal studies

- 3 A summary of immune effects in animals can be found in Table 14 at the end of the following
- 4 review. Detailed methodological information and additional study results can be found in the
- 5 corresponding tables in Appendices 3 or 4.
- 6 In general, the following endpoints were identified in laboratory animals and are briefly
- 7 reviewed below: immunosuppression (e.g., host resistance, natural killer cell activity, plaque
- 8 forming cell response), as well as effects on immune organs (e.g., cellularity, histopathology,
- 9 weight), cell populations, and immune mediators (e.g., cytokines, immunoglobulins).

10 <u>Immunosuppression</u>

- 11 Although no chronic studies assessed immunosuppression, subchronic (i.e., ≥30-90 days of
- 12 exposure) and shorter duration studies of PFOS were found to cause such effects. Dong et al.
- 13 (2009) observed decreased plaque forming cell response (i.e., a measurement of the ability of an
- 14 organism to form reactive antibodies to an extrinsic antigen) in adult male mice (following sheep
- 15 red blood cell [SRBC] challenge) after 60 days of PFOS exposure (LOAEL = 0.083 mg/kg/day).
- 16 At shorter durations of exposure, decreased plaque forming cell response was observed in male
- 17 mice following 7 (Zheng et al., 2009; LOAEL = 5 mg/kg/day) or 28 days of PFOS exposure
- 18 (Peden-Adams et al., 2008; LOAEL = 0.002 and 0.02 mg/kg/day for males and females,
- 19 respectively). In contrast, Qazi et al. (2010a) found no effect on plaque forming response in
- 20 male mice following 28 days of exposure (NOAEL = 0.25 mg/kg/day). With *in utero* exposure
- 21 (GD1 to GD17) to PFOS, decreased plaque forming cell response was observed in male
- 22 (LOAEL = 5 mg/kg/day), but not female (NOAEL = 5 mg/kg/day), mouse offspring at 8 weeks
- 23 of age (Keil et al., 2008). At these LOAELs, decreases in plaque forming cell response
- compared to controls were: 30% (Dong et al., 2009), 52 to 78% (for males, Peden-Adams et al.,
- 25 2008), 63% (Zheng et al., 2009), and 53% (Keil et al., 2008).
- 26 In addition to effects on plaque forming cell response, other indicators of immunosuppression
- 27 have been reported in mice. For example, following 60 days of PFOS exposure, decreased
- 28 natural killer cell activity was observed at doses of > 0.83 mg/kg/d (although there was an
- 29 increase in natural killer cell activity at a lower dose of 0.08 mg/kg/day) (Dong et al., 2009). At
- 30 the same exposure duration, no effect on delayed-type hypersensitivity was observed in mice
- 31 (Dong et al., 2011) at any dose (i.e., ≤ 0.83 mg/kg/day). Following 21 days of exposure,
- 32 increased mortality in response to influenza A virus was reported in Guruge et al. (2009; LOAEL
- 33 = 0.025 mg/kg/day).

34 Effects on immune organs

- 35 Following PFOS exposure, effects assessed in immune organs (spleen and thymus) included
- 36 changes in cellularity, histopathology, and organ weight.

- 1 Decreases in splenic and thymic cellularity have consistently been observed in mice following
- 2 PFOS exposure. While these decreases have been observed following subchronic exposure
- 3 (Dong et al., 2009, 2012a, 2012b) and in shorter 7 or 10 days studies (Zheng et al., 2009; Qazi et
- 4 al., 2012).
- 5 Decreases in splenic and thymic cellularity have been observed in mice with relatively high
- 6 doses (20 mg/kg/day) following 7 days of PFOS exposure (Zheng et al., 2009). However, longer
- 7 durations of PFOS exposure (e.g., 60 days) caused decreases in splenic and thymic cellularity at
- 8 0.4 mg/kg/day (Dong et al., 2009, 2012a). No decrease in splenic and thymic cellularity was
- 9 observed following 28 days of exposure to 0.17 mg/kg/day (Peden-Adams et al., 2008).
- 10 There is limited information regarding the histopathological effects of PFOS exposure on the
- 11 spleen and thymus. Following 14 days of exposure, histopathological effects in mouse spleen
- 12 (dilation of splenic sinus) and thymus (vasodilation, congestion) were observed with 5
- 13 mg/kg/day (Wang et al., 2011a). At lower doses in mice, no effects on spleen and thymus
- 14 histopathology were observed with 0.17 mg/kg/day for 28 days (Fair et al., 2011). In rats, spleen
- 15 histopathology (congestion, mild dilation of the splenic antrum) was observed with 28 days of
- 16 exposure at 5 mg/kg/day (Cui et al., 2009).
- 17 In general, decreased relative spleen and thymus weights were observed in mice following PFOS
- 18 exposure. Following subchronic exposure, these decreases occurred with PFOS doses >0.4
- 19 mg/kg/day (Dong et al., 2009, 2011, 2012a, 2012b). With shorter durations of exposure (i.e.,
- 20 <14 days), decreased relative spleen and thymus weights were observed following higher PFOS
- 21 doses, >20 mg/kg/day (Qazi et al., 2009b, 2012; Zheng et al., 2009, 2011; Wang et al., 2011a).
- 22 In contrast, no changes in spleen and thymus weights were observed when PFOS doses were
- 23 <0.25 mg/kg/day (Peden-Adams et al., 2008; Guruge et al., 2009; Qazi et al., 2010a). In addition
- to observations in standard strains of mice, 40 mg/kg/day of PFOS for 10 days decreased
- absolute spleen weights in wild-type (WT) and PPARα null mice (Qazi et al., 2009b). Absolute
- thymus weights were reduced, but with statistical significance only in WT mice.
- 27 In rats following 52 weeks of exposure, relative (to body weight) spleen weight decreased in
- males (LOAEL = 1.0 mg/kg/day) but increased in females (LOAEL = 1.3 mg/kg/day; Butenhoff
- et al., 2012). Following 28 days of exposure, relative spleen weight increased in female
- 30 (LOAEL = 7.6 mg/kg/day), but not male rats (NOAEL = 6.3 mg/kg/day; Lefebvre et al., 2008).
- 31 No effect on relative thymus weight was observed in these rats.
- 32 Effects on specific cell populations
- 33 Exposure to PFOS has been reported to affect immune cell populations in mice. For example, 60
- 34 days of PFOS exposure decreased splenic and thymic T cell CD4/CD8 subpopulations (LOAEL
- 35 = 0.4 mg/kg/day and splenic lymphocyte proliferation (LOAEL = 0.8 mg/kg/day; Dong et al.,
- 36 2009). At lower doses, PFOS exposure caused an increase in the percentage of peritoneal cavity
- 37 macrophages (LOAEL = 0.02 mg/kg/day; Dong et al., 2012a). At a shorter duration of exposure

- 1 (i.e., 7 days), 5 mg/kg/day of PFOS caused a decrease in lymphocyte proliferation (Zheng et al.,
- 2 2009).
- 3 Effects on immune mediators
- 4 PFOS has been reported to affect immune mediators (i.e., cytokines, immunoglobulins) in mice.
- 5 Following 60 days of exposure, PFOS was reported to either increase (IL-1beta, IL-4, IL-6, IL-
- 6 10, TNFα) or decrease (IL-2) the *ex vivo* production of cytokines by isolated splenocytes or
- 7 peritoneal cells (Dong et al., 2011, 2012a). Following inoculation with sheep red blood cells,
- 8 decreases in serum IgM levels have been observed with 60 days of exposure to 0.83 mg/kg/day
- 9 PFOS (Dong et al., 2011). At a shorter duration of exposure (i.e., 7 days), 5 mg/kg/day PFOS
- 10 increased IgG and decreased IgM levels in serum (Zheng et al., 2011).
- 11 <u>Summary of immune effects in animals</u>
- 12 In summary, animal studies, primarily in mice, have demonstrated various immune effects
- 13 following PFOS exposure. Immunosuppression has consistently been reported (in all but one
- 14 study) in the form of decreased immune system function (e.g., plaque forming cell response to a
- 15 foreign antigen) and decreased host resistance. Although the total number of studies examining
- 16 immunosuppression in animals is relatively small (n = 5), the consistency of the effect provides
- 17 strong support for identifying immunosuppression as an effect of PFOS exposure. At the organ
- 18 level, decreases in spleen and thymus cellularity and relative weights have been observed.
- 19 Additionally, there is evidence that PFOS can affect immune cells populations, serum
- 20 immunoglobulin levels, and immune mediators. These effects at different levels of the immune
- system provide evidence that supports a conclusion that PFOS is immunotoxic in laboratory
- 22 animals.

23

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	 ↓ spleen absolute weight, relative to body weight, and relative to brain weight, males only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 		Males: 1.0	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	(day assessed) 146,000 (determined after 53 weeks of exposure)
				 ↑ spleen weight relative to body weight, females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 		Females: 1.3		Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

lice, ≿57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day	60 days	↓ spleen weight			1	(day assessed)
	(reported as mg/kg/day when representing a		relative to body weight (determined at day 61)	0.083	0.417	Serum PFOS concentrations determined Only males used	21,640 (serum collected on day 61)
	NOAEL and/or LOAEL) Oral gavage All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice.		↓ thymus weight relative to body weight (determined at day 61)	0.083	0.417		21,640 (serum collected on day 61)
			↓ splenic cellularity (determined at day 61)	0.083	0.417		21,640 (serum collected on day 61)
			↓ thymic cellularity (determined at day 61)	0.083	0.417		21,640 (serum collected on day 61)
			↓ splenic and thymic T cell CD4/CD8 subpopulations Effects on splenic B	0.083	0.417		21,640 (serum collected on day 61)
		All animals appear to have been immunized with sheep red blood cells (SRBC) four days	All animals appear to have been immunized with sheep red blood cells (SRBC) four days	All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice. (determined at day 61) ↓ splenic cellularity (determined at day 61) ↓ thymic cellularity (determined at day 61) ↓ thymic cellularity (determined at day 61) ↓ splenic and thymic T cell CD4/CD8 Subpopulations CD4/CD8	All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice. 0.083 (determined at day 61) ↓ splenic cellularity (determined at day 61) 0.083 ↓ thymic cellularity 0.083 (determined at day 61) ↓ thymic cellularity (determined at day 61) ↓ thymic cellularity ↓ thymic cellularity 0.083 (determined at day 61) ↓ thymic cellularity (determined at day 61) ↓ splenic and thymic T cell CD4/CD8 subpopulations Effects on splenic B 0.083 (determined at day 0.083	All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice. 0.083 0.417 (determined at day 61) ↓ splenic cellularity (determined at day 61) 0.083 0.417 ↓ thymic cellularity 61) ↓ thymic cellularity (determined at day 61) 0.083 0.417 ↓ splenic cellularity 61) ↓ splenic and thymic T cell CD4/CD8 subpopulations 0.083 0.417 ↓ splenic and thymic T cell CD4/CD8 subpopulations 0.083 0.417	All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice. 0.083 0.417 (determined at day 61) ↓ splenic cellularity 0.083 0.417 ↓ splenic cellularity 0.083 0.417 ↓ splenic cellularity 0.083 0.417 ↓ thymic cellularity 0.083 0.417 ↓ thymic cellularity 0.083 0.417 ↓ thymic cellularity 0.083 0.417 ↓ splenic and thymic T cell 0.083 0.417 CD4/CD8 subpopulations Effects on splenic B 0.083 0.417 (determined at day 0.083 0.417 0.417

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				 ↓ splenic NK cell activity (↑ activity reported at 83.33 ug/kg/day) (determined at day 	0.417 Based on decreased activity	0.833 Based on decreased activity		(day assessed) 65,430 (serum collected on day 61)
				61) ↓ splenic lymphocyte proliferation (determined at day 61)	0.417	0.833		65,430 (serum collected on day 61)
				↓ plaque forming cell response (determined at day 61)	0.008	0.083		7,130 (serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	↓ spleen weight relative to body weight (determined at day 61)	0.4167	0.8333	Serum PFOS concentrations determined Only males used	51,710 (serum collected on day 61)
		All animals appear to have been immunized, at least once (7 days prior to sacrifice) with SRBC. Animals used for the delayed-type		↓ thymus weight relative to body weight (determined at day 61)	0.4167	0.8333	Small sample size (n=6)	51,710 (serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
		hypersensitivity		↑ cytokine				(day assessed)
		response assay also		secretion				
		received a booster SRBC immunization		(IL-4), splenocytes				
		one day prior to			0.0167	0.0833		10,750
		sacrifice.		(↓ INF-gamma reported for 0.8333	(based on	(based on		(serum collected
				ug/kg/day)	ÌL-4 data)	ÌL-4 data)		on day 61)
				(determined at day 61)				
				Number of T-cells				
				(from splenocytes) secreting cytokines:				
				secreting cytokines.				51,710
				↓ for IL-2+ cells	0.4167	0.8333		
					0.4107	0.0333		(serum collect on
				↑ for IL-10+ cells				day 61)
				(determined at day				
				61)				
				\downarrow serum IgM levels				
				(↑ IgG, IgG1, and	0.0167	0.0833		10,750
				IgE with 0.8333				
				ug/kg/day)	(based on IgM data)	(based on IgM data)		(serum collected on day 61)
				(determined at day	igin data)	igin data)		on day or)
				61)				
				Delayed-type hypersensitivity	0.8333			
				(footpad thickness)	0.0000			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Dong et al. (2012b)	Mice, C57BL/6	0, 0.0167, 0.0833, 0.833 mg/kg/day Oral gavage	60 days	↓ spleen weight relative to body weight (determined at day 61)	0.0833	0.833	Serum PFOS concentrations determined Only males used	(serum collected on day 61)
				↓ thymus weight relative to body weight (determined at day 61)	0.0833	0.833		59,740 (serum collected on day 61)
Dong et al. (2012a)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day Oral gavage	60 days	↓ spleen weight relative to body weight (determined at day 61)	0.0833	0.4167	Serum PFOS concentrations determined Only males used	24,530 (serum collected on day 61)
		A separate cohort of seven groups of animals were immunized with lipopolysaccharide on day 61 (i.e, one day		↓ thymus weight relative to body weight (determined at day 61)	0.0833	0.4167	Small sample size (n=6)	24,530 (serum collected on day 61)
		after the final exposures) to assess innate immune response (e.g., cytokine levels).		↓ splenic cellularity (↑ percentage of splenic macrophages with ≥0.833 mg/kg/day) (determined at day 61)	0.0833 (based on cellularity data)	0.4167 (based on cellularity data)		24,530 (serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				↑ percentage of peritoneal cavity macrophages				4,530
				(↓ peritoneal cavity cellularity with 2.0833 mg/kg/day)	0.0083	0.0167		(serum collected on day 61)
				(determined at day 61)				
				↑cytokine production (TNF- alpha) by peritoneal cells	0.0833	0.4167		24,530
				(↑ production of IL- 1beta and IL-6 at higher doses)	(based on TNF-alpha data)	(based on TNF-alpha data)		(serum collected on day 61)
				(determined at day 61)				
				↑cytokine production (TNF- alpha and IL-1beta) by splenic cells	0.4167	0.8333		59,740
				(↑ production of IL- 6 at higher dose)	(based on TNF-alpha data)	(based on TNF-alpha data)		(serum collected on day 61)
				(determined at day 61)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ serum cytokines (IL-1beta and IL-6), without LPS stimulation				
				(† serum cytokine with LPS stimulation but at higher PFOS doses)	0.4167	0.8333		59,740 (serum collected on day 61)
				(determined at day 61)				
	stically signific	as the highest dose that o ant (e.g., p<0.05) effects.						
↑ = increased; = not ap	↓ = decrease oplicable	d						
lg = immunogl	obulin; IL = inte	erleukin; INF = interferon;	LPS = lipopoly	vsaccharide; NK = natur	al killer; TNF =	= tumor necros	is factor	
Note: For som "Administered		nimals were administered s	heep red bloc	od cells or other antigen	to assess imr	nune response	. Such immunizations a	re noted in the

1 <u>Human epidemiology studies</u>

2 A summary of immune effects in humans is found in Table 15 at the end of the following review.

- 3 Detailed methodological information and additional study results can be found in the
- 4 corresponding tables in Appendix 6.
- 5
- 6 <u>Vaccine response/antibody titers</u>
- 7 Five studies evaluated associations of serum PFOS concentrations and antibody concentrations
- 8 following vaccination for measles, mumps, rubella, diphtheria, tetanus and/or influenza
- 9 (Grandjean et al., 2012, Granum et al., 2013, Stein et al., 2016, Kielsen et al., 2016, and Looker
- 10 et al., 2014). These epidemiology studies are discussed in detail because they provide support
- 11 for the toxicological effect that was ultimately selected as the basis for the Health-based MCL
- 12 that is developed later in this document.
- 13

14 In a prospective study of a birth cohort from the Faroe Islands (n = 380-509) that was followed 15 post vaccination and then pre-and post-booster vaccination (geometric mean maternal pregnancy 16 serum PFOS = 27.0 ng/ml; 5-year old serum PFOS = 16.7 ng/ml), Grandjean et al. (2012) found 17 a statistically significant negative association between serum PFOS concentration at age 5 (but 18 not maternal PFOS concentration during pregnancy) and post-booster tetanus antibody 19 concentration. For post-booster antibody concentration, there was a 29% decrease for each 20 doubling of serum PFOS. There was a negative, but not stastistically significant association with 21 post-booster tetanus antibody concentration at 7 years. For pre-booster tetanus antibody levels at 22 5 years, there was a negative, but not significant association with the 5-year old PFOS serum 23 concentration. It should be noted that in general, the various measurements of tetanus antibody 24 concentrations were negatively (even if not significantly) associated with measures of PFOS 25 concentration. The odds ratio (OR) for antibody levels being below the clinically protective level (0.1 IU/ml) was elevated (but not significantly) for both maternal and 5-year old serum 26 27 PFOS levels. For diphtheria antibodies, maternal pregnancy PFOS concentrations were

- significantly negatively associated with 5-year old pre-booster antibody levels with a 39%
- 29 decrease in diphtheria antibodies for each doubling of maternal serum PFOS. Pre- and post-
- 30 booster antibody concentrations at 5 years old were negatively (but not significantly) associated
- 31 with the 5-year old PFOS serum concentration. However, antibody concentrations at 7 years old
- were significantly negatively associated with PFOS concentrations at 5 years old. All measures
 of diphtheria antibody concentrations were negatively associated with the measures of PFOS
- 34 concentration even when not significantly associated. The ORs for diphtheria antibody levels
- 35 being below the clinically protective level were significantly elevated for maternal and 5-year
- 36 old PFOS serum concentrations. In this cohort, PFOS and PFOA exposures were highly
- 37 correlated, and similar results were obtained when these analyses were conducted for PFOA.
- 38

In a cohort study nested in a birth cohort from Norway (mean maternal post-partum serum PFOS
concentration = 5.6 ng/ml, n = 49-51), vaccine antibody levels were measured in the serum of 3-

1 years olds (approximately 2-3 years post vaccination) (Granum et al. (2013). Maternal, post-

2 partum serum PFOS concentration was significantly negatively associated with rubella antibody

- 3 levels. There was also a negative (but not statistically significant) association with measles,
- 4 Haemophilus influenza, and tetanus antibody levels. Similar associations were observed with
- 5 other perfluorinated chemicals.
- 6
- 7 In a cross-sectional study of children 12-19 years old, nested in the U.S. NHANES study cohort
- 8 (n = 1,188), (geometric mean serum PFOS concentration = 20.8 ng/ml) (Stein et al., 2016),
- 9 mumps and rubella antibody levels were significantly negatively associated with concurrent
- 10 serum PFOS concentrations (including when the analysis was limited to sero-positive individuals
- 11 as an indication of a prior vaccination). The decrease in antibody levels for mumps and rubella
- 12 for a doubling of PFOS was 5.9 and 13.3%, respectively. PFOS concentration was also
- 13 negatively (but not significantly) associated with measles antibodies. Although negative
- 14 associations were also seen between other PFCs and these antibodies, the association with PFOS
- 15 was the strongest.
- 16
- 17 In a prospective study of adult volunteers from among the staff of a hospital in Copenhagen,
- 18 Denmark (n = 12), with a median age of 37.9 years and a median PFOS concentration of 9.52
- 19 ng/ml (Kielsen et al., 2016), the increase in diphtheria antibodies (but not tetanus antibodies)
- 20 following a booster vaccination was significantly decreased as a function of serum PFOS (p =
- 21 0.044). The decrease in diphtheria antibody production for each doubling of serum PFOS was
- 22 11.9%. Tetanus antibody production was also negatively associated with serum PFOS (3.6%
- 23 decrease for each doubling of PFOS), but was not statistically significant. The sample size in
- 24 this study was small (n = 12), but the subjects were followed closely post-vaccination (6 samples
- 25 over 30 days) for antibody determination to monitor the time course of response. Eight
- 26 perfluorinated chemicals were measured. The strongest negative effect on diphtheria antibody
- 27 production was found for PFHxS, although the effect was borderline significant (p = 0.055).
- 28 PFOS accounted for the second strongest effect.
- 29
- 30 The only study to report an overall lack of association between antibody levels and serum PFOS
- 31 (Looker et al., (2014)), was conducted with adults > 18-years old (n = 403) nested in the C8
- 32 study panel cohort in Ohio/West Virginia (median PFOS serum concentration = 9.12 ng/ml).
- 33 Serum levels of influenza vaccine were measured approximately 21 days post-vaccination.
- 34 Neither the influenza-specific titer, nor the OR for sero-conversion were negatively associated
- 35 with PFOS. It may be notable that influenza vaccine response was the only antibody response
- 36 evaluated in this study.
- 37
- 38 <u>Infection</u>
- 39 In a longitudinal study in Denmark following a birth cohort through average 8.2-years old (Fei et
- 40 al., 2010b), there was a significant association of hospitalization for infectious disease and

- 1 maternal pregnancy serum PFOS (mean = 35.3 ng/ml) for girls only at the two highest quartiles 2 of exposure and overall for trend. 3 4 Two other studies (Okada et al., 2012, mean PFOS = 5.2 ng/ml; Granum et al., 2013, mean 5 PFOS = 5.5 ng/ml) did not find a significant association between infectious disease in young 6 children (under 3 years old and maternal serum PFOS). Note that in these studies, the number of 7 subjects was considerably smaller (Okada et al. (2010), n = 343; Granum et al. (2013), n = 49-8 51) than in the Fei et al. (2010b) study (n = 1,400), and that the PFOS exposure in these negative 9 studies was comparatively low and approximately 14% of that in the positive Fei et al. (2010b) 10 study. 11 12 The Looker et al. (2014) study in adults also did not find a significant association between 13 concurrent serum PFOS and episodes/diagnosis of infectious disease. 14 15 Asthma 16 The only study showing a clear association of serum PFOS with asthma was a case-control study 17 of 10-15-year olds in Taiwan [mean serum PFOS = 33.4 (controls) and 45.5 ng/ml (cases)] 18 (Dong et al., 2013). The OR and trend for ever having received a diagnosis of asthma was 19 significant for PFOS (as well as for most other perfluorinated chemicals). The OR for the 20 association of serum PFOS and serum IgE was significant for the highest quartile of PFOS as 21 was the overall trend. This was also the case for other perfluorinated chemicals. No relationship 22 was observed for absolute eosinophil count or eosinophil cationic protein. 23 24 Two other studies [Humblet et al. (2014), mean serum PFOS = 16.7-17.2 ng/ml; and Stein et al. 25 (2016), mean serum PFOS = 15.0 ng/ml did not find an association between serum PFOS and self-reported physician diagnosis of asthma, wheeze, current asthma (Humblet et al., 2014), or 26 27 rhinitis (Stein et al., 2016). 28 29 Allergy 30 Several studies examined the association of PFOS with blood/serum IgE. Wang et al. (2011b) 31 found that cord blood PFOS (median = 5.5 ng/ml) was significantly positively associated with 32 cord blood IgE, but not with 2-year old blood IgE. Okada et al. (2012) found no significant 33 association between maternal blood PFOS (median 5.2 ng/ml) and cord blood IgE. Stein et al. 34 (2016) found that serum IgE from 12-19-year olds was significantly positively associated with 35 concurrent serum PFOS (geom. mean = 20.8 ng/ml) for mold-specific IgE only, but not for total 36 IgE, or for six other common allergens. 37
- 38 No significant associations between cord blood PFOS (median = 5.5 ng/ml) and atopic dermatitis
- 39 at 2-years old (Wang et al., 2011b), or between maternal PFOS (median 5.02 ng/ml) and overall
- 40 allergic conditions in 12-24-month olds (Okada et al., 2014).

1 2 Autoimmunity 3 Osuna et al. (2014) found no significant association between autoimmune antibodies in cord 4 blood or at 7-years old and cord blood or 7-year old blood PFOS (3.1 and 27.0 ng/ml, respectively). 5 6 7 Summary of epidemiological studies of associations between immune effects and PFOS 8 The total number of epidemiology studies examining antibody response to vaccines is relatively 9 small (n = 5), and not all vaccine types were evaluated in each study. Nonetheless, the study 10 findings are consistent and support a potential for PFOS to reduce vaccine response, particularly for some vaccine types in children. The effects of PFOS on suppression of vaccine response 11 12 appears to occur at or close to levels of PFOS exposure prevalent in the general population. 13 However, there is not sufficient information to evaluate associations of PFOS and vaccine 14 response in adults. The sole study that did not show a significant association between PFOS exposure and any antibody response (Looker et al., 2014) was conducted in adults and assessed 15 16 influenza vaccine response only. Consistent with this finding, the only other study that evaluated influenza vaccine response (Granum et al., 2013) also did not find a statistically significant 17 18 association between influenza vaccine response and PFOS exposure in children, although it did 19 find a significant association of rubella vaccine response and PFOS exposure. It may be the case 20 that PFOS affects antibody response differentially for different vaccine challenges. 21 22 There is only limited evidence from studies of infectious disease providing support for the 23 association of PFOS with some functional vaccine antibody responses. The longitudinal study of

Fei et al. (2010b) found a significant positive association between maternal PFOS and infectious
disease in girls, but not for boys, while three smaller studies (two in young children and one in

adults) with lower PFOS exposure levels did not find a significant association.

27

28 There is a suggestion from a single study (Dong et al., 2013) of an association of PFOS and

29 childhood asthma.

Table 15. Summary	of Epidemiology Studi	ies of Immune Effects	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Asthma	Previous diagnosis ↑	Median 28.9 controls; 33.9 cases	Dong et al. (2013)
	Ever = Wheeze = Current =	Mean 16.7-17.2	Humblet et al. (2014)

Table 15 (continued).	Summary of Epidemiolo	gy Studies of Immune E	ffects
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
	 IgE titre in cases ↑ Eosinophil count ↑ Eosinophil cationic protein ↑ 	Median 28.9 controls; 33.9 cases	Dong et al. (2013)
	Ever = Wheeze = Rhinitis =	Geo mean 15.0	Stein et al. (2016)
Infection	hospitalization, (children) – girls only ↑	Mean 35.3	Fei et al. (2010b)
	Infectious diseases –18 mos =	Med. 5.2	Okada et al. (2012)
	Episodes/diagnosis infectious disease (1-3 yrs old) =	Med. 5.5	Granum et al. (2013)
	Cold, influenza (> 18 yrs old) =	Med. 9.12	Looker et al. (2014)
Vaccination response	<u>Tetanus antibody</u> <u>response</u>	Maternal (geo. mean)– 27.0	Grandjean et al. (2012)
	maternal PFOS = 5 yr old PFOS - 5 yr old (post- booster) response \downarrow - 7 yr old response = <u>Diphtheria antibody</u> response Maternal PFOS - 5 yr old response \downarrow 5 yr old PFOS - 7 yr old response \downarrow	5 yrs old (geo. mean) – 16.7	

Table 15 (continued).			
Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference	
	Rubella antibody levels↓	Med. 5.5	Granum et al. (2013)
	Measles =		
	Tetanus =		
	Haemophilus influenza = (3 yr-olds)		
		Geo mean 20.8	Stain at al. (2016)
	Rubella antibody levels↓		Stein et al. (2016)
	Mumps ↓		
	Measles =		
	(12-19 yr-olds)		
	Diphtheria antibody levels↓	Med. 9.52	Kielsen et al. (2016)
	Tetanus =		
	(Adults (med 37.9 yrs old)		
	Influenza antibody levels = Sero-conversion = Sero-protection = (Adults > 18 yrs old)	Med. 9.12	Looker et al. (2014)
Allergy	IgE (18 mos) = Allergies (18 mos) =	Med. 5.2	Okada et al. (2012)
	Cord blood IgE ↑	Med. 5.5 (cord blood)	Wang et al. (2011b)
	IgE 2 yr old =	Med. 5.5 (cord blood)	Wang et al. (2011b)
	Allergic diseases (12- 24 mos) = Eczema =	Med. 5.02	Okada et al. (2014)
	Atopic dermatitis (2 yr old)	Med. 5.5 (cord blood)	Wang et al. (2011b)

Table 15 (continued).	Summary of Epidemiolo	gy Studies of Immune E	ffects
Effect and Direction	Serum PFOS	Study reference	
	concentration (ng/ml)		
	(mean, median, etc.)		
	Total IgE =	Geo. mean 15.0	Stein et al. (2016)
	Mold IgE ↑		
	Plant =		
	Cockroach =		
	Dust mites =		
	Pets =		
	Rodents =		
	Food =		
Auto antibodies	Pre-natal and 7 yr old =	Geo. mean	Osuna et al. (2014)
		cord blood = 3.1	
		7 yrs = 27	
↑ statistically significant	*		
↓ statistically significant	nt negative association		
= no significant associa	ation/equivocal association	l	

1

2 Overall conclusions regarding the hazard identification of immune effects

- 3 There is strong evidence from animal studies for various immune effects: immunosuppression;
- 4 changes in spleen and thymus weight and cellularity; and effects on the levels of circulating
- 5 populations of immunologically active cells, serum immunoglobulins and immune mediators.
- 6 Epidemiologic evidence for immune effects of PFOS is strongest for suppression of vaccine
- 7 response. Although the total number of animal studies and epidemiology studies for
- 8 immunosuppression is relatively small, the consistency of the observations of
- 9 immunosuppression in both animal and human studies mutually reinforces the identification of
- 10 immunosuppression as an effect of PFOS that is appropriate for consideration of dose-response.

11 <u>Neurological effects</u>

12 Animal studies

- 13 A summary of neurological effects in animals can be found in Table 16 at the end of the
- 14 following review. Detailed methodological information and additional study results can be
- 15 found in the corresponding tables in Appendices 3 or 4.
- 16 In general, structural and behavioral effects were assessed in rats and mice following PFOS
- 17 exposure. Structural effects included changes in organ (i.e., brain) weight and histopathology,
- 18 Behavioral effects included, for example, changes in learning, locomotion, or reaction to
- 19 stimulus. These findings are briefly reviewed below.

20 <u>Structural effects</u>

- 21 Following 52 weeks of exposure, statistically significant increased relative brain weights were
- 22 observed in female rats exposed to 1.3 mg/kg/day (Butenhoff et al., 2012). In this study, there

- 1 was no effect on the brain weights of male rats (NOAEL = 1.0 mg/kg/day). However,
- 2 statistically significant increased relative brain weight was observed in male rats following 91
- 3 days of exposure to ≥ 2.1 mg/kg/day (Kawamoto et al., 2011). No histopathological changes
- 4 (i.e., to the neuronal or glial cells of the cerebrum and cerebellum) were observed in these rats
- 5 (NOAEL = 8.5 mg/kg/day).
- 6 With shorter duration (28 days) exposures to PFOS, statistically significant increased relative
- 7 brain weight in males and females was reported (Curran et al., 2008; LOAEL = 3 mg/kg/day). In
- 8 addition, changes in brain histopathology were observed, such as alterations to hypothalamic
- 9 neuron structure (Lopez-Doval et al., 2014; LOAEL = 3 mg/kg/day) and gliocyte hyperplasia
- 10 and focal hemorrhage (Cui et al., 2009; LOAEL = 20 mg/kg/day).
- 11 Overall, there is evidence in rats that exposure to PFOS can have effects on brain weight and
- 12 brain histopathology.
- 13 <u>Behavioral effects</u>
- 14 During the course of a 91-day exposure in rats, Kawamoto et al. (2011) reported an increase in
- 15 convulsions in rats following ultrasonic stimulus (at week 6, LOAEL = 8.5 mg/kg/day).
- 16 However, these authors observed no other behavioral abnormalities in these rats (NOAEL = 8.5
- 17 mg/kg/day). Behavioral abnormalities (e.g., reduced activity; LOAEL = 5 mg/kg/day) were
- 18 reported in rats following 28 days of exposure (Cui et al., 2009). After a single exposure to
- 19 PFOS, Sato et al. (2009) observed increased locomotion in rats following ultrasonic stimulus
- 20 (LOAEL = 250 mg/kg) but for the authors' summary category of "other signs of neurobehavioral
- effects" no other other signs of adverse neurobehavioral effects were seen (NOAEL for this
- 22 category = 500 mg/kg).
- 23 In mice, impaired spatial learning and memory (LOAEL = 2.2 mg/kg/day) as assessed by water
- 24 maze were observed following 3 months of exposure (Long et al., 2013). Following 28 days of
- exposure, effects on the open field test (e.g., decreased time in the center area, LOAEL = 3
- 26 mg/kg/day) but not on the functional observation battery (NOAEL = 6 mg/kg/day) were reported
- 27 (Fuentes et al., 2007a).
- 28 After a single exposure to PFOS, Sato et al. (2009) observed increased locomotion in mice
- following ultrasonic stimulus (LOAEL = 125 mg/kg). For the authors summary category of
- 30 "other signs of neurobehavioral effects" no other signs of adverse neurobehavioral effects were
- 31 seen (NOAEL for this category = 500 mg/kg).
- 32 Following a single exposure in 10-day old mice, Johansson et al. (2008) reported changes in
- 33 spontaneous behavior (locomotion, rearing, total activity), habituation, and activity in response
- 34 to a nicotine challenge when assessed at either 2 or 4 months of age (LOAEL = 11.3 mg/kg).
- 35 However, no effect was observed on performance in the elevated plus-maze.

- 1 In summary, exposure to PFOS is reported to cause reduced activity in rats and effects on
- 2 learning, behavior, and habituation in mice. Data in rats and mice also suggest that exposure to
- 3 PFOS can cause behavioral changes (e.g., increased locomotion) following ultrasonic stimulus in
- 4 the absence of other neurobehavioral effects. A study in mice indicates that a single exposure
- 5 during the neonatal period can cause behavioral changes in adulthood.
- 6 <u>Summary of neurological effects in animals</u>
- 7 In summary, a limited number of rodent studies have assessed the neurotoxicity of PFOS. These
- 8 studies have demonstrated some effects on the brain (e.g., increased relative weight and
- 9 histopathological changes). In all studies in both rats and mice, behavioral effects were observed
- 10 in response to PFOS exposure. The studies did not all examine the same effects and some
- 11 studies observed some behavioral effects, but not others. Behavioral effects that were observed
- 12 in response to PFOS exposure included changes in learning, memory, activity, and habituation.

Table 16. S	tudy summ	ary table for neurolo	ogical effe	cts in animals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	 train weight relative to body weight, females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 	Males: 1.0 Females: - 	Males: Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	(day assessed) Males: Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm Dietary Daily PFOS dose (estimated as the mean	13 weeks	 ↑ relative brain weight (determined after 13 weeks of exposure) 	0.5	2.1	Serum, brain, liver, and kidney PFOS concentrations determined Only males used	(serum samples collected after 13 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
		of the daily PFOS doses reported weekly by study authors) 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day		 Convulsions following ultrasonic stimulus (observed only during week 6 and then ceased afterward due to death of 1 rat out of 6 in group) (determined at week 6) 	2.1	8.5	Internal PFOS concentrations not reported for controls	(serum samples collected after 13 weeks) Note: difference in time points for endpoint analysis and serum PFOS analysis
				Behavioral abnormalities: startle response, touch response, pain response, righting reflex, visual placing, abdominal tone, limb tone	8.5			
				Brain histology (neuronal or glial cells of cerebrum and cerebellum) and ultrastructure (neurons in cortex, hippocampus, and cerebellum)	8.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
Long et al. (2013)	Mice, C57BL6	0, 0.43, 2.15, 10.75 mg/kg	3 months	Impaired spatial learning			Internal PFOS concentrations not determined	
		Oral (presumed gavage)		(† escape latency)		2.15	PFOS purity not	
				(data for 0.43 mg/kg/day group not reported)			reported Missing information	
				Impaired spatial memory			(e.g., lowest dose data for escape	
					0.43	2.15	latency on day 3, number of poor	
				(↓ time spent in target quadrant)			swimmers)	
		n as the highest dose that		ice a statistically signific				
dose with stati lower doses th		ant (e.g., p<0.05) effects.	For some er	ndpoints, there were do	se-related tren	nds that includ	ed non-statistically signifi	cant changes at
= not ap	l↓ = decrease	u						

1 Human epidemiology studies

- 2 A summary of neurological effects in humans can be found in Table 17 at the end of the
- 3 following review. Detailed methodological information and additional study results can be
- 4 found in the corresponding tables in Appendix 6.

5 <u>Memory/function in older adults</u>

- 6 No association of self-reported memory loss with PFOS was observed for a large sample of the
- 7 C8 Study cohort \geq 50 years old (Gallo et al., 2013). No association of self-reported difficulty in
- 8 remembering/confusion or self-reported difficulties with daily life/senility were found for a sub-
- 9 sample of the NHANES cohort 60-85 years old (Power et al., 2013).
- 10 <u>Learning</u>
- 11 In a test of differential reinforcement of low-rates of responding that reflected both learning and
- 12 impulsivity in children 9-11 years old (Gump et al., 2011), there was some indication that PFOS
- 13 was associated with decreased learning response (increased impulsivity). However, the effect
- 14 was not consistently significant across learning periods.
- 15 There was a suggestion of a negative association between self-reported learning problems and
- PFOS exposure in a large sub-set of children 5-18 years old from the C8 Study cohort (Stein andSavitz, 2011).
- 18 In a Danish birth cohort with a 22-year follow-up (Storm et al., 2014), there was no association
- 19 between maternal serum PFOS at 30 weeks of gestation and children's academic performance on
- 20 a standardized 9th grade performance test.

21 Attention/Attention deficit hyperactivity disorder (ADHD)

- 22 Of five studies that investigated an association between PFOS exposure and ADHD, only one
- 23 found a positive association between PFOS exposure and reported ADHD. In a subset of the
- 24 NHANES population 12-15 years old (Hoffman et al., 2010), based on parental reporting of
- 25 children's ADHD diagnosis, there was a small, but statistically significant increase in the OR for
- ADHD (OR = 1.03-1.05 depending on the stringency of the reporting definition) for each ng/ml
- 27 increase in children's serum PFOS. There was a larger and significant OR (1.60) for an inter-
- 28 quartile range increase in PFOS. . This study had comparable (and generally consistent with
- 29 general population) maternal PFOS serum levels as the studies that found no significant
- 30 association of PFOS and ADHD.
- 31 <u>Autism</u>
- 32 No significant association was observed between maternal gestational PFOS exposure and
- autism in a single case-control study (Liew et al., 2015).
- 34
- 35
- 36

- 1 <u>Depression</u>
- 2 No significant association was observed in a prospective pregnancy cohort between maternal
- 3 gestational exposure and 22 years of follow-up of the offspring through a Danish national health
- 4 registry (Storm et al., 2014).
- 5 <u>Summary of epidemiological findings</u>
- 6 There is little evidence from epidemiological studies for an association between PFOS exposure
- 7 and neurological effects in either older adults or children. The PFOS exposures in the available
- 8 studies were all in the range of the general population.

Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference		
Memory	Memory loss =	Med. ~ 24	Gallo et al. (2013)		
	Difficulty remembering/confusion =	Geom. mean 22.63	Power et al. (2013)		
Senility	Difficulty with daily life/senility =	Geo. mean 22.63	Power et al. (2013)		
Learning	Task learning (children) =	Med. 9.90	Gump et al. (2011)		
	Learning problems =	Mean 22.9	Stein and Savitz (2011)		
	Academic achievement	Med. 21.4	Strom et al. (2014)		
Attention	ADHD ↑	Med. 22.6	Hoffman et al. (2010)		
	ADHD ↑	Med. 25-27	Liew et al. (2015)		
	ADHD –	Med. Cases 6.92 Controls 6.77	Ode et al. (2014)		
	ADHD =	Mean 22.9	Stein and Savitz (2011)		
	ADHD =	Med. 21.4	Strom et al. (2014)		
Autism	=	Med. 25-27	Liew et al. (2015)		
Depression	=	Med. 21.4	Strom et al. (2014)		
↑ statistically sigr ↓ statistically sigr	nificant positive association nificant negative association ssociation/equivocal association		· · · · · · ·		

9

10 **Overall conclusions regarding the hazard identification of neurotoxicity**

- 11 The available animal studies do not provide strong support for the neurotoxicity of PFOS,
- 12 although the neonatal period may be a sensitive lifestage for neurobehavioral effects based on
- 13 animal studies. Similarly, the available human data do not show strong associations between
- 14 PFOS exposure and neurological effects. Therefore, the available evidence does not appear to
- 15 justify neurological effects as endpoints for dose-response.

1 <u>Renal effects</u>

2 Animal studies

- 3 A summary of renal effects (kidney weight and histopathology) in animals can be found in Table
- 4 18 at the end of the following review. Detailed methodological information and additional study
- 5 results can be found in the corresponding tables in Appendices 3 or 4.

6 <u>Kidney weight</u>

- 7 Following 52 weeks of exposure, Butenhoff et al. (2012) reported increased relative kidney
- 8 weights (for right and left kidneys) for female rats exposed to 1.3 mg/kg/day but not for male rats
- 9 (NOAEL = 1.0 mg/kg/day). No effect on relative kidney weight was reported in male rats
- 10 exposed to PFOS for 91 days (Kawamoto et al., 2011; NOAEL = 8.5 mg/kg/day). Following 28
- 11 days of exposure, increased relative kidney weight was reported in male (LOAEL = 6.3
- 12 mg/kg/day) and female (LOAEL = 3.7 mg/kg/day) rats (Curran et al., 2008). Cui et al. (2009)
- 13 reported increased relative kidney weights in male rats (LOAEL =5 mg/kg/day).
- 14 Following 60 days of PFOS exposure in mice, data suggest an effect on relative kidney weight.
- 15 Statistically significant decreases in relative kidney weight were reported by Dong et al. (2009,
- 16 2012a) with a LOAEL of 0.83 mg/kg/day. In two additional studies, these authors also reported
- 17 decreased (although not statistically significant) relative kidney weight following exposure to \leq
- 18 0.83 mg/kg/day (Dong et al., 2011, 2012b). Following shorter durations (21 or 28 days) of
- 19 PFOS exposure, no effect on relative kidney weight was observed in mice exposed up to 0.17
- 20 mg/kg/day PFOS (Peden-Adams et al., 2008; Guruge et al., 2009).
- 21 No effect on kidney weight was observed in cynomolgus monkeys from 26 weeks of oral
- exposure to PFOS doses of up to 0.75 mg/kg/day (Seacat et al. 2002; not shown in Table 15).
- 23 In total, data are mixed regarding increased kidney weight in rats following PFOS exposure.
- 24 Data are also mixed in mice with some evidence suggesting decreased relative kidney weights
- 25 following PFOS exposure. No effects were reported in monkeys.
- 26 <u>Histopathology</u>
- 27 Three studies evaluated kidney histopathology following PFOS exposure. Results from these
- studies are mixed. Cui et al. (2009) reported a change in kidney histopathology (e.g.,
- 29 turbidness/tumefaction in epithelium of proximal convoluted tubules) in rats exposed to PFOS
- 30 for 28 days (LOAEL = 20 mg/kg/day). However, Fair et al. (2011) reported no effect on kidney
- 31 histopathology in mice exposed to PFOS for 28 days (NOAEL = 0.17 mg/kg/day). No effect on
- 32 kidney histopathology was observed in cynomolgus monkeys from 26 weeks of oral exposure to
- 33 PFOS doses of up to 0.75 mg/kg/day (Seacat et al. 2002; not shown in Table 15).
- 34 <u>Summary of renal effects in animals</u>
- 35 A limited number of studies assessed renal effects in rodents. Data are mixed regarding the
- 36 ability of PFOS to increase or decrease relative kidney weights in rats and mice, respectively.

- 1 Further, histopathological effects were observed in rats but not mice. No effects on kidney
- 2 weight or histopathology were found in monkeys.

3

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	 kidney weight relative to body weight (left and right), females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure) 	Males: 1.0 Females: 	Males: Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	Males: Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	 ↓ kidney weight relative to body weight (determined at day 61) 	0.417	0.833	Serum PFOS concentrations determined Only males used	65,430 (serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	Kidney weight relative to body weight	0.8333		Serum PFOS concentrations determined Only males used Small sample size (n=6)	

0.8333	Serum PFOS concentrations determined Only males used Serum PFOS concentrations determined Only males used	(day assessed)
0.8333	Serum PFOS concentrations determined	
	Small sample size (n=6)	on day 61)
	Serum, brain, liver, and kidney PFOS concentrations determined Only males used Internal PFOS concentrations not reported for controls	
		Internal PFOS concentrations not

1 Human epidemiological studies

- 2 A summary of renal effects in humans can be found in Table 19 at the end of the following
- 3 review. Detailed methodological information and additional study results can be found in the
- 4 corresponding tables in Appendix 6.

5 <u>Renal function</u>

- 6 Two studies evaluated renal function. Shankar et al. (2011a) examined the association between
- 7 serum PFOS concentration and the estimated glomerular filtration rate (eGFR) in adults (≥ 20
- 8 years old) in a cross-sectional study of the NHANES cohort (n = 4,587). The eGFR was
- 9 significantly negatively associated with PFOS for the overall study population. The association
- 10 was strongest for those < 60 years old (borderline significant for those ≥ 60 years old). This was
- 11 not significantly influenced by sex or BMI. These findings are further supported by a large
- 12 (n=9,660) cross-sectional study among children and adolescents (1 to <18 years of age) from the
- 13 C8 study population (Watkins et al., 2013) which found a statistically significant negative
- 14 association and a significant negative trend across quartiles of PFOS.
- 15 These two cross-sectional studies may have suffered from reserve causation such that decreased
- 16 eGFR (e.g., poor kidney function) could plausibly lead to increased serum PFOS. Shankar et al.
- 17 (2011a)stratified the study population by the presence of chronic kidney disease (defined on the
- 18 basis of eGFR) and the association was strengthened for those without chronic kidney disease,
- 19 possibly suggesting that the association between eGFR and PFOS exposure in the full cohort was
- 20 not influenced by reverse causality. Conversely, Watkins et al. (2013) utilized predicted serum
- 21 PFOA levels from modeled drinking water exposure in addition to measured serum PFOA to
- 22 minimize susceptibility to reverse causation. Although associations were significant with
- 23 measured serum PFOA levels and eGFR, in contrast, predicted serum PFOA was not associated.
- 24 Although, predicted PFOS serum concentrations were not evaluated, atleast with PFOA, reverse
- 25 causality is likely to explain association with eGFR.
- 26 <u>Chronic kidney disease</u>
- 27 The Shankar et al. (2011a) study discussed above, also investigated the relationship between
- serum PFOS concentration and the prevalence of chronic kidney disease (eGFR < 60
- 29 mL/min/1.73 m², n = 230). The OR for chronic kidney disease was significantly > 1.0 across the
- $2^{nd}-4^{th}$ quartiles of PFOS exposure (compared to the first quartile), and the association with
- 31 PFOS exposure was significant for trend. The maximum OR (4th quartile) was 1.82. These
- 32 findings are suggestive of a dose-response relationship.
- 33 <u>Summary of epidemiologic studies</u>
- 34 The evidence for the association of PFOS exposure with renal effects in humans is based on two
- 35 cross-sectional studies (Shankar et al., 2011a and Watkins et al., 2013) with large sample sizes
- 36 and consistent evidence of a dose-response trend, However, reverse causation requires further
- 37 investigation. The Shankar et al. (2011a) study provides limited evidence that general
- 38 population levels of PFOS exposure are associated with chronic kidney disease.

Table 19. Summar	y of Epidemiology Stu	udies of Renal Effects	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Function	eGFR (est. glomerular filtration rate) ↓	Med. 18.7	Shankar et al. (2011a)
	eGFR ↓	Med. 20.0	Watkins et al. (2013)
Kidney disease	Chronic kidney disease ↑	Med. 18.7	Shankar et al. (2011a)
↑ statistically signif	icant positive associati	on	
	icant negative association/equivocal		

1

2 Overall summary of renal effects

3 Only a small number of animal and epidemiological studies have assessed renal effects following

4 PFOS exposure. Therefore, the limited available evidence does not appear to justify renal effects

5 as critical endpoints for dose-response.

6 <u>Clinical chemistry</u>

7 Animal studies

8 A summary of clinical chemistry parameters in animals can be found in Table 20 at the end of

9 the following review. Detailed methodological information and additional study results can be

- 10 found in the corresponding tables in Appendices 3 or 4.
- 11 In general, clinical chemistry analyses following PFOS exposure have been conducted in
- 12 monkeys, rats, and mice. The clinical chemistry parameters measured in blood or serum have
- 13 included bilirubin, enzymes (e.g., alanine aminotransferase, alkaline phosphatase, and aspartate
- 14 aminotransferase), glucose, lipids (e.g., cholesterol, lipoproteins, triglycerides), and urea.
- 15 Because some of these parameters are traditionally considered indicative of effects on specific
- 16 organs (e.g., liver or kidneys), the textual review of these endpoints are discussed in the relevant
- 17 sections elsewhere in the hazard identification. For example, data regarding liver enzymes and
- 18 bilirubin are reviewed in the hepatic section. Data regarding glucose and urea are reviewed in
- 19 the endocrine/metabolic section. Effects on serum lipids are discussed in this section.
- 20 <u>Lipids</u>
- 21 A number of lipid parameters (e.g., cholesterol, lipoproteins, triglycerides) have been measured
- 22 in animals following PFOS exposure. These data are reviewed below by species.

1 <u>Monkeys</u>

- 2 In monkeys, serum lipids were assessed following 182 days of exposure to PFOS (Seacat et al.,
- 3 2002). Decreases were observed for high-density lipoprotein (HDL; LOAEL = 0.03 mg/kg/day
- 4 in males) and total cholesterol (LOAEL = 0.75 mg/kg/day in males and females). However,
- 5 PFOS exposure had no effect on very low-density lipoprotein (VLDL) and triglyceride levels
- $6 \qquad (NOAEL = 0.75 mg/kg/day).$

7 <u>*Rats*</u>

- 8 In a 104-week bioassay with rats, statistically significant decreases in total cholesterol were
- 9 observed in males at week 53 (LOAEL = 1.0 mg/kg/day) and females at week 27 (LOAEL = 0.1
- 10 mg/kg/day) but not at sacrifice (Butenhoff et al., 2012). Seacat et al. (2003) reported interim
- 11 observations of Butenhoff et al. (2012) and observed decreased total cholesterol in males at week
- 12 14 (LOAEL = 1.3 mg/kg/day) but no effect in females (NOAEL = 1.6 mg/kg/day).
- 13 Following 28 days of exposure to PFOS, decreased total cholesterol was observed in male and

14 female rats exposed to ~3 mg/kg/day (Curran et al., 2008) and in male rats exposed to 1.3

15 mg/kg/day (Elcombe et al., 2012a). Decreased total cholesterol was also observed in male rats

16 exposed for 7 days (Elcombe et al., 2012b; LOAEL = 1.9 mg/kg/day) and for < 5 days (Martin et

- 17 al., 2007; LOAEL = 10 mg/kg/day).
- 18 In addition to decreased total cholesterol following PFOS exposure, decreases in serum
- 19 triglycerides were also observed in rats. Kim et al. (2011) reported decreased serum triglycerides
- 20 in male, but not female, rats exposed to 10 mg/kg/day for 28 days. Similarly, decreases in serum
- triglycerides were also observed in male rats following exposure for 28 (Elcombe et al., 2012a;
- 22 LOAEL = 5.6 mg/kg/day or 7 days (Elcombe et al., 2012b; LOAEL = 9.7 mg/kg/day).
- 23 <u>Mice</u>
- Following up to 6 weeks of exposure, decreased total cholesterol was observed in male mice
- exposed to 3 mg/kg/day (Bijland et al., 2011). At shorter durations of exposure (\leq 14 days),
- 26 decreased total cholesterol was also observed by Wang et al. (2014a; LOAEL = 20 mg/kg/day)
- and Qazi et al. (2010b; LOAEL = 0.005% in feed). In contrast, following 28 days of PFOS
- 28 exposure, ≤ 0.17 mg/kg/day did not cause a statistically significant decrease in cholesterol in
- 29 female mice (Fair et al., 2011).
- 30 Exposure to PFOS also caused a reduction in HDL in mice exposed ≤ 6 weeks (Bijland et al.,
- 31 2011; LOAEL = 3 mg/kg/day) or 14 days (Wang et al., 2014a; LOAEL = 5 mg/kg/day).
- 32 Similarly, PFOS exposure caused a reduction in low-density lipoprotein (LDL) following ≤ 6
- 33 weeks (Bijland et al., 2011; LOAEL = 3 mg/kg/day) or 14 days (Wang et al., 2014a; LOAEL =
- 34 20 mg/kg/day).
- 35 Decreases in serum triglycerides were also reported following PFOS exposure. Bijland et al.
- 36 (2011) reported decreased triglycerides following ≤ 6 weeks of exposure to 3 mg/kg/day. Wang
- et al. (2014a) also reported a decrease in triglycerides following 14 days of exposure to 20

- 1 mg/kg/day, whereas Qazi et al. (2010b) observed no change in triglycerides following 10 days of
- 2 exposure (NOAEL = 0.005% in feed).
- 3 In total, the data suggest that PFOS exposure affects serum lipid levels in animals. Decreases in
- 4 total cholesterol have typically been observed in monkeys, rats, and mice. Data also suggest that
- 5 PFOS decreases other serum lipid parameters such as HDL, LDL, and triglycerides.
- 6 <u>Summary of clinical chemistry findings in animals</u>
- 7 In summary, several clinical chemistry parameters have been assessed in animals following
- 8 PFOS exposure. Levels of total cholesterol, HDL, LDL, and triglycerides have consistently been
- 9 reported to decrease with PFOS exposure. As reviewed in the hepatic section, data for bilirubin
- 10 are mixed with respect to an effect of PFOS exposure. Data for serum enzymes (i.e., ALT, ALP,
- 11 ASP), also reviewed in the hepatic section, typically show no effect. However, some studies
- 12 have reported changes in these enzymes. As discussed in the endocrine/metabolic section,
- 13 glucose levels in animals following PFOS exposure have either been decreased or unchanged.
- 14 The effect of PFOS on serum levels of urea is unclear.

15

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	<53 weeks	↑ ALT (at weeks 14 and 53), males only (determined at weeks 4, 14, 27, and 53 but only statistically significant at weeks 14 and 53)	Males: 0.2 Females: 1.3	Males: 1.0 Females: -	Serum and liver PFOS concentrations determined	Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) Females: (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks)
				↓ AST (at week 4), females only (determined at weeks 4, 14, 27, and 53 but only statistically significant at week 4)	Males: 1.0 Females: 0.3	Males: Females:1.3		Males: Females: 54,000 (week 4) (female serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				 ↓ total CHOL (at weeks 14, 27, and 53 but not at term), males ↓ total CHOL (at week 27 only), females (determined at weeks 4, 14, 27, 53 and at termination, statistically significant results for each sex reported above) 	Males: 0.2 Females: 0.03	Males: 1.0 Females: 0.1		Males: 148,000 ppm (week 14) 146,000 ppm (week 53) Females: Not reported (week 27) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 102 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				 ↓ glucose (at weeks 4 and 53), males ↓ glucose (at weeks 14 and 53), females (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above) 	Males: 0.2 Females: 0.03 (based on week 53)	Males: 1.0 Females: 0.1 (based on week 53)		Males: 146,000 ppm (week 53) Females: Not reported (week 53) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 102

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↑ BUN (at weeks 14, 27, and 53), males and females (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above)	Males: 0.02 Females: 0.1 (both based on week 53)	Males: 0.1 Females: 0.3 (both based on week 53)		(day assessed) Males: Not reported (week 53) Females: Not reported (week 53) (male serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
				↑ CREAT (at week 14 only), females only (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above)	Males: 1.0 Females: 0.03	Males: Females: 0.1 (higher doses produced no effect)		Males: Females: 27,300 ppm (week 14) (females serum PFOS concentrations reported for after exposure for 4, 14, and 102 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2002)	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day	26 weeks	↓ total CHOL (on days 91 to 182)	Males: 0.15	Males: 0.75	Serum and liver PFOS concentrations determined	Males: 173,000 Females: 171,000
1-year recovery data not summarized		Capsule			Females: 0.15	Females: 0.75	Sample sizes generally 2 to 6 per group with increased	(determined after 183 days of exposure)
herein				↓ HDL (on days 153 and 182)			frequency of endpoint measurements	
				(for males, statistically significant reductions observed at 0.03 and 0.75 mg/kg/day, non- statistically significant reductions	Males: Females: 0.03	Males: 0.03 Females: 0.15		Males: 15,800 Females: 66,800 (determined after 183 days of exposure)
				observed at 0.15 mg/kg/day) ↓ total BILI (for males only, on	Males: 0.15	Males: 0.75		Males: 173,000 Females:
				days 91, 153, and 182)	Females: 0.75	Females: -		(determined after 183 days of exposure)

Table 20. S	tudy summ	ary table for clinical	chemistry	parameters in ani	mals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				↑ SBA (for males only, on	Males: 0.15	Males: 0.75		Males: 173,000 Females:
				day 182)	Females: 0.75	Females: -		(determined after 183 days of exposure)
				ALB, ALK, ALT, AST, BUN, CA, CL, CREAT, GLOB, GLUC, K, NA, PHOS, PROT, SDH, TRIG, VLDL	0.75			
				(for males and females, any effects reported to be non-treatment related)				
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS	0, 0.5, 2.0, 5.0, 20 ppm Dietary	14 weeks	\downarrow CHOL (males only)	Males: 0.3	Males: 1.3	Serum and liver PFOS concentrations determined	Males: 148,000 Females:
	BR	Estimated daily dose of PFOS (as reported by study authors)		(determined after 14 weeks of exposure)	Females: 1.6	Females: -	Sample size ≤5 rats per endpoint	(determined after 14 weeks of exposure)
		Males: 0, 0.03, 0.13,		↑ ALT (males only)				Males: 148,000
		0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15,		(determined after	Males: 0.3	Males: 1.3		Females:
		0.40, 1.56 mg/kg/day		14 weeks of exposure)	Females: 1.6	Females: -		(determined after 14 weeks of exposure)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL
								(day assessed)
				↑ BUN (males and				Males: 148,000
				females)	Males: 0.3	Males: 1.3		Females: 223,000
				(determined after	Famalaa	Females		1 cmaics. 220,000
				14 weeks of	Females: 0.4	Females: 1.6		(determined after
				exposure)	0.1	1.0		14 weeks of
				ALB, AST, BILI				exposure)
				(total), CA, CL,	Males: 1.3			
				CREAT, GGT, GLOB, GLU, K, NA, PHOS. PROT	Females: 1.6			
	stically significa	as the highest dose that c ant (e.g., p<0.05) effects.						
→ = increased	; ↓ = decreased	ł						

EOSIN = eosinophil; HCT = hematocrit; HDL = high density lipoprotein cholesterol; HGB = hemoglobin; K = potassium; LYMPH = lymphocyte; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; MONO = monocyte; N-SEG = segmented neutrophil; NA = sodium; PHOS = inorganic phosphate; PLT = platelet; PROT = total protein; RBC = red blood cell; RETIC = reticulocyte; SBA = serum bile acid; SDH = sorbitol dehydrogenase; TRIG = triglycerides; VLDL = very low-density lipoprotein; WBC = white blood cell

1 Human epidemiology studies

- 2 A summary of clinical chemistry parameters in humans can be found in Table 21 at the end of
- 3 the following review. Detailed methodological information and additional study results can be
- 4 found in the corresponding tables in Appendix 6.

5 <u>Triglycerides</u>

- 6 The results of twelve studies which evaluated PFOS and serum triglyceride data are conflicting.
- 7 Only three studies showed a significant positive association of PFOS exposure with increased
- 8 serum triglyceride levels (Timmermann et al. (2014) overweight children only; Olsen et al.
- 9 (2003b); Steenland et al. (2009)). Olsen et al. (2003b) is an occupational cohort with a very
- 10 high PFOS exposure (mean of 800-1,320 ng/ml). However, an earlier (but smaller) study by
- 11 Olsen et al. (1999) at the same plant with an even higher level of exposure showed no significant
- 12 association. Steeland et al. (2009) is a high-quality study with a very large study population (n =
- 13 46,294), with a relatively low level of PFOS exposure (22.4 ng/ml) typical of the general
- 14 population. In contrast, two studies showed a significant negative association of PFOS exposure
- 15 and triglyceride levels: Frisbee et al. (2013; girls only); and Château-Degat et al. (2010; females
- 16 only). Both of these studies had relatively large study populations with general population levels
- 17 of PFOS exposure. Seven other studies showed no significant association of PFOS with
- 18 triglycerides.
- 19 Overall, there may be a suggestion of a relatively weak association of PFOS with increased
- 20 serum triglycerides that is observable with either very high levels of PFOS exposure or with very
- 21 statistically powerful studies.

22 <u>Total cholesterol</u>

- 23 There is consistent evidence from nine studies for a positive association of PFOS exposure with
- serum total cholesterol: (Eriksen et al., 2013; females only); Frisbee et al. (2010; children);
- 25 Geiger et al. (2014b); Jain (2013a); Nelson et al. (2010); Olsen et al. (1999, 2003b); Starling et
- al. (2014b); and Steenland et al. (2009). With the exception of the Olsen et al. occupational
- 27 studies, all of these studies detected a significant positive association in populations within the
- exposure range prevalent in the general population. The Fu et al. (2014) study also showed an
- 29 apparent, but not statistically significant trend of increasing total cholesterol with PFOS
- 30 exposure. In addition, Steenland et al. (2009) showed a significant positive association between
- 31 clinically defined hypercholesterolemia and PFOS exposure.
- There is, therefore, strong evidence for a positive association of PFOS exposure and increasedserum total cholesterol even at relatively low levels of PFOS exposure.

34 <u>High density cholesterol (HDL)</u>

- 35 The evidence for an association of PFOS exposure with HDL is weak. Three studies (Château-
- 36 Degat et al. (2010), Frisbee et al. (2010) (boys only), Starling et al. (2014b) showed a significant
- 37 positive association of PFOS exposure and HDL. However, eight studies showed no significant

- 1 association. These included the two Olsen et al. (1999, 2003b) occupational studies with very
- 2 high serum PFOS levels. With the exception of the Olsen et al. studies, all of the studies
- 3 investigated populations with essentially general population levels of exposure.

4 Low density cholesterol (LDL)

- 5 There is a suggestion of an association between PFOS exposure and LDL. Four studies showed
- 6 a clear significant positive association between PFOS exposure and serum LDL levels: Fitz-
- 7 Simon et al. (2013); Frisbee et al. (2010; children); Geiger et al. (2014b); Olsen et al. (1999; for
- 8 one of two consecutive years only); and Steenland et al. (2009). In addition, Olsen et al. (1999)
- 9 showed a positive association in only one of two non-consecutive years during which LDL levels
- 10 were collected. In addition, two studies of non-HDL cholesterol (the majority of which is LDL)
- 11 also showed a significant positive association with PFOS exposure (Nelson et al., 2010;
- 12 Steenland et al., 2009). However, four studies showed no significant association between PFOS
- 13 and LDL. Of these, however, Fu et al. (2014) showed an apparent, but non-significant trend.
- 14 With the exception of the Olsen et al. (1999) occupational study, all of these studies were in

15 populations with PFOS exposures prevalent in the general population. In addition, the Geiger et

- 16 al. (2014b) study also showed a significant positive association between PFOS exposure and
- 17 clinically defined LDL dyslipidemia.

18 <u>Summary of epidemiologic studies</u>

- 19 There is consistent evidence for an association between PFOS exposure and increased serum
- 20 cholesterol levels, including at low levels of exposure prevalent in the general population (i.e. in
- 21 populations with no known exposure to specific sources of PFOS contamination). However, the
- 22 evidence is somewhat less clear for an association between PFOS exposure and increased levels
- of LDL, and weak, at best for an association between PFOS exposure and either HDL or
- 24 triglyceride levels.
- 25
- 26 In contrast to studies of general population exposure levels, associations between PFOS and
- 27 increased serum cholesterol were not observed in studies of occupationally exposed workers. As
- 28 discussed in DWQI (2017), associations of PFOA with some clinical parameters, including
- 29 cholesterol, liver enzymes, and uric acid, exhibit a steep dose-response curve in the lower
- 30 exposure range found in the general population, with a much flatter slope (approaching a
- 31 plateau) at higher exposures such as those found occupationally. For dose-response curves of this
- 32 type, the associations found in populations with lower exposures may not be observed in workers
- 33 because even the least exposed workers used as the comparison/reference group in occupational
- 34 studies may have exposure levels that are high enough to fall on the much flatter upper portion of
- 35 the dose-response curve. These conclusions may also be relevant to the discrepancy in results
- 36 between occupational and general population studies of associations of PFOS and increased
- 37 cholesterol described above.
- 38
- 39

Endpoint	Effect and Direction	Serum PFOS	Study reference	
p		concentration (ng/ml)		
		(mean, median, etc.)		
Triglycerides	↑	Med. 41.5	Timmermann et al. (2014)	
	(for overweight only)			
	\downarrow	Mean 18.5	Château-Degat et al. (2010)	
	(F only)			
	=	Geo. mean 8.40	Fisher et al. (2013)	
		Geo. mean	$\mathbf{E}_{i}^{i} = \mathbf{E}_{i}^{i} = \mathbf{E}_{i}^{$	
	=	baseline $= 18.5$	Fitz-Simon et al. (2013)	
	$(\Delta \text{ triglycerides as})$			
	function of Δ PFOS)	Follow-up = 8.2		
	Ļ	Mean 22.7	Frisbee et al. (2010)	
	(children -F only)			
	=	Mean 1.68	Fu et al. (2014)	
	=	Mean 17.7	Geiger et al. (2014b)	
	=	Med.	Jain (2013a)	
		Preg - 10.07		
		Non-preg – 12.11		
	=	Med. 1,000-3,000	Olsen et al. (1999)	
	\uparrow	Mean 800-1,320	Olsen et al. (2003b)	
	=	Med. 13.03	Starling et al. (2014b)	
	\uparrow	Mean 22.4	Steenland et al. (2009)	
HDL	\uparrow	Mean 18.5	Château-Degat et al. (2010)	
	=	Geom. mean 8.40	Fisher et al. (2013)	
	=	Geom. mean	Fitz-Simon et al. (2013)	
	(Δ triglycerides as	baseline $= 18.5$		
	function of Δ PFOS)	Follow-up = 8.2		
	↑	Mean 22.7	Frisbee et al. (2010)	
	(children – M only)			
	=	Mean 1.68	Fu et al. (2014)	
	=	Mean 17.7	Geiger et al. (2014b)	
	=	Med. 21.0	Nelson et al. (2010)	
	=	Med. 1,000-3,000	Olsen et al. (1999)	
	=	Mean Δ +4.2	Olsen et al. (2012)	
	$(as \Delta)$		```	
	=	Mean 800-1,320	Olsen et al. (2003b)	
	\uparrow	Med. 13.03	Starling et al. (2014b)	
	=	Mean 22.4	Steenland et al. (2009)	
TC/HDL	Ļ	Mean 18.5	Château-Degat et al. (2010)	
	=	Geo. mean 8.40	Fisher et al. (2013)	
	=	Mean Δ +4.2	Olsen et al. (2012)	
	$(as \Delta)$			
	=	Mean 22.4	Steenland et al. (2009)	
HDL dyslipidemia	=	Mean 17.7	Geiger et al. (2014b)	

Endpoint	Effect and Direction	Serum PFOS	Study reference
1		concentration (ng/ml)	
		(mean, median, etc.)	
Total cholesterol	1	Mean 36.1	Eriksen et al. (2013)
	(F only)		
		Geo. mean	Fitz-Simon et al. (2013)
		baseline $= 18.5$	
		Follow-up = 8.2	
	=	Geom. mean 8.40	Fisher et al. (2013)
	1	Mean 22.7	Frisbee et al. (2010)
	(children)		
	=	Mean 1.68	Fu et al. (2014)
	↑	Mean 17.7	Geiger et al. (2014b)
	↑	Med. 10.07–12.11	Jain (2013a)
	(F)		
	↑	Med. 21.0	Nelson et al. (2010)
	=	Mean Δ +4.2	Olsen et al. (2012)
	$(as \Delta)$		
	1	Med. 1,000-3,000	Olsen et al. (1999)
	(for 1 of 2 non-		
	consecutive yrs)		
	1	Mean 800-1,320	Olsen et al. (2003b)
	↑	Med. 13.03	Starling et al. (2014b)
	1	Mean 22.4	Steenland et al. (2009)
Hypercholesterol- emia	1	Mean 22.4	Steenland et al. (2009)
Non-HDL cholesterol	↑	Mean 22.4	Steenland et al. (2009)
	↑	Median 21.0	Nelson et al. (2010)
LDL	=	Geo. mean 8.40	Fisher et al. (2013)
	↑	Geo. mean	Fitz-Simon et al. (2013)
	$(\downarrow \text{ in LDL } w \downarrow \text{ in })$	baseline = 18.5	
	PFOS)	Follow-up = 8.2	
	ĺ ↑	Mean 22.7	Frisbee et al. (2010)
	(children)		
	=	Mean 1.68	Fu et al. (2014)
	↑	Mean 17.7	Geiger et al. (2014b)
	=	Med. 21.0	Nelson et al. (2010)
	↑	Med. 1,000-3,000	Olsen et al. (1999)
	(for 1 of 2 non-		
	consecutive yrs)		
	=	Med. 13.03	Starling et al. (2014b)
	↑	Mean 22.4	Steenland et al. (2009)
LDL dyslipidemia		Mean 17.7	Geiger et al. (2014b)
↑ statistically significat	nt positive association		
↓ statistically significan			
	ation/equivocal association	n	
Δ change	anon equivocal association	/11	

1 Overall summary of lipid effects

- 2 The observations from animal studies and epidemiology studies are in apparent conflict. While,
- 3 in general, the animal studies show a consistent decrease in total cholesterol, HDL, LDL, and
- 4 triglycerides as a result of PFOS exposure (including monkeys), epidemiology studies provide
- 5 consistent evidence for an association between PFOS exposure and increased total cholesterol.
- 6 There is also suggestion for an association between PFOS exposure and increased LDL in
- 7 humans. Although the evidence from epidemiology studies is less consistent for an association
- 8 between PFOS exposure and increases in triglycerides or HDL, there is no evidence from
- 9 epidemiology studies to suggest that these parameters decrease with increasing PFOS exposure
- 10 in humans.
- 11
- 12 Of possible relevance to this discrepancy, PFOA also caused decreased serum lipids in
- 13 rodents, while increased serum lipids were associated with PFOA exposure in humans. Recent
- 14 studies reviewed in DWQI (2017) suggest that these differences may be related to the low fat
- 15 diet generally used in laboratory rodent studies versus the higher fat content of a typical
- 16 Westernized human diet, rather than solely to interspecies differences. However, such studies
- 17 have not been conducted for PFOS.
- 18

19 The lack of an animal model for the observed relationships between PFOS exposure and serum

20 lipids precludes consideration of lipid parameters as endpoints for dose-response consideration.

21 <u>Hematological effects</u>

22 Animal studies

- A summary of hematological effects of PFOS in animals can be found in Table 22 at the end of
- 24 the following review. Detailed methodological information and additional study results can be
- 25 found in the corresponding tables in Appendices 3 or 4.
- 26 Following PFOS exposure, some animal studies assessed hematological parameters associated
- 27 with erythrocytes (e.g., red blood cell number, hemoglobin, and hematocrit), leukocytes, (e.g.,
- 28 white blood cell numbers), and thrombocytes (i.e., platelets). These findings are briefly
- 29 reviewed below by species.
- 30 <u>Monkeys</u>
- 31 Following 182 days of PFOS exposure, decreased hemoglobin levels were observed in male
- 32 monkeys exposed to 0.75 mg/kg/day (Seacat et al., 2002). No effect on hemoglobin was
- 33 observed in female monkeys (NOAEL = 0.75 mg/kg/day). Additionally, no effect was observed
- in males and females for a number of other hematological parameters including erythrocytes,
- 35 leukocytes, and thrombocytes (NOAEL = 0.75 mg/kg/day).
- 36 <u>Rats</u>
- 37 Following 104 weeks of exposure, Butenhoff et al. (2012) reported an increase in segmented

- 1 neutrophils in males exposed to 1.0 mg/kg/day, but with no similar effect in females (NOAEL =
- 2 1.3 mg/kg/day). This increase in the male rats was first observed at an interim observation at 14
- 3 weeks of exposure (Seacat et al., 2002). No other effects on erythrocytes, leukocytes, and
- 4 thrombocytes were observed in these rats either at 14 or 104 weeks of exposure (Seacat et al.,
- 5 2002; Butenhoff et al., 2012).
- 6 Following a shorter duration of exposure (28 days), Curran et al. (2008) reported a decreased in
- 7 red blood cells, hemoglobin, and hematocrit in females (LOAEL = 7.6 mg/kg/day) but not males
- 8 (NOAEL = 6.3 mg/kg/day). In these rats, no effect on white blood cell numbers was observed.
- 9 Also following 28 days of exposure, Kim et al. (2011) observed no effects on various parameters
- 10 assessing erythrocytes, leukocytes, and thrombocytes in male and female rats (NOAEL = 10
- 11 mg/kg/day).
- 12 <u>Mice</u>
- 13 In male mice, 10 days of exposure to PFOS (0.02% in feed) was reported to decrease total white
- 14 blood cell numbers (Qazi et al., 2009a) and bone marrow cell content (Qazi et al., 2012). In
- 15 contrast, 10 days of exposure to 0.005% PFOS in feed had no effect on hematocrit or
- 16 hemoglobin levels in male mice (Qazi et al., 2010b).
- 17 <u>Summary of hematological effects in animals</u>
- 18 Although assessed in multiple species, data are somewhat limited regarding the hematological
- 19 effects of PFOS in animals. Although some studies do report changes in certain parameters, the
- 20 impact of PFOS on hematological parameters is unclear.

Table 22. Study	y summary tabl	e for hematological effects i	n animals					
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Dutanhaff at	Data	0.05.05.00	50				O a muna a mad li u a m	(day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary	<53 weeks	↑ N-SEG (at week 14 only), males only			Serum and liver PFOS concentrations determined	
		Maan daily intaka of		(determined at 14				Males: 148,000
		Mean daily intake of PFOS (as reported by study authors)		weeks of exposure)	Males: 0.2	Males: 1.0		Females:
		Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day			Females: 1.3	Females: - 		(determined at 14 weeks of exposure)
		Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day						
Seacat et al. (2002)	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day	26 weeks	↓ HGB (at day 91, 153, and 182, males only)	Males: 0.15	Males: 0.75	Serum and liver PFOS concentrations determined	Males: 173,000 Females:
		Capsule		(values reported by authors to be within normal range)	Females: 0.75	Females: -	Sample sizes generally 2 to 6 per group with increased	(determined after 183 days of exposure)
				Counts for: BASO, EOSIN, HCT, HGB (females only), LYMPH, MCH, MCHC, MCV, MONO, PLT, RBC, RETIC, N-SEG and WBC and blood cell morphology	0.75		frequency of endpoint measurements	
				(any statistically significant changes were not consistently observed over the				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				duration of exposure)				
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS	0, 0.5, 2.0, 5.0, 20 ppm Dietary	14 weeks	↑ N-SEG (males only)	Males: 0.3	Males: 1.3	Serum and liver PFOS concentrations determined	Males: 148,000 Females:
	BR	Estimated daily dose of PFOS (as reported by study authors)		(determined after 14 weeks of exposure)	Females: 1.6	Females: - 	Sample size ≤5 rats per endpoint	(determined after 14 weeks of exposure)
		Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day		HCT, HGB, MCH, MCHC, MCV, PLT,	Males: 1.3			
		Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day		RBC, WBC	Females: 1.6			

* NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

 \uparrow = increased; \downarrow = decreased

----- = not applicable

ALB = albumin; ALK = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BASO = basophils; BILI = bilirubin; BUN = blood urea nitrogen; CA = calcium; CHOL = cholesterol; CL = chloride; CREAT = creatinine; GGT = gamma glutamyltransferase; GLOB = globulin; GLUC = glucose; EOSIN = eosinophil; HCT = hematocrit; HDL = high density lipoprotein cholesterol; HGB = hemoglobin; K = potassium; LYMPH = lymphocyte; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; MONO = monocyte; N-SEG = segmented neutrophil; NA = sodium; PHOS = inorganic phosphate; PLT = platelet; PROT = total protein; RBC = red blood cell; RETIC = reticulocyte; SBA = serum bile acid; SDH = sorbitol dehydrogenase; TRIG = triglycerides; VLDL = very low-density lipoprotein; WBC = white blood cell

1 Human epidemiologic studies

- 2 A summary of hematological effects in humans can be found in Table 23 at the end of the
- 3 following review. Detailed methodological information and additional study results can be
- 4 found in the corresponding tables in Appendix 6.
- 5 Only one study (Jiang et al., 2014) reported on hematologic parameters. This was a study of
- 6 pregnant women in Tianjin, China. There are a number of significant limitations to this study,
- 7 including a relatively small sample size (n = 141), incomplete information on recruitment and
- 8 demographics, and statistical investigation of associations by means of correlation analyses
- 9 rather than regression analysis with controlling for confounders and/or co-variates. This study
- 10 stratified the analyses on the basis of linear and branched forms of PFOS.
- 11 No significant correlation was observed between serum PFOS and RBC, WBC, hemoglobin,
- 12 total blood protein, or albumin. Platelet count was significantly positively correlated with
- 13 branched chain PFOS only.
- 14 <u>Summary of hematological studies</u>
- 15 The quality of the Jiang et al. (2014) study is not adequate to support conclusions about the effect
- 16 of PFOS exposure on hematological parameters.
- 17

Table 23. Summary	v of Epidemiology St	udies of Blood Chemis	try (non-lipid)
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
WBC	=	Mean 4.75	Jiang et al. (2014)
RBC	=	Mean 4.75	Jiang et al. (2014)
Hb	=	Mean 4.75	Jiang et al. (2014)
Platelet count	↑ (branched PFOS forms only)	Mean 4.75	Jiang et al. (2014)
Total protein	=	Mean 4.75	Jiang et al. (2014)
Albumin	=	Mean 4.75	Jiang et al. (2014)

 \downarrow statistically significant negative association

= no significant association/equivocal association

18

1

2 Overall summary of hematological effects

- 3 The animal data do not present a clear picture of possible effects of PFOS on hematological
- 4 parameters. The single epidemiological study is not of adequate quality to draw conclusions
- 5 about human hematological effects. Based on these observations, the available evidence does
- 6 not justify hematological effects as critical endpoints for dose-response.

7 <u>Reproductive/developmental effects</u>

8 Animal studies

- 9 A summary of reproductive/developmental effects in animals can be found in Table 24 at the end
- 10 of the following review. Detailed methodological information and additional study results can
- 11 be found in the corresponding tables in Appendices 3 or 4.

The first section of the review of the animal data focuses on PFOS exposure in adult animals andany resulting effects on reproductive organs.

- 14 The second part of the review of the animal data focuses on gestational (i.e., maternal) exposures
- 15 and resulting effects in fetal, neonatal, and adult offspring. This review of endpoints resulting

16 from maternal exposure during gestation, including neonatal exposure through lactation,

- 17 proceeds according to the following general order:
- Reproductive and developmental endpoints, including pregnancy outcomes, offspring
 survival, and structural defects in offspring
- All other endpoints, including body weight effects, endocrine/metabolic effects, hepatic
 effects, immune effects, neurological effects (i.e., developmental neurotoxicity), renal
 effects, and other effects (e.g., cardiovascular effects).
- 23 <u>Studies in adult animals focusing on reproductive organ weight and histopathology</u>
- 24 The effects of PFOS exposure on the reproductive organs following adult exposures have been
- assessed in monkeys, rats, and mice. Typically, these assessments have focused on male (e.g.,
- 26 epididymis, testes) and female (e.g., ovaries, uterus) reproductive organ weights and
- 27 histopathology, including mammary glands.
- 28 <u>Monkeys</u>
- Following 182 days of exposure to ≤ 0.75 mg/kg/day PFOS in monkeys, Seacat et al. (2002)
- 30 reported no effect on reproductive organ weights in males (epididymis, testes) and females
- 31 (ovaries). Additionally, no histopathological changes were observed in these males (i.e.,
- 32 prostate, seminal vesicle) and females (i.e., mammary glands, uterus, vagina).
- 33 <u>Rats</u>
- 34 In rats following 52 weeks of PFOS exposure, Butenhoff et al. (2012) reported no effect on
- 35 reproductive organ weights in males (testes; NOAEL = 1.0 mg/kg/day) and females (ovaries,

- 1 uterus; NOAEL = 1.3 mg/kg/day). No histopathological changes were observed in these males
- 2 (epididymides, prostate, seminal vesicles, testes) and females (cervix, ovaries, uterus, vagina).
- 3 While no histopathological changes were observed in the aforementioned female reproductive
- 4 organs, Butenhoff et al. (2012) also examined the mammary glands of these PFOS-exposed
- 5 females. No non-neoplastic effects were observed in mammary glands. However, as discussed in
- 6 the <u>Carcinogenicity</u> section (below), a statistically significant increased incidence of mammary
- 7 gland fibroadenomas and combined fibroadenomas/adenomas was observed only in the low dose
- 8 group, while there was a significantly lower incidence in the high dose group and a significantly
- 9 decreased trend for these tumors overall.
- 10 For shorter durations of PFOS exposure (28 days) in rats, data are mixed for an effect of PFOS
- 11 on male reproductive organ weights. Cui et al. (2009) reported an increase in relative gonadal
- 12 weight in males exposed to 5 mg/kg/day. However, no effects on testes weights were reported
- 13 following exposures of ~ 6 mg/kg/day (Curran et al., 2008; Lopez-Doval et al., 2014). Data for
- 14 histopathological changes in male reproductive organs are also mixed. Lopez-Doval et al.
- 15 (2014) reported changes in testes histopathology (interstitial edema, degeneration of sperm
- 16 heads; LOAEL = 1.0 mg/kg/day) following PFOS exposure; however, Curran et al. (2008)
- 17 observed no histopathological changes in the epididymis and testes (NOAEL = 6.3 mg/kg/day).
- 18 In females, no histopathological changes were observed in mammary glands, ovaries, uterus, and
- 19 vagina (Curran et al., 2008; NOAEL = 7.6 mg/kg/day).
- 20 <u>Mice</u>
- 21 In mice, data are relatively limited for the effects of PFOS on reproductive organs. Following 28
- 22 days of exposure to 0.17 mg/kg/day, Fair et al. (2011) reported decreased relative uterine weight
- but no change in uterine histopathology. Following 28 days of exposure in adult male mice, Qiu
- et al. (2013) observed a decrease in sperm count and changes in testicular histopathology
- 25 (LOAEL = 2.5 mg/kg/day).
- 26 <u>Summary of effects on reproductive organ weight and histopathology</u>
- 27 In total, data are relatively limited for the effect of PFOS on male and female reproductive
- 28 organs following adult exposures in monkeys, rats, and mice. Some data suggest that PFOS can
- 29 affect reproductive organ weight or histopathology.
- 30 <u>Studies assessing reproductive/developmental endpoints following gestational exposure</u>
- 31 Reproductive and developmental effects following gestational exposure to PFOS have been
- 32 assessed in rats, mice, and rabbits. In some studies, pre-mating and/or lactational exposures were
- 33 combined with gestational exposures to determine the effects of PFOS on offspring.
- 34 Effects of gestational exposure were evaluated for reproductive indices such as implantation
- 35 sites, length of gestation, fetal survival, as well as litter effects and neonatal survival. In
- 36 addition, reports also included assessment of gestational exposure to PFOS on structural and

- 1 morphological effects in perinatal offspring as well as other developmental effects such as
- 2 developmental milestones.
- 3 <u>Rats</u>
- 4 Pregnancy and neonatal outcomes
- 5 Data suggest that gestational PFOS exposure may have a limited impact on pregnancy outcomes
- 6 in rats. For example, following gestational exposures, Butenhoff et al. (2009) and Thibodeaux et
- 7 al. (2003) found no effect on the number of implantation sites in dams exposed to ≤ 10
- 8 mg/kg/day from GD2-20. Maternal exposure to PFOS did not affect the length of gestation
- 9 (Butenhoff et al., 2009; NOAEL = 1.0 mg/kg/day) during the entire length of gestation or the
- 10 number of live fetuses at term (Thibodeaux et al., 2003; NOAEL = 10 mg/kg/day) with exposure
- 11 during GD2-20.
- 12 Some studies in rats assessed the reproductive and developmental effects of PFOS following
- 13 exposure from pre-mating through gestation (Luebker et al. 2005a, 2005b). For example,
- 14 Luebker et al. (2005b) reported no effects on corpora lutea, implantations, viable fetuses, and
- 15 dead fetuses at GD21 (NOAEL = 2.0 mg/kg/day). When assessed at GD21, the authors also
- 16 observed decreases in the percentage of dead or resorbed concepti per litter and early resorptions
- 17 per litter at a maternal dose of 2.0 mg/kg/day. Similarly, Luebker et al. (2005a) also observed at
- 18 GD10 no effect on corpora lutea, implantations, and viable embryos (NOAEL = 3.2 mg/kg/day).
- 19 However, at the end of pregnancy, these authors observed decreases in the duration of gestation
- 20 and the number of implantation sites per delivered litter, as well as an increase in the number of
- 21 dams with stillborn pups (LOAEL = 3.2 mg/kg/day). A decrease in the number of liveborn pups
- and an increase in stillborn pups per litter were also observed (LOAEL = 3.2 mg/kg/day). Using
- 23 the F_1 generation for subsequent mating, Luebker et al. (2005a) observed no effect on the
- duration of gestation, number of implantations, and number of live pups (NOAEL = 0.4
- 25 mg/kg/day).
- Following birth, there is evidence for an effect of PFOS on litter size and offspring survival. Lau
- et al (2003) observed a significant reduction in postnatal rat pup survival (LOAEL = 2
- 28 mg/kg/day) following maternal exposure from GD2 to GD21. While all offspring appeared
- 29 normal at parturition, all neonates in the 10 mg/kg/day maternal dose group became pale and
- 30 inactive and died around an hour after birth. Over 95% of offspring in the 5 mg/kg/day maternal
- 31 dose group did not survive past PND1. Grasty et al. (2003, 2005) reported decreased litter sizes
- 32 following exposure on GD19 to GD20 (LOAEL = 25 mg/kg/day). In contrast, Butenhoff et al.
- 33 (2009) reported no effect on number of litters and live litter size following PFOS exposure from
- 34 GD0 to term (NOAEL = 1.0 mg/kg/day).
- 35 Pup mortality was reported to increase following gestational PFOS exposure. When assessed at
- 36 PND3, Wan et al. (2010) observed a decrease in the number of delivered pups and an increase in
- 37 pup mortality following maternal exposure on GD2 to GD21 (LOAEL = 2.0 mg/kg/day).

- 1 Similarly, Chen et al. (2012a) observed increased postnatal mortality at PND3 following
- 2 maternal exposure from GD1 to GD21 (LOAEL = 2.0 mg/kg/day). In contrast, Butenhoff et al.
- 3 (2009) reported that following maternal exposure on GD0 to PND20, there was no effect on
- 4 offspring survival when assessed on PND0 to PND4 and on PND4 to PND21 (NOAEL = 1.0
- 5 mg/kg/day).
- 6 Additional studies assessed neonatal survival following maternal exposures prior to and during
- 7 gestation. When assessed at PND5, Luebker et al. (2005b) reported increased offspring mortality
- 8 (LOAEL = 1.6 mg/kg/day). In a two-generation study, Luebker et al. (2005a) reported an
- 9 increase in the number of dams with all F_1 pups dying between PND1 and PND4 (LOAEL = 3.2
- 10 mg/kg/day). In the 3.2 mg/kg/day maternal dose group, 100% of the F_1 pups died by PND2.
- 11 Additionally, the F_1 offspring in the 1.6 mg/kg/day maternal dose group were in such poor
- 12 condition at PND21 as not to be further assessed in the study. Following mating of the F_1
- 13 generation, no effect on F_2 mortality was observed through PND21 (NOAEL = 0.4 mg/kg/day).
- 14 Structural and morphological effects in perinatal offspring
- 15 Following gestational exposure, data suggest that PFOS can cause skeletal and visceral defects in
- 16 rat offspring. Thibodeaux et al. (2003) reported that various defects were observed in at-term
- 17 offspring of dams exposed to 10 mg/kg/day from GD2 to GD20. These abnormalities included
- 18 cleft palate, sternal defects, anasarca, enlarged right atrium, and ventricular septal defects.
- 19 Maternal toxicity was observed in terms of decreases in T3 and T4 (LOAEL = 1 mg/kg/day),
- 20 weight gain (LOAEL = 2 mg/kg/day), and hepatic effects in the high dose group.
- 21 Studies in rats also found effects of PFOS on the lungs of offspring. Following maternal
- exposure on GD19 and GD20, Grasty et al. (2003, 2005) observed histological and
- 23 morphometric changes in offspring lungs at GD21 and PND0 suggestive of a delay in lung
- 24 maturation (LOAEL = 25 mg/kg/day). In the 25 mg/kg/day maternal dose group, dams
- experienced decreased weight gain. Similarly, Chen et al. (2012a) observed changes (e.g.,
- alveolar hemorrhage, thickened inter-alveolar septa) in lung morphology of 21-day old offspring
- following maternal exposure to 2.0 mg/kg/day on GD1 to GD21. Chen et al. (2012a) did not
- report on maternal toxicity. In contrast, no effect on fetal lung histology at GD18.5 was
- observed with maternal exposure from GD12 to GD18 (Ye et al., 2012; NOAEL = 20
- 30 mg/kg/day). No maternal deaths were observed during PFOS exposure; however, no other
- 31 maternal endpoints of toxicity were examined.
- 32 Other developmental effects
- 33 Data are mixed for whether PFOS can affect developmental milestones in offspring. In terms of
- 34 sexual maturation, Butenhoff et al. (2009) reported no effect of gestational and lactational PFOS
- 35 exposure (GD0 to PND20; NOAEL = 1.0 mg/kg/day) on the ages at which female and male
- 36 offspring reached vaginal patency or balanopreputial separation, respectively. Similarly,
- 37 Luebker et al. (2005a) observed no effect of pre-mating, gestational, and lactational PFOS
- 38 exposure on sexual maturation in F_1 males and females (NOAEL = 0.4 mg/kg/day). This study

- 1 did, however, observe a delay in pinna unfolding in the F_1 offspring (LOAEL = 1.6 mg/kg/day).
- 2 Lau et al. (2003) observed a delay in eye opening of rat offspring born to mothers exposed on
- 3 GD2 to GD21 (LOAEL = 2 mg/kg/day).
- 4 <u>Mice</u>
- 5 Pregnancy and neonatal outcomes
- 6 Thibodeaux et al. (2003) reported a decrease in the percentage of live fetuses at term following
- 7 maternal exposure from GD1 to GD17 (LOAEL = 20 mg/kg/day); no effect on the number of
- 8 implantation sites was observed (NOAEL = 20 mg/kg/day). Similarly, Yahia et al. (2008)
- 9 observed a decrease percentage of live fetuses along with increased percentages of resorbed
- 10 fetuses and dead fetuses following maternal exposure from GD0 to GD17 (LOAEL = 20
- 11 mg/kg/day). At lower maternal doses on GD11 to GD16, Lee et al. (2015) reported decreases in
- 12 placental capacity (i.e., the ratio of fetal weight to placental weight; LOAEL = 0.5 mg/kg/day)
- 13 and the number of live fetuses (LOAEL = 2.0 mg/kg/day) as well as an increase in the number of
- 14 resorptions and dead fetuses (LOAEL = 0.5 mg/kg/day). However, Lee et al. (2015) observed no
- 15 effect on the number of implantations.
- 16 Fuentes et al. (2006) observed no effect on pregnancy outcome following maternal exposure on
- 17 GD6 to GD18 (NOAEL = 6 mg/kg/day). These authors assessed the numbers of (per litter)
- 18 implants, live fetuses, dead fetuses, early resorptions, and late resorptions. Additionally, no
- 19 effect was observed on the numbers of litters with dead fetuses and post-implantation loss as
- 20 well as the fetal sex ratio. Similarly, no effect on length of gestation and the number of litters
- and pups per litter were observed following gestational exposure on GD12 to GD18 (Fuentes et
- al., 2007b; NOAEL = 6 mg/kg/day). Additional studies reported no effects on the number of live
- 23 pups, litter size, and sex ratio following maternal exposures $\leq 10 \text{ mg/kg/day}$ (Fuentes et al.,
- 24 2007b; Rosen et al., 2009; Onishchenko et al., 2011).
- 25 In addition to studies using standard mouse strains, wild-type (WT) and PPARα null mice have
- 26 been compared with respect to the reproductive/developmental effect of PFOS. Following
- 27 maternal exposure on GD15 to GD18, Rosen et al. (2010) reported no effect on the number of
- 28 implantation sites, total number of pups at birth (alive and dead), and percentage litter loss from
- implantation to birth in either WT or null mice (NOAEL = 10.5 mg/kg/day).
- 30 Following birth, gestational PFOS exposure was reported to affect offspring survival. Lau et al.
- 31 (2003) observed a significant reduction in postnatal mouse pup survival (LOAEL = 10
- 32 mg/kg/day) following maternal exposure from GD1 to GD18. Most offspring in the ≥ 15
- 33 mg/kg/day maternal dose group did not survive within 24 hours of birth. Yahia et al. (2008)
- 34 reported a decrease in offspring survival at PND4 following maternal exposure (GD0 to GD18)
- 35 to 10 mg/kg/day. Decreased postnatal survival at PND15 was also observed in WT (LOAEL =
- 36 4.5 mg/kg/day) and PPAR α null (LOAEL = 8.5 mg/kg/day) mice (Abbott et al., 2009a).
- 37 Structural and morphological effects in perinatal offspring

- 1 Following gestational exposure, data suggest that PFOS can lead to skeletal, visceral, and
- 2 external defects in mouse offspring. Thibodeaux et al. (2003) reported that various defects were
- 3 observed in term offspring of dams exposed to 15 mg/kg/day from GD1 to GD17. These
- 4 abnormalities included cleft palate, sternal defects, enlarged right atrium, and ventricular septal
- 5 defects. Maternal toxicity was limited to increased relative liver weight and decreased serum
- 6 triglycerides (LOAEL for both endpoints = 5 mg/kg/day) and decreased body weight gain
- 7 (LOAEL = 20 mg/kg/day). Similarly, an increase in fetal cleft palate at GD17 was observed
- 8 following gestational exposure from GD1 to GD17 (Era et al., 2009; LOAEL = 13 mg/kg/day);
- 9 maternal effects were not determined. Following gestational exposure on GD0 to GD17, an
- 10 increase in the percentage of fetuses with sternal defects (LOAEL = 1 mg/kg/day) was observed
- 11 by Yahia et al. (2008). These authors also observed bilateral swelling in the back of the necks of
- 12 fetal and neonatal offspring in the 20 mg/kg/day maternal dose group. Increased liver weight
- 13 and decreased weight gain were observed in dams in the 10 and 20 mg/kg/day groups,
- 14 respectively.
- 15 In contrast, Fuentes et al. (2006) observed no effect of gestational PFOS exposure (GD6 to
- 16 GD18) on a number of developmental parameters including assymetrical sternebrae, diminished
- 17 ossification of caudal vertebrae, supernumerary ribs, and total number of litters with skeletal
- 18 defects (NOAEL = 6 mg/kg/day). Maternal effects were limited to increased absolute liver
- 19 weight (LOAEL = 3 mg/kg/day) and increased relative liver weight (LOAEL = 6 mg/kg/day).
- 20 Additionally, no effect on offspring lung histology was observed following maternal exposure
- from GD1 to GD17 (Rosen et al., 2009; NOAEL = 10 mg/kg/day). Although limited to the
- assessment of body weight and general appearance, no maternal toxicity was observed.
- 23 Other developmental effects
- 24 Data are mixed regarding the ability of PFOS to affect developmental milestones in mouse
- 25 offspring. Lau et al. (2003) observed a delay in eye opening of mouse offspring born to mothers
- exposed on GD1 to GD17 (LOAEL = 1 mg/kg/day). Similarly, a delay in eye opening was
- observed in WT (LOAEL = 8.5 mg/kg/day) and PPARα null (LOAEL =10.5 mg/kg/day) mice
- following gestational exposure from GD15 to GD18 (Abbott et al., 2009a). Fuentes et al.
- 29 (2007b) observed an increase in the time to testes descent in males (LOAEL = 6 mg/kg/day),
- 30 while no effect was observed for other male maturation milestones or for any milestone in
- 31 females (NOAEL = 6 mg/kg/day).

32 <u>Rabbits</u>

- 33 Pregnancy outcomes
- 34 Data indicate that PFOS does not affect pregnancy outcomes in rabbits. Following maternal
- 35 exposure on GD7 to GD29, Case et al. (2001) observed no effects on corpora lutea,
- 36 implantations, resorptions, and the number of live and dead fetuses (NOAEL = 3.8 mg/kg/day).
- 37 Structural and morphological effects in perinatal offspring

- 1 Gestational PFOS from GD7 to GD29 did not results in any external, soft tissue, or skeletal
- 2 abnormalities in offspring (Case et al., 2001; NOAEL = 3.8 mg/kg/day).
- 3

4 <u>Summary of effects on reproductive and developmental parameters in offspring</u>

- 5 In total, there is evidence that gestational exposure to PFOS can have effects on some
- 6 reproductive and developmental parameters. In rats, pregnancy outcomes (e.g., number of
- 7 implantation sites, length of gestation) did not appear to be affected by gestational PFOS
- 8 exposure. However following birth, gestational PFOS exposure resulted in decreased pup
- 9 survival. In mice, data are mixed regarding the impact of gestational PFOS exposure on
- 10 pregnancy outcomes. However, gestational PFOS exposure caused increased mortality in mouse
- 11 offspring. Data in rabbits suggest no effects from PFOS exposure on pregnancy outcomes. In
- 12 rats and mice, skeletal and visceral defects were observed in offspring following gestational
- 13 PFOS exposure. Additionally, lung defects were observed in rat, but not mouse, offspring. No
- 14 structural or morphological effects were observed in rabbit offspring. The available data for rats
- and mice appear to be mixed regarding the ability of gestational PFOS exposure to impact
- 16 developmental milestones (e.g., sexual maturation).

17 Body weight effects from developmental exposure

- 18 Body weight effects have been assessed in rats, mice, and rabbits following gestational exposure
- 19 to PFOS. Decreases in body weight have been reported in fetal, neonatal, and adult offspring of
- 20 pregnant animals exposed to PFOS. These findings are briefly reviewed below.
- 21 <u>Rats</u>
- 22 Gestational PFOS exposure of pregnant rat dams has led to body weight changes in fetal,
- 23 neonatal, and weaned offspring. Following maternal PFOS exposure on GD2 to GD20,
- Thibodeaux et al. (2003) reported decreased fetal body weight on GD21 in the 10 mg/kg/day
- 25 group, whereas the corresponding dams experienced decreased weight gain at doses ≥ 2
- 26 mg/kg/day. In studies with observations immediately following parturition (e.g., PND0 and
- 27 PND1), there is a consistent finding of decreased offspring body weight following gestational
- exposure to PFOS at maternal doses \geq 0.4 mg/kg/day (Grasty et al., 2003, 2005; Lau et al., 2003;
- 29 Luebker et al., 2005a, 2005b; Wan et al., 2010; Wang et al., 2011c; Chen et al., 2012a; Lv et al.,
- 30 2013; Rogers et al., 2014). For many of the studies that reported decreased pup body weight,
- 31 maternal toxicity (e.g., decreased maternal weight gain), when available, was also reported at
- 32 LOAELs similar to the offspring effect. In such cases, it is unclear whether maternal toxicity
- 33 contributed to the decreased pup body weights or whether the pup body weights were
- 34 independently sensitive to gestational PFOS exposure. Decreases in rat pup body weight have
- been reported to persist beyond the neonatal period to weaning (e.g., typically PND21; Lau et al.,
- 36 2003; Luebker et al., 2005a; Wan et al., 2010; Chen et al., 2012a; Lv et al., 2013).

- 1 In a two generation study, Luebker et al. (2005a) reported that maternal PFOS exposure prior to
- 2 and during mating and then during gestation and lactation caused a decrease in pup (i.e., the F_1
- 3 generation) body weight in the 1.6 mg/kg/day group from PND1 through PND21. Using the F_1
- 4 generation males and females for breeding and following a similar exposure regimen, a decrease
- 5 in pup (i.e., the F_2 generation) body weight was observed in the 0.4 mg/kg/day maternal dose
- 6 group from PND1 through PND21, although this effect only reached statistical significance at
- 7 PNDs 7 and 14.
- 8 In contrast, Butenhoff et al. (2009) observed no decreased pup body weight at PND1 through
- 9 PND72 for all maternal exposure groups (NOAEL = 1.0 mg/kg/day, exposure from GD0 to
- 10 PND20). Additionally, Butenhoff et al. (2009) reported *increased* offspring body weight at
- 11 sexual maturation, an effect that was only statistically significant in the 0.1 mg/kg/day maternal
- 12 dose group. Yu et al. (2009b) also observed no effect on pup body weight (on PNDs 0, 14, 21,
- 13 and 35) following maternal exposure to 3.2 mg/kg feed throughout gestation.
- 14 <u>Mice</u>
- 15 Gestational PFOS exposure of pregnant mouse dams has led to body weight changes in fetal,
- 16 neonatal, and adult offspring. Following maternal PFOS exposure on GD1 to GD17,
- 17 Thibodeaux et al. (2003) reported decreased fetal body weight on GD18 in the 10 mg/kg/day
- 18 group, whereas the corresponding dams experienced increase relative liver weights at 5
- 19 mg/kg/day. Similarly, Lee et al. (2015) reported decreased fetal body weight on GD17 in the 2.0
- 20 mg/kg/day maternal dose group following exposure on GD11 to GD16. In this study decreased
- 21 placental weight and increased placental necrosis were observed in the 0.5 mg/kg/day group. It
- is possible that the placental effects in this study influenced the observed decrease in fetal body
- 23 weight. In neonates, decreased pup body weight was observed following maternal doses ≥ 10
- 24 mg/kg/day (Yahia et al., 2008). At these dose levels, dams were reported to have increased liver
- 25 weight. In contrast to decreased offspring body weight, Ryu et al. (2014) reported that PFOS
- 26 exposure (4 mg/kg feed) during gestation, lactation, and into adulthood caused an increase in
- body weight gain in offspring at 12 weeks of age.
- In several studies where mouse dams were exposed to PFOS during pregnancy, no effect on
 offspring body weight was observed. At birth (i.e., PND0), no decrease in neonatal body weight
- 30 was observed even at a maternal dose as high as 10 mg/kg/day (Lau et al., 2003; Ribes et al.,
- 31 2010; Onishchenko et al., 2011). When assessed later in life, gestational PFOS exposure did not
- 32 cause a decrease in offspring body weight. For example, no effect on body weight was observed
- 33 in offspring at ages 3 weeks (Wan et al., 2014; NOAEL = 3.0 mg/kg/day), 8 weeks (Keil et al.,
- 2008; NOAEL = 5 mg/kg/day), and 20 weeks (Ngo et al., 2014; NOAEL = 3.0 mg/kg/day). In
- addition to studies using standard mouse strains, WT (wild-type) and PPARα null mice have
- 36 been compared with respect to the developmental/reproductive effects of PFOS. Abbott et al.
- 37 (2009a) reported no effect on offspring body weight at PND1 and PND15 in either WT or
- 38 PPARα null mice following maternal exposure to 10.5 mg/kg/day during GD15 to GD18.

1 <u>Rabbits</u>

- 2 PFOS exposure of pregnant does during GD7 to GD20 led to a decrease in fetal body weight at
- 3 GD29 with maternal PFOS doses ≥ 2.5 mg/kg/day (Case et al., 2001). In this study, a decrease
- 4 in maternal weight gain was reported to occur (LOAEL = 1.0 mg/kg/day).

5 <u>Summary and conclusions for offspring body weight effects in animals</u>

- 6 In total, animal studies have consistently shown a decrease in fetal or neonatal weight with
- 7 gestational PFOS exposure. Decreased fetal/neonatal body weight has been reported to occur in
- 8 multiple species (i.e., rats, mice, and rabbits). Post-natal effects on body weight are less
- 9 consistent with some studies showing post-natal decreases in body weight and other studies
- 10 showing no post-natal effects. Some studies have reported that decreased offspring body weight
- 11 can persist to weaning and beyond. Although maternal toxicity has been observed at doses
- 12 similar to those causing the decreased offspring body weight, this effect in the offspring may
- 13 represent developmental toxicity from gestational PFOS exposure.

14 In summary, there is strong evidence from several animal species that exposure to PFOS during

- 15 gestation causes decreased birthweight.
- 16 Endocrine/metabolic effects from developmental exposure
- 17 Endocrine and metabolic effects following gestational exposure to PFOS have been assessed in
- 18 rats and mice. Findings for effects on the thyroid gland and hormones as well as on additional
- 19 endocrine and metabolic endpoints (e.g., glucose metabolism, insulin resistance) are briefly
- 20 reviewed below.
- 21 <u>Rats</u>
- 22 Thyroid gland
- 23 Following gestational and lactational exposure to PFOS, no effect on thyroid histology (e.g.,
- 24 number of follicles and distribution of follicle sizes) was observed in male and female offspring
- when assessed at GD20, PND4, and PND21 (Chang et al., 2009; NOAEL = 1.0 mg/kg/day).
- 26 While morphometric analyses on PNDs 4 and 21 of offspring thyroid follicular colloid area
- 27 revealed no effect from PFOS exposure, increased follicular epithelial cell height in males were
- 28 observed on PND21. Similarly, no effect on offspring thyroid histopathology at PND5 was
- 29 observed in the highest maternal dose group (2.0 mg/kg/day) following pre-mating and
- 30 gestational PFOS exposure (Luebker et al., 2005b).
- 31 *Thyroid hormones*
- 32 Following gestational exposure, thyroxine (T4), triiodothyronine (T3), and thyroid stimulating
- 33 hormone (TSH) have been assessed in rat offspring.
- 34 Decreases in T4 levels have generally been observed in neonatal and post-weaning rats.
- 35 Following gestational exposure (GD2 to GD21), Lau et al. (2003) reported decreased serum
- 36 levels of total and free T4 (LOAEL = 2 mg/kg/day) in offspring when assessed between PNDs 1
- and 35. Luebker et al. (2005b) reported a decrease in total T4 (LOAEL = 0.4 mg/kg/day) but not

- 1 free T4 at PND5 in offspring following pre-mating, gestational, and lactational exposures. With
- 2 gestational and lactational exposure until PND14, decreased total T4 was also observed in
- 3 offspring at PNDs 7 and 14 (Wang et al., 2011c; LOAEL = 3.2 mg/kg feed). Similarly,
- 4 decreased total T4 was observed at PNDs 21 and 35 in rat offspring following gestational
- 5 exposure as well as in offspring further exposed to PFOS via lactation (Yu et al., 2009b; LOAEL
- 6 = 3.2 mg/kg feed).
- 7 Data generally show no effect on offspring T3 levels. No change in serum T3 levels between
- 8 PNDs 1 and 35 were observed in offspring following gestational exposure (Lau et al., 2003;
- 9 NOAEL = 3 mg/kg/day). Yu et al. (2009b) reported no change through PND35 in total and
- 10 reverse T3 in rat offspring following gestational exposure as well as in offspring further exposed
- 11 to PFOS via lactation (NOAEL = 3.2 mg/k feed). Following maternal PFOS exposure prior to
- 12 and during gestation, no effect on total and free T3 levels were observed in offspring at PND5
- 13 (Luebker et al., 2005b). In contrast, with a higher dose range (0, 3.2, and 32 mg/kg feed), Wang
- 14 et al. (2011c) reported decreased total T3 in offspring at 2 weeks of age following gestational
- 15 and lactational exposure until PND14 (LOAEL = 32 mg/kg feed).
- 16 Following gestational exposure, PFOS did not affect serum TSH levels in offspring assessed
- 17 between PND1 and PND35 (Lau et al., 2003; NOAEL = 3 mg/kg/day). Similarly, no effect on
- 18 offspring TSH was observed in rats exposed to PFOS via gestation and lactation (Chang et al.,
- 19 2009; NOAEL = 1.0 mg/kg/day). However, an increase in offspring TSH at PND5 was observed
- 20 in the 1.6 mg/kg/day maternal dose group following pre-mating and gestational exposure
- 21 (Luebker et al., 2005b).
- 22 Other endocrine and metabolic effects
- 23 In addition to thyroid gland and hormone effects, additional endocrine and metabolic effects,
- such as those on other hormones and glucose metabolism, have been assessed in rats following
- 25 gestational PFOS exposure. Lv et al. (2013) reported decreased serum adiponectin
- 26 (LOAEL = 0.5 mg/kg/day) and increased serum leptin (NOAEL = 1.5 mg/kg/day) in adult
- 27 offspring (age 21 weeks) following gestational and lactational exposure to PFOS.
- 28 Lv et al. (2013) also assessed the effects of gestational and lactational PFOS exposure on
- 29 parameters associated with glucose metabolism. Following maternal exposure from GD0 to
- 30 PND21, adult offspring had increased levels of fasting serum insulin at 21 weeks of age (LOAEL
- 31 = 1.5 mg/kg/day). In addition, increased insulin resistance index (LOAEL = 1.5 mg/kg/day) and
- 32 increased glucose intolerance (at 18 weeks of age; LOAEL = 0.5 mg/kg/day) were observed in
- 33 these adult offspring. However, Lv et al. (2013) observed no effect on fasting serum glucose and
- 34 fasting glycosylated serum protein levels in adult offspring at ages 13 and 18 weeks (NOAEL =
- 35 1.5 mg/kg/day).
- 36 <u>Mice</u>
- 37 *Thyroid hormone*

- 1 Studies investigating thyroid effects of gestational PFOS exposure in mouse offspring are
- 2 relatively limited. Following maternal exposure from GD1 to GD17, Lau et al. (2003) observed
- 3 no effect on serum T4 levels in offspring when assessed between PNDs 3 and 35 (NOAEL = 20
- 4 mg/kg/day).
- 5 Other endocrine and metabolic effects
- 6 In addition to thyroid hormone effects, additional endocrine and metabolic effects, such as those
- 7 on glucose metabolism, have been assessed in mice following gestational PFOS exposure.
- 8 Ngo et al. (2014) observed no effect on blood glucose levels in offspring (age 20 weeks)
- 9 following maternal exposure from GD1 to GD17 (NOAEL = 3.0 mg/kg/day). Following
- 10 gestational and lactational exposure, Wan et al. (2014) observed increased fasting serum insulin
- 11 in adult offspring (age 9 weeks; LOAEL = 3 mg/kg/day). Additionally, in these offspring,
- 12 increased fasting serum glucose (LOAEL = 0.3 mg/kg/day) and increased homeostatic model
- 13 assessment for insulin resistance (HOMA-IR; LOAEL = 3 mg/kg/day) were reported. However,
- 14 no effect was observed for the oral glucose tolerance test (NOAEL = 3 mg/kg/day).
- 15 <u>Summary of thyroid, endocrine and metabolic effects</u>
- 16 In total, there is evidence that gestational exposure to PFOS can affect several endocrine or
- 17 metabolic endpoints. In rats, data suggest that maternal PFOS exposure can decrease levels of
- 18 T4 in offspring. However, data suggest no effect on other thyroid endpoints (e.g., histology, T3
- 19 and TSH) in rat offspring. The relatively limited reported data show no effect on T4 levels in
- 20 mouse offspring. Gestational and lactational PFOS exposure may lead to other endocrine and
- 21 metabolic effects into adulthood, as changes in some glucose metabolism parameters (e.g.,
- 22 fasting insulin, insulin resistance index) have been observed in adult offspring of rats and mice.
- 23 <u>Hepatic effects from developmental exposure</u>
- 24 Hepatic effects have been assessed in rat and mouse offspring following gestational exposure to
- 25 PFOS. Findings for histopathology, liver weight, and liver fat content are briefly reviewed
- 26 below.
- 27
- 28 <u>Rats</u>
- 29 *Histopathology*
- 30 While data are limited, the liver histopathology observed with exposure of adult rats (e.g.,
- 31 hepatocyte hypertrophy, cytoplasmic vacuolation) was not observed in rats at weaning (age 21
- days) following gestational (GD2 to GD21) PFOS exposure (Wan et al., 2010; NOAEL = 2.0
- 33 mg/kg/day).
- 34
- 35 *Liver weight*
- 36 In several studies where rat dams were exposed to PFOS during pregnancy, data are mixed
- 37 regarding increases in offspring liver weight. Following PFOS exposures of $\leq 10 \text{ mg/kg/day}$
- 38 from GD2 to GD20, no effects on relative liver weight were observed in offspring just prior to

- 1 term (Thibodeaux et al., 2003; Bjork et al., 2008). Although transient increases in offspring
- 2 relative liver weight were observed prior to and at PND5 in the 3 mg/kg/day maternal dose
- 3 group, these increases in the offspring did not persist when assessed at PND35 (Lau et al., 2003).
- 4 Increased relative liver weight was observed in weaned rats following maternal exposure (GD2
- 5 to GD21) to 2.0 mg/kg/day (Wan et al., 2010). Similarly, increased relative liver weight was
- 6 observed in offspring at PND 21 and 35 with maternal exposure to 3.2 mg/kg feed during
- 7 gestation and lactation (Yu et al., 2009b). However, no increase in relative liver weight was
- 8 observed in this study when rats were only exposed during gestation.
- 9
- 10 *Liver fat content*
- 11 Following gestational and lactational PFOS exposure, adult offspring were reported to have an
- 12 accumulation of liver fat and liver triglycerides when assessed at ~22 weeks of age (Lv et al.,
- 13 2013, LOAEL = 1.5 mg/kg/day). Luebker et al. (2005b) reported that maternal exposure during
- 14 pre-mating through gestation resulted in no effect on fetal liver cholesterol or triglycerides at
- 15 GD21 (NOAEL = 2.0 mg/kg/day). For 5-day old neonates in this study, liver triglycerides were
- 16 decreased (LOAEL = 1.0 mg/kg/day) and no effect on liver cholesterol (NOAEL = 2.0
- 17 mg/kg/day) was observed.
- 18
- 19 <u>Mice</u>
- 20 Liver histopathology
- Following gestational PFOS exposure from GD1 to GD17 to either 5 or 10 mg/kg/day, analyses
- of fetal livers revealed eosinophilic granules in the absence of an affect on maternal body weight and appearance (Rosen et al. 2009)
- and appearance (Rosen et al., 2009).
- 24
- 25 Liver weight
- 26 Following gestational exposure in mice and assessment of effects near term at or close to
- 27 parturition, Thibodeaux et al. (2003) observed increased relative liver weight in offspring at
- **28** GD18 (LOAEL = 20 mg/kg/day), whereas Onishchenko et al. (2011) observed no increase in
- 29 offspring liver weight at birth (NOAEL = 0.3 mg/kg/day).
- 30 In maturing or adult offspring, data for liver weight are also mixed following gestational
- 31 exposures to PFOS. Lau et al. (2003) observed increased relative liver weight in offspring from
- 32 PND1 to PND21 following maternal exposure (on GD1 to GD17) to 5 mg/kg/day. While not
- 33 statistically significant, this increase persisted until the final reported observation at PND35.
- Following the same exposure scenario as Lau et al. (2003), Keil et al. (2008) observed an
- increase in relative liver weight in male but not female offspring at 4 weeks of age. At 8 weeks
- 36 of age, there were no statistically significant increases in relative liver weight in either sex
- 37 compared to controls. No increase in relative liver weight was observed in adult offspring (20
- 38 weeks of age) following gestational exposure (Ngo et al., 2014; NOAEL = 3.0 mg/kg/day).
- 39 Following gestational and post-gestational exposures, data suggest that PFOS can increase the
- 40 liver weight in exposed offspring. Wan et al. (2014) reported increased relative liver weight in

- 1 male but not female offspring at PND63 following maternal exposure to 3 mg/kg/day from GD3
- 2 to weaning at PND21. Increased relative liver weight was also observed in offspring at 12 weeks
- 3 of age following gestational and lactational PFOS exposure with additional dietary exposure
- 4 until 12 weeks of age (Ryu et al., 2014; LOAEL = 4 mg/kg feed).
- 5 In addition to studies using standard mouse strains, wild-type (WT) and PPARα null mice have
- 6 been compared with respect to the reproductive/developmental effects of PFOS. Abbott et al.
- 7 (2009a) reported increased relative weights at PND15 in both WT and null mice following
- 8 maternal exposures on GD15 to GD18 (LOAEL = 10.5 mg/kg/day).

9 <u>Summary of hepatic effects</u>

- 10 Data in rats suggest a hepatic effect in offspring following gestational PFOS exposure. While
- 11 the effects from PFOS were not observed in the only study that evaluated histopathology, liver
- 12 weight data provide some evidence that PFOS can have an impact on offspring livers. Other
- 13 indicators of hepatic effects, such as increases in hepatic lipid content, suggest an effect from
- 14 gestational exposure. In mice, the effect of gestational PFOS exposure on offspring livers is
- 15 unclear. While there is evidence for a histopathological effect (i.e., eosinophilic granules), data
- 16 are mixed as to whether gestational PFOS exposure affects offspring liver weight. In both
- 17 species, continued PFOS exposure after gestation results in increased offspring liver weight.
- 18 <u>Immune effects from developmental exposure</u>
- 19 Immune effects have been assessed in mouse offspring following gestational exposure to PFOS.
- 20 Findings for immune function, immune organs, specific cell populations, and hypersensitivity are
- 21 briefly reviewed below.
- 22

23 <u>Immunosuppression</u>

- 24 Decreased immune function has been observed in offspring following gestational PFOS
- 25 exposure. Keil et al. (2008) reported a decrease in natural killer cell activity in male (LOAEL =
- 26 1.0 mg/kg/day) and female (LOAEL = 5.0 mg/kg/day) mouse offspring at 8 weeks of age, but
- 27 not at 4 weeks of age, following maternal exposure during GD1 to GD17. Plaque forming cell
- response, while not assessed at 4 weeks in Keil et al. (2008), was decreased in 8-week old males
- 29 (LOAEL = 5.0 mg/kg/day) but not females (NOAEL = 5.0 mg/kg/day).
- 30
- 31 *Effects on immune organs*
- 32 No effect on immune organs weight or histopathology has been consistently observed in
- 33 offspring following gestational exposures to PFOS. Following maternal exposure on GD1 to
- 34 GD17, no effect was observed for spleen and thymus endpoints (i.e., relative organ weight and
- cellularity) for male and female offspring assessed at 4 and 8 weeks of age (Keil et al., 2008;
- 36 NOAEL = 5.0 mg/kg/day). Similarly, Ngo et al. (2014) observed no effect on relative spleen
- 37 weight in 20-week old offspring (NOAEL = 3.0 mg/kg/day).
- 38
- 39 *Effects on specific cell populations*

- 1 Data suggest that gestational PFOS exposure may have some effect on specific immune cell
- 2 populations in offspring. Following maternal exposure from GD1 to GD17, Keil et al. (2008)
- 3 observed a decrease in splenic lymphocytes (B220) in 4-week old female offspring (LOAEL =
- 4 5.0 mg/kg/day). This effect was not observed in 4-week old male offspring or either sex at 8
- 5 weeks of age (NOAEL = 5.0 mg/kg/day). Keil et al. (2008) observed no effect on thymic
- 6 lymphocytes of offspring at 4 weeks of age (NOAEL = 5.0 mg/kg/day); however, decreased
- 7 thymic lymphocytes (CD3+ and CD4+) were observed in 8-week old males but not females in
- 8 the 5.0 mg/kg/day maternal dose group.
- 9

10 <u>Hypersensitivity</u>

- 11 Data are not consistent for an effect of PFOS exposure on airway hypersensitivity. Ryu et al.
- 12 (2014) observed in 12-week old offspring, an effect on airway sensitivity following a
- 13 methacholine challenge but no effects on airway hyperresponsiveness and allergen (ovalbumin)-
- 14 induced airway hyperresponsiveness. In this study, the offspring had been exposed to PFOS
- 15 during gestation and lactation (4 mg/kg feed maternal dose) followed by dietary PFOS exposure
- 16 (4 mg/kg feed) until 12 weeks of age.
- 17
- 18 <u>Summary of immunologic effects</u>
- 19 PFOS may affect certain immune endpoints in mouse offspring following gestational PFOS
- 20 exposure. Data suggest that PFOS can decrease immune function (e.g., natural killer cell
- 21 activity, plaque forming cell response) and certain immune cell populations in offspring.
- However, data also suggest that PFOS has no effect on histopathology and weight of immune
- 23 organs (e.g., spleen and thymus) as well as airway hypersensitivity in offspring.
- 24
- 25 <u>Neurological effects</u>
- 26 In general, structural and behavioral effects were assessed in rats and mice following gestational
- 27 PFOS exposure. Structural effects assessed include brain weight. Behavioral effects assessed
- 28 include changes in learning, locomotion, or reaction to stimulus. These findings are briefly
- 29 reviewed below.
- 30
- 31 <u>*Rats*</u>
- 32 *Structural effects*
- 33 No effects on brain measurements (weight, length, width) were observed in rat offspring when
- 34 assessed at PNDs 21 and 72 following maternal PFOS exposure from GD0 to PND21 (Butenhoff
- 35 et al., 2009; NOAEL = 1.0 mg/kg/day).
- 36
- 37 Behavioral effects
- 38 A reduction in learning ability was observed in offspring following gestational exposure (GD1 to
- 39 parturition; LOAEL = 5 mg/L no intake dose reported), as assessed by escape latency and
- 40 escape distance in the Morris water maze. Using similar tests, a reduction in learning ability was

- 1 also observed in offspring following gestational and lactational exposures (GD1 to weaning,
- 2 LOAEL = 15 mg/L no intake dose reported) (Wang et al., 2015). In contrast, no effect on
- 3 learning behavior (T-maze) was observed following gestational exposure (GD2 to GD21) in
- 4 weaned offspring (Lau et al., 2003; NOAEL = 3 mg/kg/day). Butenhoff et al. (2009) also
- 5 reported no effect on learning and memory (Biel maze) in weaned offspring following
- 6 gestational and lactational exposures (GD0 to PND20; NOAEL = 1.0 mg/kg/day). Luebker et al.
- 7 (2005a) reported no indications of neurotoxicity, as assessed by passive avoidance and water
- 8 maze performance, in weaned F_1 offspring born to dams exposed prior to (i.e., for \leq 56 days
- 9 before GD0) and during gestation and lactation (GD0 to PND20; NOAEL = 0.4 mg/kg/day).
- 10 Increased locomotor activity was observed in male (at PND17; LOAEL = 0.3 mg/kg/day) and
- 11 female (at PND21; LOAEL = 1.0 mg/kg/day) offspring exposed to PFOS during gestation and
- lactation (i.e., GD0 to PND20) (Butenhoff et al., 2009). Following maternal exposures (i.e., pre mating through PND22), delays in surface righting and air righting in lactating offspring were
- mating through PND22), delays in surface righting and air righting in lactating offspring were
 observed (Luebker et al., 2005a; LOAEL = 1.6 mg/kg/day). In contrast, no effect on motor
- 15 function and vision were observed in offspring exposed during gestation (GD1 to parturition) as
- 16 well as in offspring exposed during gestation and lactation (GD1 to weaning) (Wang et al., 2015;
- 17 NOAEL = 15 mg/L).
- 18 No effect on acoustic startle response was observed in offspring at PNDs 20 and 60 following
- 19 gestational and lactational exposure (Butenhoff et al., 2009; NOAEL = 1.0 mg/kg/day).
- A decrease in hind limb grip strength was observed in offspring at weaning following gestational
 and lactational PFOS exposure (Butenhoff et al., 2009; LOAEL = 1.0 mg/kg/day).
- 22
- 23 <u>Mice</u>
- 24 Structural effects
- 25 No effect on brain weight at birth was observed in offspring following gestational PFOS
- 26 exposure (Onishchenko et al., 2011; NOAEL = 0.3 mg/kg/day).
- 27
- 28 Behavioral effects
- 29 Delayed learning, as assessed by a water maze test, was observed in female (LOAEL = 6
- mg/kg/day), but not male (NOAEL = 6 mg/kg/day), offspring (age 3 months) following maternal
- 31 exposures on GD12 to GD18 (Fuentes et al., 2007c).
- 32
- 33 No effects on offspring locomotor activity have been typically observed following gestational
- 34 PFOS exposure. Following maternal exposure (6 mg/kg/day) on GD12 to GD18, no effects were
- 35 observed in open field test activity or coordination/balance in 3-month old offspring (Fuentes et
- al., 2007b, 2007c; Ribes et al., 2010). Onishchenko et al. (2011) also reported no effect on
- 37 locomotor activity in 5- to 8-month old female offspring following gestational exposure
- 38 (NOAEL = 0.3 mg/kg/day). However, a decrease in motor activity was observed in male
- 39 offspring (LOAEL = 0.3 mg/kg/day). No effect on habituation as assessed in the open field test

- 1 was observed in offspring following maternal PFOS exposure (Fuentes et al., 2007b; NOAEL =
- $2 \quad 6 \text{ mg/kg/day}).$
- 3 Additional neurological measures suggest an effect in offspring following gestational exposure
- 4 to PFOS. For example, Fuentes et al. (2007b) observed alterations in tail pull resistance, vertical
- 5 climb, and forelimb grip of offspring (LOAEL = 6 mg/kg/day).
- 6 Some behavioral effects of gestational PFOS exposure may differ based on sex. Following
- 7 maternal PFOS exposure (0.3 mg/kg/day) from GD1 to birth, weaned male but not female
- 8 offspring were reported to have alterations in muscle strength, circadian activity, and emotion-
- 9 related behavior (Onishchenko et al., 2011). However, both sexes of offspring showed altered
- 10 motor coordination.
- 11 <u>Summary of developmental neurological effects</u>
- 12 Data do not provide conclusive evidence for developmental neurological effects following
- 13 gestational PFOS exposure. No structural effects were observed in rat and mouse offspring.
- 14 Data are mixed from studies in rats and mice regarding the ability of PFOS exposure to alter
- 15 offspring learning ability and motor function.
- 16 <u>Renal effects</u>
- 17 Data are limited for the renal effects in offspring following gestational PFOS exposure. Rogers
- 18 et al. (2014) reported a decrease in nephron endowment in 22-day old males rats born to dams
- 19 exposed to 18.75 mg/kg/day from GD2 to GD6. This decrease was not accompanied by any
- 20 statistically significant changes in offspring body weight or kidney weight. In mice, a decrease
- 21 in offspring relative kidney weight was observed in females at 4 weeks of age following
- 22 maternal exposure from GD1 to GD17 (Keil et al., 2008; LOAEL = 5 mg/kg/day). No such
- effect was observed in females at 8 weeks or in males at either time point (NOAEL = 5
- 24 mg/kg/day).
- 25
- 26 <u>Other effects</u>
- 27 Data are limited for the cardiovascular effects in offspring following gestational PFOS exposure.
- 28 Rogers et al. (2014) reported an increase in systolic blood pressure of male (52 weeks of age)
- and female (65 weeks of age) offspring born to dams exposed to 18.75 mg/kg/day from GD2 to
- 30 GD6. No effect on offspring heart histopathology at PND5 was observed in the 2.0 mg/kg/day
- 31 maternal group following pre-mating and gestational exposure (Luebker et al., 2005b).
- 32

33 Overall Summary of reproductive and developmental effects in animals

- 34 In total, data are relatively limited for the effects of PFOS on male and female reproductive
- 35 organs following adult exposures, but these data do not suggest an impact on reproductive organ
- 36 weight or histopathology. This is discussed in more detail in the Carcinogenicity section.
- 37
- 38 Following gestational exposure, PFOS caused increased neonatal offspring mortality, structural
- deformities, and decreased offspring body weights at birth and beyond. Although not entirely

- 1 consistent, data suggest that gestational PFOS exposure may have limited effects on pregnancy
- 2 outcomes or developmental milestones in animals.
- 3 Endocrine and metabolic effects in offspring appear to include decreases in T4 levels as well as
- 4 effects on glucose metabolism. Evidence of hepatic effects in offspring includes increased liver
- 5 weight and increases in hepatic lipid content. Certain immune endpoints, such as natural killer
- 6 cell activity and plaque forming cell response, in offspring appear to be affected by gestational
- 7 PFOS exposure.
- 8 Data in offspring do not provide conclusive support for developmental neurobehavioral effects
- 9 following gestational PFOS exposure; however, effects on offspring learning ability and motor
- 10 function have been reported. For other effects in offspring, such as renal and cardiovascular
- 11 effects, data are too limited to reach a definitive conclusion.

12

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Abbott et al. (2009a)	Mice, 129S1/ SvImJ wild type (WT) Mice, 129S1/ SvImJ knockout (KO)	WT: 0, 4.5, 6.5, 8.5, 10.5 mg/kg/day KO: 0, 8.5, 10.5 mg/kg/day Oral gavage	GD15– GD18	Maternal (WT and KO) body weight at GD18 and body weight gain (GD15– GD18) Maternal (WT and KO) body weight, liver weight (absolute and relative) at PND15	10.5		Serum PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				For both WT and KO: number of implantation sites, total number of pups at birth (alive and dead), percent litter loss from implantation to birth	10.5		Serum PFOS concentrations determined for pups Duration of exposure may not identify effects that might arise from exposures	
				For both WT and KO pups: birth weight, body weight on PND15, and weight gain from PND1– PND15	10.5		occurring earlier in gestation	
				Absolute liver weight on PND15 in WT and KO pups (compared to controls)	10.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ absolute liver weight on PND15 in WT pups (trend across doses); no trend across doses in KO pups (determined at PND15)	WT: 8.5 KO: 10.5	WT: 10.5 KO:		WT: 41,200 KO: (determined at PND15)
				For WT and KO pups: ↑ relative liver weight on PND15 (compared to controls and trend across doses) (determined at PND15)	8.5	10.5		WT: 41,200 KO: 52,400 (determined at PND15)
				↓ postnatal survival on PND15 (determined at PND15)	WT: KO:	WT: 4.5 (no statistically effect at next dose level but at higher dose levels)		WT: 24,100 KO: 42,800 (determined at PND15)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Delayed eye opening in WT (on PND13) and KO (on PND14)	WT: 6.5	WT: 8.5		WT: 40,700 KO: 52,400
				pups (determined around PND15)	KO: 8.5	KO: 10.5		(determined at PND15)
Butenhoff et al. (2009)	Rats, Crl:CD (SD)	0, 0.1, 0.3, 1.0 mg/kg/day Oral gavage	GD0– PND20	Maternal body weight (on GD0, GD20, and PND1) and change in body weight (from GD0–GD20 and PND1–PND21)	1.0		Internal PFOS concentrations not determined Maternal effects included to inform	
				↓ maternal body weight from PND4– PND21	0.3	1.0	fetal/neonatal effects Maternal exposure	
				Maternal food consumption (relative consumption GD0– GD20 and PND1– PND21; absolute PND1–PND21)	1.0		- >30 days	
				Maternal absolute food consumption GD0–GD20	0.3	1.0		
				Internal macroscopic examination of dams that failed to deliver or necropsied on PND21	1.0			
				Number of litters, length of gestation, implantation sites, unaccounted sites (potential resorption)	1.0		Internal PFOS concentrations not determined Lack of histology	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ offspring body weight at vaginal patency and at balanopreputial separation		0.1		
				Delivered litters, pups born/litter, live litter size PND0, % males/litter at birth,% survival PND0–4, % survival PND4–21, pup weight (male and female separately at PND 1, 21, 72), age at vaginal patency or balanopreputial separation	1.0			
				 ↓ offspring hind limb grip strength on PND21 (males only, mean value reported to be in historical control range) Note: multiple time points also assessed but no effects observed 	0.3	1.0		
				↑ offspring locomotor activity in males (PND17) and females (PND21)	Males: 0.1 Females: 0.3	Males: 0.3 Females: 1.0		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Acoustic startle				(day assessed)
				response in offspring	1.0			
				Biel maze swimming in offspring	1.0			
				Offspring brain measures (weight, length, width) at PND21 and 72	1.0			
Case et al. (2001)	Rabbits, New Zealand white	0, 0.1, 1.0, 2.5, 3.75 mg/kg/day Oral gavage	GD7– GD29	 ↓ maternal body weight gain (during exposure period; no effect on body weight when exposure ended) Reduction in maternal body weight gains generally correlated with a reduction in feed consumption 	0.1	1.0	Internal PFOS concentration not determined Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				↓ fetal weight	1.0	2.5	Internal PFOS	
				Corpora lutea, implantations, resorptions (early and late), and number of fetuses (alive and dead)	3.75		concentration not determined	
				External, soft tissue, or skeletal abnormalities	3.75]	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Chang et al. (2009)	Rats, Sprague- Dawley	0, 0.1, 0.3, 1.0 mg/kg/day Oral gavage	GD0– PND20	Maternal TSH (at GD20, PND4, and PND21)	1.0		Serum, brain, and liver PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects See also Butenhoff et al. (2009) for additional maternal effects (e.g., body weight)	
				Offspring TSH (at GD20, PND4, and PND21)	1.0		Serum, brain, and liver PFOS concentrations	
				Offspring thyroid histology (at GD20, PND4, and PND21) Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	1.0		determined for offspring Sample size varied for thyroid endpoints, sample size unclear	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Offspring thyroid morphometry: ↑ thyroid follicular epithelial cell height (at PND21 only), males only Study authors report low values in concurrent male controls Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	Males: Females: 1.0	Males: 1.0 Females: - 	for TSH measurement	Males: 18,610 Females: (determined at PND21)
				Offspring thyroid follicular colloid area (at PND4 and PND21), males and females Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	1.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring thyroid cell proliferation: ↑ for females only Study author report wide range of control values Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed (determined at	Males: 1.0 Females: - 	Males: Females: 1.0		31,460 (determined at GD20 and pooled by litter)
Chen et al. (2012a)	Rats, Sprague- Dawley	0, 0.1, 2.0 mg/kg/day Oral gavage	GD1– GD21	GD20) ↓ decrease in offspring body weight (from PND0–PND21) (determined at PND21) ↑ post-natal mortality (determined at	0.1	2.0	Serum and lung PFOS concentrations determined for pups Sample size not explicit Only qualitative histology data	47,520 (determined at PND0) 4,460 (determined at PND21) 47,520 (determined at
				PND3) Offspring lung morphology including alveolar hemorrhage and thickened inter- alveolar septa (determined at PND0 and PND21)	0.1	2.0		PND0) 47,520 (determined at PND0) 4,460 (determined at PND21)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Era et al. (2009) (results from single dose regimens not summarized herein)	Mice, ICR	0, 9, 13, 20, 30 mg/kg/day Oral gavage	GD1– GD17	↑ cleft palate (see comments, LOAEL based on 7.3% incidence at 13 mg/kg/day versus ~0% in controls) (determined at GD17)	9	13	Serum and amniotic fluid PFOS concentrations determined Maternal effects not reported for this dosing regimen Statistical significance not reported	110,000 (as estimated from graphical representation of data) (determined at GD17)
Fuentes et al. (2006)	Mice, Charles River CD1	0, 1.5, 3, 6 mg/kg/day Oral gavage	GD6– GD18	Maternal effects: Body weight (GD18) and body weight gain; food consumption, gravid uterine weight, kidney weight (absolute and relative), maternal thyroid hormones or corticosterone	6		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Maternal effects:	1.5 (based on absolute liver weight)	3 (based on absolute liver weight)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Fetal effects (reproductive performance): implants/litter, live fetuses/litter, dead fetuses/litter, early resorptions/litter, late resorptions/litter, litters with dead fetuses post-implantation loss mean fetal weight fetal sex ratio	6		Internal PFOS concentrations not determined for offspring PFOS purity not reported	
				Fetal effects (developmental): number of litters examined skeletally, assymetrical sternebrae, diminished ossification of caudal vertebrae, supernumerary ribs, total of litters with skeletal defects (\downarrow number of fetuses with diminished ossification [calcaneous] with 3 mg/kg/day but not at other doses)	6			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Grasty et al. (2003) (results from single dose regimen not summarized herein)	Rats, Sprague- Dawley		GD19– GD20 Maternal effects ↓ weight gain		25	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days		
				↓ liver litter size		25	Internal PFOS	
				↓ percent survival	25	50	concentrations not determined for	
				↓ offspring weight		25	offspring	
				Difference in lung histology (i.e., thinning of epithelial walls) between exposed and control offspring		25	PFOS purity not reported Qualitative reporting of lung histology	
Grasty et al. (2005) (results from rescue studies not summarized herein)	Rats, Sprague- Dawley	0, 25, 50 mg/kg/day Oral gavage	GD19– GD20	Maternal effects ↓weight gain (Study authors did not assessment maternal toxicity in this study; however, the authors refer to Grasty et al. [2003], which used the same exposure regimen, for potential maternal effect)		25	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				0"		ļ		(day assessed)
				Offspring effects: ↓ live litter size		25	Internal PFOS concentrations not determined for offspring Qualitative data reported for some	
				Offspring effects: ↓ pup birth weight		25		
				Offspring effects:		25		
				Offspring effects: Lung histology at GD21 (alveolar wall thickness)	50		endpoints	
				Offspring effects, morphometric analysis of lung tissue: ↓ small airway proportion ↓ solid tissue:small airway ratio (↑ solid tissue proportion at the high dose)		25		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Keil et al. (2008)	Mice, B6C3F1	0, 0.1, 1.0, 5.0 mg/kg/day Oral gavage	Body weight loss (quantitative dat		5.0		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Offspring effects: Body weight (at 4 and 8 weeks of age)	5.0		Internal PFOS concentrations not determined for	
			(at 4 wee ↑ relative in males ↓ relative in female	Offspring effects (at 4 weeks of age): ↑ relative liver weight in males ↓ relative liver weight in female with 0.1 mg/kg/day only	Males: 1.0 Females: 5.0 (based on no effect at higher doses)	Males: 5.0 Females: - 	offspring Adversity of immunotoxicity effects not clear	
				Offspring effects (at 4 weeks of age): ↓ relative kidney weight, females only	Males: 5.0 Females: 1.0	Males: Females: 5.0		
				Offspring effects (at 4 weeks of age): Relative spleen weight	Males: 5.0 Females: 5.0	Males: Females: - 		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects				(day assessed)
				(at 4 weeks of age):	Males: 5.0	Males:		
				Relative thymus weight	Females: 5.0	Females: - 		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative liver weight	Females: 5.0	Females: - 		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative kidney weight	Females: 5.0	Females: - 		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative spleen weight	Females: 5.0	Females: - 		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative thymus weight	Females: 5.0	Females: - 		
				Offspring effects (4 and 8 weeks of age):	Males: 5.0	Males:		
				Spleen cellularity, for both males and females	Females: 5.0	Females: - 		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects (4 and 8 weeks of age):	Males: 5.0	Males:		
				Thymus cellularity, for both males and females	Females: 5.0	Females: - 		
				Offspring effects (at 4 weeks of age): NK cell function (genders analyzed together)	5.0			
				Offspring effects (at 8 weeks of age): ↓ NK cell function (genders analyzed separately)	Males: 0.1 Females: 1.0	Males: 1.0 Females: 5.0		
				Offspring effects (at 8 weeks only):	Males: 1.0	Males: 5.0		
				↓ IgM response (to SRBC immunization), males only	Females: 5.0	Females: - 		
				Offspring effects (at 4 weeks of age):	Males: 5.0	Males:		
				↓ splenic lymphocytes (B220 cells only), females only	Females: 1.0	Females: 5.0		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring effects (at 4 weeks of age):	Males: 5.0	Males:		
				Thymic lymphocytes	Females: 5.0	Females: - 		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Splenic lymphocytes	Females: 5.0	Females: -		
				Offspring effects	0.0			
				(at 8 weeks of age):	Males: 1.0	Males: 5.0		
				↓ thymic lymphocytes (CD3+ and CD4+ cells	Females: 5.0	Females: - 		
				only), males only				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Lau et al. (2003)	Rats, Sprague- Dawley	0, 1, 2, 3, 5 mg/kg/day Oral gavage	GD2– GD21 Endpoints measured through PND35	Offspring effects: ↓ body weight (generally observed within PND10 but then no statistically significant difference from controls afterwards, except for 5 mg/kg/day where effect was reported even at PND22) (body weight determinations made various days between PND0 and PND35, LOAEL based on PND5 determination)	3	5	Serum and liver PFOS concentrations determined for offspring Limited number of time points assessed for internal PFOS concentrations determined for dams but reported in Thibodeaux et al. (2003) Maternal effects reported in Thibodeaux et al. (2003)	(day assessed) 110,000 (determined at PND0, as estimated from graphical representation of data) (offspring serum PFOS reported fo PND0, 2, 5, except for 5 mg/kg group where reported only for PND0)
				Offspring effects: Absolute liver weight (only time point for 5 mg/kg/day was PND0)	3		Maternal exposure <30 days Thyroid hormone measurements may	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↑ relative liver weight (effect not consistent across doses and time points, only time point for 5 mg/kg/day was PND0)	3		be subject to negative bias	
				Offspring effects: ↓ serum total and free T4 (only the decrease in serum free T4 persisted until PND35) (serum thyroid determinations made various days between PND0 and PND35, LOAEL based on PND2 for total T4)	1	2		70,000 (determined at PND2, as estimated from graphical representation of data) (offspring serum PFOS reported fo PND0, 2, 5, expect for 5 mg/kg group where reported only for PND0)
				Offspring effects: Serum T3 and TSH	3			

Table 24. S	tudy sumn	nary table for reprod	uctive/deve	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects:				(day assessed)
				Learning behavior (T-maze) (only 3 mg/kg/day group tested)	3			
		0, 1, 2, 3, 5, 10 mg/kg/day Oral gavage	GD2– GD21 Cross- fostering experiment (3 days) also conducted	Offspring effects: ↓ survival (100% of pups in 10 mg/kg/day group died within 60 minutes of birth)	1	2	Internal PFOS concentrations not determined for offspring assessed for developmental milestones and those in the cross-fostering experiment	
			with pups from 5	Offspring effects: Delayed eye opening	1	2	Serum PFOS concentrations	
			mg/kg/day group	Offspring effects: Vaginal opening, onset and profiles of estrous cycle, preputial separation (10 mg/kg/day group not assessed due to 100% mortality)	5		determined for dams but reported in Thibodeaux et al. (2003) Maternal effects reported in Thibodeaux et al. (2003)	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL
				Offspring effects, cross-fostering experiment: ↓ survival (prenatally exposed pups with control dams) (all control pups cross-fostered with exposed dams survived)		5		(day assessed)
	Mice, CD- 1	0, 1, 5, 10, 15, 20 mg/kg/day Oral gavage	GD1– GD17	Offspring effects: ↓ survival (most pups in 15 and 20 mg/kg/day groups did not survive past 24 hour after birth)	5	10	Internal PFOS concentrations not determined for offspring Serum PFOS concentrations determined for dams	
				Offspring effects: Body weight (only time point for 15 and 20 mg/kg/day was PND0)	10		but reported in Thibodeaux et al. (2003) Maternal effects reported in	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Absolute liver weight (effect not consistent across doses and time points, only time point for 15 and 20 mg/kg/day was	10		Thibodeaux et al. (2003) Thyroid hormone measurements may be subject to negative bias	
				PND0) Offspring effects: ↑ relative liver weight (effect generally statistically significant through PND21, only time point for 15 and 20 mg/kg/day was PND0)	1	5		
				Offspring effects: Serum T4 (only T4 measured in mice)	20			
				Offspring effects: Delayed eye opening (data not available for 15 and 20 mg/kg/day groups)		1		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)																								
Lee et al. (2015)	Mice, CD- 1	0, 0.5, 2.0, 8.0 mg/kg/day Oral gavage	GD11– GD16	Maternal effects: ↓ change in body weight (statistically significant from GD14 through GD17)	2.0	8.0	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects																									
				Maternal effects:		0.5	Maternal exposure <30 days																									
				Maternal effects: ↑ placental necrosis (area of injury)		0.5																										
																												Offspring effects:	0.5	2.0	Internal PFOS concentrations not determined for	
				Offspring effects: ↓ placental capacity		0.5	offspring PFOS purity not reported																									
				Offspring effects: ↑ number of resorptions and dead fetuses		0.5																										
				Offspring effects: ↓ number of live fetuses	0.5	2.0	1																									

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Luebker et al. (2005a) (results from	Rats, Crl:CD® (SD)IGS BR VAF®	0, 0.1, 0.4, 1.6, 3.2 mg/kg/day	F0 males: pre-mating (42 days) and mating	Maternal effects: Mortality	3.2		Serum and liver PFOS concentrations determined for dams	
single-dose cross-foster experiment not summarized herein)			(≤14 days) F0 females: pre-mating (42 days), mating, and then either until GD9 (caesarean group) or LD20 (natural delivery group)	Maternal effects: body weight gain (during periods with gestation and lactation) (statistically significant reductions in absolute and/or relative feed consumption observed during different periods of exposure) (determined at study day 42)	0.4	1.6	Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days Paternal effects summarized elsewhere in appropriate summary table(s)	82,000 (determined at LD21)
				Maternal effects, general reproductive endpoints: Estrous cycle, number of pregnancies/matings, number of days to inseminate, number of matings during first week of cohabitation	3.2			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ii ng/mL) corresponding to the LOAEL (day assessed)
				Maternal effects, general reproductive endpoints at GD10 (caesarean-section group): Corpora lutea, implantations, viable embryos	3.2			
				Maternal effects, general reproductive endpoints following natural birth: ↓ duration of gestation ↓ implantation sites per delivered sites ↑ dams with stillborn pups ↑ dams with all pups dying between PND1–PND4 (determined at or near PND0)	1.6	3.2		(determined at LD21, serum PFOS not reported for 3.2 mg/kg group)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
		0, 0.1, 0.4, 1.6, 3.2 mg/kg/day Oral gavage post weaning (i.e., starting on LD22)	See description above for details regarding F0 exposure duration (i.e., pre- conception, gestation, and	Offspring effects (F1): ↓ number of liveborn pups ↑ stillborn pups/litter (100% mortality of pup in 3.2 mg/kg/day group after LD2)	1.6	3.2	Liver PFOS concentrations determined for F1 Internal PFOS concentrations determined after some effect were initially observed Control values for internal PFOS	
			lactation exposures of F1) F1 started gavage exposure on LD22 at same dose level as parents,	Offspring effects (F1), prior to weaning: ↓ pup weight per litter (from LD1 to LD21) ↓ pup weight gain per litter (from LD4 to LD21)	0.4	1.6	measurements not reported	
			exposure continued through PND90 (i.e., the start of mating) and	Offspring effects (F1), prior to weaning: Delays in pinna unfolding, eye opening, surface righting, and air righting	0.4	1.6		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
			continued ≤14 days	Offspring effects (F1), prior to weaning:	0.1	0.4		
				Delays in eye opening Offspring effects				
				 (F1), post weaning: Mortality (F1 pups in 1.6 mg/kg/day group observed to be in poor clinical condition and not evaluated past LD21) 	0.4			
				Offspring effects (F1), post weaning: Body weight and body weight gains (absolute and relative feed consumption similar between exposed and control groups)	0.4			
				Offspring effects (F1), post weaning: Sexual maturation (male and females)	0.4			

Table 24. S	tudy sumn	nary table for reprod	luctive/deve	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects (F1), post weaning:				
				Neurotoxicity (passive avoidance, water maze performance)	0.4			
				Offspring effects (F1), post weaning: Reproductive effects (duration of gestation, number of implantations, number of live pups)	0.4			
		0, 0.1, 0.4 mg/kg/day	See description above for details regarding F1	Offspring effects (F2): Mortality (throughout lactation period)	0.4		Internal PFOS concentration not determined for F2	
			exposure duration (i.e., pre- conception, gestation, and lactation exposures of F2), F2 lactation exposure ended on LD21	Offspring effects (F2): Body weight and body weight gain (any reductions were not statistically significant, or were statistically significant but transient)	0.4			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Luebker et al. (2005b)	Rats, Crl:CD® (SD)IGS	0, 0.4, 0.8, 1.0, 1.2, 1.6, 2.0 mg/kg/day (natural delivery group)	F0 males: no exposure	Maternal (F0) effects: Mortality	2.0		Serum and liver PFOS concentrations determined for dams	
Authors conducted dose- response and pharmaco- kinetic studies. Only results from dose- response study are summarized herein	VAF/Plus®	Oral gavage	F0 females: pre-mating (42 days), mating (≤14 days), and then until LD4	Maternal (F0) effects: ↓ body weight gain (effect primarily observed during lactation with some reductions during pre-mating, no apparent differences between exposed and controls during gestation) (↓ relative feed consumption during lactation with ≥0.8 mg/kg/day, decreases during pre-mating and gestation with 2.0 mg/kg/day) (determined on LD5)	0.4	0.8	Quantitative data for internal PFOS measurements not reported for controls Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	42,600 (determined on LD5)
				Maternal (F0) effects:	0.4	0.8		42,600 (determined on
				(determined on LD5)				LD5)

Table 24. S	tudy sumn	nary table for reprod	luctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Maternal (F0) effects, reproductive endpoints: Fertility index, number of implantation sites, gestation index, number of still liveborn pups	2.0			(day assessed)
				Maternal (F0) effects, reproductive endpoints: gestation length (effects including dams with all pups dying by PND5 and viability index observed at higher doses; increases and decreases in dams with stillborn pups observed) (determined presumably at PND0/LD0)	0.4	0.8		42,600 (determined on LD5)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Maternal (F0) effects, serum biochemical parameters: ↓ total CHOL (determined on LD5)		0.4		(day assessed) 27,200 (determined on LD5)
				Maternal (F0) effects, serum biochemical parameters: ↓ TRIG (determined on LD5)	1.2	1.6		169,000 (determined on LD5)
				Maternal (F0) effects, serum biochemical parameters: ↑ GLUC (determined on LD5)	1.6	2.0		134,000 (determined on LD5)
				Maternal (F0) effects, serum biochemical parameters: HDL, LDL, MAL	2.0			
				Maternal (F0) effects, milk biochemical parameters: CHOL	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal (F0) effects, liver biochemical parameters:	1.2	1.6		(determined on LD5)
				Maternal (F0) effects, liver biochemical parameters: CHOL Malic enzyme activity	2.0			
				Maternal (F0) effects, thyroid hormones: ↓ total T4 (measured by analog RIA method) (↓ total T3 with ≥1.2 mg/kg/day and no effect on TSH when measured by analog RIA method) (determined on LD5)		0.4		27,200 (determined on LD5)
				Maternal (F0) effects, thyroid hormones: Free T4 (measured by equilibrium dialysis RIA method)	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects: ↓ pup body weight (at birth and LD5) ↓ pup body weight gain (from birth to LD5) (determined on LD5)		0.4	Serum and liver PFOS concentrations determined for offspring Quantitative data for internal PFOS measurements for control animals not reported Limited sample size	36,200 (determined on LD5)
				Offspring (F1) effects:	1.2	1.6	for some endpoints (e.g., thyroid hormone measurements)	(determined on LD5, offspring serum PFOS concentration no reported for 1.6 mg/kg group)
				Offspring (F1) effects, serum biochemical parameters: CHOL, GLUC, HDL, LDL, TRIG	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring (F1) effects, liver biochemical parameters: ↓ TRIG (statistically significant effect in females limited to 1.0, 1.2, and 1.6 mg/kg/day but not 2.0 mg/kg/day) (determined on LD5)	Males: 0.8 Females: 0.8	Males: 1.0 Females: 1.0		(day assessed) 84,400 (determined on LD5, offspring serum PFOS concentration reported for litter not individual sexes)
				Offspring (F1) effects, liver biochemical parameters: CHOL, glycogen content, malic enzyme activity	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring (F1) effects, thyroid hormones: Total T3 (measured by analog RIA method) (reductions observed but were not statistically significant; reductions also observed when using an analog CL method but limited sample availability)	2.0			
				Offspring (F1) effects, thyroid hormones: ↓ total T4 (measured by analog RIA method) (non-statistically significant reductions observed when using an analog CL method) (determined on LD5)		0.4		36,200 (determined on LD5)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects, thyroid hormones: Free T3 and free T4 (measured by equilibrium dialysis RIA method) (limited sample size prevented determination of NOAEL and LOAEL)				
				Offspring (F1) effects, thyroid hormones: TSH (measured by analog RIA method) (limited sample size prevented determination of NOAEL and LOAEL)				
				Offspring (F1) effects, histopathology: Microscopic changes to heart and thyroid (limited sample size prevented determination of NOAEL and LOAEL)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
		0, 1.6, 2.0 mg/kg/day (caesarean group) Oral gavage	F0 males: no exposure	Maternal (F0) effects: ↓ dams with any resorptions	1.6	2.0	Internal PFOS concentration not determined for dams	
			F0 females: pre-mating (42 days), mating (≤14 days),	Maternal (F0) effects, serum biochemical parameters: CHOL, GLUC, HDL, LDL, MAL, TRIG	2.0		Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	
			and then until GD20	Maternal (F0) effects, liver biochemical parameters:		1.6		
				Maternal (F0) effects, liver biochemical parameters: TRIG	2.0			
				Offspring (F1) effects: Litter averages for corpora lutea, implantations, viable fetuses, and dead fetuses; percent live male fetuses, pooled fetal body weight	2.0		Internal PFOS concentration not determined for offspring Only two doses used in the caesarean group	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects: ↓ percent dead or resorbed concepti/litter ↓ early resorptions/litter	1.6	2.0		
				Offspring (F1) effects, serum biochemical parameters: ↑ CHOL, LDL		1.6		
				Offspring (F1) effects, serum biochemical parameters: GLUC, HDL, MAL, TRIG	2.0			
				Offspring (F1) effects, liver biochemical parameters: CHOL, TRIG	2.0			
Lv et al. (2013)	Rats, SPF Wistar	0, 0.5, 1.5 mg/kg/day Oral gavage	GD0– PND21	Neonatal deaths, Survival rates through PND21	1.5		Serum and liver concentrations	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
			(i.e., weaning)	↓ body weight (at PND21)			determined for offspring	11,000
				(effect also observed at PND0 with 1.5	(based on	0.5	Maternal effects not reported	(determined on PND21, also
				mg/kg/day) (determined on	PND21 data)		Only two dose levels used	determined on PND0 but not reported herein)
				PND21)			Maternal exposure	
				↑ glucose intolerance (at 15 weeks after weaning, only statistically significant for 0.5			>30 days	
				mg/kg/day group)				11,000
				(effect also observed at 10 weeks after weaning but only statistically significant for 1.5 mg/kg/day group)		0.5		(determined on PND21, prior to endpoint assessment)
				(determined 10 to 15 weeks after weaning on PND21)				
				Fasting serum glucose, fasting glycosylated serum protein levels	1.5			
				(at 10 and 15 weeks after weaning)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				 † fasting serum insulin † insulin resistance index † serum leptin (all 18 weeks after weaning on PND21) 	0.5	1.5		71,350 (determined on PND21, prior to endpoint assessment)
				↓ serum adiponectin (determined 18 weeks after weaning on PND21)		0.5		11,000 (determined on PND21, prior to endpoint assessment)
				 † liver fat accumulation † liver TRIG (determined 19 weeks after weaning on PND21) 	0.5	1.5		71,350 (determined on PND21, prior to endpoint assessment)
				Serum CHOL and TRIG	1.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Ngo et al. (2014) Only maternal and WT data are summarized herein	Mice, C57BL/6J	0, 0.01, 0.1, 3.0 mg/kg/day (combined from two separate experimental blocks) Oral gavage	GD1– GD17	Maternal effects: Overt toxicity, Incidence of pregnancy, Body weight development	3.0		Serum PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days PFOS degradation observed Potential PFOA contamination in some exposure groups	
				Offspring effects: Body weight development (for between weeks 3 to 11 and weeks 12 to 20) Terminal BMI (no statistically significant differences in feed intake between groups at week 20)	3.0		Serum concentrations determined for offspring Data reporting sometimes combine WT and Min/+ data, which did not allow for determining how genotype affected the endpoint observation PFOS degradation observed	

Table 24. S	Study sumn	nary table for reprod	luctive/dev	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Blood glucose levels	3.0		Potential PFOA contamination in some exposure	
				Offspring effects, organ weights: Liver (absolute and relative) Spleen (absolute and relative)	3.0		groups	
Rosen et al. (2009)	Mice, CD1	0, 5, 10 mg/kg/day	GD1– GD17	Maternal effects: Body weight General appearance	10		Internal PFOS concentration not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Offspring effects: Litter size	10		Internal PFOS concentrations not	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, histology: Liver (presence of eosoinphilic granules with ≥5 mg/kg/day) Lung (no apparent effects) (limited sample size prevented determination of NOAEL and LOAEL)			determined for offspring Small sample size for some observations Only qualitative data reported	
Thibodeaux et al. (2003)	Mice, CD- 1	0, 1, 5, 10, 15, 20 mg/kg/day Oral gavage	GD1– GD17	Maternal effects: ↓ weight gain (no effect on food consumption) Maternal effects,	15	20	Serum PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects	
				 hepatic endpoints: 1 liver weight (absolute and relative) 	1	5	Maternal exposure <30 days Thyroid hormone measurements may	
				Maternal effects, clinical chemistry: ↓ TRIG	1	5	be subject to negative bias based on analytical method used	

Table 24. S	tudy sumn	nary table for reprod	luctive/dev	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal effects, clinical chemistry: Total BILI, CHOL, GLUC, SBA, SDH	20			
				Maternal effects, endocrine endpoints: Total T4 (transient reduction by GD6 but return to normal levels by end of pregnancy)	20			
				Fetal effects: Implantation sites	20		Serum PFOS concentrations not determined for fetal	
				Fetal effects: ↓ percentage of live fetuses	15	20	tissue	
				Fetal effects, teratology:	10	15		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Fetal effects, body weight: ↓ body weight (statistically significant reductions with 10 and 15 mg/kg but not 20 mg/kg)	5	10		
				Fetal effects, hepatic endpoints: 1 liver weight (absolute and relative)	15	20		
	Rats, Sprague- Dawley	0, 1, 2, 3, 5, 10 mg/kg/day Oral gavage	GD2– GD20	Maternal effects, body weight: ↓ weight gain (reduction in food and water consumption with ≥5 mg/kg/day)	1	2	Serum and liver PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure	
				Maternal effects, hepatic endpoints: relative liver weight (no effect on absolute liver weight)	5	10	<30 days Thyroid hormone measurements may be subject to negative bias based on	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Maternal effects,			analytical method	(day assessed)
				clinical chemistry:	5	10	used	
				↓ CHOL, TRIG				
				Maternal effects, clinical chemistry:	10			
				Total BILI, GLUC, SBA, SDH				
				Maternal effects, endocrine endpoints:	10			
				Corticosterone, prolactin	10			
				Maternal effects, endocrine endpoints:				
				↓ T3, T4		1		
				(no effect on TSH)				
				Fetal effects: Number of			Serum PFOS concentrations not determined for fetal	
				implantation sites, percentage of live	10		tissue	
				fetuses Fetal effects, body weight:	5	10	Liver PFOS concentrations determined for fetal tissue	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Fetal effects, teratology:				(day assessed)
				↑ cleft palate, sternal defects, anasarca, enlarged right atrium, ventricular septal defects	5	10		
				Fetal effects, hepatic endpoints: Liver weight (absolute and relative)	10			
Wan et al. (2010)	Rats, Sprague- Dawley	0, 0.1, 0.6, 2.0 mg/kg/day Oral gavage	GD2– GD21	Offspring effects: ↓ number of delivered pups per litter (at PND3) (determined on PND3)	0.6	2.0	Serum and liver PFOS concentrations determined for offspring Internal PFOS concentrations not determined for dams	4,260 (determined on PND21, after endpoint assessment)
				Offspring effects: ↑ mortality (at PND3) (determined on PND3)	0.6	2.0	Maternal effects not reported Internal PFOS concentrations only	4,260 (determined on PND21, after endpoint assessment)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, body weight: ↓ body weight (at PND21) (determined at PND21)	0.6	2.0	reported for PND21 and not PND3	4,260 (determined on PND21)
				Offspring effects, hepatic effects: ↑ relative liver weight (at PND21) (no effect on absolute liver weight) (determined on PND21)	0.6	2.0		4,260 (determined on PND21)
				Offspring effects, hepatic effects: Histopathology (e.g., hepatocyte hypertrophy, cytoplasmic vacuolation, at PND21)	2.0			
Wan et al. (2014)	Mice, CD- 1	0, 0.3, 3 mg/kg Oral gavage	GD3– PND21 (weaning)	Maternal effects, body weight: Body weight	3		Serum and liver PFOS concentrations determined for dams	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Only results for standard diet summarized herein for				Maternal effects, hepatic endpoints: ↑ relative liver weight			Maternal effects included to inform fetal/neonatal effects Maternal exposure	(day assessed) 131,720
PND63				(no effect on absolute liver weight) (determined on PND21)	0.3	3	>30 days	(determined on PND21)
				Maternal effects (endocrine): ↑ HOMA-IR (non-statistically significant increases in fasting glucose and fasting insulin with ≥0.3 mg/kg) (determined on PND21)		0.3		15,330 (determined at PND21)
				Offspring effects, body weight: Body weight (at PND21 and between PND21 to PND63)	3		Serum and liver PFOS concentrations determined for offspring	

Table 24. S	Study sumn	nary table for reprod	uctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects,				(day assessed)
				hepatic endpoints:			Only two dose levels used	
				↑ relative liver weight	Males:	Males: 0.3		
				(males and females at PND21, males only at PND63)	Females: 3	Females: - 		Males: 300
				(† absolute liver weight statistically significant in males only at PND21 and PND63 with 3 mg/kg)	(based on PND63 data for relative liver weight)	(based on PND63 data for relative liver weight)		Females: (determined at PND63)
				(determined at PND63)				
				Offspring effects:	 (based on	0.3 (based on		Males: 300 Females: 510
				(no effects at PND21)	PND63 data)	PND63 data)		(determined at PND63)
				(determined at PND63)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↑ fasting serum insulin (males and females at PND63) (↑ males only at PND21 with ≥0.3 mg/kg) (determined at PND63) Offspring effects:	0.3 (based on PND63 data)	3 (based on PND63 data)		Males: 3,360 Females: 3,400 (determined at PND63)
				 ↑ HOMA-IR (males and females at PND63) (no effects at PND21) (determined at PND63) 	0.3 (based on PND63 data)	3 (based on PND63 data)		Males: 3,360 Females: 3,400 (determined at PND63)
				Offspring effects: OGTT (males and females at PND63) (data not reported for PND21)	3 (based on PND63 data)	(based on PND63 data)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Wang et al. (2011c)	Rats, Wistar	0, 3.2, 32 mg/kg Dietary	GD1– PND14 (sacrifices	Maternal effects: General toxicity, food intake	32		Serum and brain PFOS concentrations determined for dams	
			on PNDs1, 7, and 14)	Maternal effects, endocrine endpoints: ↓ total T3 (at PND1) (data not complete for PNDs7 and 14) (determined at PND1)	3.2	32	Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	16,900 (determined at PND1)
				Maternal effects, endocrine endpoints: ↓ total T4 (at PND1) (↓ at PND7 but high dose data not reported, data not complete at PND14) (determined at PND1)	 (based on PND1 data)	3.2 (based on PND1 data)		2,290 (determined at PND1)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↓ pup body weight (at PNDs1, 7, and 14) (determined at PNDs1, 7, and 14)	3.2	32	Serum and brain PFOS concentrations determined for offspring Sample size not reported for every endpoint Only two doses used	32,900 (determined at PND1) 21,300 (determined at PND7) 25,200 (determined at PND14)
				Offspring effects, endocrine endpoints: ↓ total T3 (at PND14) (no effect at PNDs1 and 7) (determined at PND14)	3.2	32		25,200 (determined at PND14)
				Offspring effects, endocrine endpoints: ↓ total T4 (at PND 7 and 14) (↓ at PND1 with 32 mg/kg) (determined at PNDs7 and 14)	(based on PNDs7 and 14 data)	3.2 (based on PNDs7 and 14 data)		3,650 (determined at PND7) 4,890 (determined at PND14)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Wang et al. (2015)	Rats, Wistar	0, 5, 15 mg/L Drinking water	Dams: GD1– weaning Offspring: weaning– PND35 Cross- fostering initiated on PND1 ^a	Offspring effects, reproductive/ developmental endpoints:	5 mg/L 15 mg/L	15 mg/L	Hippocampus PFOS concentrations determined for offspring Internal PFOS concentrations in offspring only determined for PND35 Internal PFOS concentrations not determined for dams Maternal toxicity not reported	
				speed and time to reach visible platform) Offspring effects, neurotoxicity:	(based on TC and CT groups)	5 mg/L (based on TC and CT groups)	Only two doses used	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, neurotoxicity:	 (based on TC group)	5 mg/L (based on TC group)		
				Offspring effects, neurotoxicity: ↓ time spent in target quadrant and number of platform crossings (spatial memory, only observed for TT15)	5 mg/L	15 mg/L		
Yahia et al. (2008)	Mice, ICR	0, 1, 10, 20 mg/kg/day Oral gavage	Prenatal study: GD0–	Maternal effects:	20		Internal PFOS concentrations not determined for dams	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	<i>LOAEL</i> * (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
			GD17, sacrifice on GD18 Postnatal study: GD0– GD18, sacrifice following natural birth	Maternal effects, body weight: ↓ weight gain (GD11 until end of gestation) (↓ daily feed consumption GD14 onward and ↑ daily water consumption GD11 onward with 20 mg/kg)	10	20	Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Maternal effects, hepatic endpoints: ↑ liver weight (hypertrophy with 20 mg/kg)	1	10		
				Maternal effects, organ weights: Kidneys, lungs, brains	20			

Table 24. S	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects (prenatal study): ↓ percentage of live fetuses (non-statistically significant increases in percentage of resorbed fetuses and percentage of dead fetuses)	10	20	Internal PFOS concentrations not determined for offspring Strain of mouse not very common and appropriateness for endpoints unclear	(day assessed)
				Offspring effects (prenatal study): ↓ fetal body weight	1	10		
				Offspring effects (prenatal study): Bilateral swelling in back of neck (100% incidence)	10	20		
				Offspring effects (prenatal study): ↑ sternal defects (percentage of fetuses) (statistically significant increases in other structural defects observed with ≥10 mg/kg)		1		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects (postnatal study): ↓ survival (percentage of pups at PND4)	1	10		
				Offspring effects (postnatal study): ↓ body weight	1	10		
				Offspring effects (postnatal study): Bilateral swelling in back of neck (100% incidence)	10	20		
Ye et al. (2012)	Rats, Sprague- Dawley	0, 5, 20 mg/kg	GD12– GD18	Maternal effects: Deaths	20		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL * (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Lung histology	20		Internal PFOS concentrations not determined for offspring Qualitative data reported Dam and fetal weights recorded by not reported PFOS purity not reported Only two doses used	
dose with stat doses than the	istically signific	n as the highest dose that cant (e.g., p<0.05) effects. ed					OAELs are defined here	

BILI = bilirubin; BMI = body mass index; CHOL = cholesterol; CL = chemiluminometric; GLUC = glucose; HDL = high density lipoprotein; HOMA-IR = homeostatic model assessment for insulin resistance; Ig = immunoglobulin; LD = lactation day; LDL = low density lipoprotein; MAL = mevalonic acid lactone; NK = natural killer; OGTT = oral glucose tolerance test; RIA = radioimmunoassay; SBA = serum bile acid; SDH = sorbitol dehydrogenase; SRBC = sheep red blood cell; T3 = triiodothyronine; T4 = thyroxine; TRIG = triglycerides; TSH = thyroid stimulating hormone

1 Human epidemiological studies

2 A summary of reproductive/developmental effects in humans can be found in Tables 25 and 26

at the end of the following review. Detailed methodological information and additional study

- 4 results can be found in the corresponding tables in Appendix 6.
- 5
- 6 <u>Reproductive effects</u>
- 7

8 <u>Fertility</u>

9 Studies evaluated the association between serum PFOS and several closely related measures of

- 10 reproductive ability in populations with PFOS serum concentration levels prevalent in the
- 11 general population: infertility (Caserta et al., (2013); Fei et al, (2009); Jørgensen et al. (2014));
- 12 La Rocca et al. (2014)); time to pregnancy (Fei et al., (2009, 2012); Jørgensen et al. (2014));
- 13 fecundity (the probability of conceiving within a fixed time period, generally one month or one
- 14 menstrual cycle) (Fei et al (2009, 2012); Jørgensen et al. (2014); Vestergaard et al. (2012)); and
- sub-fecundity (time to pregnancy > 6 cycles) (Vestergaard et al. (2012)). Only the linked studies
- 16 of Fei et al (2009, 2012) found significant associations between PFOS and measures of relative
- 17 difficulty in conceiving (increased infertility, increased time to pregnancy, decreased fecundity).
- 18
- 19 Fei et al. (2012) was also the only one of these studies that stratified on the basis of
- 20 parous/nulliparous (i.e., previous pregnancy/no previous pregnancy). In that study, the clearest
- 21 indication of a significant association between PFOS exposure and time to pregnancy or
- fecundity was for nulliparous women. This may be relevant since pregnancy and lactation are
- known to reduce maternal PFOS body burden, and it has, therefore, been argued that the
- apparent association of PFOS and time to pregnancy could be the result of reverse causation (i.e.,
- those with previous successful pregnancies have lower levels of serum PFOS as a result of the

26 pregnancies). The positive association for nulliparous women, however, is not compatible with

- 27 an explanation based on reverse causation.
- 28

29 Despite the consistent findings of the Fei et al. (2009, 2012) studies across related indicators of

30 fertility and the evidence from Fei et al. (2012) that reverse causation was not responsible for

- 31 those findings, there is no consistent evidence for an association of PFOS and reduced fertility.
- 32
- 33 <u>Birth weight and related reproductive endpoints</u>
- 34 Individual epidemiology studies addressing to birth weight and related reproductive endpoints
- are presented in Table 25. Endpoints from developmental studies are summarized in Table 26.
- 36 Epidemiology studies have not shown a consistent decrease in birthweight with reference to
- 37 maternal serum concentration of PFOS. In a birth sub-sample of a larger cohort from the UK
- 38 with a median maternal serum PFOS concentration of 19.6 ng/ml (Maisonet et al., 2012), there
- 39 was a significant negative association between maternal, gestational period, serum PFOS
- 40 concentration and birthweight. The analyses adjusted for various maternal factors, including

- 1 previous pregnancies. This is an important consideration since maternal PFOS body burden
- 2 decreases during pregnancy. In this study, maternal serum PFOS concentration was also
- 3 significantly negatively associated with birth length, but not with Ponderal Index [a measure of
- 4 body leanness calculated as: body mass $(kg)/height^3 (m^3)$], or gestational age. In a study nested
- 5 within the C8 Health Study cohort (Darrow et al., 2013) with a geometric mean maternal serum
- 6 PFOS concentration of 13.1 ng/ml, maternal serum PFOS concentration was significantly
- 7 negatively associated with continuous birthweight (for first pregnancies with prospective
- 8 maternal serum PFOS measurements only). However, maternal PFOS was not associated with
- 9 the category of low birthweight. In contrast, other studies (Fei et al. (2007, 2008); Hamm et al.,
- 10 (2010); Robledo et al. (2015)) with comparable exposures did not show a significant negative
- 11 association between maternal PFOS exposure and birthweight, or categorical low birth weight
- 12 (Darrow et al. (2013), or Ponderal Index [Apelberg et al. (2007) for cord blood; Maisonet et al.
- 13 (2012); Robledo et al. (2015)].
- 14

15 <u>Summary of epidemiologic studies on birthweight effects</u>

- 16 Although there is a suggestion of a relationship between maternal PFOS exposure and decreased
- 17 birthweight from epidemiological studies, the evidence is not consistent. This lack of
- 18 consistency among studies does not appear to be a direct function of differences in the range of
- 19 exposures among the populations studied. However, these studies have addressed populations
- 20 with a relatively narrow range of exposures (central tendency estimates of maternal serum PFOS
- concentrations in the range of 5-35 ng/ml) that are generally consistent with general population
- 22 level exposures to PFOS. These observations therefore do not rule out an association at higher
- 23 levels of PFOS exposure or more subtle effects in pregnancies at increased risk for low
- 24 birthweight.
- 25

26 <u>Puberty</u>

- 27 Three studies were identified that investigated an association between PFOS and the onset of
- female puberty. Female puberty was determined based on the self-reported age at onset of
- 29 menarche. In the case of the Lopez-Espinosa et al. (2011) study determination of puberty was
- 30 based either on self-reported menarche or serum estradiol levels. In two of these studies
- 31 [Christensen et al. (2011), Kristensen et al. (2013)], the PFOS concentration was based on a
- 32 maternal pregnancy sample. In the Lopez-Espinosa (2011) study (C8 cohort, n = 2,931), the
- 33 PFOS concentration was based on the girls' serum PFOS at the time of recruitment (8-18 years
- 34 old). For the studies based on maternal PFOS, there was no association with onset of female
- 35 puberty. In the Lopez-Espinosa et al. (2011) study there was a significant association between
- 36 delayed onset of puberty and girls' serum PFOS concentration based on estradiol levels and age
- at menarche. There is a possibility of confounding of this result through reverse causality since
- 38 earlier onset of menarche would result in a decreased body burden and serum concentration of
- 39 PFOS, whereas delayed onset of menarche (independent of PFOS causation) would allow for
- 40 retention of a larger body burden of PFOS.

1

- 2 Male puberty was only addressed in the same Lopez-Espinosa et al. (2011) C8 cohort study (n =
- 3 3,076). Male puberty was determined on the basis of testosterone levels. PFOS was
- 4 significantly associated with delayed onset of male puberty. Unlike the case for females, there is
- 5 no obvious confounding of this association due to reverse causality.
- 6
- 7 While the Lopez-Espinosa et al. (2011) study found a significant association between childhood
- 8 PFOS exposure and delayed onset of puberty for both females and males in a large-scale study, it
- 9 is the only study to examine such an association. Similarly, there were only two available
- 10 studies that showed a lack of association between maternal PFOS exposure and the onset of
- 11 female puberty. Thus, there are insufficient data upon which to draw conclusions about
- 12 associations between PFOS exposure (either maternal or childhood) and the onset of puberty.
- 13

14 <u>Preterm birth</u>

- 15 Five studies were identified that investigated a possible association between maternal serum
- 16 PFOS and outcomes related to preterm birth or related outcomes (premature birth, length of
- 17 gestation, gestational age). Of these, only one study (Stein et al., 2009) showed a significant
- 18 association with maternal PFOS (for premature birth at < 37 wks). This was a study nested in
- 19 the C8 cohort (n = 4,512; median PFOS concentration = 13.6 ng/ml). The OR for premature
- 20 birth for each inter-quartile increase in PFOS concentration was 1.3, and the OR for the fourth
- 21 quartile compared with the first quartile of PFOS exposure was 1.8. Fei et al. (2007) (n = 50),
- 22 Darrow et al. (2013) (n = 1,630) and Hamm et al. (2010) (n = 252) found no significant
- assocation. Olsen et al. (2004) (n = 122) also found no association between high versus low
- 24 occupational PFOS exposure and pre-term labor compiled as episodes of care under the workers'
- 25 health coverage. Exposure assessment in this study was based on air concentration rather than in
- serum, and even the low exposure group had an elevated level of exposure.
- 27
- 28 The positive finding in the large-sized Stein et al. (2009) study provides some support for an
- 29 association between maternal PFOS exposure and preterm birth. However, the finding from this
- 30 one study is not sufficient to draw overall conclusions.
- 31
- 32 <u>Miscarriage</u>
- 33 The possibility of an association between maternal PFOS exposure and miscarriage was only
- addressed by two studies, both of which investigated the C8 cohort. Stein et al. (2009) was a
- 35 retrospective study based on self-reported outcomes up to five years prior to enrollment in the
- 36 cohort. Darrow et al. (2013) was a prospective study that tracked women post-enrollment.
- 37 Although neither found a significant association for the study cohorts as a whole, Darrow et al.
- 38 (2013) found a significant OR (1.34) for miscarriage during first pregnancy.
- 39
- 40

1 <u>Preeclampsia</u>

- 2 Both of the C8 cohort studies referenced above in the discussion of miscarriage (Stein et al
- 3 (2009) (n \approx 5,000, mean = 15.0 ng/ml) and Darrow et al. (2013) (n = 1,630, geo. mean = 13.1
- 4 ng/ml) found significant positive associations between maternal PFOS exposure and
- 5 preeclampsia (pregnancy-induced hypertension combined with increased urinary protein). The
- 6 much smaller, Starling et al. (2014a) study of the Norwegian Mother and Child Study cohort
- 7 (cases = 466, controls = 510; median = 12.87 ng/ml) did not find such an association. The
- 8 finding of a positive association in the large C8 cohort in both retrospective and prospective
- 9 studies suggests the possibility of true association.
- 10
- 11 <u>Placental weight</u>
- 12 Fei et al. (2008) found no association of placental weight with maternal PFOS exposure in the
- 13 large Danish National Birth Cohort (n = 91,827).
- 14
- 15 <u>Duration of breast feeding</u>
- 16 Only one study was identified that addressed a possible association between maternal PFOS
- 17 exposure and the duration of breast feeding. Fei et al. (2010a), investigating the large Danish
- 18 National Birth Cohort (n = 91,827), found a positive association between PFOS exposure and
- 19 cessation of breast feeding at < 6 months, but not at < 3 months. The relationship for cessation at
- 20 < 6 months was significant for both primaparous and multiparous women. For overall duration
- of breast feeding as a continuous variable, the association with PFOS was significant for
- 22 multiparous women only.
- 23

24 <u>Sperm/semen characteristics</u>

- 25 In two studies examining sperm morphology (Joensen et al., 2009; Toft et al., 2012), no effect on
- sperm morphology was significantly associated with PFOS exposure. The only significant
- 27 association of sperm morphology with men's serum PFOS was a negative association with the
- 28 occurrence of coiled tail (Louis et al., 2015). As coiled tail is considered to be an adverse
- 29 indicator of sperm viability, the significance of this observation is unclear.
- 30 No association between men's serum PFOS concentration and semen volume was observed in
- 31 four general population studies with moderate to high levels of exposure [Joensen et al. (2009),
- 32 Raymer et al. (2012), Toft et al. (2012), Vested et al. (2013)]. Sperm count was not significantly
- associated with PFOS serum concentration in three studies [Joensen et al. (2009), Toft et al.
- 34 (2012), Vested et al. (2013)]. Sperm concentration was also not significantly associated with
- serum PFOS in four studies [Joensen et al. (2009), Raymer et al. (2012), Toft et al. (2012),
- 36 Vested et al. (2013)]. Neither semen, pH, viscosity, nor liquification were found to be
- 37 significantly associated with serum PFOS in a single study (Raymer et al., 2012).
- 38 In four studies of various measures of sperm motility [Joensen et al. (2009), Raymer et al.
- 39 (2012), Toft et al. (2012), and Vested et al. (2013)]. PFOS was not significantly associated with
- 40 motility. The only significant association was for increased distance migrated as a function of

1	PFOS exposure (Louis et al., 2015). As increased distance migrated is considered an indication
2	of sperm viability, the interpretation of this outcome is unclear.
3	
4	In a single study (Kvist et al., 2012) of multiple populations (Greenland, Poland, Ukraine) the
5	Y:X chromosome ratio in sperm was significantly positively associated with serum PFOS for the
6	pooled study population, but no significant relationship was observed when examining each
7	population separately. However, in a MANOVA analysis, the Greenland population, with the
8	highest serum PFOS concentration (mean = 51.65 ng/ml) was significantly negatively correlated
9	with the Y:X ratio. This relationship was driven by the difference between the third and fourth
10	quartiles of serum PFOS. It is difficult to draw conclusions from these data.
11	
12	Overall, there is little to no evidence from epidemiologic studies linking adverse effects in either
13 14	sperm or semen with PFOS exposure.
15	Testicular volume
16	In a single study (Vested et al., 2013), testicular volume was not associated with serum PFOS
17	concentration.
18	
19	Female reproductive organs/menstruation
20	No association was observed between serum PFOS and the incidence of endometriosis (either all
21	cases, or stages 3-4) (Louis et al., 2012).
22	No association was observed between the length of the menstrual cycle and serum PFOS in
23	either a study in which serum PFOS and cycle length were determined in the same adult women
24	(Lyngsø et al., 2014), or in a study in which maternal serum PFOS was measured during the
25	second trimester of pregnancy and data on cycle length was determined in the daughters
26	(Kristensen et al., 2013).
27	
28	In a case-control study of individuals recruited from specialty clinics and advertisements, serum
29	PFOS concentration was significantly higher in polycystic ovary syndrome cases $(n = 52)$
30	compared to controls $(n = 50)$ (OR = 5.76) (Vagi et al. 2014). However, there are some
31	significant weaknesses in this study including small sample size and the potential for reverse
32	causation. In a nested-cohort of the Danish National Birth Cohort (Kristensen et al., 2013), there
33	was no significant association between maternal, second trimester PFOS exposure and the
34	number of follicles per ovary in daughters either with $(n = 171)$, or without $(n = 75)$ hormonal
35	contraception.
36	
37	In a nested case-control (107 cases and 108 controls) study of cryptorchidism, there was no
38	significant difference in cord blood PFOS concentration (Versterholm-Jensen et al., 2014).
39	
40	

1 <u>Sex hormones</u>

- 2 In analyses of possible associations of sex hormones (testosterone, estradiol, SHBG, FSH, LH,
- 3 inhibin B, free androgen index, dehydroepiandrosterone, anti-mullerian hormone, and
- 4 gonadotropin hormones) and PFOS exposure (adult and gestational) among four different studies
- 5 (Joensen et al. (2009), Kristensen et al. (2013), Specht et al. (2012), Vested et al. (2013)) in
- 6 males and females (not all parameters measured in each study), no significant associations were
- 7 observed.
- 8
- 9 <u>Menopause</u>
- 10 No association was observed between the age-adjusted probability of having achieved
- 11 menopause and serum PFOS (Taylor et al. (2014).
- 12
- 13 <u>Summary of reproductive effects</u>
- 14 Overall, there are no clear consistent observations of associations between reproductive effects
- 15 and PFOS exposure. However, it is interesting to note that those studies that did observe
- 16 significant associations of reproductive effects with PFOS exposure [decreased birthweight
- 17 (Darrow et al., 2013); delayed onset of male and female puberty (Lopez-Espinosa et al., 2011);
- 18 premature birth (Stein et al., 2009); miscarriage in first pregnancy (Darrow et al., 2014); and
- 19 preeclampsia (Darrow et al., 2013; Stein et al., 2009)] tended to be studies of the C8 cohort.
- 20 These studies had large sample sizes and, therefore, greater power to observe relatively low-
- 21 probability outcomes.
- 22
- 23 <u>Developmental effects</u>
- 24
- 25 <u>Neurobehavior</u>
- 26 Neurobehavioral performance in neonates (Donauer et al., 2015) was not associated with
- 27 maternal pregnancy serum PFOS concentration. Behavioral difficulties at seven years of age in
- the Danish National Birth Cohort (Fei and Olsen, 2011) were also not significantly associated
- 29 with maternal pre-pregnancy serum PFOS exposure.
- 30
- 31 <u>Neuromotor</u>
- 32 Cord blood PFOS was significantly associated with decreased gross motor skills in 2-year olds in
- a Taiwanese cohort (Chen et al., 2013). PFOS exposure in this cohort was relatively low (mean
- 34 = 7.0 ng/ml). Relatively elevated maternal pre-pregnancy PFOS exposure (median = 34.4 ng/ml)
- 35 was significantly associated with negative (adverse) assessment of coordination disorders in the
- 36 Danish National Birth Cohort (Fei and Olsen, 2011).
- 37
- 38 <u>Cerebral palsy</u>
- 39 In a case-control study nested within the Danish National Birth Cohort (Liew et al., 2014), the
- 40 maternal pregnancy (1st or 2nd trimester) PFOS serum level was significantly higher in cerebral

- 1 palsy cases (n = 156, 28.9 ng/ml) than in controls (n = 550, 27.6 ng/ml) for boys only (risk ratio 2 = 1.7-2.1).
- 3
- 4 Morphogenic parameters
- 5 Only one study (Halldorsson et al., 2012) evaluated morphogenic parameters (BMI, waist
- 6 circumference, overweight) at 20 years old as a function of maternal pregnancy PFOS exposure.
- 7 None of these parameters were significantly associated with maternal PFOS exposure.
- 8
- 9 <u>Summary of developmental effects</u>
- 10 There is some suggestion of an association between gestational PFOS exposure and neuromotor
- 11 effects including gross motor, coordination and cerebral palsy. However, since cerebral palsy
- 12 can be related to delivery difficulties, it is not clear to what extent an association of gestational
- 13 PFOS exposure with cerebral palsy is consistent with other measures of neuromotor
- 14 performance.
- 15

Endpoint	Effect and Direction	Serum PFOS	Study references
		concentration (ng/ml)	
		(mean, median, etc.)	
Fetal or postnatal	Birthweight =	Mean 35	Fei (2007)
growth		(maternal)	
	Birthweight =	Mean 35.3	Fei et al. (2008)
	Birthweight =	Mean 9.0	Hamm et al. (2010)
		(maternal)	
	Birthweight ↓	Med. 19.6	Maisonet et al. (2012)
		(maternal)	
	Birthweight =	Med. 12.44	Robledo et al. (2015)
		(maternal)	
	Birthweight ↓	Geo. mean 13.1	Darrow et al. (2013)
		(maternal)	
	Low birthweight =	Geo. mean 13.1	Darrow et al. (2013)
		(maternal)	
	Child weight	Mean 1.6	de Cock et al. (2014a)
	(1-11 mos) =	(cord)	
	Head circum. ↓	Med. 5 (cord)	Apelberg et al.(2007)
	Head circum. =	Mean 1.6	de Cock et al. (2014a)
	(1-11 mos.)	(cord)	
	Head circum. =	Mean 35.3	Fei et al. (2008)
	Ponderal index =	Med. 5	Apelberg et al.(2007)
	(equivocal)	(cord)	
	Ponderal index =	Med. 19.6	Maisonet et al. (2012)
		(maternal)	
	Ponderal index =	Med. 12.44	Robledo et al. (2015)
		(maternal)	

Table 25. Summ	ary of Epidemiology Stud	lies of Reproductive Ef	fects
Endpoint	Effect and Direction	Serum PFOS	Study references
1		concentration (ng/ml)	
		(mean, median, etc.)	
Fertility	Infertility =	18-32% > LOD	Caserta et al. (2013)
2	Infertility ↑	Med. 33.7	Fei et al (2009, 2012)
	Infertility =	Med. 10.6	Jørgensen et al. (2014)
	Infertility =	Med. < 0.4	La Rocca et al. (2014)
	Time to pregnancy ↑	Med. 33.7	Fei et al (2009, 2012)
	Time to pregnancy =	Med. 10.6	Jørgensen et al. (2014)
	Fecundity ↓	Med. 33.7	Fei et al (2009, 2012)
	Fecundity =	Med. 10.6	Jørgensen et al. (2014)
	Sub-fecundity/fecundity	Med. Non-preg 35.75,	Vestergaard et al. (2012)
	ratio	preg -Preg 36.29	
Puberty	Menarche	Med. 19.8 (maternal)	Christensen et al. (2011)
2	Decreased age =	, , , , , , , , , , , , , , , , , , ,	``´´´
	Menarche =	Med. 3.6	Kristensen et al. (2013)
		(maternal)	
	Menarche/puberty ↓	Med. 18	Lopez-Espinosa et al. (2011)
	Male (testosterone	Med. 20	Lopez-Espinosa et al. (2011)
	cutoff) ↓		
Gestation	Preterm birth =	Mean 13.1	Darrow et al. (2013)
	Preterm birth =	Mean 9.0	Hamm et al. (2010)
	Premature birth ↑	Med. 13.6	Stein et al. (2009)
	Length of gestation =	Mean 35	Fei (2007)
	Length of gestation =	Mean 9.0	Hamm et al. (2010)
	Gestational age =	Med. 19.6	Maisonet et al. (2012)
	Miscarriage =	Geo. mean 14.3	Darrow et al. (2014)
	Miscarriage (1 st preg) ↑	Geo. mean 14.3	Darrow et al. (2014)
	Miscarriage =	Med. 13.6	Stein et al. (2009)
	Pre-term labor =	Air conc.	Olsen et al. (2004)
		H = 0.6-2.0 ppm	
		L = 0.4 ppm	
		Minimal = 0.1-0.2 ppm	
	Preeclampsia	Mean 13.1	Darrow et al. (2013)
	(preg induced		
	hypertension) ↑		
	Preeclampsia =	Med. 12.87	Starling et al. (2014a)
	Preeclampsia ↑	Med. 13.6 ng/ml	Stein et al. (2009)
	Placental weight =	Mean 35.3	Fei et al. (2008)
Breast feeding	Weaning < 3 mos	Med. 32.3 -37.0	Fei et al. (2010a)
	(first child) =		
	Weaning < 6 mos	Med. 32.3 -37.0	Fei et al. (2010a)
	(first child) ↑		
	Duration	Med. 32.3 -37.0	Fei et al. (2010a)
	First child =		
	(sig only for		
	multiparous)		

Endpoint	ary of Epidemiology Studies of Reproductive EffectsEffect and DirectionSerum PFOSStudy references				
		concentration (ng/ml)	Study references		
		(mean, median, etc.)			
Sperm/semen	Morphology =	Med. 24.5	Joensen et al. (2009)		
	Morphology	Med. 19.5-21.6	Louis et al. (2015)		
	(coiled tail) ↓ Morphology (% normal)	Med. 18.4	Toft et al. (2012)		
	Volume =	Med. 24.5	Joensen et al. (2009) Raymer et al. (2012)		
	Volume =	Med. 32.3			
	Volume =	Med. 18.4	Toft et al. (2012)		
	Volume =	Med. 21.2	Vested et al. (2012)		
		(maternal – long. Study)			
	Count =	Med. 24.5	Joensen et al. (2009)		
	Count =	Med. 18.4	Toft et al. (2012)		
	Count =	Med. 21.2 (maternal – long.	Vested et al. (2013)		
		Study)			
	Concentration =	Med. 24.5	Joensen et al. (2009)		
	Concentration =	Med. 32.3	Raymer et al. (2012)		
	Concentration =	Med. 18.4	Toft et al. (2012)		
	Concentration =	Med. 21.2 (maternal – long. Study)	Vested et al. (2013)		
	Motility =	Med. 24.5	Joensen et al. (2009)		
	Motility	Med. 19.5-21.6 ng/ml	Louis et al. (2015)		
	(dist migrated) ↑	6			
	Motility =	Med. 32.3	Raymer et al. (2012)		
	Motility =	Med. 18.4	Toft et al. (2012)		
	Motility	Med. 21.2 ng/ml	Vested et al. (2013)		
	(% progressive) =	(maternal – long. Study)			
	pH =	Med. 32.3	Raymer et al. (2012)		
	Liquification =	Med. 32.3	Raymer et al. (2012)		
	Viscosity =	Med. 32.3	Raymer et al. (2012)		
	Testicular volume =	Med. 21.2 (maternal – long.	Vested et al. (2013)		
Sex ratio	X:Y chromosome ratio (pooled) ↑ (for pop. w highest	Study) 8.2-51.65 (multiple populations)	Kvist et al. (2012)		
Endometrice '	$\frac{\text{conc }\downarrow)}{\text{All and stags 2.4}}$	Cae mean (11 7 41	$\mathbf{I}_{\text{out}} = \mathbf{I}_{\text{out}} (0 + 1_{\text{out}})$		
Endometriosis Menstrual cycle	All and stage 3-4 = Length =	Geo. mean 6.11-7.41 Med. 5.0 -20.2	Louis et al. (2012) Lyngsø et al. (2014)		
	Length =	(multiple pops.) Med. 3.6	Kristensen et al. (2013)		

Table 25. Summary of Epidemiology Studies of Reproductive Effects					
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references		
Polycystic ovary syndrome	OR ↑	Geo. mean cases = 8.2 controls = 4.9	Vagi et al. (2014)		
	Follicles/ovary =	Med. 3.6	Kristensen et al. (2013)		
Menopause	Achieved menopause (age adj.) =	Med. 10.3-17.5 (diff. pops. for each endpoint)	Taylor et al. (2014)		
	nt positive association nt negative association ation/equivocal associatio	n			

Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references	
Neurobehavioral	Neurobehv. Scale =	Geo. mean 13.25 (maternal)	Donauer et al. (2015)	
	SDQ (behav. Difficulties) =	Med. 34.4	Fei and Olsen (2011)	
Neuromotor	Gross motor ↓	Mean 7.0 (cord)	Chen et al. (2013)	
	DCDQ (coordination) \downarrow	Med. 34.4	Fei and Olsen (2011)	
Cerebral palsy	\uparrow (boys only)	Med. 26-29	Liew et al. (2014)	
Morphogenic	BMI (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)	
	Waist circum. (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)	
	Overweight (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)	
Genital	Cryptorchidism =	Med. 9.1	Versterholm-Jensen et al. (2014)	
 \$\] statistically signifi = no significant asso DCDQ: Developme 	cant positive association cant negative association ciation/equivocal association ntal Coordination Disorder Difficulties Questionnaire			

1 Overall summary for reproductive and developmental effects

- 2 Animal data demonstrate that gestational PFOS exposure causes adverse effects in offspring
- 3 including increases in offspring mortality, decreases in offspring body weight, and structural
- 4 deformities. Additionally, animal data indicate that gestational PFOS exposure may cause
- 5 endocrine and metabolic effects such as changes in thyroid hormone levels and in parameters
- 6 associated with glucose metabolism. Human data do not provide clear, consistent evidence for
- 7 reproductive effects following PFOS exposure. However, there is an indication of decreased
- 8 birthweight and delays in developmental milestones in humans. Some human data suggest that
- 9 PFOS may have developmental neurological effects. The overall weight of evidence appears to
- 10 justify the inclusion of reproductive/developmental endpoints for dose-response evaluation.
- 11

12 Overall summary for non-cancer hazard identification

- 13 PFOS causes a number of different types of toxicological effects in animals including endocrine,
- 14 hepatic, immune system, and developmental toxicity. In humans, epidemiology studies suggest
- 15 an association of PFOS exposure with decreased vaccine response, elevated serum uric
- 16 acid/hyperuricemia, and increased total cholesterol.

17 Carcinogenicity

18 Animal studies

- 19 Butenhoff et al. (2012) conducted the only chronic animal bioassay of PFOS. Their study
- 20 exposed Sprague-Dawley rats of both sexes to PFOS by diet for up to 104 weeks. The study
- 21 included a recovery group exposed to the highest concentration for 52 weeks and then kept on
- 22 regular diet for the remaining study period. The data showing statistically significant incidence
- 23 of tumors are summarized in Table 27 below.

Table 27. Summary of select tumor data from Butenhoff et al. (2012)								
	sex	0	0.5	2 ppm	5 ppm	20 ppm	20 ppm	p-trend
		ppm	ppm				(recovery)	
Liver								
Hepatocellular	Μ	0/60	3/50	3/50	1/50	7/60 *	0/40	*
Adenoma	F	0/50	1/50	1/49	1/50	5/60 *	2/40	*
Hepatocellular	F	0/60	1/50	1/49	1/50	6/60 *	2/40	**
adenoma +								
carcinoma								
Thyroid							•	
Follicular cell	М	3/60	5/49	4/50	4/49	4/59	9/39 *	
adenoma								
Mammary							•	
Fibroadenoma +	F	23/60	30/50 *	22/48	26/50	15/60 * a	16/40	* b
adenoma								
* $p \le 0.05$ compared	to contro	ols or trend	as indicated.	** $p \le 0.01$	compared to	o controls or tr	end as indicated	•
a. Note that the signif	ficance is	s for a decr	eased inciden	ce compared	to controls			

a. Note that the significance is for a decreased incidence compared to controls.

b. Note that the significance is for an overall negative trend

- 1 It should be noted that the denominators of the incidence ratios, as reported in Butenhoff et al.
- 2 (2012), apparently include animals with unscheduled mortality as well as interim and terminal
- 3 sacrifices. Interim and unscheduled sacrifices, if conducted prior to the appearance of the first
- 4 tumor, would have the effect of artificially increasing the presumed number of animals at risk of
- 5 developing a tumor, thus increasing the denominator and thus, decreasing the incidence ratio
- 6 (this issue is addressed in the Dose-Response section). Nonetheless, it is clear from the data as
- 7 reported that both male and female rats exposed to 20 ppm dietary PFOS experienced
- 8 statistically elevated hepatocellular tumor incidence.
- 9

10 Male rats also experienced a statistically elevated incidence of thyroid follicular tumors in the 20

- 11 ppm recovery group (Butenhoff et al., 2012). With respect to the statistically significant
- 12 elevation in the incidence of thyroid follicular cell tumors observed in males in the 20 ppm
- 13 recovery group, the authors consider this observation to be "paradoxical" given the absence of
- 14 histopathological changes in the thyroid and the lack of a significantly elevated tumor incidence
- 15 in the full term 20 ppm exposure group. Chang et al. (2009) exposed maternal Sprague-Dawley
- 16 rats to PFOS from GD 1-20 or GD 1-PND 21, and several thyroid parameters potentially relevant
- 17 to carcinogenicity were analyzed. No significant differences between PFOS exposed (maternal
- 18 dose, 1.0 mg/kg/day) and control fetuses or pups were observed with respect to thyroid
- 19 histology. Morphometric analysis of follicular epithelial height (a measure of increased thyroid
- 20 activity) found a significant increase in PFOS treated female pups compared to controls at PND
- 21 21. However, the authors question the relevance of this observation due to an abnormally low
- 22 follicular epithelial height in the relevant controls. In addition, thyroid follicular epithelial
- 23 proliferation (cell counts) was significantly increased in 1 mg/kg/day PFOS maternally exposed
- GD 20 female fetuses at a level twice that of controls. Thus, the origin of these tumors and their
- 25 potential relevance to human cancer risk is unclear.
- 26

27 Statistically significant increases were reported for mammary fibroadenomas and for combined

- 28 mammary fibroadenomas/adenomas only in the low dose (0.5 ppm) group. The percent incidence
- of these tumors in each dose group was: Control -38%; 0.5 ppm -60%; 2 ppm -45%; 5 ppm -
- 30 52%; 20 ppm recovery -40%; 20 ppm -25%. When the incidence data were considered across
- all the dose groups for both categories of tumors, a statistically significant decreased trend was
- 32 observed for these endpoints. This is due to the statistically significant decreases in the
- incidence of these tumors in the highest dose group compared to controls. No statistically
- 34 significant changes in mammary carcinomas or adenomas alone were reported in any dose group.
- Based on these limited data, conclusions cannot be made about the potential for PFOS to causemammary tumors.
- 37
- 38
- 39
- 40

1 Human epidemiology studies

2 There are a limited number of epidemiological studies assessing cancer risk from PFOS

- 3 exposure. As reviewed below, these studies assessed cancer risk in occupationally exposed
- 4 populations or in the general population.
- 5
- 6 Occupational studies

7 Studies of occupational PFOS exposure are all based on workers from a single facility (Decatur,

8 AL) with high PFOS exposure (Alexander et al., 2003, 2007; Olsen et al., 2004; Grice et al.,

9 2007). These studies have several drawbacks in identifying potential associations between PFOS

- 10 exposure and cancer. Exposure assessment was indirect and involved job location/category
- 11 linked with location-specific measurements of PFOS air concentration, or serum PFOS
- 12 concentration from a relatively small sample of workers. For those studies utilizing serum PFOS
- 13 concentrations from this sample, the "no" or "minimal" exposure category were approximately
- 14 two orders of magnitude higher than that of the US median as reported by CDC (2017). This
- 15 could potentially obscure an exposure-response relationship. Ascertainment of cancer cases, was
- 16 generally indirect, or based on mortality rather than incidence. Finally, the cohorts contained
- 17 relatively few women.
- 18

19 Alexander et al. (2003) found no association between estimated PFOS exposure and all cancer

- 20 mortality. For liver cancer mortality, the standardized mortality ratio (SMR) was slightly
- elevated (1.61 observed versus 1.24 expected) but not statistically significant. For bladder
- 22 cancer, the SMR was elevated (4.81 observed versus 0.62 expected) and borderline statistically
- 23 significant. The SMR was slightly increased when the analysis was confined to workers
- employed for \geq 5 years.
- 25
- Alexander et al. (2007) followed up on the previous study (Alexander et al., 2003), focusing on
- 27 bladder cancer. This study collected information on current and deceased bladder cancer cases
- and from current and former employees. Self reporting (n = 1,400, 67% of eligible) was
- combined with physician follow-up or death certification acquisition (n = 185, 98% of eligible).
- 30 The bladder cancer incidence was elevated (standardized incidence ratio (SIR) = 1.28) but was
- 31 not statistically significant. There did not appear to be a relevant exposure-response relationship.
- 32 The SIR was also elevated, but not statistically significant when the analysis was confined to the
- high exposure category or to workers employed for 5-10, or > 10 years.
- 34
- 35 Olsen et al. (2004) reviewed employee health claims for treatment through the company's health
- 36 insurance and compared exposed workers to "unexposed" workers. Malignancies of the colon
- 37 (risk ratio; RR = 5.4), lower respiratory tract (RR = 2.7), skin (RR = 12) and prostate (RR = 79)
- 38 were elevated but not statistically significant. Since "unexposed" workers were classified by job
- 39 location/duties, and not serum concentrations, it is likely that these workers have at least general
- 40 population level exposures to PFOS.

- 1 Grice et al. (2007) employed self-reported cancer diagnosis (n = 1,400,74% of eligible).
- 2 Estimated PFOS exposure was not associated with any cancer type.
- 3
- 4 Overall, studies of this worker population did not show consistent evidence of cancer in general
- 5 or of cancer of any specific type.
- 6
- 7 General population studies
- 8 Eriksen et al. (2009) conducted a case (n = 67-713 depending on cancer type) control (n = 680)
- study nested in a prospective cohort (age: 50-65 years old, n = 57,051) using the Danish National 9
- 10 Cancer Registry. The incident rate ratio (IRR) was not significant for cancer of any type for any
- quartile of serum PFOS concentration. Prostate cancer was elevated for quartiles 2-4 of serum 11 12 PFOS (relative to the first quartile) and this elevation was borderline statistically significant at
- 13 each quartile. However, there was no clear evidence of a trend across quartiles.
- 14

15 Bonefeld-Jorgensen et al. (2011) conducted a case (n = 31)-control (n = 115) study of breast

16

- cancer and PFOS exposure among Greenland Inuit. This population had a relatively high PFOS 17 exposure (median concentration among cases = 45.6 ng/ml). The OR relative to a unit increase
- 18 (ng/ml) of serum PFOS was small (1.03), but statistically significant. As a follow up, Ghisari et
- 19 al. (2014) examined the relationship of single nucleotide polymorphisms (SNPs) in a number of
- 20 cytochrome P450 (CYP) isoforms as a function of serum PFOS in the same cases and controls
- 21 studied in Bonefeld-Jorgensen et al. (2011). For all CYP genes tested, the OR was significantly
- 22 > 1.0 for the (dichotomous) high PFOS category for at least one SNP. While this is largely a
- 23 population-based mechanistic study, it adds some weight to the association of PFOS exposure
- 24 and breast cancer from the Bonefeld-Jorgensen et al. (2011) study in providing evidence that
- 25 cases differed from controls in a biochemical characteristic that is potentially causal with respect
- 26 to breast cancer.
- 27

28 Hardell et al. (2014) examined the association of PFOS with prostate cancer in a case (n = 201)-

- 29 control (n = 186) study in Sweden. No significant association was detected between serum
- PFOS concentration and the OR for prostate cancer, the stage of prostate cancer (Gleason score), 30
- 31 and the PSA (prostate-specific antigen) level. There was a significant OR for PFOS serum
- 32 concentration and having a first order relative with prostate cancer. This significance of this
- 33 observation is not entirely clear, however.
- 34
- 35 Summary of epidemiological evidence for cancer
- 36 Although individual studies have shown borderline or weak (albeit statistically significant)
- 37 associations between PFOS exposure and specific cancer types, there is no consistent indication
- of an association between PFOS exposure and cancer in general, or any specific form of cancer. 38
- 39 Nonetheless, the database cannot be considered strong. In contrast to PFOA (DWQI, 2017), there
- 40 are no studies of communities with elevated exposures from contaminated drinking water or

- 1 other environmental media. Exposure characterization and case ascertainment was problematic
- 2 in the occupational studies with high levels of exposure, and the non-occupational studies
- 3 generally had small sample sizes.
- 4

5 Overall conclusions regarding the potential for human cancer risk from PFOS

- 6 Based on the liver and thyroid tumors reported by Butenhoff et al. (2012), the designation of
- 7 "Suggestive Evidence of Carcinogenic Potential" in the 2005 USEPA Guidelines for Carcinogen
- 8 Risk Assessment (USEPA, 2005a) is appropriate. In particular, this determination is consistent
- 9 with the descriptor: "A small, and possibly not statistically significant, increase in tumor
- 10 *incidence observed in a single animal or human study that does not reach the weight of evidence*
- 11 for the descriptor "Likely to Be Carcinogenic to Humans." The study generally would not be
- 12 contradicted by other studies of equal quality in the same population group or experimental
- 13 *system.*" USEPA Office of Water (2016b) also concluded that the descriptor "Suggestive
- 14 Evidence of Carcinogenic Potential" as appropriate for PFOS. A discussion of the potential
- 15 human relevance of the tumors observed in Butenhoff et al. (2012) is found in the <u>Mode of</u>
- 16 <u>action for carcinogenicity</u> section (below).
- 17

18 MODE OF ACTION

19

20 <u>General</u>

- 21 As discussed in the Hazard Identification section, PFOS produces effects in multiple organ
- 22 systems and tissues. At a minimum, strong evidence exists from animal and/or epidemiological
- 23 studies for effects on the liver, the immune system, birth weight, and neonatal survival. In
- 24 addition, PFOS causes liver tumors, and possibly thyroid tumors in rats. The breadth of these
- effects suggests that PFOS may cause toxicity through multiple modes of action (MOAs).
- 26 However, as discussed below for hepatic, immune, and developmental effects, there is
- 27 insufficient evidence to fully support a definitive MOA for any of the tissue/organ-specific
- effects of PFOS.

29 <u>Role of PPARα and other receptors in hepatic effects of PFOS</u>

- 30 While mode-of action data are most abundant for PFOS effects on the liver, most of the evidence
- 31 relates to evaluation of the role of peroxisome proliferator-activated receptor-alpha (PPAR α) in
- 32 its hepatic effects.
- 33 Some hepatic effects (e.g., increased liver weight) of PFOS in rodents are similar to those caused
- by known and potent PPARα activators (e.g., Corton et al., 2014). On this basis, carcinogenic
- 35 and non-carcinogenic hepatic effects of PFOS have sometimes been assumed to occur through
- 36 activation of PPARa. However, several lines of evidence do not support a conclusion that liver
- 37 effects due to PFOS exposure are PPAR α -dependent.

1 PPARα is a member of the soluble nuclear receptor hormone superfamily (Peraza et al., 2006).

2 There is evidence that endogenous fatty acid derivatives are the natural ligands for PPAR α and

3 that under normal circumstances, PPAR α is involved with lipid homeostasis. It also appears that

4 PPAR α is involved (at least in some tissues) with cell proliferation, apoptosis, inflammation and

5 oxidative stress (Peters et al., 2005).

6 The functioning of PPAR α in response to exogenous chemicals has been most thoroughly 7 documented in the liver. Compared to adult rodent liver, the abundance of PPAR α mRNA in adult human liver is only about 10% (Abbott et al., 2009b). Also, for at least some exogenous 8 agonists, the magnitude of response of rodent PPAR α is greater than human PPAR α (Peters and 9 Gonzalez, 2011). The role played by PPAR α in adverse hepatic effects has historically been 10 11 largely derived from observation of the effects of model PPARα agonists such as WY-14,643, 12 bezafibrate and ciprofibrate, which are assumed to be "pure" PPARa agonists (i.e., substances 13 whose significant effects occur only as a result of PPARa binding). Bezafibrate and ciprofibrate 14 are hypolipidemic pharmaceuticals with known peroxisome proliferation activity. WY-14,643 is 15 a strong PPAR agonist and peroxisome proliferator used experimentally as a model PPARa 16 agonist. Hays et al. (2005) found that exposure of wild-type (WT) Sv/129 mice to bezafibrate 17 for one year resulted in the liver weight increase characteristic of PPARα agonists. In addition, 18 they found altered liver foci in 100% of exposed mice, as well as occurrence of single adenomas 19 and multiple adenomas and one carcinoma, with no neoplasms in the control WT mice. In 20 contrast, PPARa-null mice exposed to bezafibrate for 1 year exhibited no clear treatment-related 21 tumors. Peters et al. (1998) compared the responses of hepatic tissue from wild-type (WT) and 22 PPARα -null mice treated for 11 months with WY-14,643. Exposure of the WT mice to WY 23 resulted in increased production of proteins (and their corresponding mRNAs) involved in cell 24 cycle regulation and cell proliferation. These included, cyclin-dependent kinases, c-myc, and PCNA (proliferating cell nuclear antigen). These responses, consistent with a cancer mode of 25 action, were not seen in the PPAR α -null mice. 26

27 In *in vitro* binding assays (Vanden Heuvel et al., 2006), PFOS bound to mouse, rat and human

28 PPARα much less than ciprofibrate, the model PPARα agonist used a positive control in this

29 study. Relative to the concentration producing the maximum reporter assay response for PPARα

30 binding, PFOS produced only about 25% response for mouse PPARα, no significant response for

31 rat PPARα, and an 8% response for human PPARα. In a PPARα binding assay in cultured cells

transfected with mouse PPARα, the lowest observed effective concentration for PFOS was 113

times greater than that for PFOA and 21 times that for PFNA (Wolf et al., 2008). Such data

show a lack of a robust PPAR α response by PFOS and suggest that effects following PFOS

35 exposure are independent of PPAR α .

36 In contrast to the characteristic linkage between PPARα activation and liver weight increase seen

37 with PPARα agonists such as bezafibrate and the WY compound, PFOS causes liver weight

38 increases in PPARα-null mice (Qazi et al., 2009b; Rosen et al., 2010). In addition, Rosen et al.

39 (2010) dosed WT and PPAR α -null mice with WY or PFOS for 7 days. Both WT and PPAR α -

- 1 null mice exposed to PFOS showed hepatomegaly and increased incidence of hepatic vacuole
- 2 formation. Profiling of gene expression was conducted with microarray analysis. Gross
- 3 qualitative and quantitative differences in gene expression for fatty acid metabolism,
- 4 inflammatory response, xenobiotic metabolism and ribosome biogenesis, as well as markers of
- 5 PPARα activation, were found between WY and PFOS treated WT mice. These observations
- 6 provide evidence that prototypical PPARα agonists (e.g., the WY compound) are not appropriate
- 7 surrogates to predict the molecular and apical hepatic effects following PFOS exposure.
- 8 Additionally, hepatic effects, including tumors, have been observed in rodents exposed to PFOS
- 9 without evidence of peroxisome proliferating activity. For example, Butenhoff et al. (2012)
- 10 reported that chronic dietary exposure to 20 ppm PFOS resulted in liver tumors as well as
- 11 hepatocellular hypertrophy and necrosis in male and female rats. However, an increase in
- 12 hepatic peroxisomal bodies was not observed based on transmission electron microscopy.
- 13 Further, increased palmitoyl CoA oxidase activity, a generally accepted marker of peroxisome
- 14 proliferation induction and overall PPARα activation (Klaunig et al., 2003), has not been
- 15 observed when hepatic effects were reported in PFOS-exposed rats. As part of the 2-year
- 16 bioassay reported in Butenhoff et al. (2012), Seacat et al. (2003) reported on interim sacrifices
- 17 following 4 and 14 weeks of dietary exposure. When assessing the 20 ppm group, the dose that
- 18 caused liver tumors in Butenhoff et al. (2012), liver effects were limited to an increase in relative
- 19 liver weight in male rats after 4 weeks of exposure. However, no significant increase in hepatic
- 20 palmitoyl CoA oxidase activity was observed. Following 14 weeks of exposure, liver effects in
- 21 the 20 ppm group included hepatocellular hypertrophy and vacuolation in males and females as
- 22 well as increased relative liver weight in males with no observed significant increase in hepatic
- 23 palmitoyl CoA oxidase activity.
- 24 Studies with shorter durations of exposure in rats by Elcombe et al. (2012a, 2012b) provide
- 25 similar hepatic observations as those following chronic and subchronic PFOS exposures in rats
- as reported in Seacat et al. (2003) and Butenhoff et al. (2012). Following cessation (i.e., on
- 27 recovery day 1) of 7 days of dietary PFOS exposure at 20 ppm, increases in relative liver weight
- and hepatocellular hypertrophy along with changes in alanine aminotransferase, aspartate
- aminotransferase, and cholesterol were observed (Elcombe et al., 2012b). However, no increase
- 30 was observed for hepatic palmitoyl CoA oxidase activity. Following 28 days of exposure to 20
- 31 ppm PFOS, Elcombe et al (2012a) observed increased relative liver weight and hepatocellular
- 32 hypertrophy along with a decrease in cholesterol. These hepatic observations were accompanied
- 33 with only a marginal (i.e., 1.4-fold) increase in hepatic palmitoyl CoA oxidase activity.
- 34 To the extent that there is a relatively small amount of interaction with PFOS, PPAR α may make
- a minor contribution to PFOS liver effects. This is in contrast to PPARα activators/peroxisome
- 36 proliferators such as WY and the fibrates, for which liver effects, including carcinogenicity are
- 37 clearly linked to PPAR α activation.

- 1 In summary, PFOS effects on the rodent liver do not appear to primarily operate through a
- 2 PPAR-dependent mode of action, including at doses resulting in liver tumors as in Butenhoff et
- al. (2012). Thus, the lower abundance of PPAR α and lower response to model PPAR α activators
- 4 in human liver as compared to rodent liver is not clearly relevant to the potential for PFOS to
- 5 cause human hepatic effects including cancer.

Other receptors whose activities overlap to some extent with those of PPARα may also be
activated by PFOS, suggesting alternative, non-PPARα modes of action. These other receptors
include: CAR, PPARβ/δ, PPARγ, PXR, HNF-4α and possibly, ERα [Corton et al. (2014); Peters
and Gonzalez (2011); Kobayashi et al. (2015)]. CAR appears to be involved in liver
tumorigenesis in PPARα-null mice for di(2-ethylhexyl)phthalate (DEHP), an activator of
PPARα (Corton et al., 2014). The set of genes expressed following CAR activation in PPARα-

- 12 null mice overlap with those genes expressed following PPARα activation in WT mice. CAR-
- 12 null line overlap with those genes expressed following PPARG activation in w 1 line. CAR-13 specific gene expression in WT mice is minor compared to its expression in PPAR α -null mice.
- 14 It is hypothesized that in WT mice, chemicals such as PFOA and DEHP that are relatively strong
- PPARα activators, suppress CAR (Corton et al., 2014). However, since PFOS appears to be a
- 15 PPARa activators, suppress CAR (Conton et al., 2014). However, since PFOS appears to be a
- 16 relatively weak PPAR α agonist compared to PFOA, PFOS may preferentially activate CAR or
- 17 other nuclear receptors rather than PPAR α . Hepatocyte nuclear factor 4- α (HNF-4 α) is
- 18 considered "the master regulator of hepatic differentiation." (Beggs et al., 2016). It regulates
- 19 liver development, transcriptional regulation of liver-specific genes, regulation of lipid
- 20 metabolism, and maintenance of hepatocellular quiescence and differentiation. Human
- 21 hepatocytes in primary culture exposed (*in vitro*) to PFOS at "occupationally relevant"
- 22 concentrations resulted in downregulation of HNF-4 α protein levels (but not HNF-4 α mRNA).
- 23 There were, however, changes in mRNA expression in genes regulated by HNF-4 α , including
- 24 those related to hepatic steatosis, proliferation, and tumorogenesis. HNF-4 α was the upstream
- regulator of 90 of 681 genes with altered expression due to PFOS exposure. Beggs et al. (2016)
- 26 hypothesize that PFOS causes downregulation of HNF-4 α in human hepatocytes leading to
- 27 hepatomegaly and steatosis.

28 MOA for immune effects

- 29 Following PFOS exposure in animals, immunosuppression as well as effects on immune organs,
- 30 cell populations, and mediators have been observed. In humans, an association with suppression
- 31 of vaccine response has been reported. Despite research efforts, reviewed in part below, the
- 32 mode(s) of action by which PFOS exposure results in immune effects is unclear (DeWitt et al,
- 33 2009, 2012; Corsini et al., 2014; Chang et al., 2016).
- 34 As discussed below, based on rodent studies, it appears that PPARα may play a role in some
- 35 immune effects caused by PFOS. Unlike the case for the liver, there are no data to suggest that
- 36 PPAR α is less active in the human immune system than in rodents. Therefore, both PPAR α
- 37 dependent and independent effects on the immune system are considered relevant to humans for
- 38 the purposes of risk assessment.

- 1 The role of PPAR α in PFOS-mediated immunotoxicity has been reviewed by DeWitt et al.
- 2 (2009; 2012) and Corsini et al. (2014). Some data suggest that PFOS-mediated
- 3 immunosuppression is not dependent on PPARα. As reviewed in DeWitt et al. (2012), research
- 4 by Peden-Adams et al. (2010) reported that 28 days of PFOS exposure resulted in a similar
- 5 degree of plaque forming cell response suppression in WT and PPARα-null mice. Some
- 6 evidence, however, suggests a partial role for PPAR α in PFOS immunotoxicity. Qazi et al.
- 7 (2009b) observed that PFOS exposure (10 days) resulted in a similar change in spleen weights in
- 8 WT (22% decrease) and PPARα-null (24% decrease) mice. However, for thymus weight, the
- 9 extent of decrease was different between WT (34%) and PPAR α -null (17%) mice. Additionally,
- 10 decreases in splenocytes and thymocytes were observed in WT mice following PFOS exposure.
- 11 The number of splenocytes and thymocytes were also reduced in PPAR α -null mice, with
- 12 differential effects for different sub-populations, although, this reduction was not to the same
- 13 level of as observed in WT mice. However, in Dong et al. (2009), decreased spleen and thymus
- 14 cellularity occurred at a three-fold higher serum concentration than the inhibition of plaque
- 15 forming cell response. Therefore, it is not clear that the decreased spleen and thymus cellularity
- 16 that appears to be partially mediated by PPAR α is necessarily linked to the PFOS mediated
- 17 decrease in plaque forming cell response.
- 18 Immunotoxicity data following PFOA exposure may also inform the role of PPARα in
- 19 immunotoxicity following PFOS exposure. As reviewed in Corsini et al. (2014), PPARα may
- 20 mediate immune suppression following PFOA in some strains of mice, based on studies in
- 21 PPARα null mice. However, Corsini et al. (2014) note the much smaller affinity of PFOS for
- 22 PPAR α compared to PFOA and therefore hypothesize a significant role for non-PPAR α
- 23 mechanisms in PFOS-mediated immunotoxicity. This hypothesis for non-PPAR α mechanisms is
- consistent with the observation of Peden-Adams et al. (2010) of suppression of IgM T-cell
- 25 dependent immune response by PFOS as reflected in inhibition of the plaque-forming response
- 26 in PPAR α -null mice. As reviewed by DeWitt et al. (2009), this hypothesis is also consistent with
- the observation of Yang et al. (2002) that in PPARα-null mice exposed to PFOA, lymphoid
- organ weight is decreased relative to WT mice. DeWitt et al. (2009) suggest that this points to a
- 29 non-PPAR α mechanism for immune effects originating in the spleen/thyroid.
- 30 In addition to the extent of PPAR α involvement, other mechanistic considerations may inform
- 31 the mode of action for PFOS-mediated immunotoxicity. Incubation with PFOS inhibited the
- 32 release of pro-inflammatory cytokines from human peripheral blood leukocytes that had been
- 33 stimulated with the mitogen, phytohemagglutinin, or the endotoxin, lipopolysaccharide (Corsini
- et al., 2011; Corsini et al, 2012). For some of the cytokines evaluated, the LOAEL for this effect
- 35 was 100 ng/L, the lowest PFOS concentration tested. Notably, this PFOS concentration is within
- 36 the range of found in in the blood of highly exposed individuals.
- 37
- 38 Additionally, Corsini et al. (2014) suggest the possible involvement of an alteration of cell
- 39 signaling response in PFOS mediated immune suppression since this suppression occurs without

- 1 a change in the number of relevant leukocyte populations in response to PFOS exposure.
- 2 Specifically, Corsini et al. (2014) cite research by Peden-Adams et al. (2010) where there was an
- 3 observed suppression of IL-6 in B-cells, and translocation of NF-κB in splenic nuclear extracts
- 4 following 28 days of PFOS exposure, consistent with alterations in cell signaling. This
- 5 hypothesis of altered cell signaling is also consistent with the observation by Peden-Adams et al.
- 6 (2007) of a decreased response in mice to sheep red blood cells in response to the pesticide
- 7 sulfuramid (rapidly metabolized to PFOS), which occurred in the absence of a related decrease in
- 8 the number of T helper cells or B cells. Aside from alterations in cell signaling, DeWitt et al.
- 9 (2012) note that PFOS appears to suppress both T-cell dependent, and T-cell independent antigen
- 10 response. They suggest that B cells and/or macrophages might be involved in the mode of action
- 11 of PFOS immunosuppression.
- 12
- 13 In general, stress may influence immune effects following chemical exposure. However, Dong
- 14 et al. (2009) observed that increases in serum corticosterone, a marker for stress, in response to
- 15 PFOS exposure in mice occurred only at high PFOS doses (≥ 0.8 mg/kg/day), whereas a
- 16 decrease in plaque forming cell response occurred at all but the lowest dose tested (> 0.008
- 17 mg/kg/day). Corsini et al. (2014) also suggest the possibility that changes in lipid balance
- 18 resulting from PFOS activity in the liver could affect the immune response. However, there does
- 19 not appear to be specific evidence to support this hypothesis. Finally, although speculative, we
- 20 note that in discussing the apparent effect of PFOS on serum T4 levels, Chang et al. (2007)
- 21 present evidence that serum PFOS may interfere with standard immunoassays for T4 by
- 22 competitively binding with antibodies in the assays. If PFOS is capable of interfering with
- 23 specific immune reactions to T4 in these *in vitro* assays, it may also be capable of similarly
- 24 interfering with immune responses *in vivo* such as anti-vaccine immune responses in humans.

25 MOA for developmental/fetal effects

- 26 Gestational exposure to PFOS is associated with several different endpoints, including decreased
- birth weight, malformations, and most notably, neonatal mortality. The modes of action for
- these effects are not known. However, it appears that the various types of developmental effects
- 29 do not necessarily share similar modes of action.
- 30 Research in WT and PPARα-null mice suggests that developmental effects following gestational
- 31 PFOS exposure are PPAR α independent. Abbott et al. (2009b) compared the developmental
- 32 effects of maternal PFOS exposure in WT and PPARα-null mouse pups exposed during GD 15-
- 18. The effects of PFOS included increased pup relative liver weight, decreased pup survival
- 34 (mostly on PND 1-2), and increased time for opening of both eyes. For each of these effects, the
- 35 extent and the dose-response were comparable for the WT and PPAR α -null mice. This strongly
- 36 argues that these offspring effects following gestational PFOS exposure are PPAR α independent.
- 37 In contrast, following gestational PFOA exposure, neonatal mortality appears to be PPARa
- 38 dependent (Abbott et al., 2007).

- 1 Neonatal mortality following gestational PFOS exposure has been noted in several rodent studies
- 2 (Abbott et al., 2009a; Luebker et al., 2005a, 2005b; Lau et al., 2003; Rosen et al., 2009) and is a
- 3 striking and salient effect. The underlying toxicity resulting in this effect occurs with maternal
- 4 exposure during late gestation (after GD 19) (Grasty et al., 2003, 2005). Due to the observation
- 5 of labored breathing associated with this mortality and the late developmental nature of the
- 6 toxicity, immature lung development, possibly related to PFOS interference with lung surfactant
- 7 was suggested as a possible mode of action (Grasty et al., 2005). Lung development in rats is
- 8 characterized by thinning of septal walls of the distal airway epithelium following GD 21
- 9 consistent with the maturation of this tissue into alveolar epithelial cells.
- 10 Grasty et al. (2005) dosed pregnant Sprague-Dawley rats by oral gavage on GD 19-20 at 25 or 50
- 11 mg/kg/day. On PND 0, approximately 50% of newborn rat pups exposed gestationally to 50
- 12 mg/kg/day and a smaller proportion exposed to 25 mg/kg/day PFOS had distal lung tissue
- 13 morphology with the appearance of (relatively undifferentiated) GD 21 control fetuses.
- 14 Although the severity of undifferentiated morphology in distal airway epithelium was the same
- 15 in affected pups at both PFOS doses, mortality was greater at the higher dose. Additionally, the
- 16 use of rescue agents (i.e., dexamethasone and retinyl palmitate) that accelerate lung maturation
- 17 and lung surfactant production did not increase neonatal survival following gestational PFOS
- 18 exposure. Grasty et al. (2005) therefore suggest that the delay in morphological development
- 19 was not the primary cause of the mortality. Further, PFOS did not affect the phospholipid
- 20 concentration, and had only a minor effect on the phospholipid profile, in whole lungs of
- 21 newborns or in amniotic fluid at GD 21. No overall pattern was observed in lung RNA
- 22 microarray analysis from newborn lungs. In particular, there was no indication of changes in cell
- 23 signaling pathway gene expression or expression of lung maturation markers. As a result, Grasty
- et al. (2005) ultimately hypothesized that PFOS could have interfered with the release of
- 25 surfactant onto alveolar surfaces.
- 26 Rosen et al. (2009) hypothesize that PFOS may exert a physical interaction (i.e, PPARα
- 27 independent) with lung surfactant, which may be an underlying cause of the neonatal mortality.
- 28 Such a physical interaction is plausible, as PFOS has been detected in the lungs of perinatal
- 29 offspring following gestational exposure (Borg et al., 2010). Oxidative stress and apoptosis have
- 30 also been implicated in offspring lung injury that may be responsible for neonatal mortality
- 31 (Chen et al., 2012a). Additionally, defects in cardiopulmonary function, such as the intracranial
- 32 blood vessel dilation or enlarged right atria observed following gestational PFOS exposure, have
- been postulated as possible contributors to neonatal mortality (Lau et al., 2003; Yahia et al.,
- 34 2008). Even with these hypotheses and observations, there is no clear mode of action
- 35 responsible for PFOS-mediated newborn mortality.
- 36
- 37

1 MOA for carcinogenicity

2

3 Genotoxicity and mutagencity

4 As reviewed by USEPA (2016b), PFOS does not appear to be genotoxic or mutagenic. This

5 conclusion is based on the results from numerous *in vitro* and *in vivo* genotoxicity assays. PFOS

- 6 did not cause gene mutations in *Salmonella* strains, *Saccharomyces cerevisiae*, or *Escherichia*
- 7 *coli*, either in the presence or absence of metabolic activation. In eukaryotic cellular systems,
- 8 PFOS did not cause chromosomal aberrations in human lymphocytes and was negative for

9 unscheduled DNA synthesis in rat hepatocytes. PFOS did not induce micronuclei in the bone

- 10 marrow of exposed mice.
- 11

12 MOA for rodent hepatic tumors and relevance to human risk

13 Elcombe et al. (2012b) exposed Sprague Dawley rats to dietary PFOS for 7 days at

14 concentrations of 20 or 100 ppm in feed, followed by up to 84 days of recovery (i.e., exposure to

15 regular feed). They observed significant hepatic cell proliferation at both concentrations on day

16 1 of recovery, but not after 28 days of recovery. They also observed a significantly decreased

17 percentage of hepatocellular apoptosis at both concentrations that persisted through the recovery

18 period. These observations suggest a mode of action for hepatic tumors with chronic exposure to

19 PFOS in rats that combines sustained cell proliferation with inhibition of apoptosis. However,

20 the available data do not permit a firm conclusion as to the relevant cancer mode(s) of action.

21

22 Mode of action data relevant to the role of PPARα in the hepatic toxicity and tumorogenicity of

23 PFOS is discussed in detail above. As discussed above, PFOS liver carcinogenicity has

24 sometimes been considered in the context of a mode of action dependent on activation of PPARα

25 based on some hepatic effects in rodents that are similar to those caused by known and potent

26 PPARα activators such as benzofibrate and WY-14,643. The studies of these two compounds

27 reviewed above indicate that they cause liver tumors in mice through a PPARα MOA. In

28 contrast, data on PFOS reviewed above indicate that hepatic toxicity and tumorigenesis of PFOS

does not occur through the same MOA as benzofibrate and WY-14,643 and is not dependent onPPARα.

Additionally, in rats, many (but not all) PPARα activators produce Leydig cell and pancreatic

32 acinar cell tumors in addition to hepatic tumors, commonly referred to as the tumor triad (Corton

33 et al., 2014; Klaunig et al., 2003). Although data on tumors caused by PFOS is limited to the

34 study of Butenhoff et al. (2012), that study did not report significantly increased incidence of

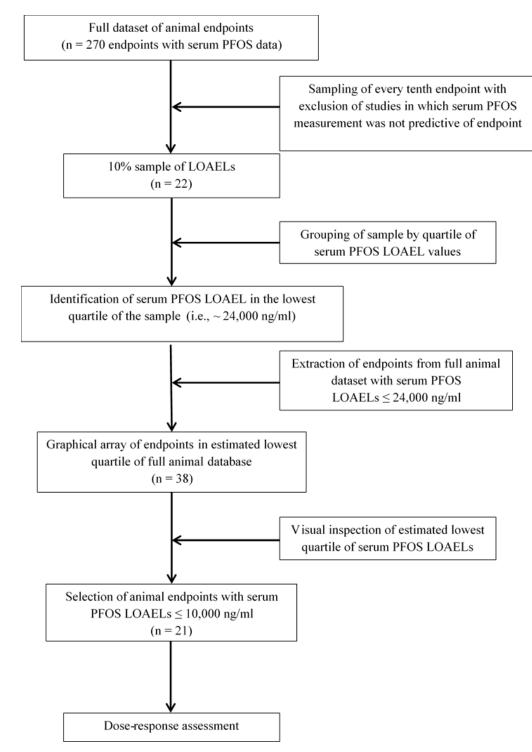
35 either Leydig cell or pancreatic acinar cell tumors. This is additionally consistent with a non-

36 PPARα-mediated hepatic cancer MOA.

37 Finally, as discussed above, there is good evidence that PFOS activates other nuclear receptors,

- including, PPAR β/δ , γ , and, CAR and PXR (Ren et al., 2009) and that there is evidence for the
- 39 involvement of PXR (Qiao et al., 2013) and CAR (Kobayashi et al., 2015) in liver cancer.

- 1 It is generally accepted that humans are less susceptible than rodents to liver tumors that occur
- 2 via activation of the PPAR α receptor, due to lower intrinsic activity and/or lower number of
- 3 PPARα receptors in human liver as compared to rodents. This observation has been the basis for
- 4 the suggestion that rodent liver tumors and other adverse liver effects caused by environmental
- 5 contaminants through PPAR α activation may not be relevant to humans exposed to PFOS at
- 6 environmental levels of exposure. However, as discussed above, available data do not support
- 7 the conclusion that PFOS causes liver effects through a PPAR α -dependent mode of action at the
- 8 doses that resulted in tumors in Butenhoff et al. (2012).
- 9 There does not appear to be any data to suggest that the PFOS hepatic carcinogenicity observed
- 10 in rodents is not relevant for consideration of human cancer risk. It should be noted that under
- 11 the USEPA (2005a) Guidelines for Carcinogen Risk Assessment, identification of a mode of
- 12 action is not required to characterize a chemical as posing a relevant risk of cancer to humans.
- 13 Mode of action (MOA) for rodent thyroid tumors and relevance to human risk
- 14 Butenhoff et al. (2012) observed evidence of thyroid follicular cell tumors in male rats at the
- 15 high dose following recovery from dosing. As discussed in the <u>Cancer Hazard Identification</u>
- 16 section, the relevance of these tumors to PFOS exposure is not clear due to lack of
- 17 accompanying histopathological changes and the absence of tumors in the high dose, non-
- 18 recovery group. Thus, there is limited evidence supporting the scientific reasonableness of
- 19 thyroid follicular epithelial cell proliferation consistent with thyroid follicular epithelial cell
- 20 tumors. A possible MOA for the PFOS-mediated thyroid follicular cell tumors observed by
- 21 Butenhoff et al. (2012) is not known and there is no evidence to support a reasonable assumption
- of a MOA. The absence of an identifiable MOA for these tumors does not, in itself, decrease
- their potential human relevance. However, as discussed in the Cancer Hazard Identification
- 24 section, other factors make the assumption of human relevance of these tumors from Butenhoff
- et al. (2012) problematic.

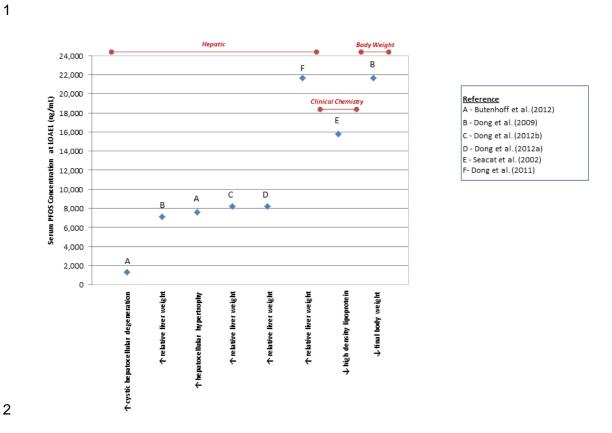

26 POINTS OF DEPARTURE FOR NON-CANCER AND CANCER ENDPOINTS

27

28 Identification of most sensitive endpoints

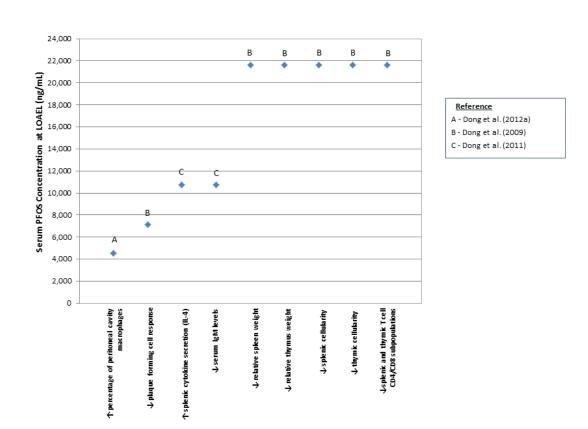
- 29 Dose-response analysis focused on health endpoints from animal studies with exposure durations 30 greater than 30 days, as well as on shorter-term reproductive and developmental endpoints from animal studies involving exposures during gestation and/or the immediate post-natal period (i.e., 31 reproductive/developmental studies). Endpoints were selected for dose-response analysis based 32 33 on their reporting of serum PFOS concentrations associated with exposure. Serum 34 concentrations are preferable to external administered doses (e.g., mg /kg body weight/day) for use in dose-response evaluation for PFOS because they represent the internal dose and account 35 36 for pharmacokinetic differences between species and strains. Since a given administered dose of 37 PFOS will result in a much higher internal dose (as indicated by serum level) in humans than in
- 38 experimental animals, interspecies comparison on the basis of serum PFOS concentration

- 1 reduces uncertainty when extrapolating from health effects in animals to health effects and
- 2 equivalent daily intake doses in humans.
- 3 Numerous adverse endpoints that were reported from animal studies have corresponding serum
- 4 PFOS concentrations. Endpoints with Lowest Observed Adverse Effect Levels (LOAELs) at the
- 5 higher end of the range of reported serum PFOS concentrations in the identified animal database
- 6 are useful for hazard identification, but are not necessarily useful for deriving an RfD intended to
- 7 provide protection for the most sensitive relevant effects. Therefore, only the most sensitive
- 8 endpoints in the animal studies (i.e., those associated with LOAELs in the lower end of the range
- 9 of serum PFOS concentrations) reported in the identified literature were considered for dose-
- 10 response modeling, and potentially for RfD derivation. These most sensitive endpoints were
- 11 identified by stratifying the endpoints from animal studies into quartiles based on serum PFOS
- 12 concentrations corresponding to the LOAEL. Figure 8 below outlines the approach taken for
- 13 identifying the most sensitive endpoints.



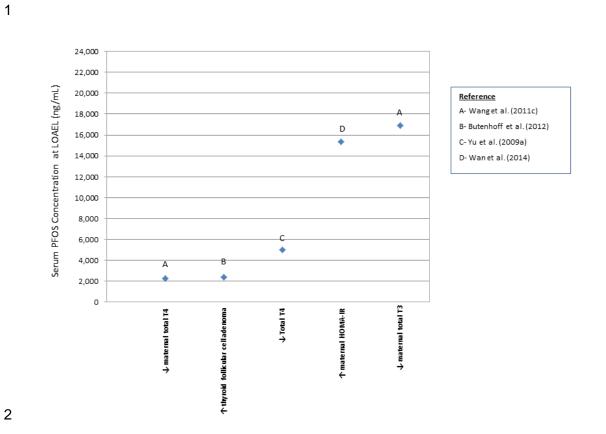
1

2 Figure 8. Graphical representation of approach taken to identify most sensitive endpoints

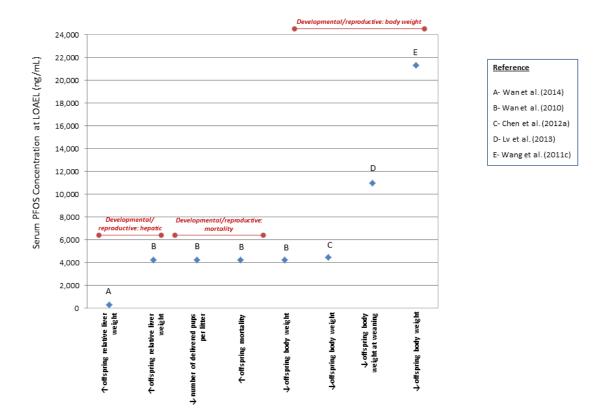

- 4 As the first step in generating these quartiles, the hazard identification data for all animal
- 5 endpoints included in evidence tables were compiled using the Study Summary Tables (see
- 6 Hazard Identification section). Studies in which serum PFOS would have substantially

- 1 decreased prior to serum PFOS measurement at the time of the endpoint ascertainment (e.g.
- 2 substantial time interval between end of dosing and measurement of serum PFOS and endpoint
- 3 ascertaintment) were excluded. This yielded approximately 270 endpoints with LOAELS and
- 4 corresponding serum PFOS measurements from the 34 animal studies meeting the criteria for
- 5 inclusion in evidence tables (see *Reviewing animal toxicology studies* in the Hazard
- 6 Identification section). To estimate the numerical ranges for the quartiles in the full animal
- 7 dataset, a 10% sample of the full dataset was generated by extracting every tenth LOAEL from
- 8 the endpoints listed in the full dataset. If an endpoint yielded two LOAELs (i.e., male and
- 9 female), each LOAEL was counted separately. This list, based on selection of every 10th
- 10 LOAEL, included 22 endpoints from animal studies. The LOAELs based on serum PFOS
- 11 concentration in this sample ranged from 4,460 to 223,000 ng/mL with a median concentration
- 12 of approximately 45,000 ng/mL. In the lowest quartile, the maximum LOAEL serum PFOS
- 13 concentration was approximately 24,000 ng/mL.
- 14 Based on this estimate generated from the sample, the lowest quartile of LOAELs in the full
- 15 animal dataset of all endpoints with LOAELs \leq 24,000 ng/ml were extracted and graphically
- 16 arrayed by endpoint (Figures 9 to 13). Visual inspection across arrays revealed a general
- 17 clustering of animal endpoints occurring with a LOAEL where the serum PFOS concentration
- 18 was \leq 10,000 ng/mL. Endpoints occurring at or below this serum PFOS concentration were thus
- 19 considered to be within the group of most sensitive animal endpoints. Not all of these endpoints
- 20 were considered for dose-response modeling due to study-specific concerns and/or lack of
- 21 biological significance.

3 Figure 9. Graphical array of body weight, clinical chemistry, and hepatic effects in adult animals within

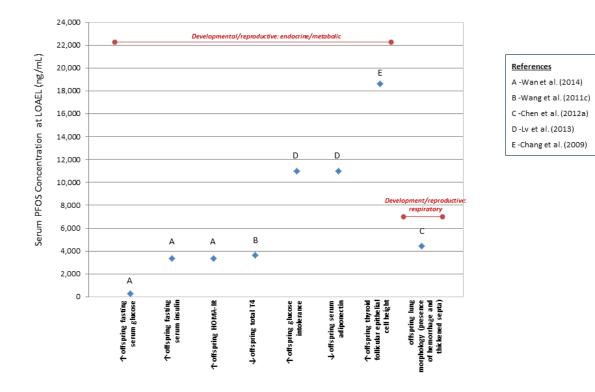

4 the first quartile of serum PFOS concentrations.

2


3 Figure 10. Graphical array of immune effects in adult animals within the first quartile of serum PFOS

4 concentrations.

3 Figure 11. Graphical array of endocrine/metabolic effects in adult animals within the first quartile of


4 serum PFOS concentrations.

1

2 Figure 12. Graphical array of body weight, hepatic, and mortality effects in offspring animals within the

3 first quartile of serum PFOS concentrations.

2 Figure 13. Graphical array of endocrine/metabolic and respiratory effects in offspring animals within the

3 first quartile of serum PFOS concentrations.

4 Table 28 lists those endpoints for which the serum PFOS concentration at the LOAEL was

5 10,000 ng/mL or lower, sorted from lowest to highest serum PFOS concentration. Although a

6 total of 21 endpoints with a LOAEL \leq 10,000 ng/mL were identified, as depicted in Figures 7 to

7 11 above, only 20 endpoints are listed in Table 28 as the increased relative liver weight data

8 presented in Dong et al. (2012a) and Dong et al. (2012b) were similar. Because Dong et al.

9 (2012a) included data on additional dose groups, data from this study were considered for dose-

10 response analysis.

Table 28. List of endpoints with serum PFOS concentration of \leq 10,000 ng/mL at the LOAEL.							
Endpoint	Serum PFOS concentration at the LOAEL (ng/mL)	Reference					
↑ offspring fasting serum glucose, mouse offspring	300	Wan et al. 2014					
↑ cystic hepatocellular degeneration, adult rats	1,310	Butenhoff et al. 2012					
↓ maternal total thyroxine, adult rats	2,290	Wang et al. 2011c					
↑ thyroid follicular cell adenoma, adult rats	2,420	Butenhoff et al. 2012					

Endpoint	Serum PFOS concentration at the LOAEL (ng/mL)	Reference		
↑ offspring fasting serum insulin, mouse offspring	3,360	Wan et al. 2014		
↑ offspring HOMA-IR, mouse offspring	3,360	Wan et al. 2014		
↑ offspring relative liver weight, mouse offspring	3,360	Wan et al. 2014		
↓ offspring total thyroxine, rat offspring	3,650	Wang et al. 2011c		
↓ number of delivered pups per litter, rat offspring	4,260	Wan et al. 2010		
↑ offspring mortality, rat offspring	4,260	Wan et al. 2010		
↓ offspring body weight, rat offspring	4,260	Wan et al. 2010		
↑ offspring relative liver weight, rat offspring	4,260	Wan et al. 2010		
↓offspring body weight, rat offspring	4,460	Chen et al. 2012a		
altered offspring lung morphology, rat offspring	4,460	Chen et al. 2012a		
↑ percentage of peritoneal cavity macrophages, adult mice	4,350	Dong et al. 2012a		
↓ total thyroxine, adult rats	5,000	Yu et al. 2009a		
↑ relative liver weight, adult mice	7,130	Dong et al. 2009		
↓ plaque forming cell response, adult mice	7,130	Dong et al. 2009		
↑ hepatocellular hypertrophy, adult rats	7,600	Butenhoff et al. 2012		
↑ relative liver weight, adult mice	8,210	Dong et al. 2012a, Dong et al. 2012b		

2 In adult animals, the most sensitive endpoints (i.e., those with the lowest LOAELs based on

3 serum PFOS concentrations; 9 in total) included: endocrine/metabolic effects (e.g., decreases in

4 thyroid hormone and increased incidence of thyroid follicular cell adenomas), changes in

5 immune parameters (e.g., increased relative number of macrophages and decreased plaque

6 forming cell response), and increased liver weight and liver histopathology.

- 1 In perinatal or adult offspring, the most sensitive endpoints (i.e., those with the lowest LOAELs
- 2 based on serum PFOS concentrations; 11 in total) included: decreased body weight, changes in
- 3 endocrine/metabolic parameters (i.e., fasting levels of serum glucose and insulin, markers of
- 4 insulin resistance, and thyroid hormone levels), increased liver weight, changes in lung
- 5 morphology, and increased mortality. These endpoints resulted from gestational and/or post-
- 6 natal exposures (e.g., via lactation).

7 These 20 endpoints were given further examination in terms of timing of endpoint ascertainment,

8 biological significance, and suitability for dose-response analysis (e.g., incomplete quantitative

9 reporting of dose-response data such as descriptions of morphological presentation at each dose).

- 10 For offspring endpoints observed following gestational exposure, the effective exposures were
- 11 taken to be represented by the maternal serum PFOS concentration at or near birth.

12 <u>Selection of endpoints for dose-response analysis</u>

13 Non-cancer endpoints

- 14 The following discussion provides the rationale for exclusion of the non-cancer endpoints and
- 15 studies for which the LOAEL PFOS serum concentration was \leq 10,000 ng/mL (Table 28) that
- 16 were not considered for dose-response analysis.
- 17 Following gestational PFOS dosing (GD3 to birth) and then lactational exposure (via continued
- 18 materinal dosing to PND21) in mice, Wan et al. (2014) observed at PND 63 increases in the
- 19 following offspring endpoints: fasting serum glucose, fasting serum insulin, HOMA-IR, and
- 20 relative liver weight. Of these, the increase in offspring fasting serum glucose was identified as
- 21 the most sensitive endpoint with a serum PFOS concentration of 300 ng/mL at the LOAEL. For
- the three other offspring endpoints, the serum PFOS concentration was 3,360 ng/mL at the
- 23 LOAEL. Both the offspring endpoints and offspring serum PFOS concentrations were
- 24 determined at PND 63. However, these serum PFOS concentrations at PND63 do not reflect the
- 25 higher serum PFOS concentrations that were achieved during gestational exposure and are
- 26 presumed to be responsible for the observed offspring effects at PND 63. Serum PFOS
- 27 concentrations were also determined at PND21 for the offspring mice and their dams. However
- as with the PND 63 serum concentration measurement, these determinations at PND 21 may not
- accurately reflect the serum PFOS concentration leading to the offspring effects occurring at
- 30 PND 63. Therefore, due to a lack of an appropriate measurement of serum PFOS concentration
- 31 (e.g., at PND 0), the four endpoints listed for Wan et al. (2014) were excluded from dose-
- 32 response analyses.
- 33 In Wang et al. (2011c), pregnant rats were exposed to PFOS from GD 3 to PND 14. At PND 1,
- 34 the authors observed a decrease in maternal total thyroxine levels with a corresponding serum
- 35 PFOS concentration of 2,290 ng/mL, making this endpoint the most sensitive maternal effect
- 36 observed in this study. Decreased total triiodothyronine levels were also observed in the dams
- 37 but only at higher administered doses. The biological significance of these decreases in maternal

- 1 thyroxine and triiodothyronine is unclear since no other thyroid endpoints, such as thyroid
- 2 stimulating hormone or thyroid histopathology and relative weight, were assessed to corroborate
- 3 these observations. Therefore, the maternal effect on total thyroxine as reported in Wang et al.
- 4 (2011c) was excluded from dose-response analysis.
- 5 Wang et al. (2011c) found a significant decrease in offspring serum total thyroxine on PND7
- 6 following gestational and lactational exposure as a function of maternal serum PFOS
- 7 concentration measured on PND1. Wang et al. (2011c), like the Yu et al. (2009a) study,
- 8 measured total T4 using an immunoassay. This type of assay is subject to the same uncertainties
- 9 about method artifact in the measurement of T4 using this immunoassay method discussed in the
- 10 description of the Yu et al. (2009a) study above. Further, lack of an observed association
- 11 between PFOS exposure and decreased T4 (total or free) among 16 epidemiologic studies raises
- 12 concerns as to the human relevance of this endpoint. Additionally, even if this were to be
- 13 considered a valid endpoint, as discussed in the <u>Toxicokinetics</u> section, differences exist between
- 14 rats and humans in maternal-fetal transfer of PFOS making identification of the corresponding
- 15 human serum concentration problematic. For these reasons, the Wang et al. (2011c) study was
- 16 not considered further for dose-response analysis.
- 17 In Wan et al. (2010), pregnant rats were exposed to PFOS from GD 2 to GD 21. Following
- 18 parturition, a decrease in the number of delivered pups per litter and an increase in pup mortality
- 19 were observed at PND 3. At PND 21, a decrease in pup body weight and an increase in pup
- 20 relative liver weight were also observed. Serum PFOS concentrations in this study were only
- 21 determined for the offspring at PND 21 and were reported to be 4,260 ng/mL at the LOAEL.
- 22 However, this serum PFOS concentration at PND 21 is unlikely to reflect the higher serum PFOS
- 23 concentration that was achieved during gestational exposure and responsible for the effects on
- the number of pups delivered and on pup mortality observed at PND3. Similarly, the offspring
- body weight and liver weight effects likely resulted from higher serum PFOS concentrationsachieved during or immediately following gestational exposure, not at the serum concentration at
- 27 PND 21. Therefore, due to a lack of an appropriate measurement of serum PFOS concentration
- 28 (e.g., at PND 0), the four endpoints listed for Wan et al. (2010) were excluded from dose-
- 29 response analyses.
- 30 In Chen et al. (2012a), pregnant rats were exposed to PFOS from GD 1 to GD 21. A decrease in
- 31 offspring body weight was observed in the high dose group starting on PND 0 through PND 21.
- 32 Offspring LOAEL serum PFOS concentrations at PND 0 and PND 21 were > 47,000 ng/mL and
- 33 4,460 ng/mL, respectively. While a decrease in offspring body weight at PND 0 is a biologically
- 34 significant effect, the corresponding serum PFOS concentration (> 47,000 ng/mL) at PND 0 was
- 35 in excess of the 10,000 ng/mL cut off concentration that is applied here for identifying endpoints
- 36 for dose-response analysis. As stated above, it is assumed that effects observed in offspring
- 37 exposed during gestation were all or mostly attributable to gestational exposure, even if
- 38 lactational exposure from the previously exposed dams occurred. Therefore, the PND 21 serum
- 39 PFOS concentrations measured in Chen et al. (2012a) are not considered to be appropriate

1 predictors of the dose-response for endpoints observed in this study. Thus, given that the

2 LOAEL serum PFOS concentration based on the PND0 measurements exceeded the 10,000

- 3 ng/ml cutoff, the decreased offspring body weight and changes in offspring lung morphology
- 4 endpoints reported in Chen et al. (2012a), was not further considered for dose-response
- 5 modeling.

6 In Dong et al. (2012a) adult male rats were exposed to PFOS for 60 days. After this exposure,

- 7 the authors observed a statistically significant increase in the percentage of macrophages in the
- 8 peritoneal cavity (i.e., the relative proportion of macrophages among all other cells isolated).
- 9 The corresponding serum PFOS concentration at the LOAEL was 4,350 ng/mL. The biological
- 10 significance of this observation is unclear because there was no change in the absolute number of
- 11 macrophages. Rather, the increase in the percentage of macrophages was driven by a non-
- 12 statistically significant decrease in the total number of cells collected from the peritoneal cavity.
- 13 Therefore, the increase in the percentage of macrophages in the peritoneal cavity was excluded
- 14 from dose-response analysis.

15 Butenhoff et al. (2012) identified cystic hepatocellular degeneration as a sensitive endpoint for

16 PFOS in adult rats. However, several factors argue against carrying this endpoint forward to

- 17 dose-response analysis. Although the dose response was quite steep for the two lowest doses, it
- 18 plateaued for the two highest doses. Since this endpoint ostensibly results from disruption of
- 19 hepatocellular architecture, the lack of progression with increasing dose would not seem to be
- 20 explainable by receptor saturation, and the mode of action is, thus, unclear. Cystic hepatocellular
- degeneration, also referred to as spongiosis hepatis, in rats is known to be most prevalent in
 males, spontaneous and age-related (Karbe and Kerlin, 2002; Thoolin et al., 2010), and the lack
- males, spontaneous and age-related (Karbe and Kerlin, 2002; Thoolin et al., 2010), and the lack
 of continuous dose-response in the chronic Butenhoff et al. (2012) study may indicate that PFOS
- makes a small contribution to the spontaneous occurrence of this effect. There is a disagreement
- 25 in the literature as to whether cystic hepatocellular degeneration is pre-neoplastic (Karbe and
- 26 Kerlin, 2002; Bannasch, 2003; Kerlin and Karbe, 2004), but there is some speculation that it
- 27 may, instead, be reparative, or simply due to the overproduction of proteoglycans (Karbe and
- 28 Kerlin, 2002). Finally, Karbe and Kerlin (2002) and Thoolen et al. (2010) state that cystic
- 29 hepatocellular degeneration is either not seen, or is very rarely seen in humans. While this
- 30 observation does not preclude that this effect could be induced by a xenobiotic, or that PFOS
- 31 could produce other liver toxicity through the same mode of action responsible for this effect in
- 32 rats, the overall weight of evidence indicates that the toxicological significance of cystic
- 33 hepatocellular degeneration to humans is unclear. Therefore, the cystic hepatocellular
- 34 degeneration endpoint from Butenhoff et al. (2012) was not further considered for dose-response
 25 analysis
- 35 analysis.
- 36 Yu et al. (2009a) identified reduced total T4 in adult rats dosed with PFOS. However, thyroid
- 37 stimulating hormone (TSH) was not increased in this study. Reduced total T4 might be
- 38 interpreted as hypothyroidism. However, T4 and TSH are closely linked by a negative feedback
- 39 loop such that a functional decrease of T4 triggers a compensatory upregulation of TSH in an

1 attempt to increase T4 production (DeVito et al, 1999; Chang et al., 2007). Therefore, the lack 2 of observed TSH increase in response to PFOS exposure raises questions about the significance 3 of the observed decrease in T4. Chang et al. (2007) suggest that the observed decrease in T4 in 4 response to PFOS exposure is an artifact of immunoassays for T4. They suggest that free PFOS 5 in serum binds to the proteins added to the serum in the immunoassay, reducing their availability 6 to react with T4, and thus giving the appearance of reduced T4 in the serum. They compared 7 total T4 in rat serum measured with two immunoassays and an alternate, non-immunoassay (LC-8 MS/MS) assay. They found significantly lower total T4 and free T4 (FT4) in rats exposed to 5 9 mg/kg/day PFOS compared to controls when using the immunoassays, but no significant 10 difference when using the LC-MS/MS assay. Lopez-Espinosa et al. (2012b), however, did not find a difference in total T4 in human serum in a population with general population level PFOS 11 12 exposures when comparing immuno- and non-immunoassays for T4. They suggested that the 13 difference between their observation and that of Chang et al. (2007) may be due to the lower 14 serum PFOS concentrations in the human population. Thus, the exclusive use of an immunoassay for T4 by Yu et al. (2009a) raises the possibility that observed decrease in total T4 15 16 as a function of PFOS exposure could have been an artifact of the assay. Additionally, the 17 absence of an observed association between PFOS exposure and decreased T4 (total or free) 18 across the 16 available epidemiology studies raises questions about the human relevance of the

19 effect observed by Yu et al. (2009a). Given the uncertainties about its toxicological significance,

20 the endpoint of decreased total T4 in adult rats from the Yu et al. study was not considered

21 further for dose-response analysis.

Based on the preceding exclusions, the following endpoints were selected for furtherconsideration in non-cancer dose-response analyses:

- increased relative liver weight, adult mice (Dong et al., 2009)
- decreased plaque forming cell response, adult mice (Dong et al., 2009)
- increased hepatocellular hypertrophy, adult rats (Butenhoff et al., 2012)
 - increased relative liver weight, adult mice (Dong et al., 2012a)

28 Tumor endpoint

As discussed above, increases in hepatic and thyroid follicular tumors were observed in rats in the only chronic study of PFOS (Butenhoff et al., 2012). As discussed above, the origin of the thyroid tumors is unclear, and they do not occur in a clear dose-related manner. In contrast, mode of action information indicates that the hepatic tumors should be considered relevant to humans for the purposes of risk assessment, and their incidence increased with dose. Therefore, doseresponse analysis was conducted on the hepatocellular tumors in male and female rats. This is

- 35 presented in the section on Estimation of Cancer Risk from PFOS in Drinking Water, below.
- 36

27

1 <u>Dose-response Analysis</u>

- 2 As discussed above, four non-cancer endpoints from three studies and one cancer endpoint were
- 3 identified for consideration for dose-response assessment. The four non-cancer endpoints were
- 4 selected from the larger group of non-cancer endpoints from animal studies that were observed at
- 5 PFOS serum levels \leq 10,000 ng/ml. These endpoints and their respective studies are listed in
- 6 Table 29 below.

Table 29. List of cancer and non-cancer endpoints carried forward into dose-response assessment

Butenhoff et al. (2012)	hepatocellular hypertrophy
Male rats	hepatocellular tumors
Dong et al. (2009)	relative liver weight
Male mice	plaque-forming cell response
Dong et al. (2012a)	
Male mice	relative liver weight

7

8 Identification of Points of Departure (PODs) for non-cancer endpoints

- 9 The first step in dose-response analysis is identification of a Point of Departure (POD), which is
- 10 the dose within or close to the dose range used in the study from which extrapolation begins. As
- 11 described below, if a Benchmark Dose can be developed, it is preferred for use as the POD. If
- 12 BMD modeling does not give an acceptable fit to the data, the NOAEL (or LOAEL, if a NOAEL
- 13 is not identified) is used as the POD.
- 14 The dose-response for each of these five endpoints was investigated using the USEPA
- 15 benchmark dose software, BMD software (ver. 2.6.0.1) accessed at:
- 16 <u>https://www.epa.gov/bmds/download-benchmark-dose-software-bmds</u>. The results of the BMD
- 17 modeling for the non-cancer endpoints are presented in this section. The BMD modeling of the
- 18 hepatocellular tumor data is presented in the section on Estimation of Cancer Risk from PFOS in
- 19 <u>Drinking Water</u> later in this document.
- 20 Benchmark dose (BMD) modeling is a quantitative approach commonly used to estimate the
- 21 lower 95% confidence limit (the BMDL) on the dose corresponding to a pre-determined minimal
- 22 response (the benchmark response, BMR) that is consistent with the observed data. The BMDL
- 23 is considered to be an estimate of the NOAEL. However, because it is based on the entire dose-
- 24 response curve for the endpoint of interest rather than just the fixed doses administered in the
- study, it provides a generalizable estimate of the no-observed adverse effect dose that is not
- 26 linked to specific administered doses in the original study. Benchmark dose modeling is
- 27 identified by the USEPA (2012) as the preferred approach for dose-response modeling when the
- 28 available data are sufficient to support it.

- 1 When the necessary data are available and appropriate, BMD modeling can be performed using
- 2 the serum concentrations of a chemical instead of administered doses. Serum concentrations are
- 3 preferable to administered doses as the basis for BMD modeling because they better represent
- 4 the shape of the internal dose-response curve and reflect interspecies pharmacokinetic
- 5 differences. BMD modeling was performed on serum PFOS data in order to determine whether
- 6 BMDLs for serum PFOS concentrations could be used as the points of departure (PODs) to
- 7 develop RfDs. If BMD modeling did not give an acceptable fit to the data, the NOAEL (or
- 8 LOAEL, if a NOAEL was not identified) based on serum PFOS concentration was used as the
- 9 POD.

10 Criteria for BMDL selection

The appropriate BMDL (if any) for each endpoint was determined based on all of the followingcriteria:

- A scaled residual at each input serum PFOS concentration < 2.
- An acceptable fit based on chi-squared goodness of fit statistics (p > 0.1).
- A relatively small Akaike information criterion (AIC) statistic generally within 1% of
 the lowest AIC value among the available models.
- A biologically appropriate model fit. This criterion applies most specifically to the portion of the dose-response near the BMR. Models with non-monotonic fits at the highest dose, but biologically reasonable fits at all other doses would not necessarily be excluded from consideration. In addition, if models gave an unacceptable fit to the data using the full dataset, but an acceptable fit after excluding the highest dose, benchmark dose modeling could be attempted after excluding the response at the highest dose from the modeling.
- The smallest BMDL meeting all of these criteria, or:
- If several models for a given endpoint all met the preceding criteria, with AIC values differing by < 1%, and their BMDL values differing by < 10%, their BMDLs can be averaged to give a summary BMDL.
- 28

29 Use of serum PFOS data in dose-response analysis

- 30
- 31 <u>Male mouse studies</u>
- 32 As discussed above, dose-response analysis was based on serum PFOS levels (internal dose)
- rather than administered dose. For the two male mouse studies (Dong et al., 2009; Dong et al.,
- 34 2012a) for which dose-response analysis was conducted, animals were dosed for 60 days and
- 35 serum PFOS levels were measured at sacrifice, one day after dosing ended.
- 36
- 37 Since the half-life for PFOS in male mice is approximately 40 days (~6 wks) (USEPA, 2016b), it
- is likely that the PFOS serum concentrations were increasing at the end of the 60 days of dosing.
- 39 Therefore, the serum concentration at terminal sacrifice may overestimate the dose at the onset

- 1 of the adverse effect. Thus, the use of the terminal sacrifice serum PFOS concentration in the
- 2 derivation of the PODs would tend to bias the PODs toward higher values. This is a non-
- 3 conservative bias in that it, ultimately, has the effect of resulting in higher criteria levels.

4 Area under the curve (AUC) for serum PFOS data from chronic rat study (Butenhoff et al., 2012)

5 Dose-response analysis was also conducted for two endpoints from the chronic rat study

6 (Butenhoff et al., 2012), hepatocellular hypertrophy and hepatocellular tumors (presented in a

7 later section of this document). Since the serum PFOS concentrations changed greatly over time

8 in Butenhoff et al. (2012, it is appropriate to consider the available serum PFOS data over the

9 course of the entire 105 week study. Therefore, for the endpoints from Butenhoff et al. (2012),

- 10 the serum PFOS concentrations used in dose-response analysis are based on the area under the
- 11 curve (AUC) for serum PFOS, as described below.
- 12

13 The maximum serum concentration in males was reached by approximately 14 wks of dosing

14 and declined after that time point in all dose groups. The authors suggest that this decrease was

15 due to chronic progressive nephritis, resulting in increased urinary elimination of PFOS. As

16 shown in Figure 14, use of the serum PFOS concentration at terminal sacrifice (105 wks) would

17 substantially underestimate the serum concentration during a significant portion of the study. To

18 address this, the area under the curve (AUC) was calculated for each dose group. The relative

19 lack of data precluded fitting smooth functions to these data and the AUC was, therefore,

- 20 calculated using linear interpolation.
- 21

For females, the serum concentration remained relatively constant or increased slightly after 14

23 weeks of dosing, except for the 20 ppm recovery group for which, as anticipated, the serum

24 PFOS concentration decreased following the cessation of dosing at 52 weeks. The AUC was

calculated for the females in each dose group including the 20 ppm recovery group.

26

27 Table 30 presents the results of the AUC calculations. To obtain the time-weighted average

serum concentration for each dose, the AUC was divided by the timepoint at which the final

serum PFOS concentration was determined (e.g., 102, 105, or 106 wks).

30

31

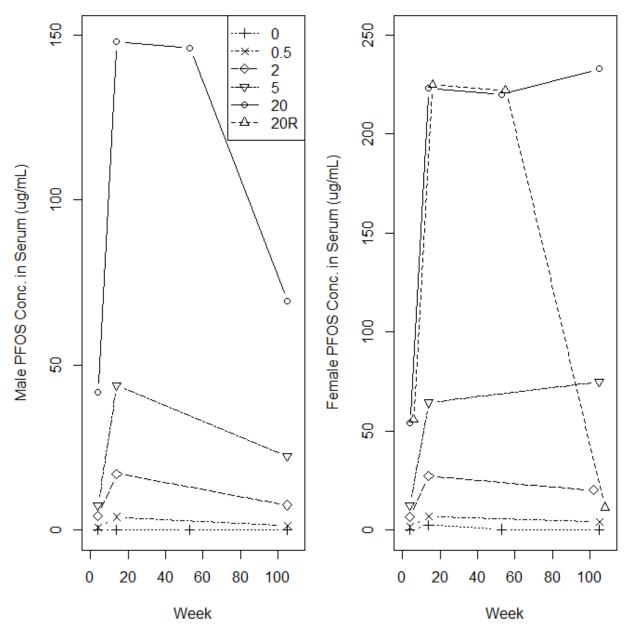


Figure 14. PFOS - Area Under Curve (AUC) (data from Table 7 of Butenhoff et al., 2012) and 3M
Environmental Laboratory (2001; week 53 female serum PFOS concentration in the 20 ppm group).

Table 30. Summary of AUC and time-weighted average serum concentration for male and

1

female rats from Bu	ttenhoff et al. (201	2) and 3M Environr	nental Laboratory	(2001).
Dietary K ⁺ PFOS	Male AUC	Time-weighted	Female AUC	Time weighted
Conc.	(ng*wk/mL)	average serum	(ng*wk/mL)	average serum
$(\mu g K^+ PFOS/g$		conc. (ng/ml)		conc. (ng/ml)
diet)				
0	2.6×10^3	24.8	8.57 x 10 ⁴	816
0.5	2.682 x 10 ⁵	2,554.3	5.575 x 10 ⁵	5,309
2	1.231 x 10 ⁶	11,723.8	2.2596 x 10 ⁶	22,153
5	3.2786 x 10 ⁶	31,224.8	6.7277 x 10 ⁶	64,073
20	1.22798 x 10 ⁷	116,950.5	2.1802 x 10 ⁻⁷	210,790
20 recovery	16,105.5	1.6106 X 10 ⁷	106	151,939
(dosing ended at				
52 weeks)				

2

3 Benchmark dose modeling for non-cancer endpoints

- 4 For comparison among endpoints, a summary of serum PFOS and endpoint data used for
- 5 benchmark dose modeling of non-cancer endpoints are listed below in Table 31. Benchmark
- 6 dose-modeling for the cancer endpoint (hepatocellular tumors from Butenhoff et al., 2012) is
- 7 presented in the section on Estimation of Cancer Risk from PFOS in Drinking Water below.

Study	Endpoint	Administered dose	Serum PFOS	Endpoint data ^a
Study		(mg/kg/day, unless noted otherwise)	concentration (ng/ml)	
Butenhoff et	Increased	0	24.8 ^b	0/65
al. (2012)	hepatocellular	0.024	2,554.3	2/55
	hypertrophy (male	0.098	11,723.8	4/55
	rats)	0.242	31,224.8	22/55
		0.984	116,950.5	42/65
Dong et al.	Increased relative	0	48	5.17 ± 0.12 (10)
(2009)	liver weight	0.0083	674	5.21 ± 0.17 (10)
	(male mice)	0.083	7132	5.78 ± 0.13 (10)
		0.417	21638	6.67 ± 0.11 (10)
		0.833	65426	8.17 ± 0.21 (10)
		2.1	120670	11.47 ± 0.12 (10)
Dong et al.	Decreased plaque-	0	48	$597 \pm 64 \ (10)^{c}$
(2009)	forming cell	0.0083	674	538 ± 52 (10)
	response (male	0.083	7132	416 ± 43 (10)
	mice)	0.417	21638	$309 \pm 27 (10)$

Table 21 Summary of dose-response data for the four non-cancer endpoints that underwent

Table 31. Summary of dose-response data for the four non-cancer endpoints that underwent	
benchmark dose modeling.	

Study	Endpoint	Administered dose (mg/kg/day, unless noted otherwise)	Serum PFOS concentration (ng/ml)	Endpoint data ^a
		0.833	65426	253 ± 21 (10)
		2.08	120670	$137 \pm 16 (10)$
Dong et al.	Increased relative	0	40	4.87 ± 0.13 (6)
(2012a)	liver weight	0.0083	580	5.13 ± 0.15 (6)
	(male mice)	0.0167	4350	5.09 ± 0.12 (6)
		0.0833	8210	5.39 ± 0.15 (6)
		0.417	24530	6.48 ± 0.14 (6)
		0.833	59740	9.03 ± 0.27 (6)
		2.08	114190	12.11 ± 0.25 (6)

a = data reported as either incidence (number of animal affected/number of animals observed) or mean \pm standard deviation or standard error. For data reported as mean value, number in parenthesis is sample size.

b = serum PFOS concentrations for Butenhoff et al. (2012) based on AUC analysis described in Dose-Response section.

c = plaque forming cell response data presented graphically in Dong et al. (2009). Numerical data for plaque forming cell response obtained via personal communication with G-H Dong, May 2016.

1

2 The summary benchmark dose statistics for each of the four non-cancer endpoints are presented

3 below. Detailed model outputs are presented in Appendix 7.

4

5 Butenhoff et al. (2012) - Hepatocellular hypertrophy (male rats)

6 Hepatocellular hypertrophy was treated as a quantal endpoint (i.e., for each animal, the outcome

7 was either positive or negative for the condition). The dose-response was, therefore, modeled as

8 a quantal response. The recommended BMR for quantal dose-response modeling in the BMDS

9 software is a 10% change from the control response. The summary results of the benchmark

10 dose modeling for this study are presented in Table 32 below.

- 11
- 12
- 13
- 14
- 15 16
- 17

18

18

Table 32. Summary of BMD modeling results for hepatocellular hypertrophy in male rats
(Butenhoff et al., 2012); $BMR = 10\%$ change from the control response

			-		
Beta/Power/Slope	Poly-	Chi-	AIC	BMD	BMDL
	nomial	square p-		(ng/mL)	(ng/mL)
	degree	value			
Restrict Power ≥	-	0.173	212.51	10203.40	8368.92
1					
No Power	-	0.147	213.86	8291.14	4550.43
Restriction					
-	-	0.000	238.66	31419.00	26497.40
Restrict Slope \geq	-	0.274	212.48	8699.10	5699.63
1					
No Slope	-	0.274	212.48	8699.12	5225.39
Restriction					
No Slope	-	0.246	212.76	8370.95	5213.28
Restriction					
Restrict Slope ≥ 1	-	0.014	219.42	16623.90	13644.30
*	1st	0.173	212.51	10203.40	8368.92
0	_~~				
Restrict Betas >	2nd	0.173	212.51	10203.40	8368.92
0					
Restrict Betas >	3rd	0.173	212.51	10203.40	8368.92
0 -					
No Beta	1st	0.173	212.51	10203.40	8368.92
Restriction					
No Beta	2nd	0.287	212.56	7737.04	5485.69
Restriction					
No Beta	3rd	0.353	212.32	10641.20	6596.30
Restriction					
-	1st	0.173	212.51	10203.40	8368.92
-	2nd	0.173	212.51	10203.40	8368.92
-	3rd	0.173	212.51	10203.40	8368.92
-	-	0.000	236.38	28960.60	24709.50
Restrict Power ≥	_	0.173	212.51	10203.40	8368.92
1		-			
	_	0.163	213.68	8105.33	4571.23
No Power					
No Power Restriction	-	0.200			
No Power Restriction -		0.173	212.51	10203.40	8368.92
	Beta/Power/Slope Restrict Power ≥ 1 No Power Restriction Restrict Slope ≥ 1 No Slope Restriction Restrict Betas ≥ 0 Restrict Betas ≥ 0 Restrict Betas ≥ 0 Restrict Betas ≥ 0 Restrict Betas ≥ 0 Restrict Betas ≥ 0 Restriction Restriction No Beta Restriction No Beta Restriction No Beta Restriction No Beta Restriction No Beta Restriction No Beta Restriction No Beta Restriction	Beta/Power/SlopePolynomial nomial degreeRestrict Power ≥-1-No Power Restriction-Restrict Slope ≥-1-No Slope Restriction-Restrict Slope ≥1-Restrict Betas ≥1st0-Restrict Betas ≥2nd0-Restrict Betas ≥3rd0-Restrict Betas ≥3rd0-No Beta Restriction1stRestriction-No Beta Restriction3rd0-No Beta Restriction3rd1-No Beta Restriction3rd0-1-3rd1-111111-1-1-	Beta/Power/SlopePoly- nomial algreeChi- square p- valueRestrict Power ≥-0.1731-0.147No Power Restriction-0.147Restrict Slope ≥-0.2741-0.274Restrict Slope ≥-0.274Restriction-0.274Restriction-0.274Restrict Slope ≥-0.274Restrict Betas ≥1st0.1130-0.014Restrict Betas ≥1st0.1730Restrict Betas ≥2nd0.1730No Beta Restriction1st0.173No Beta Restriction2nd0.287RestrictionNo Beta Restriction1st0.1730-1st0.1730No Beta Restriction3rd0.353-1st0.173-2nd0.173-2nd0.1730.000Restriction0.0000.0000.0000.000	Beta/Power/Slope Poly- nomial degree Chi- square p- value AIC Restrict Power ≥ 1 - 0.173 212.51 No Power Restriction - 0.147 213.86 Restrict Slope ≥ 1 - 0.000 238.66 Restrict Slope ≥ 1 - 0.274 212.48 No Slope Restrict Slope ≥ 1 - 0.274 212.48 Restrict Slope ≥ 1 - 0.274 212.48 Restrict Slope ≥ 1 - 0.274 212.48 Restrict Betas ≥ 0 1st 0.173 212.51 Restrict Betas ≥ 0 1st 0.173 212.51 No Beta Restriction 1st 0.173 212.51 No Beta Restriction 3rd 0.287 212.51 No Beta Restriction 3rd 0.353 212.51 - 1st 0.173 212.51 - 1st 0.173 212.51 - 1st 0.173 212.51 - 1st 0.173 212.51	nomial degree square p- value (ng/mL) Restrict Power ≥ 1 - 0.173 212.51 10203.40 No Power Restriction - 0.147 213.86 8291.14 Restrict Slope ≥ 1 - 0.000 238.66 31419.00 Restrict Slope ≥ 1 - 0.274 212.48 8699.10 No Slope Restriction - 0.274 212.48 8699.12 Restrict Slope ≥ Restriction - 0.246 212.76 8370.95 Restrict Slope ≥ 1 - 0.014 219.42 16623.90 Restrict Betas ≥ 0 1st 0.173 212.51 10203.40 0 - 0.014 219.42 16623.90 Restrict Betas ≥ 0 1st 0.173 212.51 10203.40 0 - - 0.173 212.51 10203.40 0 - - - 10203.40 - 0 - - 212.51 10203.40 0 -

1

Г

- 1 Of the 20 different dose-response models or variants of models (i.e., with and without slope,
- 2 power, or beta restrictions), 17 gave acceptable fits to the data. The lowest BMDLs all clustered
- 3 closely. These are presented with their AIC values in Table 33 below.

	DLs and AIC values for hepa	atocellular hypertrophy in male rats
(Butenhoff et al., 2012)		
Model	BMDL (ng/ml)	AIC
Gamma	4550.43	213.86
No power restriction		
Weibull	4571.23	213.68
No power restrictions		
Log probit	5213.28	212.76
No slope restrictions		
Log logistic	5225.39	212.48
No slope restrictions		

4

5 The next highest BMDL value among the other models was 5485.69 ng/ml. The highest and

6 lowest of the BMDL values among these four models differ by 13.8%. The two lowest of these

7 BMDL values differ by less than 0.5%, and their AIC values differ by only 0.08%. It is,

8 therefore most appropriate to average the two lowest of these four BMDLs. This gave a value

9 of 4,561 ng/ml, and this is identified as the point-of departure (POD) for hepatocellular

10 hypertrophy.

11 <u>Dong et al. (2009) – Relative liver weight (male mice)</u>

12 Relative liver weight change in mice was treated as a continuous endpoint (i.e., the observed

13 mean value for relative liver weight at each dose and the control value was used in the

14 benchmark dose modeling). Althought the default BMR in the BMDS software for continuous

15 data is 1 S.D. from the mean control value, from a biological standpoint, a BMR of 10% is

16 considered to be more appropriate for relative liver weight increase and has been used in

17 previous BMD modeling of this endpoint for other PFCs (Butenhoff et al., 2004; EFSA, 2008;

18 DWQI, 2015a; DWQI, 2017). Therefore, a BMR of 10% is chosen for this endpoint.

19 Furthermore, the LOAEL for increased relative liver weight in this study corresponds to a 12%

20 increase over the relative liver weight in the controls. Thus, a BMR of 10% is statistically

21 appropriate relative to the distribution of the responses for this endpoint. The summary results of

the benchmark dose modeling for this study are presented in Table 34 below.

- 24
- 25
- 26

Table 34. Summary of BMD modeling results for relative liver weight in male mice (Dong et al., 2009);								
BMR = 10%	change from	the control respon	ise	n	1			
Model	Variance	Beta/Power/Slope	Distribution	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	< 0.0001	-90.65	10,534.5	10,159.5
Exponential (Models 2&3)	Not Constant	Restrict Power ≥ 1	Normal	-	< 0.0001	-95.17	15,553.5	15,217.0
Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	< 0.0001	-323.09	10,557.7	9,399.3
Exponential (Model 4)	Not Constant	Restrict Power ≥ 1	Lognormal	-	< 0.0001	-323.09	10,557.7	9,399.3
Hill	-	-	-	-	-	-	-	-
Linear	Constant (Rho=0)	-	-	1st	< 0.0001	-92.66	10,535.0	10,160.0
Linear	Not Constant	-	-	1st	< 0.0001	-94.18	10,585.3	10,175.0
Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	-96.06	12,122.8	10,904.9
Polynomial	Constant (Rho=0)	-	-	3rd	0.84	-165.53	6,086.2	5,584.3
Polynomial	Not Constant	-	-	2nd	< 0.0001	-95.53	13,461.1	11,093.4
Polynomial	Not Constant	-	-	3rd	0.84	-163.56	6,085.3	5,586.7
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	-90.89	11,158.7	10,176.7
Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	-94.18	10,585.3	10,175.0
Power	Constant (Rho=0)	No Power Restriction	-	-	< 0.0001	-90.89	11,158.7	9,085.9
Power	Not Constant	No Power Restriction	-	-	< 0.0001	-106.45	6,209.8	5,121.9

1

2 Only two closely related models provided an acceptable fit to these data, the polynomial (3rd

3 degree), constant variance and rho = 0 model, and the polynomial $(3^{rd} degree)$ non-constant

4 variance model. Although the 3rd degree polynomial function allowed a response in the high

5 dose range that was somewhat biologically unrealistic (see Appendix 7), the BMD for this

6 function falls in between the control and first dose group. In this range and up to the third dose,

7 the dose-response is entirely plausible. These two models gave nearly identical fits (AIC percent

8 difference = 1.2%) and nearly identical BMDLs (percent difference = 0.04%). It was,

9 therefore, judged appropriate to average these BMDLs to give a composite BMDL of 5,586

10 ng/ml. This is identified as the POD for increased relative liver weight from the Dong et al.

11 (2009) study.

- 1 <u>Dong et al. (2012a) Relative liver weight</u>
- 2 Change in relative liver weight resulting from PFOS exposure was treated as a continuous
- 3 response (i.e., the observed mean values for relative liver weight at each dose and the control
- 4 value was used in the benchmark dose modeling). As discussed for the closely related Dong et
- 5 al. (2009) study, a BMR of 10% was used for relative liver weight in this study. The summary
- 6 results of the benchmark dose modeling for this dataset are presented in Table 35 below.

Table 35. Summary of BMD modeling results for relative liver weight in male mice (Dong et al., 2012a); BMR = 10% change from the control response

2012a); BMR = 10% change from the control response								
Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential (Model 5)	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	0.070	-91.8	9,973.7	8,182.2
Exponential (Model 5)	Not Constant	Restrict Power ≥ 1	Normal	-	0.010	-92.4	10,011.4	8,357.7
Exponential (Model 5)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	0.005	-249.8	9,958.04	8,365.6
Exponential (Model 5)	Not Constant	Restrict Power ≥ 1	Lognormal	-	0.005	-249.8	9,958.0	8,365.6
Hill	Constant (Rho=0)	Restrict n > 1	-	-	0.070	-91.8	10,116.5	8,252.3
Hill	Constant (Rho=0)	No Restriction	-	-	0.070	-91.8	10,116.5	8,252.3
Linear	Constant (Rho=0)	-	-	1st	0.0003	-79.7	7,727.3	7,476.6
Linear	Not Constant	-	-	1st	0.0002	-83.8	7,622.3	7,343.8
Polynomial	Constant (Rho=0)	-	-	2nd	0.003	-85.1	6,801.1	6,305.2
Polynomial	Constant (Rho=0)	-	-	3rd	0.05	-91.2	8,909.6	7,501.2
Polynomial	Not Constant	-	-	2nd	0.0003	-84.9	6,962.7	6,413.1
Polynomial	Not Constant	-	-	3rd	0.007	-91.7	9,012.4	7,673.2
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	0.0003	-79.7	7,727.3	7,476.6
Power	Not Constant	Restrict Power ≥ 1	-	-	0.0002	-83.8	7,622.3	7,343.8
Power	Constant (Rho=0)	No Power Restriction	-	-	0.0005	-80.8	6,520.7	5,487.8
Power	Not Constant	No Power Restriction	-	-	< 0.0001	-82.1	7,182.1	5,968.9

7

8 None of the models gave an acceptable fit to these data, as all of the chi-squared p-values were <

9 0.1. Alternatively, the LOAEL from this study is 8,210 ng/ml, and the NOAEL is 4,350 ng/ml.

10 Therefore, the POD for relative liver weight increase from the Dong et al. (2012a) study is

11 identified as the NOAEL of 4,350 ng/ml.

12 Dong et al. (2009) – Plaque-forming cell response (male mice)

13 Change in plaque forming cell response to antigen challenge in mice was treated as a continuous

14 endpoint (i.e., the observed mean response at each dose and the control value was used in the

15 benchmark dose modeling). The default BMR in the BMDS software for continuous data is 1

- 1 S.D. from the mean control value. The summary results of the benchmark dose modeling for this
- 2 study are presented in Table 36 below. Note that the plaque-forming cell response data were
- 3 reported graphically in Dong et al. (2009, Figure 7 therein). The study authors provided the
- 4 actual numerical data (mean \pm standard error of the mean), which for the control group to the
- 5 highest dose group were: 597±64, 538±52, 416±43, 309±27, 253±21, and 137±16 (personal
- 6 communication with G. Dong, 2016).

Table 36. S	Summary of H	BMD modeling re	sults for plac	ue for	rming cel	l respor	nse in mal	le mice
(Dong et al	l., 2009);	BMR = 1 S.D. cl	nange from t	he con	trol respo	onse		
$Model \\ (BMR = 1 \\ S.D.)$	Variance	Beta/Power/Slope/n	Ln- transformation of dose	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential	Constant (Rho=0)	Restrict Power ≥ 1	N	-	-	-	-	-
Exponential	Not Constant	Restrict Power ≥ 1	N	-	-	-	-	-
Exponential	Constant (Rho=0)	Restrict Power ≥ 1	Y	-	-	-	-	-
Exponential	Not Constant	Restrict Power ≥ 1	Y	-	-	-	-	-
Hill	Constant (Rho=0)	Restrict n > 1	-	-	< 0.0001	531.04	1722.11	1251.23
Hill	Constant (Rho=0)	No Restriction	-	-	0.0066	519.29	27.27	3.17
Linear	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
Linear	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
Polynomial	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	572.70	9628.70	7761.42
Polynomial	Constant (Rho=0)	-	-	3rd	0.0006	524.01	2440.00	2028.48
Polynomial	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
Polynomial	Not Constant	-	-	2nd	< 0.0001	547.78	19843.10	15292.70
Polynomial	Not Constant	-	-	3rd	0.0037	498.09	3650.90	2884.27
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	594.31	25147.60	21038.90
Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	566.19	39674.70	32215.50
Power	Constant (Rho=0)	No Power Restriction	-	-	0.0196	517.12	4.20	0.11
Power	Not Constant	No Power Restriction	-	-	< 0.0001	507.30	59.08	3.08

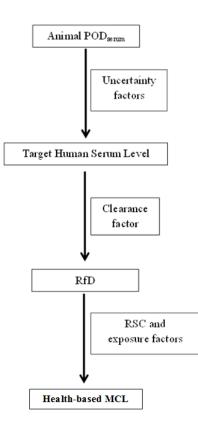
7

8 None of the available models gave an acceptable fit to these data. Specifically, the chi-squared 9 p-value was < 0.1 for all of the models and each model had at least one dose for which the scaled 10 residual was > |2|. As can be seen in Appendix 7, this appears to be due to a disproportionately 11 large decrease in plaque-forming response at the highest dose. Therefore, additional benchmark 12 dose analysis was carried out excluding the high dose. This gave a reduced dataset with four

13 doses plus the control. The summary results of the benchmark dose modeling for this reduced

14 dataset are presented in Table 37 below.

	•	odeling results for	1 1		0 1			
Model	Variance	ong et al., 2009); Beta/Power/Slope/n	BIVIR = 1 S Distribution	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
Exponential ^a	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
Hill	Constant (Rho=0)	Restrict n > 1	-	-	0.2008	435.07	1040.97	717.23
Hill	Not Constant	Restrict n > 1	-	-	0.3049	421.5	1574.6	NA ^b
Hill	Constant (Rho=0)	No Restriction	-	-	0.1995	435.51	375.08	11.85
Hill	Not Constant	No Restriction	-	-	0.1273	423.5	1346.94	NA ^b
Linear	Constant (Rho=0)	-	-	1st	< 0.0001	496.28	18119.90	14610.50
Linear	Not Constant	-	-	1st	< 0.0001	484.49	31885.20	23977.00
Polynomial	Constant (Rho=0)	-	-	2nd	0.0004	447.46	3110.14	2550.69
Polynomial	Constant (Rho=0)	-	-	3rd	0.0336	438.38	1534.12	1189.84
Polynomial	Not Constant	-	-	2nd	0.0016	432.06	4821.99	3667.36
Polynomial	Not Constant	-	-	3rd	0.0979	423.89	2239.22	1630.89
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	496.28	18119.90	14610.50
Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	484.49	31885.20	23977.00
Power	Constant (Rho=0)	No Power Restriction	-	-	0.0606	437.47	0.28	0.28
Power	Not Constant	No Power Restriction	-	-	0.0093	428.52	0.24	0.24


a. Scaled residuals for one or more doses/serum concentrations for each of the four exponential models were > |2|. The fit was inadequate for benchmark does modeling, and the model failed to calculate BMD and BMDL.
 b. BMDL computation failed.

1

2 Only four closely related models (the Hill model with and without the power function restricted 3 to > 1, and with and without constant variance) gave acceptable fits to the data based on the 4 criteria of scaled residuals, and chi-square, and AIC statistics. All four of these versions of the Hill model gave similar AIC values (maximum difference = 3%). However, the BMDS software 5 6 identified that the data did not meet the requirements for the assumption of constant variance 7 across doses using the Hill model even though the models run under that assumption yielded 8 BMDL values. Further, the BMDS software was unable to calculate BMDL values for the 9 models run under the assumption of non-constant variance. It seems likely that the failure to 10 calculate BMDL values resulted from the steepness of the dose-response data in the 11 neighborhood of the BMD. Thus, the dose-response of the Dong et al. (2009) data for plaque 12 forming cell response are not amenable to benchmark dose modeling. However, in the absence 13 of a BMDL a valid NOAEL is an appropriate POD. The NOAEL of 674 ng/ml is identified as 14 the POD for decreased plaque forming cell response from the Dong et al. (2009) study.

<u>DEVELOPMENT OF POTENTIAL HEALTH-BASED MCLs FOR NON-CANCER</u> <u>ENDPOINTS</u>

- 3
- 4 The overall process used to develop potential Health-based MCLs from PODs for non-cancer
- 5 endpoints is shown in Figure 15 and is discussed in detail below. In summary, the PODs for
- 6 PFOS are based on serum PFOS levels rather than administered doses. Uncertainty factors are
- 7 applied to the serum level PODs to develop Target Human Serum levels that are analogous to
- 8 Reference Doses (RfDs) but in terms of serum level rather than administered dose. The Target
- 9 Human Serum Levels are converted to Reference Dose with a clearance factor that relates
- 10 administered doses to human serum levels. Health-based MCLs are developed from the RfDs by
- 11 application of exposure factors for body weight and daily drinking water consumption, and a
- 12 Relative Source Contribution factor to account for non-drinking water exposure sources.
- 13

14

- 15 Figure 15. Graphical representation of the approach used to derive the Health-based MCL
- 16

17 Target Human Serum Level and RfD development

- 18
- 19 Selection of PODs for Target Human Serum Level and RfD development
- 20 The PODs (NOAELs or BMDLs) for the four non-cancer endpoints for which dose-response
- 21 analysis was performed above are shown in Table 38.

Study	Endpoint	POD (ng/ml)	NOAEL (ng/ml)	LOAEL (ng/ml)
Butenhoff et al. (2012)	Hepatocellular hypertrophy (male rats)	4,560.8 (BMDL)	2,554 ª	11,724 ª
Dong et al. (2009)	Relative liver weight increase (male mice)	5,585.5 (BMDL)	674	7,132
Dong et al. (2012a)	Relative liver weight increase (male mice)	4,350 (NOAEL)	4,350	8,210
Dong et al. (2009)	Decreased plaque- forming immune response	674 (NOAEL)	674	7,132
	(male mice)			

^a Based on AUC

- 3 Of the PODs in Table 39, the POD for increased relative liver weight based on the NOAEL of
- 4 4,350 ng/ml from Dong et al. (2012a) study was lower than the the POD of 5,585.5 ng/ml based
- 5 on the BMDL for the same endpoint from Dong et al. (2009). Therefore, the the POD for

6 increased relative liver weight from Dong et al. (2009) was not further considered for RfD

7 development, and Target Human Serum Levels and RfDs were developed for the three the non-

8 cancer endpoints shown in Table 39.

Table 39. PODs for endpoints selected for criterion development								
Study	Species	Endpoint	Animal POD _{serum} (ng PFOS/ml serum)					
Butenhoff et al.	Rat (male)	Hepatocellular	4,561					
(2012)	Kat (male)	hypertrophy	BMDL					
Dong at al. $(2012a)$	Mias (mole)	Increased relative	4,350					
Dong et al. (2012a)	Mice (male)	liver weight	NOAEL					
Dense et al. (2000)	Miss (male)	Decreased plaque	674					
Dong et al. (2009)	Mice (male)	forming cell response	NOAEL					

9

10 Development of Target Human Serum Levels from PODs

11 Target Human Serum Levels are analogous to RfDs but based on serum concentration rather than

12 administered dose. They are developed by application of uncertainty factors (UFs) to the PODs

13 based on the serum concentration from the animal study (animal POD_{serum}). The UFs address

- 1 specific factors for which there is uncertainty about the relationship of the POD to the protection
- 2 of sensitive human sub-populations over a lifetime of exposure. UFs are generally applied as
- 3 factors of 1 (no adjustment), 3 or 10, with 3 and 10 representing 0.5 and 1.0 log-unit. Because
- 4 individual UFs represent log-units, the product of two UFs of 3 is taken to be 10. The following
- 5 UFs are considered in all cases:
- $\begin{array}{ll} \mbox{6} & UF_{sub-chronic} \mbox{Applied to a sub-chronic animal POD}_{serum} \mbox{ to estimate the corresponding} \\ \mbox{7} & NOAEL \mbox{ for a chronic duration study. Herein, a sub-chronic study duration is defined as} \\ \mbox{8} & an \mbox{ exposure of } > 30 \mbox{ day to } \le 90 \mbox{ days.} \end{array}$
- 9 UFLOAEL Applied to an animal POD_{serum} based on a LOAEL to estimate the
 10 corresponding NOAEL, when no NOAEL is identified in the study under consideration.
 11 The UF_{LOAEL} has the value of 1 in the case of an animal POD_{serum} based on a BMDL
 12 since the BMDL is considered to be an estimate of the NOAEL.
- UFanimal Applied to an animal POD_{serum} to address differences between humans and
 animals in both toxicokinetics and toxicodynamics. A factor of 3 (i.e. one half on a log
 scale of the full default UF of 10) is normally applied to each. In the case of PFOS,
 however, the animal POD_{serum} is based serum PFOS concentration, and the use of this
 metric is assumed to account for the toxicokinetic differences between rodents and
 humans. Therefore, the UF_{animal} is assigned a value of 3 (rather than a full value of 10) to
 account for potential toxicodynamic differences between rodents and humans.
- UF_{human} Applied to the animal POD_{serum} to estimate the potential increased sensitivity
 of sensitive human sub-populations compared to the average human population. A full
 value of 10 is typically applied unless the endpoint is based on human data that includes
 sensitive sub-populations.
- UF_{database} Applied to address insufficiencies in the toxicological database such as the
 absence of useful data on possible reproductive, developmental or neurological
 endpoints. For PFOS, the database is considered to be relatively complete and a value of
 1 is applied.
- 28 The UFs were applied to each of the endpoints in Table 39 as follows:

29 <u>Hepatocellular hypertrophy (male rats; Butenhoff et al., 2012)</u>
--

- 30 $UF_{sub-chronic} = 1 This$ study was a chronic duration study.
- 31 $UF_{LOAEL} = 1 The animal POD_{serum}$ is based on a BMDL.
- 32 $UF_{animal} = 3 To$ account for interspecies toxicodynamic differences as discussed above.
- **UF** $_{human} = 10$

- 1 $UF_{database} = 1$
- $2 \qquad UF_{TOTAL} = 30$
- 3 Increased relative liver weight (male mice; Dong et al., 2012a)

4 $UF_{sub-chronic} = 3$

5 This study was a sub-chronic duration study (60 days). There is only one chronic 6 duration study of PFOS, the 104-week rat study of Butenhoff et al. (2012). That study 7 showed progression of adverse effects. Following 98 days of exposure to PFOS, the 8 interim sacrifice of the rats in Butenhoff et al. study (as reported in Seacat et al., 2003), exhibited increased relative liver weights, liver histopathology (i.e., centrilobular 9 hypertrophy and mid-zonal to centrilobular vacuolation), increased alanine 10 11 aminotransferase, and decrease serum cholesterol. At final sacrifice as reported in Butenhoff et al. (2012), these effects generally continued to be observed, and there was 12 emergence of hepatocyte necrosis and hepatocellular tumors, with prolonged exposure to 13 14 PFOS (≤ 104 weeks) in this same cohort of rats as examined in the interim sacrifice. There are no chronic duration exposure studies in mice. However, adverse endpoints that 15 16 were observed in mice with subchronic exposures (e.g., decreases in relative spleen and thymus weight and cellularity; Dong et al., 2009), and increased liver weight (Dong et al., 17 2012a) have the potential to quantitatively and qualitatively progress to more severe 18 19 effects with longer duration of exposure, thus, given that the lone chronic study showed 20 progression of liver effects in rats. It is possible that liver and other adverse effects 21 would be observed in mice at lower serum concentrations with chronic exposure. 22 Furthermore, it is possible, but unknown whether adverse effects in mice that may occur with chronic exposure would have PODs that would be lower than the critical effect (see 23 24 below).

25 $UF_{LOAEL} = 1$ – The animal POD_{serum} is based on a NOAEL.

26 $UF_{animal} = 3 - To$ account for interspecies toxicodynamic differences as discussed above.

- $\mathbf{27} \qquad \mathbf{UF}_{\mathbf{human}} = 10$
- **UF** $_{database} = 1$
- 29 UFTOTAL = 100
- 30 Decreased plaque forming cell response (male mice; Dong et al., 2009)
- 31 $UF_{sub-chronic} = 1$
- A sub-chronic to chronic uncertainty factor (UF_{sub-chronic}) of 3 or 10 may be applied to a
 sub-chronic POD to account for effects that may occur at lower doses with longer

1 exposure durations. The mice in Dong et al. (2009) were exposed for 60 days, which is 2 considered a subchronic duration (i.e., > 30 day to ≤ 90 days). However, a UF of 1 was 3 used because, as discussed in detail below, dose-response for decreased plaque forming 4 cell response based on serum concentration (internal dose) in studies of durations from 7 5 to 60 days did not show a greater effect with longer exposure duration (see Figure 16, 6 below). In summary, this independence from exposure duration suggests that longer 7 durations of exposure to lower concentrations of PFOS would not produce more severe decreases in plaque forming cell response. 8

- 9 The selection of a factor of 1 for the UF_{sub-chronic} is supported by a lack of progression of the plaque forming cell response over a wide range of doses and various lengths of 10 11 duration. As depicted in Figure 16, PFOS caused decreased plaque forming cell response 12 in three studies of adult mice, while no effect was observed in only one study that 13 included only one PFOS dose level (Qazi et al., 201a). The maximum decrease in plaque 14 forming cell response was between approximately 70% and 85% compared to controls, regardless of the length of PFOS exposure, which ranged from 7 days to 60 days. 15 16 Specifically, the maximum decrease in plaque forming cell response from Peden-Adams 17 et al. (2008) was ~70% following 28 days of exposure with a serum PFOS concentration 18 of 131 ng/ml. For Zheng et al. (2009), the maximum decrease in plaque forming cell 19 response was ~85% following 7 days of exposure with a serum PFOS concentration of 3.4×10^5 ng/ml. The maximum decrease in plaque forming cell response for Dong et al. 20 21 (2009) was ~80% following 60 days of exposure with a serum PFOS concentration of 1.2 x 10^5 ng/ml. 22
- Additionally, and importantly, in both Dong et al. (2009) and Zheng et al. (2009), a decrease of approximately 60% occurred at a serum PFOS concentration of approximately 1 x 10^5 ng/ml despite the difference in exposure duration (Dong et al. (2009) = 60 days; Zheng et al. (2009) = 7 days). This further suggests that the decrease in plaque-forming cell response does not progress with longer exposure duration.

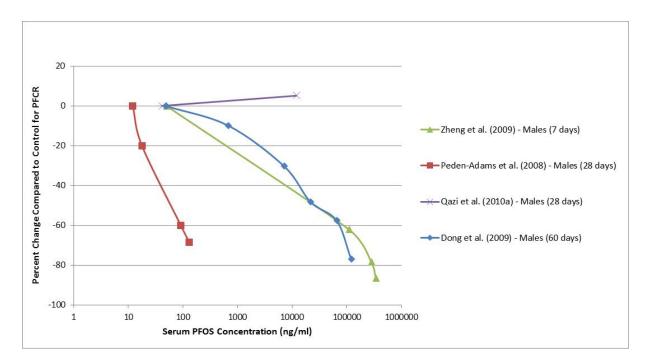


Figure 16. Comparison of plaque forming cell response studies. Percent change from controls was calculated for the
studies represented in Table 40 (below), with the exception of the Keil et al (2008) study that did not report serum
PFOS concentrations and the female mice from Peden-Adam et al. (2008) as the male response occurred at lower
serum PFOS concentrations. Plaque forming cell response values were visually estimated from the original studies
as necessary and percent change from controls was calculated as: [(treated value – control value)/control value] x
100.

- $UF_{LOAEL} = 1 The animal POD_{serum}$ is based on a NOAEL.
- $UF_{animal} = 3 To$ account for interspecies toxicodynamic differences as discussed above.
- $\mathbf{UF}_{human} = 10$
- $UF_{database} = 1$
- **UF**TOTAL = **30**
- 13 Table 40 presents the total UFs applied to each of the selected PODs and the resulting Target
- 14 Human Serum Level.

Table 40. Calculation of	of Target Human Serum	Levels	
Study	Animal POD _{serum} (ng/ml serum)	UFTOTAL	Target Human Serum Level (ng/ml serum)
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	4,561	30	152
Dong et al. (2012a) (Increased relative liver weight)	4,350	100	43.5
Dong et al. (2009) (Decreased plaque forming cell response)	674	30	22.5

2 Calculation of RfDs from Target Human Serum Levels

3 The RfD (as an intake dose; mg/kg/day) is calculated from the Target Human Serum Level

4 (internal dose; ng/L) using the chemical-specific clearance factor (CL) developed by the USEPA

5 (2016b). As discussed in the Toxicokinetics section (above), the CL relates the Target Human

6 Serum Level to the RfD as follows:

- 7 RfD (ng/kg/day) = Target Human Serum Level (in ng/ml) x CL (ml/kg/day)
- 8 Table 41 presents the RfD calculated for the Target Human Serum Level for each study carried
- 9 forward to criterion development.

Study	Target Human Serum Level (ng PFOS/ml serum)	RfD (ng/kg/day)	RfD (mg/kg/day)
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	152	12.3	1.23 x 10 ⁻⁵
Dong et al. (2012a) (Increased relative liver weight)	43.5	3.5	3.5 x 10 ⁻⁶
Dong et al. (2009) (Decreased plaque forming cell response)	22.5	1.8	1.8 x 10 ⁻⁶

10

1 Exposure factors for Health-based MCLs based on non-cancer endpoints

- 2 The Health-based MCL is a PFOS drinking water concentration intended to be protective for
- 3 drinking water consumption over a lifetime. The Health-based MCL was calculated from the
- 4 RfD for decreased plaque forming cell response using DWQI default values for body weight (70
- 5 kg), daily drinking water ingestion (2 L/day), and Relative Source Contribution (RSC) factor
- 6 (20%; discussed below).

7 Relative Source Contribution (RSC) Factor

- 8 A Relative Source Contribution (RSC) factor that accounts for non-drinking water sources
- 9 including food, soil, air, water, and consumer products is used by the DWQI, NJDEP, USEPA,
- 10 and other states in the development of health-based drinking water concentrations based on non-
- 11 carcinogenic effects. The RSC is intended to prevent total exposure from all sources from
- 12 exceeding the RfD (USEPA, 2000b). When sufficient chemical-specific information on non-
- 13 drinking water exposures is not available, a default RSC of 0.2 (20%) is used (i.e. it is assumed
- 14 that 20% of exposure comes from drinking water and 80% from other sources). When sufficient
- 15 chemical-specific exposure data are available, a less stringent chemical-specific RSC may be
- 16 derived, with floor and ceiling RSC values of 20% and 80% (USEPA, 2000).
- 17

18 The Health Effects Subcommittee concluded that there are insufficient data to develop a

- 19 chemical-specific RSC for PFOS. Elevated levels of PFOS were detected in several PWS located
- 20 throughout NJ in USEPA UCMR3 and other monitoring studies; PFOS was detected more
- 21 frequently at 40 ng/L in NJ PWS (3.4%) than nationwide (1.9%) in UCMR3 (discussed in the
- 22 <u>Drinking Water Occurrence</u> section). Potential sources of this contamination have been
- 23 identified in some instances, while sources are unknown in other locations. There are no New
- 24 Jersey-specific biomonitoring data for PFOS, and its more frequent occurrence in NJ PWS as
- 25 compared to the U.S. as a whole suggests that New Jersey residents may also have higher
- 26 exposure from non-drinking sources than the U.S. general population (e.g. NHANES).
- 27 Environmental contamination with PFOS that results in its presence in drinking water can arise
- 28 from a number of different types of sources (reviewed in <u>Fate and Transport Relevant to</u>
- 29 <u>Drinking Water Contamination</u>), particularly releases of AFFF at civilian and military fire
- 30 fighting and training sites. In communities with drinking water contaminated by environmental
- 31 discharge of PFOS, exposure to PFOS may also result from contamination of other media such
- 32 as soil and house dust. It is especially noteworthy that PFOS (unlike PFOA) bioaccumulates in
- 33 fish, and consumption of recreationally caught fish from contaminated waters may be a major
- 34 source of PFOS exposure.
- 35
- 36 Additionally, the exposure factors used to develop the Health-based MCL (below) are based on
- an adult drinking water consumption rate and body weight. The default RSC of 20%, while not
- 38 explicitly intended for this purpose, also partially accounts for the higher PFOS exposures in
- 39 young infants who would not be exposed to PFOS through other sources such as food. Although
- 40 serum levels in infants are lower than their mothers at birth, several studies demonstrate that

1 infant serum levels increase rapidly by several-fold shortly after birth to levels higher than

- 2 maternal levels (dicussed in detail in <u>Toxicokinetics</u> section). PFOS exposures to infants, both
- 3 breastfed and consuming formula prepared with contaminated drinking water, are higher than in
- 4 than older individuals. Infants consume much more fluid (breast milk or formula) than older
- 5 individuals on a body weight basis and, PFOS concentrations in breast milk are expected to be
- 6 similar or higher than in the mother's drinking water source.7
- 8 These higher infant exposures must be considered because, as discussed above, the most

9 sensitive toxicological effect occurred from short term exposures relevant to elevated short-term

- 10 exposures in infancy. The dose-response for the most sensitive toxicological effect, decreased
- 11 plaque forming cells in mice (an indicator of decreased immune response relevant to decreased
- 12 vaccine response in humans) was similar in studies of short (7 day) and longer (60 day)
- 13 durations, indicating that the Reference Dose for this effect is relevant to short-term exposures
- 14 as well as chronic exposures.
- 15

16 For the reasons discussed above, the default RSC of 20% (0.2) is used to develop the Health-

- 17 based MCL.
- 18

19 Derivation of potential Health-based MCLs for non-cancer endpoints

20 The equation used to derive the Health-based MCL is:

21 Health – based MCL (ng/L) =
$$\left(\frac{RfD (ng/kg/day) \times 70 kg}{2 L}\right) \times 0.2$$

- 22 Where:
- 23 2 L/day = assumed daily drinking water intake
- 24 70 kg = assumed adult body weight
- 25 0.2 =Relative Source Contribution (20%)
- 26
- 27 The potential Health-based MCLs based on the RfDs developed above are shown in Table 42.

28 The Health-based MCL of 13 ng/L for decreased plaque forming cell response from Dong et al.

- 29 (2009) is the most stringent of the three potential Health-based MCLs. Information that further
- 30 supports use of this study and endpoint as the basis for the Health-based MCL is presented
- 31 below.

Table 42. Calculation	Table 42. Calculation of potential Health-based MCLs								
Study	Endpoint	RfD (ng/kg/day)	Health-based MCL $(ng/L = ppt)$						
Butenhoff et al. (2012)	Hepatocellular hypertrophy	12.0	84						
Dong et al. (2012a)	Increased relative liver weight	3.5	25						
Dong et al. (2009)	Decreased plaque forming cell response	1.8	13						

Supporting information for decreased plaque forming cell response from Dong et al. (2013) as basis for Health-based MCL

- 3 As discussed above, the most stringent potential Health-based MCL is based on decreased plaque
- 4 forming cell response in mice (Dong et al., 2009). The Health Effects Subcommittee notes that
- 5 USEPA IRIS has used decreased plaque-forming cell response as the basis for the RfDs for at
- 6 least two chemicals, trans-1,2-dichloroethylene and trichloroethylene (USEPA 2010, 2011c).
- 7 This endpoint has also recently been identified as a sensitive toxicological endpoint that should
- 8 be considered in risk assessment of PFOS in evaluations by several other scientific groups.
- 9 The National Toxicology Program (NTP) recently completed a systematic review of
- 10 immunotoxicity of PFOS, based on consideration of human and animal studies, along with
- 11 mechanistic data (NTP, 2016). NTP (2016) concludes that exposure to PFOS is presumed to be
- 12 an immune hazard to humans based on: 1) a high level of evidence that PFOS suppressed the
- 13 antibody response from animal studies, and 2) a moderate level of evidence from studies in
- 14 humans. NTP also considered additional, although weaker, evidence from laboratory animal
- 15 studies suggesting PFOS may suppress infectious disease resistance and natural killer cell
- 16 activity in humans. NTP stated that "the bodies of evidence indicating that PFOS suppresses
- 17 multiple aspects of the immune system add to the overall confidence that PFOS alters immune
- 18 function in humans."
- 19 Additionally, Minnesota Department of Health (MDH, 2017) incorporated an additional
- 20 uncertainty factor for potentially more sensitive immune system toxicity when developing its
- 21 updated Reference Dose for PFOS.
- 22 Finally, two recent peer reviewed publications have identified immunotoxicity as a sensitive
- toxicological endpoint for PFOS. Both Lilienthal et al. (2017) and Dong et al. (2017) noted that
- 24 immune system toxicity is a more sensitive endpoint than the developmental effects used as the
- 25 basis for the USEPA (2016a) PFOS Reference dose, and Lilienthal et al. (2017) states that
- 26 decreased immune system response from PFOS and (low-dose developmental effects of PFOA)
- 27 "likely constitute a sound basis for ongoing and future regulations."

28 Consideration of human epidemiology data

- 29 Both the human epidemiology data and the animal toxicology data were considered as part of the
- 30 overall weight of evidence for the potential human health effects of PFOS. The decrease of
- 31 plaque forming cell response in mice is an indicator that PFOS is able to cause immune
- 32 suppression in laboratory animals. In humans, an analogous indicator of immune suppression is
- 33 antibody response to vaccination. As summarized below, epidemiologic studies have
- 34 demonstrated associations between PFOS exposure and decreased levels of antibodies to several
- 35 vaccines at PFOS exposure levels prevalent in the general population. The epidemiologic data
- 36 for this effect is notable because of the consistency between results among human epidemiologic
- 37 studies in different populations, the concordance with toxicological findings in experimental

- 1 animals, the use of serum concentrations as a measure of internal exposure, the potential clinical
- 2 importance of this endpoint, and the observation of associations within the exposure range of the
- 3 general population.

4 However, the human epidemiology data have limitations and are therefore not used as the

5 quantitative basis for the Health-based MCL. Instead, the Health-based MCL is based on a

6 sensitive and well-established animal toxicology endpoint, plaque forming cell response, that is

- 7 considered analogous to decreased vaccine response observed in humans. Importantly, continued
- 8 exposure to even relatively low levels of PFOS in drinking water is known substantially increase
- 9 concentrations of PFOS in blood serum. The evidence for increased risk of decreased immune
- 10 response, from low-level PFOS exposures prevalent in the general population suggests a need for
- 11 caution about additional exposure to PFOA from drinking water.
- 12
- 13 Relevant to this point, it is noted that the German Human Biomonitoring Commission recently
- 14 developed a Human Biomonitoring Level I ((HBM I) the serum level below which adverse
- 15 health effects are not expected) for PFOS of 5 ng/ml which is close to the current median PFOS
- 16 serum level in the U.S. general population. This HBM I is based on the serum PFOS levels
- 17 associated with health effects in human and animal studies (Apel et al., 2016). The human
- 18 epidemiological data thus support the use of a public health-protective approach in developing a
- 19 Health-based MCL recommendation based on animal toxicology data.
- 20
- 21 <u>Summary of epidemiology studies of PFOS and vaccine response</u>

22 As discussed in the section on human epidemiology studies of vaccine response/antibody titers in

- 23 the <u>Hazard Identification section above</u>, five studies evaluated associations of serum PFOS
- 24 concentrations and antibody concentrations following vaccination for measles, mumps, rubella,
- 25 diphtheria, tetanus and/or influenza (Grandjean et al., 2012, Granum et al., 2013, Stein et al.,
- 26 2016, Kielsen et al., 2016, and Looker et al., 2014). These studies are summarized in Table 43
- 27 below. The total number of epidemiology studies examining antibody response to vaccines is
- relatively small and each type of vaccine was included only in a few (and often in only one or
- two) studies. Nonetheless, the study findings are consistent and support a potential for PFOS to
- 30 reduce vaccine response, particularly for some vaccine types in children. The effects of PFOS on
- 31 suppression of vaccine response appears to occur at or close to levels of PFOS exposure
- 32 prevalent in the general population. However, there is not sufficient information to evaluate
- associations of PFOS and vaccine response in adults. The sole study that did not show a
- 34 significant association between PFOS exposure and any antibody response (Looker et al., 2014)
- 35 was conducted in adults and assessed influenza vaccine response only. Consistent with this
- 36 finding, the only other study that evaluated influenza vaccine response (Granum et al., 2013) also
- 37 did not find a statistically significant association between influenza vaccine response and PFOS
- 38 exposure in children, although it did find a significant association of rubella vaccine response
- 39 and PFOS exposure. It may be the case that PFOS affects antibody response differentially for
- 40 different vaccine challenges.

- 1 It is noted that these studies did not statistically separate the relative contribution of PFOS to
- 2 reduced antibody response compared to other perfluorinated compounds detected in
- 3 serum. Therefore, it is possible that the observed association was due to one or more other
- 4 perfluorinated compounds or due to a common effect of perfluorinated chemicals at the serum
- 5 concentrations detected in these studies. Alternatively, it is also possible that this effect is
- 6 primarily due to PFOS.

Study	Age of	PFOS	Outcome by Vaccine type							
	population	concentration (central tendency) ¹	Tetanus	Diphtheria	Rubella	Measles	Influenza ²	Mumps		
Grandjean et al. (2012)	5 yrs old Pre- and post-booster	27.0 ng/ml (maternal) 16.7 ng/ml (5 yrs old)	Ļ	Ļ	ND ³	ND	ND	ND		
	7 years old Post-booster		-	Ļ	ND	ND	ND	ND		
Granum et al., (2013)	3 yrs old	5.6 ng/ml (maternal)	-	ND	Ļ	-	-	ND		
Stein et al. (2016)	12-19 yrs old	20.9 ng/ml	ND	ND	Ļ	-	ND	Ļ		
Kielsen et al., (2016)	Adults (mean 37.9 yrs old)	9.52 ng/ml	- 4	Ļ	ND	ND	ND	ND		
Looker et al. (2014)	Adults (> 18 yrs old)	9.12 ng/ml	ND	ND	ND	ND	-	ND		

7 1. Reported as median, mean, or geometric mean

8 2. For Granum et al. (2013), influenza B (Hib); for Looker et al. (2014), A/H3N2, A/H1N1 and influenza B

9 3. ND – Not determined

- 10 4. No significant response observed
- 11 The observation of decreased resistance to childhood diseases in association with low, general

12 population levels of PFOS exposure, and the consistency of this effect with a directly analogous

13 outcome from animal studiesm, decreased plaque forming response, emphasizes the practical

14 public health significance of PFOS-mediated immunosuppression. These findings lend

15 additional support to the identification of decreased plaque forming cell response as the critical

16 endpoint for derivation of a Health-based MCL.

17 Selection of decreased plaque-forming cell response in mice as critical endpoint

- 18 Immunosuppression in the form of a decrease in antibody (e.g., IgM) production in response to
- 19 an immune challenge (e.g., sheep red blood cells) is a well-accepted indicator of immune
- 20 function and potential disease risk. Accordingly, many immunotoxicity guidelines and testing
- 21 requirements include measures of the development of specific antibodies in response to an
- 22 immune challenge (NTP, 2016). As noted above, the USEPA IRIS program has used decreased
- 23 plaque forming cell response as the basis for the RfDs for at least two chemicals, trans-1,2-

- 1 dichloroethylene and trichloroethylene (USEPA 2010, 2011c), and it has also recently been
- 2 identified as a sensitive toxicological endpoint that should be considered in risk assessment of
- 3 PFOS in evaluations by several other scientific groups (NTP, 2016; Dong et al., 2017; Lilienthal
- 4 et al., 2017; MDH, 2017).
- 5 The reduction in IgM response, as measured by the plaque forming cell response assay, resulting
- 6 from PFOS exposure was investigated in five separate studies in mice (Dong et al., 2009; Peden-
- 7 Adams et al., 2008; Zheng et al., 2009; Keil et al, 2008; and Qazi et al., 2010a; Table 44). A
- 8 statistically significant decrease was observed in four of these studies. As discussed below, the
- 9 failure to observe a significant PFOS-mediated reduction in the Qazi et al. (2010a) study may be
- 10 explainable on the basis of methodological differences between that study and the other four
- 11 studies. In each of the four studies showing a PFOS-mediated reduction in plaque forming cell
- 12 response, a monotonic serum PFOS concentration-response relationship was observed.
- 13 As summarized above, the reduction in plaque forming cell response is supported by several
- 14 epidemiological studies of the association of decreased vaccine response with PFOS exposures in
- 15 the general population. The association of PFOS exposure with reduced response to vaccination
- 16 is directly analogous to the reduction in plaque forming cell response in mice following
- 17 inoculation with a foreign protein (i.e., sheep red blood cell). Thus, the animal data and
- 18 epidemiology data are mutually supportive of an effect of PFOS on immune suppression. This
- 19 endpoint has a direct relationship to public health as it is predictive of reduced resistance to
- 20 infection and reduced ability to respond to vaccination.

21 Selection of Dong et al. (2009) as critical study

- 22 The Dong et al. (2009) study was among the group of studies with the lowest serum PFOS
- 23 LOAELs of the available studies with exposure duration of > 30 days. The study was a 60-day
- exposure study that employed standard methodology and produced a clear dose response with a
- 25 NOAEL and a LOAEL. The animals in the LOAEL dose group were otherwise healthy, with no
- significant decrease in weight gain, and no significant change in spleen, thymus, or kidney
- 27 weight. The animals in the LOAEL dose group did, however, have a significant 12% increase in
- 28 liver weight, which is typical of PFOS exposure. In addition, the animals in the LOAEL dose
- 29 group did not have a significant elevation in serum corticosterone, a marker of stress that can
- 30 decrease immune function. A significant increase in serum corticosterone was not seen until the
- 31 dose of PFOS was ten times the LOAEL dose.
- 32 This study determined serum PFOS concentrations and employed an adequate number of
- 33 exposure levels to demonstrate the relationship between dose and response. Although data for
- 34 plaque forming cell response were reported graphically (Figure 7), the relevant numerical data
- 35 were provided by Dong et al. (2009) via personal communication.
- 36 Figure 16 shows the dose-response data for the four studies of plaque forming cell response in
- adult mice, and Table 44 provides the details of all five plaque forming cell response studies

- 1 including the developmental study. As discussed in detail below, the lower plaque forming cell
- 2 response in the control group in Dong et al. (2009) compared to the control groups in the other
- 3 studies suggests that the mice in the Dong et al. (2009) study and/or the plaque forming cell
- 4 response assay in that study may have had a decreased sensitivity for this effect. Additionally,
- 5 the data presented in Figure 17 (below) suggest that all of the doses in Dong et al. (2009) may
- 6 have fallen beyond the most sensitive portion of the dose-response curve for plaque forming cell
- 7 response. All of these issues could have influenced the resulting Health-based MCL toward a
- 8 higher value.

Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respect to uncertainties in the interpretation of Dong et al. (2009)

Study	Species/ strain/ sex/ age	PFOS cation used	Duration and route of exposure	Animals per dose group	Method for plaque forming cell response	Serum PFOS in control animals (ng/ml)	Administered PFOS Dose (mg/kg/d)	Serum [PFOS] (ng/ml)	PFCR in control animals (per 10 ⁶ splenocytes)	LOAEL Serum [PFOS] (ng/ml)
Dong et	Mice	K ⁺	60 d	10	Jerne and	48	0	48	597 ^b	7,132
al. (2009)	C57BL/6		~		Nordin (1963)		0.008	674		
	M		Gavage		as modified by		0.08	7,132		
	Adult (8-10				Cunningham		0.42	21,638		
	wks)				and Szenberg (1968) ^a		0.83	65, 426		
							2.1	120,670		
Peden-	Mice	\mathbf{K}^+	28 d	5/sex	Jerne and	12.1 (M)	0	M - 12.1 °	M ~ 3,500 ^d	91.5 (M)
Adams et	B6C3F1		Nordin (1963)	16.8 (F)		F - 16.8	F ~ 3,000 ^d	666 (F)		
al. (2008)	Adults (7-8	as modified by		0.00017	M - 17.8	_				
		Cunningham		0.001	F - ND					
	wks)		and Szenberg (1968)		0.0017	M - 91.5				
				(19)	(1908)		0.0033	F - 88.1	-	
						0.0033	M - 131 F - 123			
							0.02	M - ND	_	
								F - 666		
							0.03	M - ND		
								F - ND		
					0.17	M - NR	1			
								F - NR		

Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respect to uncertainties in the interpretation of	i.
Dong et al. (2009)	

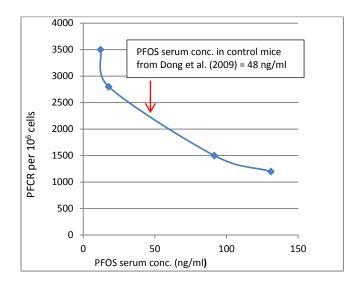
Study	Species/ strain/ sex/ age	PFOS cation used	Duration and route of exposure	Animals per dose group	Method for plaque forming cell response	Serum PFOS in control animals (ng/ml)	Administered PFOS Dose (mg/kg/d)	Serum [PFOS] (ng/ml)	PFCR in control animals (per 10 ⁶ splenocytes)	LOAEL Serum [PFOS] (ng/ml)
Keil et al.	Mice	K ⁺	GD 1-17	6/sex	Jerne and	ND	0.0	ND	~2,300 ^d	ND
(2008)	B6C3F1		(Gestational	(1 /litter)	Nordin (1963)		0.1	ND	(for M and F)	
	M and F		exposure)				1	ND	-	
	Challenged						5	ND		
	as adults (8		Gavage				(LOAEL M;			
	wks)						NOAEL F)			
Zheng et	Mice	\mathbf{K}^+	7 d	12	Jerne and	\leq 50 $^{\rm e}$	0	\leq 50 $^{\rm e}$	~3,700 ^d	110,000
al. (2009)	C57BL/6				Nordin (1963)		5	110,000		
	M Adults (8-10		Gavage		as modified by Cunningham		20	280,000		
	wks)				and Szenberg (1968)		40	340,000	-	
Qazi et al. (2010a)	Mice B6C3F1 M	TEA	28 d Dietary	5	Jerne and Nordin (1963) as modified by	41	0	41	~7,500 ^d	No LOAEL
	Adults (7-8 wks)		y		Cunningham and Szenberg (1968) ^e		0.25	12,000		

1 ND – Not determined; NR – Not reported (exceeded calibration); PFCR – plaque forming cell response; TEA – tetraethylammonium

2 a. Although Dong et al. (2009) cite the use of both the original Jerne and Nordin (1963) and Cunningham and Szenberg (1968) modification of the original

3 method, personal communications with G-H Dong (Feb., 2017) has clarified that only the latter method was used.; b. G-H Dong, personal communication May,

4 2016; c. Authors reported measured serum PFOS concentrations in ng/g and stated that this concentration is approximately equivalent to ng/ml; d. Visually


5 estimated from graphic presentation in respective studies; e. Reported as below detection. Detection limit reported as 0.05 mg/L (50 ng/ml); e. Stated by authors

6 as "Cunningham and Szenberg (1968)", which refers to mofication of Jorne and Nordin (1963).

- 1 Compared to Dong et al. (2009) study, Peden-Adams et al. (2008) administered lower doses of
- 2 PFOS and consequently achieved lower serum PFOS concentrations at all doses than any of the
- 3 dose groups except the control animals in the Dong et al. (2009). Notwithstanding the lower
- 4 serum PFOS concentrations, Peden-Adams et al. (2008) reported a significant PFOS serum-
- 5 response (i.e., decrease) in the plaque-forming cell response assay. Thus, if Peden-Adams et al.
- 6 (2008) had been chosen as the critical study for the derivation of the Health-based MCL, a more
- 7 stringent criterion would have resulted.
- 8 In four of these studies (Peden-Adams et al., 2008; Dong et al., 2009; Zheng et al., 2009; Qazi et
- 9 al., 2010a), PFOS was administered to adult animals and serum PFOS levels are reported. Keil
- 10 et al. (2008) is not directly comparable to the other studies because it reflects effects of
- 11 developmental exposure to PFOS and because serum PFOS levels are not reported. Zheng et al.
- 12 (2009) administered substantially higher doses of PFOS than the other studies in adult animals,
- resulting in a substantially greater serum PFOS LOAEL. Qazi et al. (2010a) reported no effect
- 14 on plaque forming cell response at a serum PFOS concentrations higher than the LOAELs in
- 15 Dong et al. (2009) and Peden-Adams et al. (2008). The serum PFOS LOAEL in Dong et al.
- 16 (2009) was almost two orders of magnitude higher than the serum PFOS LOAEL in Peden-
- 17 Adams et al. (2008). However, it should also be noted that the statistically significant effect on
- 18 plaque forming cell response was not found at the lowest dose in Dong et al. (2009), at a PFOS
- 19 serum concentration almost an order of magnitude higher than the LOAEL serum PFOS
- 20 concentration in Peden-Adams et al. (2008). In summary, decreased plaque forming cell
- 21 response was reported by Peden-Adams et al. (2008) at serum PFOS levels far below the
- 22 LOAELs in the other comparable studies.
- 23 In addition, stress, as measured by corticosterone levels in serum, is known to decrease immune
- function. Dong et al. (2009) measured corticosterone levels. Corticosterone levels were not
- significantly elevated at the LOAEL dose for plaque forming cell response, and were only found
- to be significantly elevated at a dose 10 times the LOAEL dose. In contrast, Peden-Adams et al.
- 27 (2008) did not measure corticosterone. Therefore, it is not known whether the greater sensitivity
- in plaque forming cell response reduction in the Peden-Adams et al. (2008) study could have
- 29 been influenced by increased stress of the male mice.
- 30 In summary, for the reasons discussed above, although Peden-Adams et al. (2008) reported a
- 31 more sensitive response for decreased plaque forming cell response, Dong et al. (2009) was
- 32 judged to be the most appropriate study for use as the basis for risk assessment.
- 33 Species and strain
- 34 Each of the five studies listed in Table 44 above, was conducted on mice. Two strains of mice
- 35 were used. Dong et al. (2009) that is the critical study for the Health-based MCL used C57BL/6
- 36 mice, as did Zheng et al. (2009). Peden-Adams et al. (2008), Keil et al. (2008), and Qazi et al.
- 37 (2010a) used the B6C3F1 strain, which is a cross between female C57BL/6 mice and male C3H
- 38 mice. We are not aware of a known difference in immune competency or sensitivity to

- 1 immunotoxicants between these strains. We note, however, that both the study showing the
- 2 lowest serum PFOS concentration LOAEL for plaque forming cell response (Peden-Adams et
- al., 2008) and the study showing no response (Qazi et al., 2010a) used the B6C3F1 strain. Based
- 4 on the information above, the use of the C57BL/6 strain by Dong et al. (2009) appears to be
- 5 appropriate for the derivation of a Health-based MCL.
- 6 <u>Sex</u>
- 7 Dong et al. (2009) used only male mice, as did Zheng et al. (2009) and Qazi et al. (2010a).
- 8 Peden-Adams et al. (2008) used both male and female mice, and Keil et al. (2008) assessed
- 9 immunocompetency in male and female offspring of exposed dams. In both of these studies,
- 10 male mice were more sensitive to the immunotoxic effects of PFOS. These limited results
- 11 suggest that male mice are more sensitive than females for this effect of PFOS.
- 12 Issues related to dietary exposure study (Qazi et al., 2010a)
- 13 With the exception of Qazi et al. (2010a) in which mice were exposed to PFOS through the diet,
- 14 the other studies all exposed mice through gavage. Qazi et al. (2010a) was specifically designed
- 15 to contrast the effects on immunotoxicity of dietary versus gavage exposure to PFOS. Gavage
- 16 exposure differs from dietary exposure by providing a concentrated dose over a short period of
- 17 time. With dietary exposure, mice consume their feed in multiple feedings over an extended
- 18 period of time and the rate of absorption of the toxicant tends to be reduced by the physical and
- 19 chemical aspects of the feed. In general, this difference can influence the toxicokinetics of
- 20 exposure such that the target tissues may experience a higher concentration of the toxicant during
- 21 the period immediately following gavage dosing, even when the AUC of serum concentration
- versus time for a gavage and a dietary study is identical. Howeveer, the route of exposure is not
- 23 expected to influence the average serum concentration over time (i.e. the AUC).
- 24 There are other differences between the Qazi et al. (2010a) study and the other four plaque
- 25 forming cell response studies that could potentially explain the difference in response. Qazi et
- al. (2010a) used the tetraethylammonium salt of PFOS while the other studies used the potassium
- salt. Also, Qazi et al. (2010a) administered PFOS at a single concentration in feed, resulting in a
- single average intake dose. The resulting serum PFOS concentration $(1.2 \times 10^4 \text{ ng/ml})$ was 1.7
- times the LOAEL serum PFOS concentration in Dong et al. (2009) (7.1 x 10^3 ng/ml) and almost
- 30 identical to the serum LOAEL in Zheng et al. (1.1×10^4) . Thus, in the absence of other doses to
- establish a dose-response relationship in the Qazi et al. (2010a) study, it is uncertain to what
- 32 extent the Qazi et al. (2010a) study might have shown a different dose-response compared to the
- 33 other adult dosing studies if additional doses had been included.
- 34 Serum PFOS in control animals
- 35 Dong et al. (2009), Peden-Adams et al. (2008), and Qazi et al. (2010a) found potentially
- 36 significant levels of PFOS in the control (no intentional PFOS exposure) mice. Similarly,
- 37 measurable levels of PFOA were detected in the serum of animals in untreated control groups in
- 38 some studies of PFOA. As discussed in DWQI (2017), these exposures are likely due to a

- 1 combination of two factors. First, there is likely some level of unavoidable background exposure
- 2 to PFOS in laboratory animals, just as in the general human population, due to the ubiquitous
- 3 presence of PFOS at low levels in the environment. Second, in some studies, the controls may
- 4 have experienced some level of inadvertent exposure to the PFOS used to dose the treated
- 5 animals.
- 6 Zheng et al (2009) reported the PFOS concentration in the control mice as below the detection
- 7 limit (i.e., \leq 50 ng/ml). However, as the PFOS detection limit in Zheng et al. (2009) is in the
- 8 range of the serum PFOS concentrations detected in control animals in the other studies that did
- 9 report PFOS concentrations in control serum, it is not clear to what extent the PFOS exposure in
- 10 control animals in Zheng et al. (2009) may have differed from these other studies. As shown in
- 11 Table 44, the reported concentrations of PFOS in control animals in the Peden-Adams et al.
- 12 (2008) study (12.1 ng/ml) was about 25% that in Dong et al. (2009) (48 ng/ml) or Qazi et al.
- 13 (2010a) (40.9 ng/ml). This is potentially significant because the Peden-Adams et al. (2008)
- 14 study had a serum PFOS LOAEL for plaque forming cell response that was only about 1% of the
- 15 Dong et al. (2009) serum PFOS LOAEL. Figure 17 shows the serum PFOS- plaque forming cell
- 16 response data from Peden-Adams et al. (2008) (Note that the serum PFOS concentrations in this
- 17 figure were visually estimated from the graphic data presented by the authors). Also shown in
- 18 this figure is the PFOS serum concentration in the control (male) mice from Dong et al. (2009)
- 19 (48 ng/ml).

20

- 21 Figure 17. Serum PFOS- plaque forming cell response response (PFCR) (male mice; diamonds) from
- 22 Peden-Adams et al. (2008) and serum PFOS concentration in control animals (arrow) from Dong et al. (2009).
- 23 Plaque forming cell response data were visually estimated from the graphic presentation in Peden-Adams et al.
- 24 (2008). (Note: Serum PFOS concentration at the NOAEL and LOAEL in male mice from Peden-Adams et al. (2008)
- was 91.5 and 17.8 ng/ml, respectively.)
- As suggested in Figure 17, if the mice in Dong et al. (2009) followed the same serum
- 27 concentration- plaque forming cell response relationship as the male mice in Peden-Adams et al.

- 1 (2008), then the plaque forming cell response inhibition already occurring in these control mice
- 2 (in the absence of added PFOS exposure) would fall well within the linear descending portion of
- 3 the Peden-Adams et al. (2008) PFOS serum concentration- plaque forming cell response curve,
- 4 but not in the steepest portion of the curve (i.e., serum PFOS concentration in the range of 12.1-
- 5 17.8 ng/ml). This suggests that the control mice in Dong et al. (2009) may have already
- 6 experienced decreased plaque forming cell response due to their background PFOS exposure. If
- 7 this were the case, then the serum LOAEL from Dong et al. (2009) from *intentional* PFOS
- 8 exposure might have occurred in a portion of the concentration-response curve in which the
- 9 response was attenuated (i.e., less steep) compared to the portion of the concentration-response
- 10 curve described by the Peden-Adams et al. (2008) data. This could have resulted in Dong et al.
- 11 (2009) overestimating the serum PFOS concentration at which significant decreases in plaque
- 12 forming cell response first occur. It is, therefore, possible that a lower serum PFOS
- 13 concentration in the mice in Dong et al. (2009) prior to PFOS exposure would have resulted in a
- 14 lower Health-based MCL value.

15 Plaque forming cell response to SRBC inoculation in control animals not dosed with PFOS

- 16 In the plaque forming cell response assay, the response of the control animals (i.e., those animals
- 17 inoculated with SRBC antigen, but not intentionally exposed to PFOS) is the baseline for
- 18 determining possible suppression of immunological response. The plaque forming cell response
- 19 in the control animals in Dong et al. (2009) (597/10⁶ splenocytes) is lower than the response in
- 20 any of the four remaining studies (range $2,300-7,500/10^6$ splenocytes). The reason for this is not
- 21 clear, but may include factors such as inter-individual differences in SRBC antigenicity among
- sheep that were the source of the SRBC, different suppliers of mice, different animal husbandry,
- 23 different diets, and intra-strain genetic drift. Although Peden-Adams et al. (2008), Keil et al.
- 24 (2008), and Qazi et al (2010a) all used B6C3F1 mice while Dong et al. (2009) used C57BL/6
- 25 mice, this is not likely to be the explanation for the decreased plaque forming cell response
- response in control mice in Dong et al. (2009) since Zheng et al. (2009) also used C57BL/6 mice
- and achieved a plaque forming cell response in control mice of $\sim 3,700/10^6$ splenocytes.
- 28 Although the reason for the lower plaque forming cell response among control animals in Dong
- et al. (2009) is not clear, it suggests the possibility that the performance in the plaque forming
- 30 cell response assay in the mice used by Dong et al. (2009) may have been generally attenuated,
- resulting in overestimating the true serum PFOS LOAEL from that study, and ultimately
- 32 resulting in a higher RfD and Health-based MCL.

33 Summary of basis for use of Dong et al. (2009) for derivation of the Health-based MCL

- A number of factors related to the selection of Dong et al. (2009) as the critical study for Health-
- 35 based MCL development are discussed above. Those factors with the greatest potential to affect
- the Health-based MCL are: choice of Dong et al. (2009) as the most appropriate study from the
- 37 standpoint of sensitivity of response, impact of the background serum PFOS concentration in
- 38 control animals, and the possible attenuation of the plaque forming cell response assay in Dong

- 1 et al. (2009) as suggested by the relatively low plaque forming cell response in the control
- 2 animals. However, each of these factors has the potential to influence the Health-based MCL to
- 3 a higher (less protective) value than might have been derived otherwise.

4 <u>Relationship of the Target Human Serum Level and Health-based MCL to exposures</u>

5 associated with decreased vaccine response

- 6 The Target Human Serum Level of 23 ng/ml in serum and the Health-based MCL of 13 ng/L in
- 7 drinking water were derived from the most sensitive and relevant toxicological endpoint
- 8 identified in the scientific literature. This endpoint is immunotoxicity, specifically decreased
- 9 plaque-forming cell response. The Target Human Serum Level (23 ng/ml) is analogous to a
- 10 Reference Dose, but in terms of serum level rather than administered dose. It was develop using
- 11 a risk assessment approach intended to be protective for chronic (lifetime) exposure, including to
- 12 susceptible subpopulations. The potential risk of immunotoxicity with PFOS exposure at the
- 13 Target Human Serum Level can be evaluated by comparison to serum PFOS concentrations
- 14 associated with immunotoxicity in the epidemiology literature.
- 15 Decreases in vaccine response in humans have been observed in study populations with
- 16 measures of PFOS serum concentration central tendency ranging from 6 to 27 ng/mL (Grandjean
- et al., 2012; Granum et al., 2013; Kielsen et al., 2016; Stein et al., 2016). For comparison to
- 18 general population serum PFOS concentrations, the median and the 95th percentile serum PFOS
- 19 concentrations as reported in the NHANES database for 2013-2014 are 5.2 and 19 ng/mL,
- 20 respectively (CDC, 2017). Therefore, serum PFOS levels in the general U.S. population are
- 21 currently near or within the range of central tendency serum PFOS levels in the studies which
- 22 found associations with decreased immune response.
- 23 The Health-based MCL was developed using a risk assessment approach intended to be
- 24 protective for lifetime exposure. It is derived as a PFOS drinking water concentration that will
- result in an increase in PFOS serum level that is equal to 20% of the Target Human Serum Level
- 26 (23 ng/ml), or 4.7 ng/L.
- 27 As discussed above (Sources of Human Exposure), drinking water is not a substantial contributor
- to the PFOS exposures prevalent in the general population. Food, consumer products and
- 29 possibly house dust are major sources of human exposure because most sources of drinking
- 30 water are not contaminated by PFOS. Therefore, ingestion of drinking water contaminated with
- 31 PFOS adds to the body burden from other exposure sources.
- 32 Assuming the conservative (i.e. health protective) DWQI default drinking water consumption
- rate of 0.029 L/kg/day (an upper percentile estimate based on 2 L/day/70 kg body-weight), the
- 34 increase in serum PFOS concentration would be 4.7 ng/ml (i.e., 20% of the Target Human Serum
- 35 Level). This additional contribution would, therefore, on average, increase the median serum
- 36 PFOS concentration from 5.2 to 9.9 ng/ml and the 95th percentile serum PFOS concentration
- 37 from 19 to 23.7 ng/ml. This contribution from drinking water exposure at the Health-based

- 1 MCL represents a 1.9-fold increase above the median level of PFOS exposure in the U.S. and a
- 2 1.2-fold increase above the 95th percentile of PFOS exposure in the U.S. population. As
- 3 summarized above, health effects have been observed in epidemiologic studies with PFOS serum
- 4 concentrations comparable to the general population. With expected increases from drinking
- 5 water exposure to serum PFOS level substantially higher than those found in the general
- 6 population, it cannot be definitively concluded that lifetime exposure at the proposed Target
- 7 Human Serum level is protective for the most sensitive effects, including in sensitive
- 8 subpopulations. Therefore, there is uncertainty regarding the extent of protectiveness provided
- 9 by the Health-based MCL.

10 ESTIMATION OF CANCER RISK FOR PFOS IN DRINKING WATER

- 11 The Health Effects Subcommittee concluded that a Health-based MCL for PFOS based on
- 12 carcinogenicity would be much more uncertain than one based on the non-cancer endpoint,
- 13 decreased immune response as assessed by plaque forming cell response in mice. As discussed
- 14 above, decreased plaque forming cell response is a sensitive and well-established animal
- 15 toxicology endpoint which is an indicator of decreased immune response. This effect was
- 16 reported in multiple toxicological studies, and it is considered relevant to humans based on
- 17 epidemiological and mode of action data. In contrast, carcinogenicity of PFOS has been studied
- 18 only in a single chronic duration rat study (Butenhoff et al., 2012). For this and other reasons
- 19 discussed below, the cancer risk assessment for PFOS is highly uncertain as compared to the
- 20 non-cancer risk assessment. Accordingly, the quantitative estimate of cancer risk for PFOS in
- 21 drinking water is presented below to provide context and for informational purposes, and is not
- 22 used as the basis for a potential Health-based MCL.
- 23
- 24 The dietary rat study conducted by Butenhoff et al. (2012) is the only chronic study of PFOS. As
- 25 discussed above, the Health Effects Subcommittee concluded that PFOS is most appropriately
- 26 described as having "Suggestive Evidence of Carcinogenic Potential" based on the USEPA
- 27 Guidelines for Carcinogen Risk Assessment (USEPA, 2005a). This descriptor is consistent with
- 28 USEPA (2005a) which states that "Suggestive Evidence" should be used when there is "a small,
- and possibly not statistically significant, increase in tumor incidence observed in a single animal
- 30 or human study that does not reach the weight of evidence for the descriptor '*Likely to Be*
- 31 *Carcinogenic to Humans*'. USEPA Office of Water (2016b) also concluded that the descriptor
- 32 *"Suggestive Evidence of Carcinogenic Potential"* is appropriate for PFOS.
- 33
- 34 An increased incidence of hepatocellular and thyroid tumors was reported by Butenhoff et al.
- 35 (2012). The hepatocellular tumor data are appropriate for dose-response analysis, while the
- 36 thyroid tumor data do not follow a dose-response pattern that can be used for estimation of
- 37 cancer risk. Therefore, hepatocellular tumor data from the chronic rat study (Butenhoff et al.,
- 38 2012) were selected for dose-response modelling and estimation of the cancer risk from PFOS in
- 39 drinking water.
- 40

- 1 The mode of action for the rat hepatoceullular tumors caused by PFOS has not been established,
- 2 and they are considered relevant to humans for the purposes of risk assessment (See discussion
- 3 in Mode of Action section.) USEPA Guidelines for Carcinogen Risk Assessment (USEPA,
- 4 2005a) state that linear low-dose extrapolation should be used for dose-response modeling if the
- 5 mode of action has not been established. Therefore, the linear low-dose extrapolation was used
- 6 for dose-response modeling of these tumors. The linear low dose extrapolation approach is
- 7 basedon the assumption that exposure to any dose of a carcinogen results in some risk of cancer
- 8 and is presented below:
- 9

10 Benchmark dose modeling for hepatocellular tumors

- 11 Butenhoff et al. (2012) presents the summary data for the occurrence of hepatocellular tumors,
- 12 and Thomford et al. (2002), a contract laboratory report not from the peer-reviewed literature,
- 13 presents the detailed, individual animal data that are summarized in Butenhoff et al. (2012). The
- 14 data for both males and females from Thomford et al. (2002) were reviewed to determine the
- 15 animals at risk for PFOS-mediated tumors (i.e., those animals alive after 52 weeks of exposure)
- 16 and to confirm the occurrence and nature of the tumor data presented in Butenhoff et al., 2012).
- 17 In addition to hepatocellular tumors, Thomford et al. (2002) also reported a liver sarcoma in a
- 18 male in the high exposure-recovery group, a cholangioma in a female in the 5 ppm PFOS dose
- 19 group, and a number of neoplasms in the liver identified as having origins in other tissue that
- 20 were not considered to be related to PFOS exposure. Based on guidance suggested by
- 21 McConnell et al. (1986) and generally followed by the USEPA IRIS, these tumors were not
- included in the dose-response modeling presented below. However, we note that the occurrence
- 23 of the liver sarcoma and the cholangioma are not necessarily inconsistent with the mode of
- 24 action that resulted in the hepatocellular tumors.
- 25 It should be noted that the hepatocellular tumor incidence-by-exposure group employed here
- 26 differs somewhat from the incidence presented by Butenhoff et al. (2012). Butenhoff et al.,
- calculated the number of rats at-risk in each exposure group using the "Poly-3" approach. This
- 28 approach estimates the number of animals at-risk as a modeled function of the animals surviving
- at any given time point up to the end of the study based on the assumption that tumors appear as
- 30 a third-degree polynomial with respect to time. In contrast, as noted above, the approach
- 31 employed here follows the approach used by USEPA IRIS.

32

1 <u>Males</u>

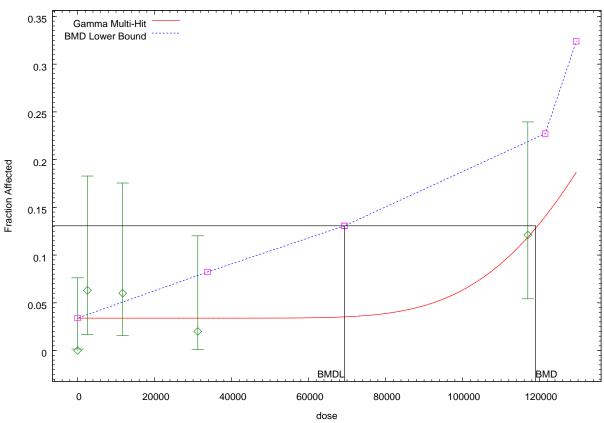
2 The occurrence of hepatocellular tumors in the male rats is summarized in Table 45.

Table 45. Summar	ry of hepatocel	lular tumor	data in male	rats from Bu	itenhoff et al.	(2012)
Concentration in Feed (ppm)	0 (controls)	0.5	2	5	20	20 Recovery group
Serum concentration (calculated on the basis of the area under the curve (AUC) (ng/ml) ¹	25	2,554	11,724	31,225	116,950	-
Number of rats with observed tumors ²	0	3	3	1	7	0
Number of animals in original exposure group	70	60	60	60	70	40
Number of animals with mortality ≤ 52 weeks ³	11	12	10	10	12	0
Animals assumed to be at-risk of developing a tumor ⁴	59	48	50	50	58	40
Hepatocellular tumor incidence	0	0.063	0.060	0.020	0.121	0

3 1. AUC was calculated as described in the text at the beginning of the dose-response section.

4 2. For males, all hepatocellular tumors were adenomas.

5 3. Includes scheduled sacrifices and spontaneous deaths (data from Thomford (2002).


6 4. Number of animals in original exposure group minus animals with mortality \leq 52 weeks.

7 <u>Dose-Response Considerations</u>

8 For hepatocellular tumors in males (all adenomas), there is one exposure group with a significant

9 elevation in tumor incidence (20 ppm PFOS in feed). Figure 18 is an example of the fitting of a

10 parametric dose-response function to these data using the USEPA BMDS software.

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1 11:26 05/11 2016

2 Figure 18. Fit of gamma multi-hit model to data on increased hepatocellular tumors in male rats

3 (Butenhoff et al., 2012); data on x-axis represent serum PFOS concentration in ng/ml as summarized in
4 Table 45 above.

5 As demonstrated in this figure, there are effectively only two points that determine the fit of

6 these dose response models, the control, and the response of the 20 ppm group (corresponding to

7 120,000 ng/ml serum PFOS concentration). Therefore, all models have an equal likelihood of

8 modeling the response between these two points and benchmark dose modeling is not

9 informative for deriving a point of departure. The more appropriate approach to estimation of

10 the hepatocellular cancer potency in males is to calculate the linear slope of the line between the

11 response of the 20 ppm exposure group and the origin using the incidence data as given in Table

12 45 above.

13 It should be noted that there were no hepatocellular tumors in the male recovery group (in

- 14 contrast to females, which did have tumors in the recovery group). The recovery group was not
- 15 included in the BMD modeling of these tumors in males, while it was included in the modeling
- 16 of data from females (below). However, inclusion of the recovery group in the dose-response

- 1 evaluation for males would not have changed the result since the cancer slope factor is based on
- 2 the slope of the line between the origin and the high dose group.
- 3 <u>Cancer Potency Calculation</u>
- 4 The cancer potency for hepatocellular tumors in male rats was calculated in terms of serum
- 5 PFOS concentration rather than the PFOS concentration in the feed (i.e., the administered dose).
- 6 Therefore, based on the area-under-the-curve (AUC) calculations, the average serum
- 7 concentration over the 105 weeks of exposure (116,950 ng/ml) is used to define the (internal)
- 8 exposure of this group. As given in Table 45 above, the hepatocellular tumor incidence for the
- 9 20 ppm exposure group is 0.121. Therefore, the cancer potency is the slope of the line from this
- 10 exposure group to the origin (0 ng/ml serum concentration; 0 tumor incidence). This is
- 11 calculated as: $0.121/116,950 \text{ ng/ml} = 1 \text{ x } 10^{-6} (\text{ng/ml})^{-1}$.
- 12 <u>Females</u>
- 13 The occurrence of hepatocellular tumors in the female rats is summarized in Table 46.

Table 46. Summ	ary of hepa	atocellula	r tumor data i	n female rats f	rom Butenhoff et al	. (2012)
Concentration in Feed (ppm)	0 (controls)	0.5	2	5	20 recovery group ²	20
Serum concentration (calculated on the basis of the area under the curve (AUC)) (ng/ml) ¹	816	5,309	22,153	64,073	151,939	207,633
Number of rats with observed tumors ³	0	1	1	1	2	6 (includes 1 carcinoma)
Number of animals in original exposure group	70	60	60	60	40	70
Number of animals with mortality ≤ 52 weeks ⁴	10	13	12	11	1	11
Animals assumed to be at-risk of developing a tumor ⁵	60	47	48	49	39	59
Hepatocellular tumor incidence	0	0.021	0.021	0.020	0.051	0.102

14 15

1. AUC was calculated as described in the text at the beginning of the dose-response section.

2. The 20 ppm recovery group was exposed to 20 ppm dietary PFOS for 53 weeks and then removed from exposure (i.e., was fed a control diet).

- 16 17
 - 7 3. Except as indicated, all hepatocellular tumors were adenomas.
- 18 4. Includes scheduled sacrifices and spontaneous deaths (data from Thomford (2002).

19 5. Number of animals in original exposure group minus animals with mortality \leq 52 weeks.

1 <u>Benchmark dose modeling of hepatocellular tumors</u>

- 2 Benchmark dose modeling was conducted on the incidence of hepatocellular adenomas plus
- 3 carcinomas in female rats. For each dose group, the PFOS serum concentrations over the entire
- 4 exposure period were estimated as the area-under-the-curve (AUC) of serum concentration
- 5 versus time. It was assumed that internal exposure to PFOS in the recovery group (i.e.,
- 6 termination of 20 ppm dietary exposure at 52 weeks) continued (but decreased) after the
- 7 termination of dietary exposure. Benchmark dose modeling was carried out using all available
- 8 dichotomous models and a BMR of 10% in the USEPA BMDS software (version 2.6.0.1). The
- 9 use of a BMR of 10% is supported by the observation that the tumor incidence in the high dose
- 10 group was 10%. Therefore, a BMR of 10% is appropriate for modeling these data. Table 47
- 11 gives the results of the benchmark dose modeling. Detailed model outputs are presented in
- 12 Appendix 7.

Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data from Butenhoff et al. (2012) and Thomford et al. (2002)						
Model	Parameter Restrictions	Poly	Chi-square p-value	AIC	BMD (ng/ml)	BMDL (ng/ml)
Gamma	No Power Restriction	-	0.7254	91.72	223,921	136,931
Gamma	Restrict Power ≥ 1	-	0.7254	91.72	223,921	146,863
Log Logistic ¹	No Slope Restriction	-	0.7252	89.78	293,786	135,695
Log Logistic	Restrict Slope ≥ 1	-	0.7278	91.71	222,762	145,871
Log Probit ¹	No Slope Restriction	-	0.7065	89.89	341,864	134,024
Log Probit	Restrict Slope ≥ 1	-	0.7297	91.77	224,375	163,078
Logistic ¹	-	-	0.8680	89.54	217,195	172,669
Multistage ²	No Beta Restriction	3rd	0.5175	93.16	207,177	144,054
Multistage ³	Restrict Betas ≥ 0	3rd	0.7266	91.52	219,137	149,798
Multistage	Restrict Betas ≥ 0	2nd	0.6971	91.64	228,610	148,097
Multistage ²	No Beta Restriction	2nd	0.6971	91.64	228,610	135,207
Probit ¹	-	-	0.8582	89.57	220,249	168,550
Quantal-Linear	-	-	0.7698	89.81	257,440	145,713
Weibull ⁵	No Power Restriction	-	0.7272	91.70	222,462	137,093
Weibull ⁵	Restrict Power ≥ 1	-	0.7272	91.70	222,462	147,127

13 ¹ Background parameter estimate hit a boundary. ² BMDU did not converge, so BMDU

14 calculation failed. ³ The beta2 parameter estimate hit a boundary.

⁴ Power parameter estimate hit a boundary.

⁵ Background, slope, and power parameter estimates hit boundaries

17

18

1 <u>Model Selection</u>

2 Upon initial inspection, all models appeared to give acceptable fits as judged by the chi-square p-

- 3 value and the scaled residuals. USEPA Benchmark Dose technical guidance (USEPA, 2012)
- 4 calls for selection of an overall BMDL based on consideration of several factors including, the
- 5 relative magnitude of the available BMDLs and the quality of the available models as assessed
- 6 by the Akaike information criterion (AIC). As noted in Table 47, for several of the models,
- 7 estimation of various model parameters hit a boundary and that parameter could not be integrated
- 8 into the fit of the model to the data. Although the BMDS software still fit these models to the
- 9 data, the resulting fit did not reflect the full structure of the model. In addition, because the AIC10 parameter is partially determined by the number of parameters in each model, those models in
- 11 which parameters were dropped because of boundary problems had artificially reduced AIC
- 12 values. Thus, those models cannot be compared to the other models on the basis of their AIC
- 13 values. Excluding all models for which parameter estimates hit a boundary, five models
- 14 remained. The BMDLs for these models ranged from 136,931 to 163,078 ng/ml, and the AIC
- values ranged from 91.64 to 91.77. Both BMDLs and AIC values for these models, therefore,
- 16 fell into a relatively narrow range. The two models with the smallest BMDL values (Gamma- no
- 17 power restriction, BMDL = 136,931 ng/ml; and Log-logistic slope restricted to ≥ 1 , BMDL =
- 18 145,871 ng/ml) had nearly identical AIC values (91.72 and 9.71, respectively), and both had
- 19 nearly identical scaled residuals at the serum concentration closest to the BMD. Although these
- 20 BMDLs are close (6% difference), the smallest BMDL is sufficiently distinct to be used
- 21 independently for calculating the cancer slope factor (CSF). **Therefore, the POD for**
- 22 calculation of the CSF is 136,931 ng/ml.
- 23

24 <u>Cancer potency factor (cancer slope factor)</u>

- 25 The cancer potency slope (cancer slope factor) based on serum concentration from the
- 26 hepatocellular tumor incidence in the female rats in the Butenhoff et al. (2012) study is derived
- as the linear slope of the line between the POD (148,160 ng/ml; 10% response) and the origin (0
- ng/ml; 0% response) as 0.1/148,088 ng/ml = 7.3 x 10^{-7} (ng/ml)⁻¹. Based on the clearance factor
- that relates human serum PFOS serum levels (ng/ml) to intake dose (ng/kg/day) of 8.1×10^{-5}
- 30 L/kg/day (8.1 x 10^{-2} ml/kg/day), the human cancer potency factor based on intake dose is 9.0 x
- 31 $10^{-6} (ng/kg/day)^{-1}$.
- 32 As discussed above, the cancer potency estimated from the hepatocellular tumor incidence in the 33 male rats in the Butenhoff et al. (2012) is $1 \ge 10^{-6} (\text{ng/ml})^{-1}$.
- 34 The two cancer potency estimates are close, and the potency estimate based on male rat data is
- 35 slightly higher than the estimate from the female rat data. However, the estimate from the female
- 36 rats is based on a more robust and more informative data set, since liver tumors occurred only in
- 37 the high dose group in males but occurred in all dosed groups in females. Therefore, data from
- 38 female rats is more appropriate for estimating the cancer risk of PFOS in drinking water.
- 39 Estimated cancer risk at Health-based MCL

1	As above, the cancer potency factor (slope factor) for liver tumors in female rats, 9.0×10^{-6}
2	(ng/kg/day) ⁻¹ , was used to estimate cancer risk. Uncertainties associated with this cancer slope
3	factor include uncertainties regarding inclusion of the recovery group data in dose-response
4	analysis and uncertainties about the dose metric based on AUC serum levels. The BMD
5	modeling of liver tumors in females included tumor incidence data from the 20 ppm recovery
6	group (dosed with PFOA for one year followed by one year without dosing until sacrifice at 2
7	years) While inclusion of the recovery group females helps to inform the shape of the dose-
8	response curve, there is uncertainty about including these data in dose-response modeling with
9	other dose groups exposed for the full 2 year study duration, due to differences in the time course
10	of exposure in the recovery group. Additionally, the dose-response modeling was based on AUC
11	of serum PFOS data. Since the AUCs were developed using linear interpolation from data for a
12	relatively small number of time points, and data for some time points were not available for all
13	dose groups, there is considerable uncertainty in the AUC estimates.
14	Cancer risk (unitless) is calculated from the cancer potency factor and dose as follows:
15	Risk = Potency Factor $(ng/kg/day)^{-1}$ x Dose $(ng/kg/day)$
16	From above, the cancer potency factor for hepatocellular tumors in female rats is 9.0 x 10^{-6}
17	$(ng/kg/day)^{-1}$.
18 19	The dose at the recommended Health-based MCL of 13 ng/L can be calculated using default assumptions for body weight (70 kg) and drinking water consumption (2 L/day).
19	assumptions for body weight (70 kg) and drinking water consumption (2 L/day).
20	Dose (ng/kg/day) from 13 ng/L = $\underline{13 \text{ ng/L x } 2 \text{ L/day}} = 0.37 \text{ ng/kg/day}$
21	70 kg
22	
23	The lifetime cancer risk is therefore calculated as:
24	$9.0 \ge 10^{-6} (ng/kg/day)^{-1} \ge 0.37 ng/kg/day = 3 \ge 10^{-6}$ (3 in one million)
25	The estimated cancer risk of 3 in one million is slightly above the cancer risk goal for New
26	Jersey MCLs of one in one million. It is the general policy of the DWQI, NJDEP, and USEPA
27	Office of Water to apply an additional uncertainty factor of 10 to an RfD for a non-cancer
28	endpoint to account for potential cancer risk of Suggestive Carcinogens when a cancer potency
29	factor (slope factor) is not available or is considered uninformative. However, since the
30	estimated cancer risk at the Health-based MCL based on a sensitive non-carcinogenic effect is
31	close to the New Jersey cancer risk goal of one in one million, application of this uncertainty
32	factor is not necessary.
33	
34	
35	RECOMMENDED HEALTH-BASED MCL

- 1 The Health-based MCL of 13 ng/L based on decreased plaque forming cell response from Dong
- 2 et al. (2009) is the lowest of the three potential Health-based MCLs based on non-cancer
- 3 endpoints. In addition to yielding the lowest Health-based MCL value, this endpoint is an
- 4 appropriate basis for the Health-based MCL because of the clear toxicological relevance of
- 5 decreased response to foreign antigens and evidence for the association of decreased vaccine
- 6 response in humans with general population level exposure to PFOS. The estimated cancer risk
- 7 at the Health-based MCL of 13 ng/L is close to the New Jersey cancer risk goal of one in one
- 8 million. Thus, a Health-based MCL of 13 ng/L based on immune system toxicity is considered to
- 9 be both scientifically appropriate and health protective.
- 10 Therefore, the recommended Health-based MCL is 13 ng/L.

11 DISCUSSION OF UNCERTAINTIES

- PFOS is associated with several human health effects in epidemiology studies of the general
- 13 population, most notably decreased vaccine response. Although causality cannot be definitively
- 14 proven for these associations due to the design of the epidemiology studies and limitations in the
- 15 results, these findings indicate the need for caution about drinking water exposures that will
- 16 increase serum PFOS to levels substantially higher than in the general population. This is
- 17 particularly true because elevated serum PFOS levels persist for many years after exposure ends,
- 18 due to its long human half-life (several years).
- 19 Ongoing exposure to the recommended Health-based MCL of 13 ng/L is expected to increase
- 20 serum PFOS levels, on average, by about 2.6 ng/ml (ppb) with average daily water consumption
- 21 and 4.7 ng/ml (ppb) with upper percentile daily water consumption in adults. Increases in serum
- 22 PFOS levels are predicted to be substantially higher in infants than in adults, including both
- 23 breastfed infants whose mothers ingest PFOS in drinking water or from formula prepared with
- 24 water contaminated with PFOS.
- Human epidemiology studies of PFOS have been conducted in the general population and in
- 26 workers with higher occupational exposures, but there are no studies of associations of PFOS
- 27 with health effects in communities exposed to contaminated drinking water. Associations of the
- 28 related compound PFOA with multiple health effects, including two types of cancer, have been
- 29 identified in studies of communities with contaminated drinking water (DWQI, 2017). It is
- 30 unknown whether such studies of PFOS would reveal associations with additional health effects
- 31 that have not yet been identified.
- Chronic toxicity and carcinogenicity of PFOS have been studied only in a single rat study.
- 33 There is uncertainty about chronic effects including carcinogenicity in other species.
- 34 Furthermore, the chronic studies did not assess effects including carcinogenicity which might
- 35 result from exposures during the critical developmental stages which are known to be sensitive
- 36 periods for PFOS toxicity.

Uncertainties about the human relevance of effects seen in animals are inherent to all risk
assessments based on animal data. As reviewed in detail in this document, the available
information indicates that the effects of PFOS observed in experimental animals are relevant to
humans for the purposes of risk assessment.

• A number of reproductive and development effects were reported from gestational and/or 5 lactational PFOS exposure in animals including increased mortality, decreased body weight, 6 7 structural abnormalities, and endocrine/metabolism effects such as changes in thyroid hormone 8 levels and glucose metabolism. From epidemiologic studies, there is some suggestion that PFOS 9 may have developmental neurological effects. Therefore, early lifestages may represent a 10 window of susceptibility following PFOS exposure. As reviewed above, decreased offspring total thyroxine levels (Wang et al., 2011c) was the only reproductive/developmental endpoint 11 identified as one of the most sensitive for PFOS. This endpoint was excluded from Health-based 12 13 MCL derivation due to uncertainties in measuring total thyroxine and uncertain human relevance 14 given the lack of epidemiologic support for an association of PFOS with this effect. However, 15 for comparison, BMD modeling was conducted (Appendix 7) on these data but did not provide a stable fit to any of the available BMD models. As a point of reference, however, if a criterion 16 17 were to be derived for this effect, the POD as a maternal serum PFOS LOAEL (PND 1) of 2,290 18 ng/ml would be modified by the application of: a UF_{human} of 10; a UF_{animal} of 3; a UF_{LOAEL} of 3 19 (due to a lack of a NOAEL); a UF_{sub-chronic} of 1 (because exposure was of short duration during gestation); and a UF_{database} of 1, yielding a total UF of 100. This would correspond to a Health-20 21 based MCL of 13 ng/L, which is identical to the Health-based MCL of 13 ng/L for decreased 22 plaque forming cell response (Dong et al., 2009). Based on the above, the Health-based MCL of 23 13 ng/L is protective of the reproductive and developmental effects identified in this assessment.

Available information indicates that the toxicological effects are generally similar for PFOS
and some other PFCs, including PFOA (DWQI, 2017). Additionally, the health effects
associated with PFOS in epidemiology studies are also associated with PFOA. Therefore, the
toxicity of PFOS and other PFCs may be additive. Although PFOS and other PFCs, including
PFOA, are known to co-occur in some NJ public water supplies, the potential for additive
toxicity of PFOS and other PFCs was not considered in development of the Health-based MCL.

30 In conclusion, the recommended Health-based MCL for PFOS is 13 ng/L.

- 31
- 32
- 33

34 <u>Citations</u>

- 35 3M Environmental Laboratory. 2001. Determination of the Presence and Concentration of
- 36 Perfluorooctanesulfonate (PFOS) in Liver and Serum Specimens of Crl:CD®(SD) IGS BR Rats

- 1 Exposed to Perfluorooctane Sulfonic Acid Potassium Salt (PFOS T-6295). Analytical Report:
- 2 FACT TOX-002. LRN-U2121. 3M Environmental Laboratory, St. Paul, MN.
- 3 Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB,
- 4 Strynar MJ, Lau C. 2007. Perfluorooctanoic acid induced developmental toxicity in the mouse is
- 5 dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci.
- 6 98:571-581.
- 7 Abbott BD, Wolf CJ, Das KP, Zehr RD, Schmid JE, Lindstrom AB, et al. 2009a. Developmental
- 8 toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome
- 9 proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol. 27:258-265.
- 10 Abbott BD. 2009b. Review of the expression of peroxisome proliferator-activated receptors
- 11 alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human
- 12 development. Reprod Toxicol. 27:246-257.
- 13 ADPH. Undated. Alabama Department of Public Health. Perfluoralkyl sulfonate (PFOS) & Fish
- 14 Consumption Advisory Fact Sheet http://adph.org/epi/assets/PFOS_Flyer.pdf
- Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS. 2003. Mortality of employees of a
 perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med. 60:722-729.
- 17 Alexander BH, Olsen GW. 2007. Bladder cancer in perfluorooctanesulfonyl fluoride
- 18 manufacturing workers. Ann Epidemiol. 17:471-478.
- 19 Andersen ME, Clewell HJ, Tan Y, Butenhoff JL, Olsen GW. 2006. Pharmacokinetic modeling of
- 20 saturable, renal resorption of Perfluoroalkyl acids in monkeys—Probing the determinants of long
- 21 plasma half-lives. Toxicology. 227:156-164.
- Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. 2010. Prenatal exposures to
 perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol. 172:1230-
- 24 1237.
- Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. 2013. Prenatal exposures to
 perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol. 178:921-927.
- 27 Antignac JP, Veyrand B, Kadar H, Marchand P, Oleko A, Le Bizec B, et al. 2013. Occurrence of
- 28 perfluorinated alkylated substances in breast milk of french women and relation with socio-
- demographical and clinical parameters: Results of the ELFE pilot study. Chemosphere. 91:802-
- **30** 808.
- 31 Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, et al. 2007.
- 32 Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)
- in relation to weight and size at birth. Environ Health Perspect. 115:1670-1676.

- 1 Appleman, T.D., Higgins, C. P., Quinones, O., Vanderford, B.J, Kolstad, C., Zeigler-Holady,
- 2 J.C., Dickenson, E.R. 2014. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale
- 3 water treatment systems. Water Res. 51: 246-255.
- 4 Asakawa A, Toyoshima M, Fujimiya M, Harada K, Ataka K, Inoue K, et al. 2007.
- 5 Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus. Int
- 6 J Mol Med. 19:733-739.
- 7 ATSDR. 2013. Agency for Toxics Substances and Disease Registry. Health Consultation.
- 8 Exposure Investigation Report. Perfluorochemical serum sampling in the vicinity of Decatur,
- 9 Alabama. Morgan, Lawrence, and Limestone Counties. April 1, 2013.
- 10 http://www.atsdr.cdc.gov/HAC/pha/Decatur/Perfluorochemical_Serum%20Sampling.pdf
- 11 ATSDR. 2015. Agency for Toxics Substances and Disease Registry. Toxicological Profile for
- 12 Perfluoroalkyls. Draft for Public Comment. August 2015.
- 13 Audet-Delage Y, Ouellet N, Dallaire R, Dewailly E, Ayotte P. 2013. Persistent organic

14 pollutants and transthyretin-bound thyroxin in plasma of Inuit women of childbearing age.

- 15 Environ Sci Technol. 47:13086-13092.
- 16 Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM. 2003.
- Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect. 111:1485-1489.
- 19 Bannasch P. 2003. Comments on R. Karbe and R. L. Kerlin (2002). Cystic
- 20 degeneration/spongiosis hepatis (Toxicol Pathol. 30: 216-227). Toxicol Pathol. 31:566-70.
- 21 Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U. 2016. The
- role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic
- acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. 304:18-29.
- 24 Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, Williams DE. 2011.
- 25 Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow
- trout estrogen receptors in vitro. Toxicol Sci. 120:42-58.
- 27 Bijland S, Rensen PC, Pieterman EJ, Maas AC, van der Hoorn JW, van Erk MJ, et al. 2011.
- 28 Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia
- 29 mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci.
- **30** 123:290-303.
- 31 Bjork JA, Lau C, Chang SC, Butenhoff JL, Wallace KB. 2008. Perfluorooctane sulfonate-
- 32 induced changes in fetal rat liver gene expression. Toxicology. 251:8-20.

- 1 Bloom MS, Kannan K, Spliethoff HM, Tao L, Aldous KM, Vena JE. 2010. Exploratory
- assessment of perfluorinated compounds and human thyroid function. Physiol Behav. 99:240245.
- 4 Bogdanska J, Borg D, Sunström M, Bergström U, Halldin K, Abedi-Valugerdi M, Bergman A,
- 5 Nelson B, DePierre J, Nobel S. 2011. Tissue distribution of 35S-labelled perfluorooctane
- 6 sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high
- 7 experimental dose. Toxicology. 284:54-62.
- 8 Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Kruger T, et al. 2011.
- 9 Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control
- 10 study. Environ Health. 10:88.
- 11 Borg D, Bogdanska J, Sundström M, Nobel S, Håkansson H, Bergman A, DePierre JW, Halldin
- 12 K, Bergström U. 2010. Tissue distribution of 35S-labelled perfluorooctane sulfonate (PFOS) in
- 13 C57Bl/6 mice following late gestational exposure. Reproductive Toxicology. 30:550-557.
- 14 Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, et al. 2014. Gestational
- 15 exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic
- 16 behaviors in 4- and 5-year-old children: The Home Study. Environ Health Perspect. 122:513-
- 17 520.
- 18 Buck, R.C., Franklin. J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A.,
- 19 Kannan, K., Mabury, S.A., van Leeuwen, S.P. 2011. Perfluoroalkyl and polyfluoroalkyl
- 20 substances in the environment: terminology, classification, and origins. Integr Environ Assess
- 21 Manag. 7: 513-541.
- 22 Butenhoff, J. L., Gaylor, D. W., Moore, J. A., Olsen, G. W., Rodricks, J., Mandel, J. H., Zobel,
- L. R. 2004. Characterization of risk for general population exposure to perfluorooctanoate. Regul
 Tox Pharmacol. 39: 363-380.
- 25 Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG. 2009. Gestational and
- 26 lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental
- 27 neurotoxicity. Reprod Toxicol. 27:319-330.
- 28 Butenhoff JL, Chang SC, Olsen GW, Thomford PJ. 2012. Chronic dietary toxicity and
- 29 carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats.
- 30 Toxicology. 293:1-15.
- 31 Butt CM, Berger U, Bossi R, Tomy GT. 2010. Levels and trends of poly- and perfluorinated
- 32 compounds in the arctic environment. Sci Total Environ. 408: 2936-2965.
- 33 Case MT, York RG, Christian MS. 2001. Rat and rabbit oral developmental toxicology studies
- 34 with two perfluorinated compounds. Int J Toxicol. 20:101-109.

- 1 Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, et al. 2013. The influence of
- endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 29:444 447
- **3** 447.
- 4 Caserta D, Ciardo F, Bordi G, Guerranti C, Fanello E, Perra G, et al. 2013. Correlation of
- 5 endocrine disrupting chemicals serum levels and white blood cells gene expression of nuclear
- 6 receptors in a population of infertile women. Int J Endocrinol. 2013:510703.
- 7 CDC. 2016. Centers for Disease Control and Prevention. National Health and Nutrition
- 8 Examination Survey. https://www.cdc.gov/nchs/nhanes/participant.htm
- 9 CDC. 2017. Centers for Disease Control and Prevention. Fourth National Report on Human
- 10 Exposure to Environmental Chemicals, Updated Tables, Volume 1.
- 11 https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf
- 12 Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW. 2011. Perfluorinated acids and
- 13 hypothyroxinemia in pregnant women. Environ Res. 111:559-564.
- 14 Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau C, Singh
- 15 RJ, Wallace KB, Butenhoff JL. 2007. Negative bias from analog methods used in the analysis of
- 16 free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology. 234:21-33.
- 17 Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, et al. 2008.
- 18 Thyroid hormone status and pituitary function in adult rats given oral doses of
- 19 perfluorooctanesulfonate (PFOS). Toxicology. 243:330-339.
- 20 Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, et al. 2009. Gestational
- 21 and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: toxicokinetics,
- thyroid hormone status, and related gene expression. Reprod Toxicol. 27:387-399.
- 23 Chang SC, Noker PE, Gorman GS, Gibson SJ, Hart JA, Ehresman DJ, Butenhoff JL. 2012.
- Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys.
- **25** Reprod Toxicol. 33:428-40.
- 26 Chang ET, Adami HO, Boffetta P, Wedner HJ, Mandel JS. 2016. A critical review of
- 27 perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions
- 28 in humans. Critical Reviews in Toxicology. 46:1-53.
- 29 Chateau-Degat ML, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E. 2010. Effects of
- 30 perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit population of Nunavik
- 31 (Northern Quebec). Environ Res. 110:710-717.
- 32 Chen Y-M, Guo L-H. 2009. Fluorescence study on site-specific binding of perfluoroalkyl acids
- to human serum albumin. Archives of Toxicology. 83:255-261.

- 1 Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. 2012a. Prenatal PFOS exposure
- 2 induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol. 33:538-545.
- 3 Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, et al. 2012b. Perfluorinated
- 4 compounds in umbilical cord blood and adverse birth outcomes. PLoS One. 7:e42474.
- 5 Chen MH, Ha EH, Liao HF, Jeng SF, Su YN, Wen TW, et al. 2013. Perfluorinated compound
- 6 levels in cord blood and neurodevelopment at 2 years of age. Epidemiology. 24:800-808.
- 7 Christensen KY, Maisonet M, Rubin C, Holmes A, Calafat AM, Kato K, et al. 2011. Exposure to
- 8 polyfluoroalkyl chemicals during pregnancy is not associated with offspring age at menarche in a
- 9 contemporary British cohort. Environ Int. 37:129-135.
- 10 Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC. 2008. Are PFCAs bioaccumulative?
- 11 A critical review and comparison with regulatory criteria and persistent lipophilic compounds.
- 12 Environ Sci Technol. 42: 995-1003.
- 13 Corsini E, Avogadro A, Galbiati V, dell'Agli M, Marinovich M, Galli CL,
- 14 Germolec DR. 2011. In vitro evaluation of the immunotoxic potential of perfluorinated
- 15 compounds (PFCs). Toxicol Appl Pharmacol. 250:108-16.
- 16 Corsini E, Sangiovanni E, Avogadro A, Galbiati V, Viviani B, Marinovich M,
- 17 Galli CL, Dell'Agli M, Germolec DR. 2012. In vitro characterization of the immunotoxic
- 18 potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol.
- 19 258:248-55.
- 20 Corsini E, Luebke RW, Germolec DR, DeWitt JC. 2014. Perfluorinated compounds: Emerging
- 21 POPs with potential immunotoxicity. Toxicology Letters. 230:263-270.
- 22 Corton JC, Cunningham ML, Hummer BT, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L,
- 23 Seed J, Klaunig JE. 2014. Mode of action framework analysis for receptor-mediated toxicity:
- 24 The peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Crit Rev Toxicol.
- **25** 44:1-49.
- 26 Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. 2009. Studies on the toxicological effects of PFOA
- and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam
- **28** Toxicol. 56:338-349.
- Cunningham AJ, Szenberg A. 1968. Further improvements in the plaque technique for detectingsingle antibody-forming cells. Immunology. 14:599-600.
- 31 Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, et al. 2008.
- 32 Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary
- 33 potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A. 71:1526-1541.

- 1 Dallaire R, Dewailly E, Pereg D, Dery S, Ayotte P. 2009. Thyroid function and plasma
- 2 concentrations of polyhalogenated compounds in Inuit adults. Environ Health Perspect.
- 3 117:1380-1386.
- 4 Darrow LA, Stein CR, Steenland K. 2013. Serum perfluorooctanoic acid and perfluorooctane
- 5 sulfonate concentrations in relation to birth outcomes in the mid-Ohio Valley, 2005-2010.
- 6 Environ Health Perspect. 121:1207-1213.
- 7 Darrow LA, Howards PP, Winquist A, Steenland K. 2014. PFOA and PFOS serum levels and
 8 miscarriage risk. Epidemiology. 25:505-512.
- 9 de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. 2014a. First year growth in
- 10 relation to prenatal exposure to endocrine disruptors a Dutch prospective cohort study. Int J
- 11 Environ Res Public Health. 11:7001-7021.
- 12 de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. 2014b. Prenatal exposure to
- 13 endocrine disrupting chemicals in relation to thyroid hormone levels in infants a Dutch
- 14 prospective cohort study. Environ Health. 13:106.
- 15 Dewitt JC, Shnyra A, Badr MZ, Loveless SE, Hoban D, Frame SR, Cunard R, Anderson SE,
- 16 Meade BJ, Peden-Adams MM, Luebke RW, Luster MI .2009. Immunotoxicity of
- 17 perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-
- 18 activated receptor alpha. Crit Rev Toxicol. 39: 76-94.
- 19 Dewitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of
- 20 perfluorinated compounds: recent developments. Toxicol Pathol. 40: 300-11.
- 21 D'Hollander W, de Voogt P, De Coen W, Bervoets L. 2010. Perfluorinated substances in human
- food and other sources of human exposure. Rev Environ Contam Toxicol. 208:179-215.
- 23 Donauer S, Chen A, Xu Y, Calafat AM, Sjodin A, Yolton K. 2015. Prenatal exposure to
- 24 polybrominated diphenyl ethers and polyfluoroalkyl chemicals and infant neurobehavior. J
- 25 Pediatr. 166:736-742.
- 26 Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. 2009. Chronic effects of
- 27 perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch
- **28** Toxicol. 83:805-815.
- 29 Dong GH, Liu MM, Wang D, Zheng L, Liang ZF, Jin YH. 2011. Sub-chronic effect of
- 30 perfluorooctanesulfonate (PFOS) on the balance of type 1 and type 2 cytokine in adult C57BL6
- 31 mice. Arch Toxicol. 85:1235-1244.

- 1 Dong GH, Zhang YH, Zheng L, Liang ZF, Jin YH, He QC. 2012a. Subchronic effects of
- 2 perfluorooctanesulfonate exposure on inflammation in adult male C57BL/6 mice. Environ
- **3** Toxicol. 27:285-296.
- 4 Dong GH, Wang J, Zhang YH, Liu MM, Wang D, Zheng L, et al. 2012b. Induction of p53-
- 5 mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane
- 6 sulfonate (PFOS). Toxicol Appl Pharmacol 264:292-299.
- 7 Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, et al. 2013. Serum polyfluoroalkyl
- 8 concentrations, asthma outcomes, and immunological markers in a case-control study of
- 9 Taiwanese children. Environ Health Perspect. 121:507-513.
- 10 Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, Lamb D, Liu Y, Duan L, Naidu R. 2017.
- 11 Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.
- 12 Environ Int. 105:86-94.
- 13 DWQI. 1987. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level
- 14 Recommendations for Hazardous Contaminants in Drinking Water. March 26, 1987.
- 15 DWQI. 1994. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level
- 16 Recommendations for Hazardous Contaminants in Drinking Water. March 26, 1987.
- DWQI. 2009. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level
 Recommendations for Hazardous Contaminants in Drinking Water. March, 2009a.
- 19 DWQI. 2015a. New Jersey Drinking Water Quality Institute. Health-Based Maximum
- 20 Contaminant Level Support Document: Perfluorononanoic Acid (PFNA). New Jersey Drinking
- 21 Water Quality Institute Health Effects Subcommittee. June 22, 2015.
- 22 DWQI. 2015b. New Jersey Drinking Water Quality Institute. Recommendation on Perfluorinated
- 23 Compound Treatment Options for Drinking Water. New Jersey Drinking Water Quality Institute
- 24 Treatment Subcommittee. June 2015.
- 25 DWQI. 2017. New Jersey Drinking Water Quality Institute. Health-Based Maximum
- 26 Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA). New Jersey Drinking
- 27 Water Quality Institute Health Effects Subcommittee. February 15, 2017.
- 28 EFSA. 2008. European Food Safety Authority. Opinion of the Scientific Panel on Contaminants
- 29 in the Food Chain on Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) and
- 30 their Salts. EFSA Journal, 2008, Journal number 653: 1-131; available at
- 31 <u>http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.653/epdf</u>

- 1 Egeghy PP, Lorber M. 2011. An assessment of the exposure of Americans to perfluorooctane
- 2 sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo Sci
- 3 Environ Epidemiol. 21:150-68.
- 4 Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. 2012a.
- 5 Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure
- 6 to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear
- 7 receptors PPAR alpha and CAR/PXR. Toxicology 293:16-29.
- 8 Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, et al. 2012b.
- 9 Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four
- 10 days following seven days of dietary exposure to potassium perfluorooctanesulfonate.
- 11 Toxicology. 293:30-40.
- 12 Era S, Harada KH, Toyoshima M, Inoue K, Minata M, Saito N, et al. 2009. Cleft palate caused
- 13 by perfluorooctane sulfonate is caused mainly by extrinsic factors. Toxicology. 256:42-47.
- 14 Eriksen KT, Sorensen M, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, et al. 2009.
- 15 Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general
- 16 Danish population. J Natl Cancer Inst. 101:605-609.
- 17 Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, et al.
- 18 2013. Association between plasma pfoa and pfos levels and total cholesterol in a middle-aged
- 19 Danish population. PLoS One. 8:e56969.
- 20 Eschauzier, C., Beerendonk, E., Scholte-Veenendaal, P., De Voogt, P. 2012. Impact of treatment
- 21 processes on the removal of perfluoroalkyl acids from the drinking water production chain.
- 22 Environ. Sci. Technol. 46: 1708-1715.
- 23 Fair PA, Driscoll E, Mollenhauer MA, Bradshaw SG, Yun SH, Kannan K, et al. 2011. Effects of
- 24 environmentally-relevant levels of perfluorooctane sulfonate on clinical parameters and
- 25 immunological functions in B6C3F1 mice. J Immunotoxicol. 8:17-29.
- Fan H, Ducatman A, Zhang J. 2014. Perfluorocarbons and gilbert syndrome (phenotype) in the
 C8 health study population. Environ Res. 135:70-75.
- 28 Fei C, McLaughlin JK, Tarone RE, Olsen J. 2007. Perfluorinated chemicals and fetal growth: A
- study within the Danish national birth cohort. Environ Health Perspect. 115:1677-1682.
- 30 Fei C, McLaughlin JK, Tarone RE, Olsen J. 2008. Fetal growth indicators and perfluorinated
- 31 chemicals: A study in the Danish national birth cohort. Am J Epidemiol. 168:66-72.

- 1 Fei C, McLaughlin JK, Lipworth L, Olsen J. 2008. Prenatal exposure to perfluorooctanoate
- 2 (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones
- 3 in infancy. Environ Health Perspect. 116:1391-1395.
- Fei C, McLaughlin JK, Lipworth L, Olsen J. 2009. Maternal levels of perfluorinated chemicals
 and subfecundity. Hum Reprod. 24:1200-1205.
- 6 Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010a. Maternal concentrations of
- 7 perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) and duration of breastfeeding.
- 8 Scand J Work Environ Health. 36:413-421.
- 9 Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010b. Prenatal exposure to PFOA and PFOS and
- risk of hospitalization for infectious diseases in early childhood. Environ Res. 110:773-777.
- 11 Fei C, Olsen J. 2011. Prenatal exposure to perfluorinated chemicals and behavioral or
- 12 coordination problems at age 7 years. Environ Health Perspect. 119:573-578.
- 13 Fisher M, Arbuckle TE, Wade M, Haines DA. 2013. Do perfluoroalkyl substances affect
- 14 metabolic function and plasma lipids?--analysis of the 2007-2009, Canadian Health Measures
- 15 Survey (CHMS) Cycle 1. Environ Res. 121:95-103.
- 16 Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K, et al. 2013. Reductions
- 17 in serum lipids with a 4-year decline in serum perfluorooctanoic acid and
- 18 perfluorooctanesulfonic acid. Epidemiology. 24:569-576.
- 19 Franko J., Meade, B.J., Frasch, H.F., Barbero, A.M., Anderson, S.E. 2012. Dermal penetration
- 20 potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J. Toxicol. Environ.
- 21 Health A 75: 50-62.
- 22 Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, et al. 2010.
- 23 Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents:
- 24 Results from the C8 health project. Arch Pediatr Adolesc Med. 164:860-869.
- 25 Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F,
- 26 Hannibal I, Genzel-Boroviczény O, Koletzko B, Völkel W. 2010. Pre- and postnatal exposure to
- 27 perfluorinated compounds (PFCs). Environ Sci Technol. 44:7123-9.
- Fu Y, Wang T, Fu Q, Wang P, Lu Y. 2014. Associations between serum concentrations of
- perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicol Environ Saf.
 106:246-252.
- 31 Fuentes S, Colomina MT, Rodriguez J, Vicens P, Domingo JL. 2006. Interactions in
- 32 developmental toxicology: Concurrent exposure to perfluorooctane sulfonate (PFOS) and stress
- 33 in pregnant mice. Toxicol Lett. 164:81-89.

- 1 Fuentes S, Vicens P, Colomina MT, Domingo JL. 2007a. Behavioral effects in adult mice
- 2 exposed to perfluorooctane sulfonate (PFOS). Toxicology. 242:123-129.
- 3 Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL. 2007b. Concurrent exposure
- 4 to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal
- 5 development and behavior of the offspring. Toxicol Sci. 98:589-598.
- 6 Fuentes S, Colomina MT, Vicens P, Domingo JL. 2007c. Influence of maternal restraint stress
- 7 on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in
- 8 mice. Toxicol Lett. 171:162-170.
- 9 Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, et al. 2012. Serum
- 10 perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver
- 11 function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect.
- 12 120:655-660.
- 13 Gallo V, Leonardi G, Brayne C, Armstrong B, Fletcher T. 2013. Serum perfluoroalkyl acids
- 14 concentrations and memory impairment in a large cross-sectional study. BMJ Open. 3. e002414.
- 15 Gebbink WA, Berger U, Cousins IT. 2015. Estimating human exposure to PFOS isomers and
- PFCA homologues: the relative importance of direct and indirect (precursor) exposure. EnvironInt. 74:160-9.
- Geiger SD, Xiao J, Shankar A. 2013. Positive association between perfluoroalkyl chemicals and
 hyperuricemia in children. Am J Epidemiol. 177:1255-1262.
- Geiger SD, Xiao J, Shankar A. 2014a. No association between perfluoroalkyl chemicals and
 hypertension in children. Integr Blood Press Control. 7:1-7.
- Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. 2014b. The association between
 PFOA, PFOS and serum lipid levels in adolescents. Chemosphere. 98:78-83.
- 24 Ghisari M, Eiberg H, Long M, Bonefeld-Jorgensen EC. 2014. Polymorphisms in phase I and
- phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: A
 case-control study in Inuit women. Environ Health. 13:19.
- 27 Gleason JA, Post GB, Fagliano JA. 2015. Associations of perfluorinated chemical serum
- 28 concentrations and biomarkers of liver function and uric acid in the US population (NHANES),
- 29 2007-2010. Environ Res. 136:8-14.
- Goldstein RS, Tarloff JB, Hook JB. 1988. Age-related nephropathy in laboratory rats. FASEB J.
 2:2241-51.

- 1 Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, et al. 2012.
- 2 Serum vaccine antibody concentrations in children exposed to perfluorinated compounds.
- **3** JAMA. 307:391-397.
- 4 Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, et al. 2013. Pre-natal
- 5 exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and
- 6 immune-related health outcomes in early childhood. J Immunotoxicol. 10:373-379.
- 7 Grasty RC, Wolf DC, Grey BE, Lau CS, Rogers JM. 2003. Prenatal window of susceptibility to
- 8 perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects
- 9 Res B Dev Reprod Toxicol. 68:465-471.
- 10 Grasty RC, Bjork JA, Wallace KB, Wolf DC, Lau CS, Rogers JM. 2005. Effects of prenatal
- 11 perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects
- 12 Res B Dev Reprod Toxicol. 74:405-416.
- 13 Grice MM, Alexander BH, Hoffbeck R, Kampa DM. 2007. Self-reported medical conditions in
- 14 perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med. 49:722-729.
- 15 Gump BB, Wu Q, Dumas AK, Kannan K. 2011. Perfluorochemical (PFC) exposure in children:
- 16 Associations with impaired response inhibition. Environ Sci Technol. 45:8151-8159.
- 17 Guruge, K.S., Taniyasu, S., Yamashita, N., Wijeratna, S., Mohotti, K.M., Seneviratne, H.R.,
- 18 Kannan, K., Yamanaka, N., Miyazaki, S. 2005. Perfluorinated organic compounds in human
- 19 blood serum and seminal plasma: a study of urban and rural tea worker populations in Sri Lanka.
- 20 J Environ Monit. 7: 371-7.
- 21 Guruge KS, Hikono H, Shimada N, Murakami K, Hasegawa J, Yeung LW, et al. 2009. Effect of
- 22 perfluorooctane sulfonate (PFOS) on influenza a virus-induced mortality in female B6C3F1
- 23 mice. J Toxicol Sci. 34:687-691.
- Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, et al. 2012. Prenatal
- 25 exposure to perfluorooctanoate and risk of overweight at 20 years of age: A prospective cohort
- study. Environ Health Perspect. 120:668-673.
- 27 Halsne R, Tandberg JI, Lobert VH, Østby GC, Thoen E, Ropstad E, Verhaegen S. 2016. Effects
- 28 of perfluorinated alkyl acids on cellular responses of MCF-10A mammary epithelial cells in
- 29 monolayers and on acini formation in vitro. Toxicol Lett. 259:95-107.
- 30 Hamm MP, Cherry NM, Chan E, Martin JW, Burstyn I. 2010. Maternal exposure to
- 31 perfluorinated acids and fetal growth. J Expo Sci Environ Epidemiol. 20:589-597.

- 1 Hard GC, Banton MI, Bretzlaff RS, Dekant W, Fowles JR, Mallett AK, McGregor DB, Roberts
- 2 KM, Sielken RL Jr, Valdez-Flores C, Cohen SM. 2013. Consideration of rat chronic progressive
- 3 nephropathy in regulatory evaluations for carcinogenicity. Toxicol Sci. 132:268-75.
- Hardell E, Karrman A, van Bavel B, Bao J, Carlberg M, Hardell L. 2014. Case-control study on
 perfluorinated alkyl acids (PFAAS) and the risk of prostate cancer. Environ Int. 63:35-39.
- 6 Haug, L.S., Huber, S., Becher, G., Thomsen, C. 2011. Characterisation of human exposure
- 7 pathways to perfluorinated compounds comparing exposure estimates with biomarkers of
- 8 exposure. Environ. Int. 37: 687-693.
- 9 Hays T, Rusyn I, Burns AM, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM. 2005. Role of
- 10 peroxisome proliferator-activated receptor-alpha (PPARalpha) in bezafibrate-induced
- 11 hepatocarcinogenesis and cholestasis. Carcinogenesis. 26:219-27.
- 12 Health Canada. 2016. Perfluorooctane Sulfonate (PFOS) in Drinking Water. Document for
- 13 Public Consultation. <u>http://healthycanadians.gc.ca/health-system-systeme-</u>
- 14 <u>sante/consultations/perfluorooctane-sulfonate/document-eng.php</u>.
- 15 Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM. 2010. Exposure to
- 16 polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15
- 17 years of age. Environ Health Perspect. 118:1762-1767.
- 18 Humblet O, Diaz-Ramirez LG, Balmes JR, Pinney SM, Hiatt RA. 2014. Perfluoroalkyl
- 19 chemicals and asthma among children 12-19 years of age: NHANES (1999-2008). Environ
- 20 Health Perspect. 122:1129-1133.
- 21 Hurley, S., Houtz, E., Goldberg, D., Wang, M., Park, J-S., Nelson, D.O., Reynolds, P., Bernstein,
- 22 L., Anton-Culver, H., Horn-Ross, P., Petreas, M. 2016. Preliminary associations between the
- 23 detection of perfluoroalkyl acids (PFAAs) in drinking water and serum concentrations in a
- 24 sample of California women. Environ Sci Technol Lett. 3: 264–269.
- 25 Innes KE, Ducatman AM, Luster MI, Shankar A. 2011. Association of osteoarthritis with serum
- 26 levels of the environmental contaminants perfluorooctanoate and perfluorooctane sulfonate in a
- 27 large Appalachian population. Am J Epidemiol. 174:440-450.
- 28 Innes KE, Wimsatt JH, Frisbee S, Ducatman AM. 2014. Inverse association of colorectal cancer
- 29 prevalence to serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)
- 30 in a large Appalachian population. BMC Cancer. 14:45.
- 31 Jain RB. 2013a. Effect of pregnancy on the levels of selected perfluoroalkyl compounds for
- 32 females aged 17-39 years: data from National Health and Nutrition Examination Survey 2003-
- 33 2008. J Toxicol Environ Health A. 76:409-21.

- 1 Jain RB. 2013b. Association between thyroid profile and perfluoroalkyl acids: Data from
- 2 NHNAES 2007-2008. Environ Res. 126:51-59.
- Jerne NK, Nordin AA. 1963. Plaque formation in agar by single antibody-producing cells.
 Science. 140:405.
- Jerne NK, Henry C, Nordin AA, Fuji H, Koros AM, Lefkovits I. 1974. Plaque forming cells:
 methodology and theory. Transplant Rev. 18:130-91.
- 7 Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, et al. 2012. Serum concentrations of major
- 8 perfluorinated compounds among the general population in Korea: Dietary sources and potential
- 9 impact on thyroid hormones. Environ Int. 45:78-85.
- 10 Jiang W, Zhang Y, Zhu L, Deng J. 2014. Serum levels of perfluoroalkyl acids (PFAAS) with
- 11 isomer analysis and their associations with medical parameters in Chinese pregnant women.
- 12 Environ Int. 64:40-47.
- 13 Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jorgensen N. 2009. Do
- 14 perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 117:923-927.
- 15 Joensen UN, Veyrand B, Antignac JP, Blomberg Jensen M, Petersen JH, Marchand P, et al.
- 16 2013. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone
- 17 levels, but not with semen quality, in healthy men. Hum Reprod. 28:599-608.
- 18 Johansson N, Fredriksson A, Eriksson P. 2008. Neonatal exposure to perfluorooctane sulfonate
- 19 (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice.
- 20 Neurotoxicology. 29:160-169.
- 21 Johnson JD. 1995a. Final report. Analytical study, single-dose dermal absorption/toxicity study
- of T6049 in rabbits. In vivo reference number: HWI#6329-130. 3M. SCD Division (cited in
 ATSDR, 2015).
- 24 Johnson JD. 1995b. Final report. Analytical study, single-dose dermal absorption/toxicity study
- 25 of T6053 in rabbits (lithium perfluorooctane sulfonate). In vivo study reference number:
- 26 HWI#6329-137. 3M. SCD Division (cited in ATSDR, 2015).
- 27 Jorgensen KT, Specht IO, Lenters V, Bach CC, Rylander L, Jonsson BA, et al. 2014.
- 28 Perfluoroalkyl substances and time to pregnancy in couples from Greenland, Poland and
- 29 Ukraine. Environ Health. 13:116.
- 30 Kang JS, Choi JS, Park JW. 2016. Transcriptional changes in steroidogenesis by perfluoroalkyl
- acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere.
- 32 155:436-43.

- 1 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA,
- 2 Olivero J, Van Wouwe N, Yang JH, Aldoust KM. 2004. Perfluorooctanesulfonate and related
- 3 fluorochemicals in human blood from several countries. Environ Sci Technol. 38:4489-95.
- 4 Karbe E, Kerlin RL. 2002. Cystic degeneration/Spongiosis hepatis in rats. Toxicol Pathol.
 5 30:216-27.
- 6 Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM. 2011. Trends in exposure to
- 7 polyfluoroalkyl chemicals in the U.S. Population: 1999-2008. Environ Sci Technol. 45:8037-45.
- 8 Kawamoto K, Sato I, Tsuda S, Yoshida M, Yaegashi K, Saito N, et al. 2011. Ultrasonic-induced
- 9 tonic convulsion in rats after subchronic exposure to perfluorooctane sulfonate (PFOS). J
- 10 Toxicol Sci. 36:55-62.
- Kato, K., Ye, X., Calafat, A.M. 2015. PFASs in the general population. In: Toxicological Effects
 of Perfluoroalkyl and Polyfluoroalkyl Substances. J.D. DeWitt, Editor. Humana Press. pp. 51-76.
- 13 Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM. 2008. Gestational exposure to
- 14 perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci. 103:77-85.
- 15 Kerlin RL, Karbe E. 2004. Response to comments on E. Karbe and R. L. Kerlin (2002). Cystic
- 16 degeneration/spongiosis hepatis (Toxicol Pathol 30 (2), 216-227). Toxicol Pathol. 32:271.
- 17 Kerstner-Wood C, Coward L, Gorman G. 2003. Protein Binding of Perfluorohexane Sulfonate,
- 18 Perfluorooctane Sulfonate and Perfluorooctanoate to Plasma (Human, Rat and Monkey) and
- 19 Various Human-Derived Plasma Protein Fractions. Study ID 9921.7. Southern Research
- 20 Institute.
- 21 Kielsen K, Shamim Z, Ryder LP, Nielsen F, Grandjean P, Budtz-Jørgensen E, Heilmann C.
- 2016. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to
 perfluorinated alkylates. J Immunotoxicol. 13:270-3.
- 24 Kim HS, Jun Kwack S, Sik Han E, Seok Kang T, Hee Kim S, Young Han S. 2011. Induction of
- apoptosis and CYP4a1 expression in Sprague-Dawley rats exposed to low doses of
 perfluorooctane sulfonate. J Toxicol Sci. 36:201-210.
- 27 Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. 2011. Trans-placental transfer of thirteen
- perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol.
 45:7465-7472.
- 30 Kjeldsen LS, Bonefeld-Jørgensen EC. 2013. Perfluorinated compounds affect the function of sex
- 31 hormone receptors. Environ Sci Pollut Res Int.20:8031-44.

- 1 Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY,
- 2 McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. 2003. PPAR alpha agonist-induced rodent
- 3 tumors: modes of action and human relevance. Crit Rev Toxicol. 33:655-780.
- 4 Knox SS, Jackson T, Frisbee SJ, Javins B, Ducatman AM. 2011. Perfluorocarbon exposure,
- 5 gender and thyroid function in the C8 health project. J Toxicol Sci. 36:403-410.
- Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. 2015. Regulation of gene expression by
 CAR: an update. Arch Toxicol. 89:1045-55.
- 8 Krewski D, Acosta Jr. D, Andersen M, Anderson H, Bailar III J, Boekelheide K, Brent R,
- 9 Charnley G, Cheung V, Green Jr. S, Kelsey K, Kerkvliet N, Li A, McCray L, Meyer O, Patterson
- 10 R, Pennie W, Scala R, Solomon G, Stephens M, Yager J, Zeise L, and Staff of Committee on
- 11 Toxicity Testing and Assessment of Environmental Agents. 2010. Toxicity Testing in the 21st
- 12 Century: A Vision and a Strategy. Journal of Toxicology and Environmental Health, Part B.
- 13 13:51-138.
- 14 Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. 2013. Long-
- 15 term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum
- 16 Reprod. 28:3337-3348.
- 17 Kvist L, Giwercman YL, Jonsson BA, Lindh CH, Bonde JP, Toft G, et al. 2012. Serum levels of
- perfluorinated compounds and sperm Y:X chromosome ratio in two European populations and inInuit from Greenland. Reprod Toxicol. 34:644-650.
- 20 Lanza HA, Cochran RS, Mudge JF, Olson AD, Blackwell BR, Maul JD, Salice CJ, Anderson
- 21 TA. 2017. Temporal monitoring of perfluorooctane sulfonate accumulation in aquatic biota
- downstream of historical aqueous film forming foam use areas. Environ Toxicol Chem. 9999:1-8.
- 24 La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, et al. 2014. Exposure to
- endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from
- different Italian areas. Int J Environ Res Public Health. 11:10146-10164.
- Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. 2003. Exposure to
 perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol
 Sci. 74:382-392.
- 30 Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. 2007. Perfluoroalkyl acids: a
- 31 review of monitoring and toxicological findings. Toxicol Sci. 99:366-394.
- 32 Lau C. 2012. Perfluorinated compounds. EXS. 101:47-86.

- 1 Lee YJ, Kim MK, Bae J, Yang JH. 2013. Concentrations of perfluoroalkyl compounds in
- 2 maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere. 90:1603-1609.
- 3 Lee CK, Kang SG, Lee JT, Lee SW, Kim JH, Kim DH, et al. 2015. Effects of perfluorooctane
- 4 sulfuric acid on placental PRL-family hormone production and fetal growth retardation in mice.
- 5 Mol Cell Endocrinol. 401:165-172.
- 6 Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M, Liston V, et al. 2008.
- 7 Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in
- 8 adult Sprague-Dawley rats. J Toxicol Environ Health A. 71:1516-1525.
- 9 Liew Z, Ritz B, Bonefeld-Jorgensen EC, Henriksen TB, Nohr EA, Bech BH, et al. 2014. Prenatal
- 10 exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am J
- 11 Epidemiol. 180:574-581.
- 12 Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr EA, Fei C, et al. 2015. Attention
- 13 deficit/hyperactivity disorder and childhood autism in association with prenatal exposure to

14 perfluoroalkyl substances: A nested case-control study in the Danish national birth cohort.

- 15 Environ Health Perspect. 124:368-373.
- 16 Lilienthal H, Dieter HH, Hölzer J, Wilhelm M. Recent experimental results of effects of
- 17 perfluoroalkyl substances in laboratory animals Relation to current regulations and guidance
- values. 2017. Int J Hyg Environ Health. 220:766-775.
- Lin CY, Chen PC, Lin YC, Lin LY. 2009. Association among serum perfluoroalkyl chemicals,
 glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 32:702707.
- 22 Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Chen CY, et al. 2011. Associations between
- levels of serum perfluorinated chemicals and adiponectin in a young hypertension cohort in
 Taiwan. Environ Sci Technol. 45:10691-10698.
- Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Hsu SH, et al. 2013a. The associations between
 serum perfluorinated chemicals and thyroid function in adolescents and young adults. J Hazard
 Mater. 244-245:637-644.
- Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, et al. 2013b. Association between
- 29 levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents
- 30 and young adults. Int J Cardiol. 168:3309-3316.
- 31 Lin LY, Wen LL, Su TC, Chen PC, Lin CY. 2014. Negative association between serum
- 32 perfluorooctane sulfate concentration and bone mineral density in US premenopausal women:
- 33 NHANES, 2005-2008. J Clin Endocrinol Metab. 99:2173-2180.

- 1 Lind L, Zethelius B, Salihovic S, van Bavel B, Lind PM. 2014. Circulating levels of
- 2 perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia. 57:473-479.
- 3 Lindstrom, A.B., Strynar, M.J., Libelo, E.L. 2011. Polyfluorinated compounds: Past, present, and
- 4 future. Environ. Sci. Technol. 45: 7954-7961.
- 5 Long Y, Wang Y, Ji G, Yan L, Hu F, Gu A. 2013. Neurotoxicity of perfluorooctane sulfonate to
- 6 hippocampal cells in adult mice. PLoS One. 8:e54176.
- 7 Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. 2014.
- 8 Influenza vaccine response in adults exposed to perfluorooctanoate and
- 9 perfluorooctanesulfonate. Toxicol Sci. 138:76-88.
- 10 Lopez-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. 2014. Perfluorooctane sulfonate
- effects on the reproductive axis in adult male rats. Environ Res. 134:158-168.
- 12 Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, et al. 2011.
- 13 Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of
- 14 puberty among children living near a chemical plant. Environ Sci Technol. 45:8160-8166.
- 15 Lopez-Espinosa MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T. 2012a. Thyroid function
- 16 and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect.
- 17 120:1036-1041.
- 18 Lopez-Espinosa MJ, Fitz-Simon N, Bloom MS, Calafat AM, Fletcher T. 2012b. Comparison
- 19 between free serum thyroxine levels, measured by analog and dialysis methods, in the presence
- 20 of perfluorooctane sulfonate and perfluorooctanoate. Reprod Toxicol. 33:552-5.
- 21 Louis GM, Peterson CM, Chen Z, Hediger ML, Croughan MS, Sundaram R, et al. 2012.
- 22 Perfluorochemicals and endometriosis: The ENDO study. Epidemiology. 23:799-805.
- 23 Louis GM, Chen Z, Schisterman EF, Kim S, Sweeney AM, Sundaram R, et al. 2015.
- Perfluorochemicals and human semen quality: The LIFE study. Environ Health Perspect.123:57-63.
- 26 Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL. 2005a. Two-generation
- 27 reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology.
- 28 215:126-148.
- 29 Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. 2005b. Neonatal mortality from in
- 30 utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and
- 31 biochemical and pharmacokinetic parameters. Toxicology. 215:149-169.
- 32 Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, et al. 2013. Glucose and lipid homeostasis in adult rat
- 33 is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol. 28:532-542.

- 1 Lyngso J, Ramlau-Hansen CH, Hoyer BB, Stovring H, Bonde JP, Jonsson BA, et al. 2014.
- 2 Menstrual cycle characteristics in fertile women from Greenland, Poland and Ukraine exposed to
- 3 perfluorinated chemicals: A cross-sectional study. Hum Reprod. 29:359-367.
- 4 Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, et al. 2012.
- 5 Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal
- 6 growth in British girls. Environ Health Perspect. 120:1432-1437.
- 7 Martin JW, Mabury SA, Solomon KR, Muir DC. 2003. Bioconcentration and tissue distribution
- 8 of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 22:1969 204.
- 10 Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. 2007. Toxicogenomic study of
- 11 triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes
- 12 chemicals based on mechanisms of toxicity. Toxicol Sci. 97:595-613.
- 13 McConnell EE, Solleveld HA, Swenberg JA, Boorman GA. 1986. Guidelines for combining
- 14 neoplasms for evaluation of rodent carcinogenesis studies. J Natl Cancer Inst. 76:283-9.
- 15 MDHHS. 2015. Michigan Department of Health and Human Services. MDHHS Activities at the
- 16 Former Wurtsmith Air Force Base. Updated April 2015. PFOS Fish Sampling Results.
- 17 https://www.michigan.gov/documents/mdch/fish_data_handout_449030_7.pdf
- 18 MDH. 2008. Minnesota Department of Health. Fish Consumption Advisory Program. April 2008
- 19 http://www.health.state.mn.us/divs/eh/fish/eating/mealadvicetables.pdf
- 20 MDH. 2013. Minnesota Department of Health. East Metro PFC Biomonitoring Follow-up
- 21 Project May 2013 Report to the Community Survey Analysis: How are participants exposed to
- 22 PFCs? May 2013.
- 23 http://www.health.state.mn.us/tracking/biomonitoring/projects/CommunityReport-May2013.pdf
- 24 MDH. 2017. Minnesota Department of Health. Health Based Guidance for Water Health Risk
- 25 Assessment Unit, Environmental Health Division. Toxicological Summary for: Perfluorooctane
- 26 Sulfonate. Web Publication Date: May 2017.
- 27 http://www.health.state.mn.us/divs/eh/risk/guidance/gw/pfos.pdf
- 28 Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. 2010. Association between serum
- 29 perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition
- 30 Examination Survey. Environ Health Perspect. 118:686-692.
- 31 Mogensen UB, Grandjean P, Nielsen F, Weihe P, Budtz-Jørgensen E. 2015. Breastfeeding as an
- 32 Exposure Pathway for Perfluorinated Alkylates. Environ Sci Technol. 49:10466-73.

- 1 Mollenhauer MA, Bradshaw SG, Fair PA, McGuinn WD, Peden-Adams MM. 2011. Effects of
- 2 perfluorooctane sulfonate (PFOS) exposure on markers of inflammation in female B6C3F1 mice.
- 3 J Environ Sci Health A Tox Hazard Subst Environ Eng. 46:97-108.
- 4 Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B, et al. 2008. Serum levels of
- 5 perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res.
- 6 108:56-62.
- 7 Nelson JW, Hatch EE, Webster TF. 2010. Exposure to polyfluoroalkyl chemicals and
- 8 cholesterol, body weight, and insulin resistance in the general U.S. Population. Environ Health
- 9 Perspect. 118:197-202.
- 10 Ngo HT, Hetland RB, Sabaredzovic A, Haug LS, Steffensen IL. 2014. In utero exposure to
- 11 perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) did not increase body weight or
- 12 intestinal tumorigenesis in multiple intestinal neoplasia (Min/+) mice. Environ Res. 132:251-
- **13** 263.
- 14 NH DHHS. 2016. New Hampshire Department of Health and Human Services. Pease PFC Blood
- 15 Testing Program: April 2015 October 2015. June 16, 2016.
- 16 https://www.dhhs.nh.gov/dphs/documents/pease-pfc-blood-testing.pdf
- 17 NJDEP. 2007. New Jersey Department of Environmental Protection. Determination of
- 18 Perfluorooctanoic Acid (PFOA) in Aqueous Samples, Final Report, January 2007.
- 19 <u>http://www.nj.gov/dep/watersupply/final_pfoa_report.pdf</u>
- 20 NJDEP. 2014. New Jersey Department of Environmental Protection. Occurrence of
- 21 Perfluorinated Chemicals in Untreated New Jersey Drinking Water Sources Final Report. April
- 22 2014. http://www.nj.gov/dep/watersupply/pdf/pfc-study.pdf
- 23 NJDEP. 2015. New Jersey Department of Environmental Protection. Technical Support
- 24 Document: Interim Specific Ground Water Criterion for Perfluorononanoic Acid (PFNA, C9).
- 25 Office of Science. June 24, 2015.
- 26 <u>http://www.state.nj.us/dep/dsr/supportdocs/pfna/PFNA%20FINAL%20%20interim%20GW%20</u>
- 27 <u>criterion%206_26_15.pdf</u>
- 28 NJDOH. 2014. New Jersey Department of Health. ATSDR Technical Assistance Form. NJDOH
- 29 response to NJDEP request for evaluation of showering/bathing exposure to PFNA.
- 30 NTP. 2016. National Toxicology Program. Systematic review of immunotoxicity associated with
- 31 exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). September
- 32 2016. <u>https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf</u>

- 1 Ode A, Kallen K, Gustafsson P, Rylander L, Jonsson BA, Olofsson P, et al. 2014. Fetal exposure
- 2 to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS
- 3 One. 9:e95891.
- 4 Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, et al. 2012. Prenatal
- exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in
 infants. Environ Res. 112:118-125.
- 7 Okada E, Sasaki S, Kashino I, Matsuura H, Miyashita C, Kobayashi S, et al. 2014. Prenatal
- exposure to perfluoroalkyl acids and allergic diseases in early childhood. Environ Int. 65:127134.
- 10 Olsen GW, Burris JM, Mandel JH, Zobel LR. 1999. Serum perfluorooctane sulfonate and hepatic
- and lipid clinical chemistry tests in fluorochemical production employees. J Occup Environ Med.
 41,700,806
- **12** 41:799-806.
- 13 Olsen G, Hansen K, Stevenson L, Burris J, Mandel J. 2003a. Human donor liver and serum
- concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environmental Science
 & Technology. 37:888-891.
- 16 Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003b. Epidemiologic assessment of worker
- 17 serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and
- 18 medical surveillance examinations. J Occup Environ Med. 45:260-270.
- Olsen GW, Burlew MM, Marshall JC, Burris JM, Mandel JH. 2004. Analysis of episodes of care
 in a perfluorooctanesulfonyl fluoride production facility. J Occup Environ Med. 46:837-846.
- 21 Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR. 2007.
- 22 Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and
- 23 perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect.
- 24 115:1298-305.
- 25 Olsen GW, Ehresman DJ, Buehrer BD, Gibson BA, Butenhoff JL, Zobel LR. 2012. Longitudinal
- assessment of lipid and hepatic clinical parameters in workers involved with the demolition of
- 27 perfluoroalkyl manufacturing facilities. J Occup Environ Med. 54:974-983.
- 28 Olsen, G.W. (2015). PFAS biomonitoring in higher exposed populations. In: Toxicological
- 29 Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. J.D. DeWitt, Editor. Humana Press.
- 30 pp. 77-126.
- 31 Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL, Herron RM, Hanna
- 32 H, Nobiletti JB, Rios JA, Reagen WK, Ley CA. 2017. Per- and polyfluoroalkyl substances
- 33 (PFAS) in American Red Cross adult blood donors, 2000-2015. Environ Res. 157:87-95.

- 1 Onishchenko N, Fischer C, Wan Ibrahim WN, Negri S, Spulber S, Cottica D, et al. 2011.
- 2 Prenatal exposure to PFOS or PFOA alters motor function in mice in a sex-related manner.
- 3 Neurotox Res. 19:452-461.
- 4 Osuna CE, Grandjean P, Weihe P, El-Fawal HA. 2014. Autoantibodies associated with prenatal
- and childhood exposure to environmental chemicals in Faroese children. Toxicol Sci. 142:158166.
- Paul AG, Jones KC, Sweetman AJ. 2009. A first global production, emission, and environmental
 inventory for perfluorooctane sulfonate. Environ Sci Technol. 43:386-92;
- 9 Peden-Adams MM, Keller JM, Eudaly JG, Berger J, Gilkeson GS, Keil DE. 2008. Suppression
- 10 of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci.
- 11 104:144-154.
- 12 Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM. 2006. The toxicology of ligands
- 13 for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci. 90:269-95.
- 14 Pereiro N, Moyano R, Blanco A, Lafuente A. 2014. Regulation of corticosterone secretion is
- 15 modified by PFOS exposure at different levels of the hypothalamic-pituitary-adrenal axis in adult
- 16 male rats. Toxicol Lett. 230:252-262.
- 17 Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, Farré M. 2013.
- 18 Accumulation of perfluoroalkyl substances in human tissues. Environ Int. 59:354-62.
- 19 Peters JM, Cattley RC, Gonzalez FJ. 1997. Role of PPAR alpha in the mechanism of action of
- the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis. 18:202933.
- 22 Peters JM, Aoyama T, Cattley RC, Nobumitsu U, Hashimoto T, Gonzalez FJ. 1998. Role of
- 23 peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver.
- 24 Carcinogenesis. 19:1989-94.
- Peters JM, Cheung C, Gonzalez FJ. 2005. Peroxisome proliferator-activated receptor-alpha and
 liver cancer: where do we stand? J Mol Med (Berl). 83:774-85.
- Peters JM, Gonzalez FJ. 2011. Why toxic equivalency factors are not suitable for perfluoroalkylchemicals. Chem Res Toxicol. 24:1601-1609.
- 29 Post, G.B., Cohn, P.D., Cooper, K.R. 2012. Perfluorooctanoic acid (PFOA), an emerging
- 30 drinking water contaminant: a critical review of recent literature. Env Res. 116: 93-117.
- 31 Power MC, Webster TF, Baccarelli AA, Weisskopf MG. 2013. Cross-sectional association
- 32 between polyfluoroalkyl chemicals and cognitive limitation in the National Health and Nutrition
- 33 Examination Survey. Neuroepidemiology. 40:125-132.

- 1 PubChem. Perfluorooctanesulfonic acid. Physical and chemical properties.
- <u>https://pubchem.ncbi.nlm.nih.gov/compound/74483#section=Chemical-and-Physical-Properties</u>
 Accesed 10/4/17.
- 4 Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2009a.
- 5 High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or
- 6 perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but
- 7 enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar
- 8 fashion. Toxicology. 262:207-214.
- 9 Qazi MR, Xia Z, Bogdanska J, Chang SC, Ehresman DJ, Butenhoff JL, et al. 2009b. The atrophy
- 10 and changes in the cellular compositions of the thymus and spleen observed in mice subjected to
- 11 short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by
- 12 peroxisome proliferator-activated receptor-alpha (PPAR alpha). Toxicology. 260:68-76.
- 13 Qazi MR, Nelson BD, Depierre JW, Abedi-Valugerdi M. 2010a. 28-day dietary exposure of
- 14 mice to a low total dose (7 mg/kg) of perfluorooctanesulfonate (PFOS) alters neither the cellular

15 compositions of the thymus and spleen nor humoral immune responses: Does the route of

- 16 administration play a pivotal role in pfos-induced immunotoxicity? Toxicology. 267:132-139.
- 17 Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2010b. Dietary exposure to
- 18 perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes
- 19 and alters the hepatic immune status in mice. Int Immunopharmacol. 10:1420-1427.
- 20 Qazi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2012. High-dose dietary exposure of
- 21 mice to perfluorooctanoate or perfluorooctane sulfonate exerts toxic effects on myeloid and B-

22 lymphoid cells in the bone marrow and these effects are partially dependent on reduced food

- consumption. Food Chem Toxicol. 50:2955-2963.
- 24 Qazi MR, Hassan M, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2013. Both sub-acute,
- moderate-dose and short-term, low-dose dietary exposure of mice to perfluorooctane sulfonate
 exacerbates concanavalin A-induced hepatitis. Toxicol Lett. 217:67-74.
- Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. 2013. Expression
 of the PXR gene in various types of cancer and drug resistance. Oncol Lett. 5:1093-1100.
- 29 Qiu L, Zhang X, Zhang X, Zhang Y, Gu J, Chen M, et al. 2013. Sertoli cell is a potential target
- for perfluorooctane sulfonate-induced reproductive dysfunction in male mice. Toxicol Sci.135:229-240.
- 32 Raymer JH, Michael LC, Studabaker WB, Olsen GW, Sloan CS, Wilcosky T, et al. 2012.
- 33 Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their
- 34 associations with human semen quality measurements. Reprod Toxicol. 33:419-427.

- 1 Ren H, Vallanat B, Nelson DM, Yeung LW, Guruge KS, Lam PK, Lehman-McKeeman LD,
- 2 Corton JC. 2009. Evidence for the involvement of xenobiotic-responsive nuclear receptors in
- 3 transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol.
- 4 27:266-77.
- 5 Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL. 2010. Combined effects of
- 6 perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis
- 7 (HPA) function in the offspring of mice. Toxicol Appl Pharmacol. 243:13-18.
- 8 Robledo CA, Yeung E, Mendola P, Sundaram R, Maisog J, Sweeney AM, et al. 2015.
- 9 Preconception maternal and paternal exposure to persistent organic pollutants and birth size: The
- 10 life study. Environ Health Perspect. 123:88-94.
- 11 Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J, Jr., Grace CE, et al. 2014.
- 12 Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy.
- 13 Toxicol Sci. 137:436-446.
- 14 Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair
- 15 ET, Lau C. 2008. Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to
- 16 perfluorooctanoic acid. Toxicol Pathol. 36:592-607.
- 17 Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C. 2009. Gene expression profiling in
- 18 the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: Comparison to changes
- 19 induced by exposure to perfluorooctanoic acid. Reprod Toxicol. 27:278-288.
- 20 Rosen MB, Schmid JR, Corton JC, Zehr RD, Das KP, Abbott BD, et al. 2010. Gene expression
- 21 profiling in wild-type and PPARalpha-null mice exposed to perfluorooctane sulfonate reveals
- 22 pparalpha-independent effects. PPAR Res 2010.
- 23 Rumsby, P.C., McLaughlin, C.L., Hall, T. 2009. Perfluorooctane sulphonate and
- perfluorooctanoic acid in drinking and environmental waters. Philos. Transact. A Math Phys Eng
 Sci. 367: 4119-4136.
- Rusch, G.M., W.E. Rinehart, and C.A. Bozak. 1979. An Acute Inhalation Toxicity Study of
 T-2306 CoC in the Rat. Project No. 78-7185. Bio/dynamics, Inc. (cited in USEPA, 2016b).
- 28 Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, et al. 2014. Chronic exposure to
- 29 perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am J
- 30 Physiol Lung Cell Mol Physiol. 307:L765-774.
- 31 Sato I, Kawamoto K, Nishikawa Y, Tsuda S, Yoshida M, Yaegashi K, et al. 2009. Neurotoxicity
- 32 of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J Toxicol Sci.
- **33** 34:569-574.

- 1 Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL. 2002. Subchronic
- toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci.
 68:249-264.
- 4 Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. 2003. Sub-
- 5 chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology. 183:117-131.
- 6 Shah, D. 2009. Healthy worker effect phenomenon. Indian J. Occup. Environ Med. 13: 77-79.
- 7 Shankar A, Xiao J, Ducatman A. 2011a. Perfluoroalkyl chemicals and chronic kidney disease in
 8 US adults. Am J Epidemiol. 174:893-900.
- 9 Shankar A, Xiao J, Ducatman A. 2011b. Perfluoroalkyl chemicals and elevated serum uric acid
- 10 in US adults. Clin Epidemiol. 3:251-258.
- 11 Shrestha S, Bloom MS, Yucel R, Seegal RF, Wu Q, Kannan K, et al. 2015. Perfluoroalkyl
- 12 substances and thyroid function in older adults. Environ Int. 75:206-214.
- 13 Seow J. 2013. Fire-Fighting Foams with Perfluorochemicals Environmental Review.
- 14 Department of Environment and Conservation Western Australia.
- 15 http://www.hemmingfire.com/news/fullstory.php/aid/1748/The_final_definitive_version_
- 16 of 91Fire_Fighting_Foams_with_Perfluorochemicals_96_Environmental_Review_92,
- 17 _by_Dr_Jimmy_Seow,_Manager,_Pollution_Response_Unit,_Department_of_Environm
- 18 ent_and_Conservation_Western_Australia.html.
- 19 Specht IO, Hougaard KS, Spano M, Bizzaro D, Manicardi GC, Lindh CH, et al. 2012. Sperm
- 20 DNA integrity in relation to exposure to environmental perfluoroalkyl substances a study of
- spouses of pregnant women in three geographical regions. Reprod Toxicol. 33:577-583.
- 22 Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K, Eadon GA. 2008. Use of
- 23 newborn screening program blood spots for exposure assessment: declining levels of
- 24 perluorinated compounds in New York State infants. Environ Sci Technol. 42:5361-7.
- Stahl LL, Snyder BD, Olsen AR, Kincaid TM, Wathen JB, McCarty HB. 2014. Perfluorinated
 compounds in fish from U.S. urban rivers and the Great Lakes. Sci Total Environ. 499:185-95.
- 27 Starling AP, Engel SM, Richardson DB, Baird DD, Haug LS, Stuebe AM, et al. 2014a.
- 28 Perfluoroalkyl substances during pregnancy and validated preeclampsia among nulliparous
- women in the Norwegian mother and child cohort study. Am J Epidemiol. 179:824-833.
- 30 Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, et al. 2014b.
- 31 Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in
- 32 the Norwegian mother and child cohort study. Environ Int. 62:104-112.

- 1 Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. 2009. Association of
- 2 perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near
- a chemical plant. Am J Epidemiol. 170:1268-1278.
- 4 Steenland K, Tinker S, Shankar A, Ducatman A. 2010. Association of perfluorooctanoic acid
- 5 (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated
- 6 community exposure to PFOA. Environ Health Perspect. 118:229-233.
- 7 Stein CR, Savitz DA, Dougan M. 2009. Serum levels of perfluorooctanoic acid and
- 8 perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol. 170:837-846.
- 9 Stein CR, Savitz DA. 2011. Serum perfluorinated compound concentration and attention
- 10 deficit/hyperactivity disorder in children 5-18 years of age. Environ Health Perspect. 119:1466-
- **11** 1471.
- 12 Stein, C. R., Wolff, M. S., Calafat, A. M., Kato, K., Engel, S. M. 2012. Comparison of
- 13 polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: a pilot study.
- 14 Reprod Toxicol. 34:312-316.
- 15 Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. 2016. Perfluoroalkyl and
- 16 polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National
- 17 Health and Nutrition Examination Survey. Pediatr Res. 79:348-57.
- 18 Strom M, Hansen S, Olsen SF, Haug LS, Rantakokko P, Kiviranta H, et al. 2014. Persistent
- 19 organic pollutants measured in maternal serum and offspring neurodevelopmental outcomes--a
- 20 prospective study with long-term follow-up. Environ Int. 68:41-48.
- 21 Su H, Lu Y, Wang P, Shi Y, Li Q, Zhou Y, Johnson AC. 2016. Perfluoroalkyl acids (PFAAs) in
- 22 indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications
- 23 for human exposure. Environ Int. 94:667-73.
- 24 Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Watanabe, I., Tanabe, S., Kannan,
- 25 K. 2011. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment
- 26 processes. Water Res. 45:3925-3932.
- 27
- Tao, L., Kannan, K., Wong, C.M., Arcaro, K.F., Butenhoff, J.L. 2008. Perfluorinated compounds
 in human milk from Massachusetts, U.S.A. Environ Sci Technol. 42:3096-3101.
- 30
- 31 Taylor KW, Hoffman K, Thayer KA, Daniels JL. 2014. Polyfluoroalkyl chemicals and
- 32 menopause among women 20-65 years of age (NHANES). Environ Health Perspect 122:145-
- **33** 150.

- 1 Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. 2003.
- 2 Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: Maternal and
- 3 prenatal evaluations. Toxicol Sci. 74:369-381.
- 4 Thomford PJ. 2002. 104-Week Dietary Chronic Toxicity and Carcinogenicity Study with
- 5 Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; T-6295) in Rats. Final Report. Volumes I-
- 6 IX. Covance Study No. 6329-183. 3M Company, St. Paul, MN.
- 7 Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010a. Use of
- 8 pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and
- 9 perfluorooctane sulfonate. Environment International. 36:392-397.
- 10 Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010b. Corrigendum to:
- 11 Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic
- 12 acid and perfluorooctane sulfonate. Environment International. 36:647-648.
- 13 Thomsen, C., Haug, L.S., Stigum, H., Frøshaug, M., Broadwell, S.L., Becher, G. 2010. Changes
- 14 in concentrations of perfluorinated compounds, polybrominated diphenyl ethers, and
- 15 polychlorinated biphenyls in Norwegian breast-milk during twelve months of lactation. Environ
- 16 Sci Technol. 44:9550-9556.
- 17
- 18 Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann
- 19 W, Küttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Brix AE, Singh B, Belpoggi F,
- 20 Ward JM. 2010. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary
- 21 system. Toxicol Pathol. 38:5S-81S.
- 22 Timmermann CA, Rossing LI, Grontved A, Ried-Larsen M, Dalgard C, Andersen LB, et al.
- 23 2014. Adiposity and glycemic control in children exposed to perfluorinated compounds. J Clin
- 24 Endocrinol Metab. 99:E608-614.
- 25 Toft G, Jonsson BA, Lindh CH, Giwercman A, Spano M, Heederik D, et al. 2012. Exposure to
- 26 perfluorinated compounds and human semen quality in Arctic and European populations. Hum
- 27 Reprod. 27:2532-2540.
- Uhl SA, James-Todd T, Bell ML. 2013. Association of osteoarthritis with perfluorooctanoate and
 perfluorooctane sulfonate in NHANES 2003-2008. Environ Health Perspect. 121:447-452.
- 30 USEPA 1986. United States Environmental Protection Agency. Guidelines for Carcinogen Risk
- 31 Assessment. Risk Assessment Forum. Washington, DC. EPA/630/R-00/004. September 1986.
- 32 USEPA 2000a. United States Environmental Protection Agency. News Releases by Date, EPA
- and 3M Announce Phase Out of PFOS.
- 34 <u>http://yosemite.epa.gov/opa/admpress.nsf/0/33aa946e6cb11f35852568e1005246b4</u>.

- 1 USEPA 2000b. United States Environmental Protection Agency. Methodology for Deriving
- 2 Ambient Water Quality Criteria for the Protection of Human Health. Office of Science and
- 3 Technology, Office of Water. Washington, DC. EPA/822/B-00/004. October 2000.
- 4 USEPA 2005a. United States Environmental Protection Agency. Guidelines for Carcinogen Risk
- 5 Assessment. Risk Assessment Forum. Washington, DC. EPA/630.P-03/001F. March 2005.
- 6 USEPA 2005b. United States Environmental Protection Agency. Drinking Water Criteria

7 Document for Brominated Trihalomethanes. Office of Science and Technology, Office of Water.

- 8 Washington, DC. EPA/822/R/05/011. November 2005.
- 9 USEPA. 2008. United States Environmental Protection Agency. Child-Specific Exposure Factors
- 10 Handbook. EPA/600/R-06/096F. National Center for Environmental Assessment, Washington,
- 11 DC. September 2008.
- 12 USEPA. 2009b. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and
- 13 Perfluorooctane Sulfonate (PFOS). USEPA Office of Water, Jan. 8, 2009.

14 USEPA 2010. United States Environmental Protection Agency. Toxicological Review of cis-1,2-

- 15 dichloroethylene and trans-1,2-dichloroethylene. EPA/635/R-09/006F. September 2010.
- 16 USEPA. 2011a. United States Environmental Protection Agency. Integrated Risk Information
- 17 System (IRIS) Glossary. Last updated August 21, 2011.
- $18 \qquad https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlist$
- 19 s/search.do?det ails=&glossaryName=IRIS%20Glossary#formTop Accessed May 10, 2016.
- 20 USEPA. 2011b. U.S. Environmental Protection Agency. Exposure Factors Handbook 2011
- 21 Edition (Final). Washington, DC, EPA/600/R-09/052F. September 2011.
- USEPA. 2011c. United States Environmental Protection Agency. Toxicological Review of
 Trichloroethylene. Washington, DC, EPA/635/R-09/011F. September 2011.
- USEPA. 2012. United States Environmental Protection Agency. Benchmark Dose Technical
 Guidance. Risk Assessment Forum. EPA/100/R-12/001. June 2012.
- 26 USEPA. 2016a. United States Environmental Protection Agency. Drinking Water Health
- 27 Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-005. May
- 28 2016.
- 29 USEPA. 2016b. United States Environmental Protection Agency. Health Effects Support
- Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May
 2016.
- 32 USEPA (2016c). United States Environmental Protection Agency. Drinking Water Health
- 33 Advisory for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016.

- 2 USEPA. 2016d. United States Environmental Protection Agency. Fact Sheet: PFOA & PFOS
- 3 Drinking Water Health Advisories. Office of Water. May 2016.
- 4 USEPA. 2016e. United States Environmental Protection Agency. Occurrence Data for the
- 5 Unregulated Contaminant Monitoring Rule. Data posted through January 2016.
- 7 Accessed March 3, 2016.
- 8 USEPA. 2016f. United States Environmental Protection Agency. Hoosick Falls, New York.
- 9 Drinking Water and Groundwater Contamination. Frequently Asked Questions.
- 10 https://www.epa.gov/sites/production/files/2016-01/documents/hoosickfalls_faqs.pdf
- 11 USEPA. 2017. United States Environmental Protection Agency. Risk Management for Per- and
- 12 Polyfluoroalkyl Substances (PFASs) under TSCA. <u>https://www.epa.gov/assessing-and-</u>
- $13 \qquad \underline{managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfass}$
- 14 Accessed 10/4/17.
- 15 Vagi SJ, Azziz-Baumgartner E, Sjodin A, Calafat AM, Dumesic D, Gonzalez L, et al. 2014.
- 16 Exploring the potential association between brominated diphenyl ethers, polychlorinated
- 17 biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol A in
- 18 polycystic ovary syndrome: A case-control study. BMC Endocr Disord. 14:86.
- 19 Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. 2006. Differential activation of nuclear
- 20 receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human,
- 21 mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X
- receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 92:476-89.
- 23 Vermont DEC. 2017. State of Vermont. Agency of Natural Resources. Department of
- 24 Environmental Conservation. Chapter 12 of the Environmental Protection Rules: Vermont
- 25 Groundwater Protection Rule and Strategy. Adopted December 16, 2016.
- 26 http://dec.vermont.gov/sites/dec/files/documents/gwprsAdoptedDec12_2016.pdf
- 27 Verner MA, Ngueta G, Jensen ET, Fromme H, Völkel W, Nygaard UC, Granum B, Longnecker
- 28 MP. 2016. A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to
- 29 Perfluoroalkyl Substances (PFASs). Environ Sci Technol. 50:978-86.
- 30 Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, et al. 2013.
- 31 Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and
- 32 reproductive hormones in adult men. Environ Health Perspect. 121:453-458.
- 33 Vestergaard S, Nielsen F, Andersson AM, Hjollund NH, Grandjean P, Andersen HR, et al. 2012.
- 34 Association between perfluorinated compounds and time to pregnancy in a prospective cohort of
- 35 danish couples attempting to conceive. Hum Reprod 27:873-880.

- 1 Vesterholm Jensen D, Christensen J, Virtanen HE, Skakkebaek NE, Main KM, Toppari J, et al.
- 2 2014. No association between exposure to perfluorinated compounds and congenital
- 3 cryptorchidism: A nested case-control study among 215 boys from Denmark and Finland.
- 4 Reproduction. 147:411-417.
- 5 Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, et al. 2010. Alterations in tumor biomarker
- 6 GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology. 274:57-64.
- 7 Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. 2012. PFOS-induced hepatic
- 8 steatosis, the mechanistic actions on beta-oxidation and lipid transport. Biochim Biophys Acta.
 9 1820:1092-1101.
- 10 Wan HT, Zhao YG, Leung PY, Wong CK. 2014. Perinatal exposure to perfluorooctane sulfonate
- 11 affects glucose metabolism in adult offspring. PLoS One. 9:e87137.
- 12 Wang Y, Wang L, Liang Y, Qiu W, Zhang J, Zhou Q, et al. 2011a. Modulation of dietary fat on
- 13 the toxicological effects in thymus and spleen in BALB/c mice exposed to perfluorooctane
- 14 sulfonate. Toxicol Lett. 204:174-182.
- Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, et al. 2011b. The effect of
 prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res. 111:785-791.
- 17 Wang F, Liu W, Jin Y, Dai J, Zhao H, Xie Q, et al. 2011c. Interaction of PFOS and BDE-47 co-
- 18 exposure on thyroid hormone levels and TH-related gene and protein expression in developing
- 19 rat brains. Toxicol Sci. 121:279-291.
- 20 Wang Y, Starling AP, Haug LS, Eggesbo M, Becher G, Thomsen C, et al. 2013. Association
- between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: A
 cross-sectional study. Environ Health. 12:76.
- Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, et al. 2014a. PFOS induced lipid metabolism
 disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Sci Rep.
 4:4582.
- 26 Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, et al. 2014b. Association
- 27 between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord
- 28 thyroid hormones: Taiwan maternal and infant cohort study. Environ Health Perspect. 122:529-
- **29** 534.
- 30 Wang Y, Liu W, Zhang Q, Zhao H, Quan X. 2015. Effects of developmental perfluorooctane
- sulfonate exposure on spatial learning and memory ability of rats and mechanism associated with
- 32 synaptic plasticity. Food Chem Toxicol. 76:70-76.

- 1 Washino N, Saijo Y, Sasaki S, Kato S, Ban S, Konishi K, et al. 2009. Correlations between
- 2 prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health
- 3 Perspect. 117:660-667.
- 4 Watkins DJ, Josson J, Elston B, Bartell SM, Shin HM, Vieira VM, et al. 2013. Exposure to
- 5 perfluoroalkyl acids and markers of kidney function among children and adolescents living near
- 6 a chemical plant. Environ Health Perspect. 121:625-630.
- 7 WDNR. 2011. Wisconsin Department of Natural Resources. Wisconsin's Fish Contaminant
- 8 Monitoring Program and Advisory Program 1970-2010.
- 9 http://dnr.wi.gov/topic/fishing/documents/FishContaminantsAdvisories19702010.pdf
- 10 Webster GM, Venners SA, Mattman A, Martin JW. 2014. Associations between perfluoroalkyl
- 11 acids (PFASS) and maternal thyroid hormones in early pregnancy: A population-based cohort
- 12 study. Environ Res 133:338-347.
- 13 Wen LL, Lin LY, Su TC, Chen PC, Lin CY. 2013. Association between serum perfluorinated
- 14 chemicals and thyroid function in U.S. Adults: The National Health and Nutrition Examination
- 15 Survey 2007-2010. J Clin Endocrinol Metab. 98:E1456-1464.
- 16 Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012a.
- 17 Perfluorinated compounds in relation to birth weight in the Norwegian mother and child cohort
- 18 study. Am J Epidemiol. 175:1209-1216.
- 19 Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012b.
- 20 Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 23:257-263.
- 21 Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD. 2008. Activation of mouse and human
- 22 peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional
- 23 groups and chain lengths. Toxicol Sci. 106:162-71.
- Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S. 2008. Neonatal death of mice treated with
 perfluorooctane sulfonate. J Toxicol Sci. 33:219-226.
- 26 Yang Q, Xie Y, Alexson SE, Nelson BD, DePierre JW. 2002. Involvement of the peroxisome
- 27 proliferator-activated receptor alpha in the immunomodulation caused by peroxisome
- 28 proliferators in mice. Biochem Pharmacol. 63:1893-900.
- 29 Ye L, Zhao B, Yuan K, Chu Y, Li C, Zhao C, et al. 2012. Gene expression profiling in fetal rat
- 30 lung during gestational perfluorooctane sulfonate exposure. Toxicol Lett. 209:270-276.
- 31 Yu WG, Liu W, Jin YH. 2009a. Effects of perfluorooctane sulfonate on rat thyroid hormone
- 32 biosynthesis and metabolism. Environ Toxicol Chem. 28:990-996.

- 1 Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, et al. 2009b. Prenatal and postnatal impact of
- 2 perfluorooctane sulfonate (PFOS) on rat development: A cross-foster study on chemical burden
- and thyroid hormone system. Environ Sci Technol. 43:8416-8422.
- 4 Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, et al. 2011. Inflammation-like glial
- 5 response in rat brain induced by prenatal PFOS exposure. Neurotoxicology. 32:130-139.
- 6 Zhang T, Sun H, Lin Y, Qin Y, Geng X, Kannan L. 2013. Distribution of poly- and
- 7 perfluoroalkyl substances in matched samples from pregnant women and carbon chain length
- 8 related maternal transfer. Environmental Science & Technology. 47:7974-7981.
- 9 Zheng L, Dong GH, Jin YH, He QC. 2009. Immunotoxic changes associated with a 7-day oral
- 10 exposure to perfluorooctanesulfonate (PFOS) in adult male C57BL/6 mice. Arch Toxicol.
- 11 83:679-689.
- 12 Zheng L, Dong GH, Zhang YH, Liang ZF, Jin YH, He QC. 2011. Type 1 and type 2 cytokines
- 13 imbalance in adult male C57BL/6 mice following a 7-day oral exposure to
- 14 perfluorooctanesulfonate (PFOS). J Immunotoxicol. 8:30-38.

Appendix 1: Literature search strategy and results

Table A-1. Summary of P	ubMed and Toxline database search strategies
Database or website (date of search)	Search term string
PubMed (3/24/15)	Perfluoroalkyl OR PFOS OR 1763-23-1[rn] OR 2795-39-3[rn] OR 29081-56-9[rn] OR 29457-72-5[rn] OR 4021-47-0[rn] OR 70225-14-8[rn] OR "1-octanesulfonic acid"[tiab] OR "1-octanesulphonic acid"[tiab]
Limitations Publication dates, custom range = 1900/01/01 to 2014/12/31	OR "1-perfluoroctanesulfonic"[tiab] OR "1-perfluorooctanesulfonic"[tiab] OR "heptadecafluoro-1-octane sulfonic"[tiab] OR "heptadecafluoro-1- octanesulfonic"[tiab] OR "heptadecafluoroctane sulfonic"[tiab] OR "heptadecafluorooctane sulfonic"[tiab] OR "heptadecafluorooctane sulphonic"[tiab] OR heptadecafluorooctanesulfonic[tiab] OR "octanesulfonic acid"[tiab] OR "octanesulphonic acid"[tiab] OR "perfluoroalkyl sulfonate"[tiab] OR "perfluoroalkyl sulphonate"[tiab] OR "perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulfonic"[tiab] OR "perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulfonic"[tiab] OR "perfluoroctane sulfonate"[tiab] OR perfluoroctane sulfonic"[tiab] OR perfluoroctane sulfonate[tiab] OR perfluoroctane sulfonic"[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctane sulfonic"[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctane sulfonate"[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctane sulfonate"[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulfonic acid"[tiab] OR "perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulfonic acid"[tiab] OR "perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulfonic acid"[tiab] OR "perfluoroctane sulfonate"[tiab] OR "perfluoroctane sulphonic"[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulphonate[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulphonate[tiab] OR perfluoroctanesulfonic[tiab] OR "perfluoroctanesulphonate][tiab] OR
Toxline (3/24/15)	Perfluoroalkyl OR PFOS OR 1763-23-1 OR 2795-39-3 OR 29081-56-9 OR 29457-72-5 OR 4021-47-0 OR 70225-14-8 OR "1-octanesulfonic
Limitations Include PubMed records = no (box unchecked); Advanced search, Year of Publication = 1900 through 2014	acid" OR "1-octanesulphonic acid" OR "1-perfluoroctanesulfonic" OR "1- perfluorooctanesulfonic" OR "heptadecafluoro-1-octane sulfonic" OR "heptadecafluoro-1-octanesulfonic" OR "heptadecafluorooctane sulfonic" OR "heptadecafluorooctane sulfonic" OR "heptadecafluorooctane sulphonic" OR heptadecafluorooctanesulfonic OR "octanesulfonic acid" OR "octanesulphonic acid" OR "perfluoroalkyl sulfonate" OR "perfluoroalkyl sulphonate" OR "perfluoroctane sulfonate" OR "perfluoroctane sulfonic" OR perfluoroctane sulfonate" OR "perfluoroctane sulfonic" OR perfluoroctanesulfonate OR perfluoroctane sulphonic OR perfluoroctanesulfonate OR perfluoroctanesulfonic OR perfluoroctane sulfonate" OR "perfluoroctane sulfonic acid" OR "perfluorooctane sulfonate" OR "perfluorooctane sulfonic acid" OR "perfluorooctane sulfonate" OR "perfluorooctane sulfonic acid" OR perfluorooctanesulfonate OR perfluorooctane sulfonic acid" OR perfluorooctanesulfonate OR perfluorooctanesulfonic OR perfluorooctanesulphonate OR perfluorooctanesulfonic OR "perfluorooctanesulphonate" OR "perfluorooctanesulfonic OR "perfluorooctanesulphonate" OR "perfluorooctanesulfonic OR

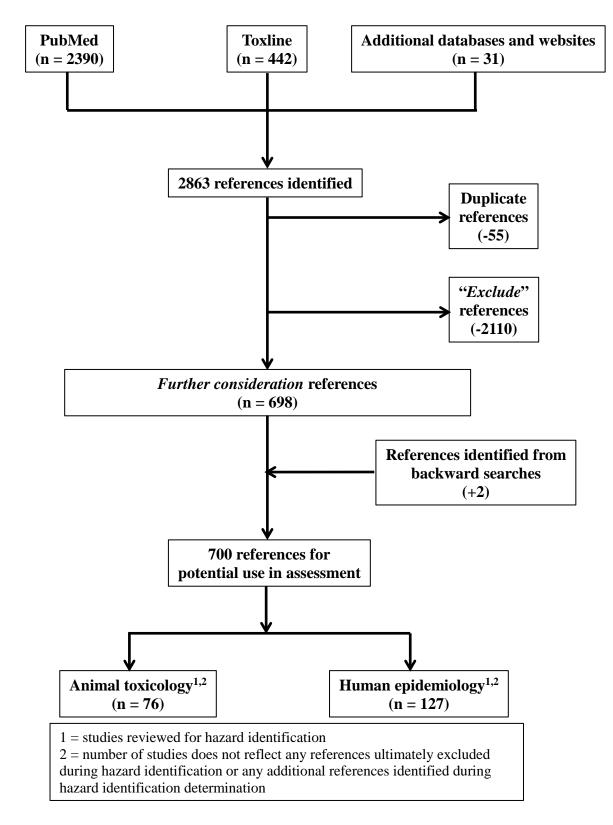
Database or website	Date searched	Search terms
Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles http://www.atsdr.cdc.gov/toxprofiles/index.asp	3/24/15	PFOS perfluorooctane sulfonate
California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA) http://oehha.ca.gov/index.html		1763-23-1
Toxicity Criteria Database http://oehha.ca.gov/tcdb/index.asp		
Non-cancer health effects Table (RELs) and Cancer Potency Factor (Appendix A and Appendix B) http://www.oehha.ca.gov/air/hot_spots/index.html		
Chemical Carcinogenesis Research Information System (CCRIS) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS		
Developmental and Reproductive Toxicology Database (DART) http://toxnet.nlm.nih.gov/newtoxnet/dart.htm		
Environment Canada <u>https://www.ec.gc.ca/</u>		
European Chemicals Agency http://echa.europa.eu/web/guest		
Genetic Toxicology Data Bank (GENETOX) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX		
Hazardous Substances Data Bank (HSDB) http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm		
Health Canada First Priority Substances List (PSL1) Assessments <u>http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1-</u> <u>lsp1/index-eng.php</u>		
Health Canada Second Priority Substances List (PSL2) Assessments		

http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2- lsp2/index-eng.php
International Agency for Research on Cancer (IARC) Monographs
http://monographs.iarc.fr/ENG/Classification/index.php International Programme on Chemical Safety (IPCS)
http://www.who.int/ipcs/en/
International Programme on Chemical Safety (IPCS) INCHEM http://www.inchem.org/
International Toxicity Estimates for Risk (ITER) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?iter
National Institute for Occupational Safety and Health (NIOSH) publications database (NIOSHTIC2) http://www2a.cdc.gov/nioshtic-2/
Occupational Safety and Health Administration (OSHA) https://www.osha.gov/
US EPA Acute Exposure Guideline Levels http://www.epa.gov/oppt/aegl/
United State Environmental Protection Agency (US EPA) ChemView
http://java.epa.gov/chemview
US EPA IRIS http://www.epa.gov/iris/
US EPA Office of Pesticides Chemical Search database http://iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1
US EPA Office of Water Drinking Water Standards and Health Advisories
http://water.epa.gov/drink/standards/hascience.cfm
US EPA Provisional Peer Reviewed Toxicity Values (PPRTV) assessment library http://hhpprtv.ornl.gov/quickview/pprtv_papers.php
United Stated National Toxicology Program (US NTP) Report on Carcinogens

http://ntp.niehs.nih.gov/pubhealth/roc/listings/index.html	
World Health Organization (WHO) Concise International Chemical Assessment Documents <u>http://www.who.int/ipcs/publications/cicad/en/</u>	
WHO Environmental Health Criteria http://www.who.int/ipcs/publications/ehc/en/	

Table A-3. Criteria used to identify references for further consideration or for exclusion

A reference was identified for further consideration if it met one of the following criteria:


- Animal toxicology studies (including rodents, non-human primates, and rabbits)
- Epidemiological studies
- Human exposure
- Mechanistic studies (including studies on absorption, distribution, metabolism, excretion, in vitro studies, in silico studies, genotoxicity)
- Secondary sources of health effects information (i.e., not primary data references such as book chapters, commentaries, editorials, health assessments, review articles)

A reference was excluded if it met at least one of the following criteria:

- Describes analytical methodology (e.g., method development)
- Foreign language reference
- Meeting abstract/poster
- Measurement in consumer products (e.g., packaging) or food for human consumption including drinking water
- Measurement in environmental media (e.g., air, dust, sewage treatment effluent or sludge, soil, water)
- Not enough information to determine relevance (e.g., no abstract and/or readily accessible full text version)
- PFOS is not the test agent
- PFOS used as a chemical reagent in a non-toxicological manner (e.g., use of aqueous firefighting foam)
- Proposed research (e.g., funding application)
- Reference was a duplicate (determined electronically or manually)
- Related to biodegradation, environmental fate or processes, or remediation
- Related to effects or measurement in wildlife (includes crops, livestock, plants)
- Related to chemical or physical properties
- Related to policy (e.g., monitoring or screening programs)
- The abbreviation PFOS returned a non-chemical reference

Table A-4. Backward searches	
Reference used for backward search ¹	Results of backward search ²
Bach CC, Bech BH, Brix N, Nohr EA, Bonde JP, Henriksen TB. 2015. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: A systematic review. Critical reviews in toxicology 45:53-67.	0 references
USEPA. 2014. Health effects document for perfluorooctane sulfonate (PFOS).	1 reference
	Haug LS, Thomsen C, Becher G. 2009. Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environmental Science & Technology 43:2131-2136.
Chang ET, Adami HO, Boffetta P, Cole P,	1 reference
Starr TB, Mandel JS. 2014. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans. Critical reviews in toxicology 44 Suppl 1:1-81	Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Kruger T, et al. 2011. Perfluorinated compounds are related to breast cancer risk in greenlandic inuit: A case control study. Environmental Health : A Global Access Science Source 10:88.
Corsini E, Luebke RW, Germolec DR, DeWitt JC. 2014. Perfluorinated compounds: Emerging pops with potential immunotoxicity. Toxicology letters 230:263-270.	0 references
Saikat S, Kreis I, Davies B, Bridgman S, Kamanyire R. 2013. The impact of pfos on health in the general population: A review. Environmental science Processes & impacts 15:329-335.	0 references

Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, et al. 2013. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review. Environmental health perspectives 121:774-783.	0 references
DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic pathology 40:300- 311.	0 references
Lau C. 2012. Perfluorinated compounds. Exs 101:47-86.	0 references
Mariussen E. 2012. Neurotoxic effects of perfluoroalkylated compounds: Mechanisms of action and environmental relevance. Archives of toxicology 86:1349-1367.	0 references
1= ordered chronologically from most recent to 2 = reference identified from backward search search	

2 Figure A-1. Graphical representation of literature search

1 2

Appendix 2: Comparison of USEPA Office of Water Health Advisory and DWQI Healthbased MCL for PFOS

- 3 The basis for the USEPA (2016a) Health Advisory and the recommended DWQI Health-based
- 4 MCL for PFOS, and other relevant information about these two drinking water values, are
- 5 compared in the table below. Additional information is provided in the text that follows the table.

Drinking Water Concentration 70 ng/L 13 ng/L General Statement and Summary "Protects the most sensitive populations, with a margin of protection from a lifetime of exposure." "Developed using a risk assessment approach intended to be protective for chronic (lifetime) exposure." As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure. USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposure from drinking water. Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment. See further discussion of these points below. 18 ng/kg/day (1.8 x 10 ⁶ mg/kg/day)	Parameter	USEPA Office of Water (OW) Lifetime Health Advisory	DWQI Health-based MCL
General Statement and Summary "Protects the most sensitive populations, with a margin of protection from a lifetime of exposure." "Developed using a risk assessment approach intended to be protective for chronic (lifetime) exposure." As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure. USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water. Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment. See further discussion of these points below. Reference Dose	Drinking Water	· · · · · · · · · · · · · · · · · · ·	13 ng/L
and Summary populations, with a margin of protection from a lifetime of exposure." assessment approach intended to be protective for chronic (lifetime) exposure." As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure. USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposure swithin the general population range, even in the absence of additional exposure from drinking water. Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment. See further discussion of these points below. Reference Dose	Concentration	_	_
protection from a lifetime of exposure."be protective for chronic (lifetime) exposure."As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day	General Statement	"Protects the most sensitive	"Developed using a risk
exposure."exposure."As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day	and Summary	populations, with a margin of	
As discussed in this document, PFOS is associated with several human health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day		-	1
health effects, including decreased vaccine response and others, within the general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day			*
general population exposure range even without additional exposure from drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day1.8 ng/kg/day			
drinking water. The Target Human Serum Level for decreased immune response (decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day1.8 ng/kg/day			1
(decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly above the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day			1
above the exposure range in the general population (95th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day		e e	-
Therefore, the Health Effects Subcommittee concludes that additional exposure from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day			
from drinking water may potentially pose some risk of health effects. For this reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day			
reason, it cannot be definitively concluded that lifetime exposure to these drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day			
drinking water concentrations is protective of sensitive subpopulations with a margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day1.8 ng/kg/day			
margin of exposure.USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.See further discussion of these points below.Reference Dose20 ng/kg/day1.8 ng/kg/day			1
USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day1.8 ng/kg/day			live of sensitive subpopulations with a
of several health effects with PFOS. However, USEPA concludes that the human studies do not provide quantitative information on the exposure levels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from exposures within the general population range, even in the absence of additional exposure from drinking water.Additionally, USEPA also dismissed the most sensitive toxicological effect in animal studies, decreased plaque forming cell response, from consideration as the basis for risk assessment.Reference Dose20 ng/kg/day1.8 ng/kg/day		margin of exposure.	
		of several health effects with PFOS. Ho human studies do not provide quantitati levels or serum levels associated with th USEPA did not consider the possibility exposures within the general population exposure from drinking water. Additionally, USEPA also dismissed th animal studies, decreased plaque formin the basis for risk assessment. See further discussion of these points be	wever, USEPA concludes that the ve information on the exposure nese health effects. Therefore, that health effects may result from a range, even in the absence of additional e most sensitive toxicological effect in ng cell response, from consideration as
$(RfD) \qquad (2 \ x \ 10^{-5} \ mg/kg/day) \qquad (1.8 \ x \ 10^{-6} \ mg/kg/day)$	Reference Dose		
	(RfD)	$(2 \times 10^{-5} \text{ mg/kg/day})$	(1.8 x 10 ⁻⁶ mg/kg/day)
Based on decreased body weight in Based on decreased plaque forming cell		Based on decreased hody weight in	Based on decreased plaque forming cell
Based on decreased body weight in neonatal rats (F2 generation); selectedBased on decreased plaque forming cell response in adult male mice; selected			· · · ·
based on lowest administered dose. based on lowest serum PFOS			
concentration.			

Interspecies	Based on pharmacokinetic modeling	Based on measured serum PFOS
conversion	used to predict average serum PFOS	concentrations at end of dosing period.
conversion	concentrations.	concentrations at end of dosing period.
Estimated lifetime	Not assessed by EPA.	Estimated as 3 x 10 ⁻⁶ based on DWQI
cancer risk at Health		cancer slope factor.
Advisory/Health-	Estimated as 2×10^{-5} based on DWQI	
based MCL	cancer slope factor	
Relative Source	20% - to account for non-drinking	20% - to account for non-drinking water
Contribution Factor	water exposures.	exposures.
Assumed Drinking	0.054 L/kg/day; 90 th percentile for	0.029 L/kg/day; Based on default upper
Water Consumption	lactating woman	percentile adult assumptions: 2 L/day,
		70 kg
Increase in serum	With average water consumption:	With average water consumption:
PFOS concentration	The USEPA Lifetime Health	The DWQI Health-based MCL is
predicted from	Advisory is predicted to result in a	predicted to result in a serum PFOS
ongoing exposure to	serum PFOS concentration 3.7 times	concentration 1.5 times the U.S. general
USEPA Health	the U.S. general population median	population median (CDC, 2017)
Advisory and NJ	(CDC, 2017)	
Health-based MCL		With upper percentile water
(see bar graph	With upper percentile water	consumption:
below)	consumption:	The DWQI Health-based MCL is
	The USEPA Lifetime Health	predicted to result in a serum PFOS
	Advisory is predicted to result in a	concentration 1.9 times the U.S. general
	serum PFOS concentration 5.8 times	population median (CDC, 2017)
	the U.S. general population median	
	(CDC, 2017)	(Note: These calculations are explained
		in more detail below)
	(Note: These calculations are	
	explained in more detail below)	
Sensitive	Pregnant and lactating women; bottle-	As is the case for all Health-based
Subpopulations	fed infants.	MCLs developed by the DWQI, the
		Health-based MCL recommended for
	USEPA does not include women who	PFOS is intended to be protective of all
	plan to become pregnant in its	individuals, including sensitive
	definition of sensitive subpopulations,	subpopulations. Sensitive
	but says that states may choose to	subpopulations for health effects of
	expand the sensitive subgroups to	PFOS include women who plan to
	include women of childbearing age	become pregnant, pregnant women,
	(ASDWA, 2016). However, the body	lactating women, and breast-fed and
	burden of PFOS remains elevated for	bottle-fed infants.
	many years after exposure ceases.	
	Therefore, if body burden is elevated	
	prior to pregnancy, it will remain	
	elevated during pregnancy and lactation.	

USEPA (2016a) also calculated a	
Lifetime Health Advisory value for	
alternative exposure scenarios for the	
general population (adults age 21 and	
older) of 100 ng/L based on standard	
adult exposure assumptions. USEPA	
states that the Lifetime Health	
Advisory of 70 ng/L is protective for	
effects other than developmental	
toxicity, such as "liver damage, other	
developmental effects, and	
developmental neurotoxicity".	
It is noted that the news media has	
reported that the USEPA designation	
of sensitive subgroups has been	
misinterpreted by some local	
authorities to mean that those not in	
these sensitive subpopulations may	
continue to drink water exceeding the	
USEPA Health Advisory.	

1

2 <u>Discussion of differences in risk assessment approaches and conclusions between USEPA-</u> 3 <u>OW and DWQI</u>

4 Endpoints used as basis for USEPA Office of Water (OW) Health Advisory and DWQI Health-

5 <u>based MCL</u>

- 6 The primary basis for the recommended DWQI Health-based MCL is an RfD for decreased
- 7 plaque forming cell response in mice (Dong et al., 2009). The DWQI Health Effects
- 8 Subcommittee concluded that this immunosuppressive effect in animals is a sensitive and well-
- 9 established effect of PFOS that is relevant to humans. Based on epidemiologic studies
- 10 (summarized below), there is evidence that serum PFOS concentrations within the range found in
- 11 the general population are associated with immunosuppressive effects (i.e., decreased vaccine
- 12 response).
- 13 Although plaque forming cell response as reported by Dong et al. (2009) was the most sensitive
- 14 endpoint (i.e. occurring with the lowest LOAEL) identified by USEPA for studies of greater than
- 15 short-term exposure (p. 4-4 of USEPA, 2016b), USEPA did not use this endpoint as the basis of
- 16 its Health Advisory. Instead, USEPA chose decreased neonatal body weight from the F₂
- 17 generation in a two-generation rat study (Luebker et al., 2005a) as the critical endpoint. While
- 18 this is a valid endpoint for use in human health risk assessment, the Health Effects Subcommittee
- 19 concludes that the immunotoxicity endpoint is equally valid and, importantly, more sensitive. A
- 20 detailed comparison of the LOAELs for the two endpoints is provided below.

- 1 In light of the weight of evidence for the immunotoxicity of PFOS at low levels of exposure, the
- 2 Health Effects Subcommittee concludes that USEPA does not make a strong case for its decision
- 3 not to choose the animal immune toxicity data for this endpoint as the basis for the PFOS Health
- 4 Advisory. USEPA provides the following summary statement to justify its decision not to base
- 5 its Health Advisory on immunotoxicity, and specifically not on the Dong et al. (2009) study
- 6 identified by the Health Effects Subcommittee:
- 7 *"Taken together, the lower antibody titers associated with PFOS levels in humans and the*
- 8 consistent suppression of SRBC [sheep red blood cells] response in animals indicates a concern
- 9 for adverse effects on the immune system. However, lack of human dosing information and lack
- 10 of low-dose confirmation of effects in animals for the short-duration study precludes the use of
- 11 these immunotoxicity data in setting the RfD."
- 12 The Health Effects Subcommittee agrees with USEPA that evidence for the suppression of
- 13 immune response (SRBC response) in animals is "consistent." The Subcommittee also agrees
- 14 with USEPA that the combination of epidemiological (human) and animal data indicates "a
- 15 *concern for adverse effects.*" Therefore, it is not clear what USEPA means by the "*lack of*
- 16 human dosing information," or "the lack of low dose confirmation of effects in animals for short
- 17 *duration study*," and why these statements are sufficient to preclude the use of immunotoxicity
- 18 data in derivation of its Health Advisory.
- 19 Several other recent reviews by government and academic scientists have also identified
- 20 decreased immune response as a sensitive and relevant endpoint for PFOS risk assessment. The
- 21 National Toxicology Program (NTP, 2016) conducted a systematic review of immunotoxicity of
- 22 PFOS, based on consideration of human and animal studies, along with mechanistic data. NTP
- 23 (2016) concludes that exposure to PFOS is <u>presumed to be an immune hazard to humans</u> based
- on: 1) a high level of evidence that PFOS suppressed the antibody response from animal studies,
- and 2) a moderate level of evidence from studies in humans. NTP also considered additional,
- although weaker, evidence from laboratory animal studies suggesting PFOS may suppress
- 27 infectious disease resistance and NK cell activity in humans. NTP stated that "the bodies of
- evidence indicating that PFOS suppresses multiple aspects of the immune system add to the
- 29 overall confidence that PFOS alters immune function in humans."
- 30 Additionally, Minnesota Department of Health (MDH, 2017) incorporated an additional
- 31 uncertainty factor for potentially more sensitive immune system toxicity into the USEPA (2016a)
- 32 Reference Dose when developing its updated Reference Dose for PFOS.
- 33 Finally, two recent peer reviewed publications have identified immunotoxicity as a sensitive
- toxicological endpoint for PFOS. Both Lilienthal et al. (2017) and Dong et al. (2017) noted that
- 35 immune system toxicity is a more sensitive endpoint than the developmental effects used as the
- basis for the USEPA (2016a) RfD for PFOS. Lilienthal et al. (2017) reviewed recent data on
- 37 health effects of PFOS in relation to current regulations and guidance values and note that human
- 38 and animal evidence suggest that low doses of PFOS cause immune system suppression. They

- 1 further state that decreased immune system response from PFOS (and low-dose developmental
- 2 effects of PFOA) "likely constitute a sound basis for ongoing and future regulations."
- 3 Comparison of LOAELs for decreased plaque forming cells (Dong et al., 2009) and decreased
- 4 <u>neonatal body weight (Luebker et al., 2005a)</u>
- 5 Based on administered dose, the LOAEL for decreased plaque forming cell response used as the
- 6 critical effect by the Health Effects Subcommittee was 0.083 mg/kg/day (Dong et al., 2009),
- 7 whereas the LOAEL for decreased neonatal body weight (F_2 generation) used as the critical
- 8 effect by USEPA was 5-fold higher (0.4 mg/kg/day maternal dose group; Luebker et al., 2005a).
- 9 Serum PFOS concentrations are more relevant than administered doses for comparison of
- 10 LOAELs because serum concentrations represent the internal doses that cause toxicological
- 11 effects. In Dong et al. (2009), terminal sacrifice occurred at the end of the dosing period and
- 12 therefore reflects the maximum exposure in the dosed mice. The Health Effects Subcommittee
- 13 used serum PFOS levels at terminal sacrifice from Dong et al. (2009) as the dose metric for
- 14 Reference Dose development. The serum PFOS concentration at the LOAEL for decreased
- 15 plaque forming cell response was 7,132 ng/ml.
- 16 The serum PFOS measurement reflecting the maximum exposure in the neonatal F₂ generation
- 17 rats from Luebker et al. (2005a) would be the serum concentration in the F_1 dams at or close to
- 18 parturition of the F_2 pups. However, Luebker et al. (2005a) did not measure maternal F_1 serum
- PFOS concentrations. Although more uncertain than measured maternal F_1 serum levels would
- 20 have been, several other measured and modeled serum PFOS provide estimates of the serum
- 20 have been, several other measured and modeled serum PFOS provide estimates of the serum
- 21 PFOS LOAEL for decreased neonatal F_2 body weight from Luebker et al. (2005a).
- 22 Luebker et al. (2005a) measured serum PFOS concentrations in the F₀ dams on day 21 23 after delivery of the F₁ offspring (i.e. the end of lactation). The serum PFOS concentration in the F₀ dams at the LOAEL (based on decreased neonatal body weight in 24 25 the F_2 generation) of 0.4 mg/kg/day was **18,900 ng/ml**. This serum concentration is likely lower than that in the F_1 dams at delivery of the F_2 generation at the same dose for 26 two reasons. First, exposure to the F_0 dams began at around 9 weeks of age, while the F_1 27 28 dams were exposed *in utero*, through lactation during neonatal life, and via gayage 29 dosing starting at weaning. Secondly, and more importantly, serum levels were measured 30 in the F₀ dams after 21 days of nursing rather than prior to delivery, and a considerable 31 portion of the PFOS body burden in these dams had presumably been excreted in breast 32 milk.
- Luebker et al. (2005b) conducted a one-generation reproductive/developmental in the
 same strain of rats used in the two-generation study (Luebker et al., 2005a). One of the
 doses in the one-generation study was the same as the LOAEL for the USEPA RfD from
 the two-generation study, 0.4 mg/kg/day. In the pharmacokinetic component of the one generation study, dams were dosed from 42 days prior to cohabitation with males until
 the end of gestation, and serum PFOS levels were measured on GD 1, 7, 15, and 21. In

the 0.4 mg/kg/day dose group, serum PFOS levels on GD 1, 7, and 15 were about 41,000
 ng/L and represent maximum exposure to the developing offspring, while they were
 lower, 26,200 ng/L, on GD 21.

4

5 (It is noted that the serum PFOS data from the two Luebker et al. [2005a, b] studies are
6 incorrectly presented in the USEPA (2016b) PFOS Health Effects Support Document [Table 4-

- 7 3]. In Table 4-3, serum PFOS data from GD 21 of the one generation study [Luebker 2005b] are
- 8 incorrectly shown to be from the end of lactation [PND 21] of the two-generation study
- 9 [Luebker, 2005a]. It is also incorrectly shown that serum PFOS data are not available from the
- 10 one generation study, although such data were reported by Luebker et al. [2005b]).
- 11 The USEPA Health Advisory did not use measured serum PFOS concentrations at the 12 LOAEL to derive the Reference Dose for decreased F₂ generation neonatal body weight 13 in Luebker et al. (2005a). Instead, the USEPA Reference Dose is based on 14 pharmacokinetic modeling that predicts the final serum PFOS concentration and final 15 predicted area under the curve (AUC) for serum concentration versus time (Table 4-3, 16 USEPA, 2016b). The average PFOS serum concentration was obtained by dividing the 17 AUC by the study duration. For decreased neonatal body weight in Luebker et al. 18 (2005a), the average serum PFOS concentration at the LOAEL was predicted to be 19 25,000 ng/ml (Table 4-6, USEPA, 2016b).
- 20

The Health Effects Subcommittee notes that there are inherent uncertainties in the use of
a pharmacokinetic model to predict serum concentrations and the AUC in general. There
is also additional uncertainty in the use of this model to predict serum PFOS
concentrations for Luebker et al. (2005a) because the model is based on non-pregnant
rats, but was used by USEPA to predict serum PFOS concentrations in pregnant rats used
in Luebker et al. (2005a).

- 27 Notwithstanding the uncertainties discussed above, the measured and modeled serum PFOS
- 28 concentrations that provide estimates of the LOAEL for decreased neonatal body weight in the
- F_2 generation (Luebker et al., 2005a) are several-fold higher than the serum concentration at the
- 30 LOAEL in Dong et al. (2009) of 7,132 ng/L. In summary, decreased plaque forming cell
- 31 response in Dong et al. (2009) is a more sensitive endpoint than the decreased neonatal body
- 32 weight in the F_2 generation in Luebker et al. (2005a).
- 33 <u>Consideration of data from human epidemiologic studies</u>
- 34 Both the DWQI Health Effects Subcommittee and the USEPA Office of Water conducted
- 35 comprehensive reviews of relevant epidemiology studies investigating possible associations
- 36 between PFOS exposure and adverse health effects. Both risk assessments used epidemiology
- 37 data in support of the toxicological endpoints selected as the basis for RfD development.
- 38 USEPA stated that studies of low birth weight are consistent with the critical endpoint of
- 39 decreased neonatal weight in rats, and the Health Effects Subcommittee identified studies of

- 1 vaccine antibody levels that are consistent with the critical endpoint of suppression of cellular
- 2 immune response as measured by a decrease in plaque forming cell response in mice.
- 3 Neither assessment used human epidemiological data as the quantitative basis for derivation of a
- 4 Reference Dose. USEPA states that, while human studies are useful for hazard identification,
- 5 they cannot be used quantitatively because the PFOS exposures at which the associations were
- 6 observed are unknown or highly uncertain. In contrast, the Health Effects Subcommittee agrees
- 7 that the human data have limitations that preclude their use as the primary basis for risk
- 8 assessment, but it does not agree with USEPA that the serum PFOS concentrations and PFOS
- 9 exposures associated with human health effects are highly uncertain or unknown.
- 10 USEPA (2016a) provides the following reasons for its conclusions:

26

29

30

31

32

- Serum levels may have decreased prior to when the blood sample was taken. Therefore,
 the effects may have been due to earlier exposures that were higher than indicated by the
 measured serum PFOS levels.
- 14 It is unlikely that this is a major source of uncertainty in evaluation of exposure 0 15 since PFOS serum levels decrease slowly (half-life of several years) and do not 16 fluctuate in the short term. Importantly, the most notable effect associated with 17 human exposure to PFOS is decreased vaccine response in children, which may 18 be associated with prenatal exposure (i.e. maternal serum PFOS levels) or serum 19 PFOS levels in the child at various ages. For effects resulting from exposure at 20 these lifestages, the serum PFOS level was measured at or close to the timepoint 21 at which the effect was initiated. Additionally, if effects were actually due to 22 previous exposures that were higher than those at the time of blood sampling, it 23 would mean that the detrimental effects of PFOS are persistent and do not resolve 24 when exposures decrease, which would increase the level of concern about the 25 effects.
- PFOS measured in serum may result from metabolism of precursors to PFOS rather than direct exposure to PFOS itself.
 - This statement is correct but this does not appear to be a valid reason to dismiss consideration of serum PFOS levels as a measure of PFOS exposure. Effects of PFOS would be the same regardless of whether the source of exposure is PFOS itself or metabolism of precursors to PFOS.
- Co-exposure to other PFCs, even if accounted for as a potential confounding factor in the statistical analysis, increase uncertainty about observed associations of health endpoints with PFOS.
- However, co-exposure to other chemicals is a general issue for all human studies
 of exposure to environmental contaminants and does not preclude evaluation of
 the levels of PFOS exposure associated with health endpoints.

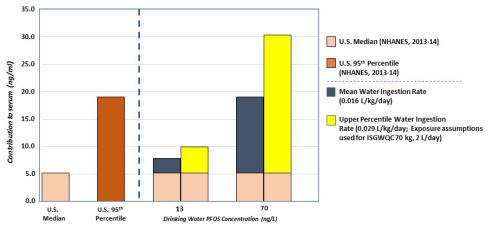
- 1 In considering immunotoxicity in humans, USEPA cites four epidemiological studies that
- 2 investigated the association of vaccine response with serum PFOS concentration (USEPA,
- 3 2016a, b). All of these studies were also reviewed by the Health Effects Subcommittee and
- 4 discussed in this document. In one study of a population with general population level exposure 5 to PFOS, with all of the children initially vaccinated at 3 months old (Grandjean et al., 2012),
- 6 PFOS in children's serum measured at 5 years of age (prebooster) was significantly associated
- 7 with a decrease in their tetanus antibody levels at age 5, but not at age 7 follow-up, following a
- 8 booster vaccination (28.5% decrease for each doubling of PFOS concentration). PFOS in
- 9 mothers' serum was significantly associated with a decrease in children's diphtheria antibody
- 10 levels at age five following a booster vaccination (38.6% decrease for each doubling of PFOS
- 11 concentration) and child's PFOS serum concentration was significantly associated with
- 12 decreased response at age 7. Of particular concern, the risk of having diphtheria antibody levels
- 13 from the initial vaccination that were below the level of clinical protectiveness was significantly
- 14 associated with both maternal and 5 year-old children's elevated PFOS levels. In another study
- 15 (Granum et al., 2013) with general population levels of PFOS exposure, mothers' serum PFOS
- 16 concentration was significantly associated with a decreased level of rubella vaccine in their
- 17 children. In a third study of general population level PFOS exposure (Stein et al., 2016;
- 18 NHANES, U.S. population) children's PFOS serum concentration was significantly associated
- 19 with decreased antibodies to rubella and mumps (13.3 and 5.9% decreases, respectively). PFOS
- 20 exposure was not associated with decreased immune response to any type of vaccine in only one
- study (Looker et al., 2014). This study evaluated response to only the influenza vaccine and
- 22 included adults rather than children. The lack of association of PFOS with influenza vaccine in
- this study is consistent with the lack of association found in the only other study that evaluated
- 24 influenza vaccine in children (Granum et al., 2013).
- 25 As mentioned above, USEPA notes correctly that similar relationships were found for other
- 26 PFCs in some of these studies, and that the decrease in immune protectiveness cannot necessarily
- 27 be attributed to PFOS alone. Nonetheless, the results of these human studies are consistent with
- 28 the PFOS-specific animal studies of decreased immune response.
- 29 Estimation of cancer risk from PFOS in drinking water
- 30 Both USEPA and DWQI characterized PFOS as having "suggestive evidence of carcinogenic
- 31 potential" under the USEPA's 2005 Guidelines for Carcinogen Risk Assessment. Neither

32 USEPA, nor DWQI used cancer risk as the basis of the drinking water Health Advisory or

- 33 Health-based MCL.
- 34 USEPA did not derive a cancer slope factor for PFOS. It stated that, for chemicals categorized as
- 35 having suggestive evidence of carcinogenic potential, "*a quantitative estimate of risk is generally*
- 36 not performed unless there is a well-conducted study that could serve a useful purpose by
- 37 providing a sense of the magnitude and uncertainty of potential risks, ranking potential hazards,
- 38 or setting research priorities. In the case of PFOS, the existing evidence does not support a
- 39 strong correlation between the tumor incidence and dose to justify a quantitative assessment."

1

- 2 DWQI agrees that the estimated cancer risk for PFOS based on the chronic rat study is too
- 3 uncertain to use as the basis for a Health-based MCL. However, DWQI developed a cancer
- 4 slope factor to provide an estimated cancer risk to provide context for the Health-based MCL
- 5 based on a non-cancer endpoint. The cancer slope factor of 8.4 x 10^{-6} (ng/kg/day)⁻¹ developed by
- 6 DWQI is based on the incidence of hepatocellular tumors in female rats the chronic study of
- 7 Butenhoff et al. (2012).
- 8
- 9 The estimated lifetime cancer risk at the DWQI Health-based MCL of 13 ng/L, based on this
- 10 slope factor, is 3×10^{-6} , which is close to the target risk goal for New Jersey MCLs of 1×10^{-6} .
- 11 Based on the DWQI cancer slope factor and exposure assumptions, the lifetime cancer risk at
- 12 USEPA's Health Advisory of 70 ng/L is estimated as 2×10^{-5} lifetime cancer risk.
- 13
- 14 <u>Assumed water consumption rate</u>
- 15 The USEPA based its water consumption rate of 0.054 L/kg/day on the 90th percentile for
- 16 lactating woman. DWQI's assumed water consumption rate of 0.029 L/kg/day used default adult
- 17 exposure assumptions of 2 L/day and a 70 kg body weight, which is intended to represent an
- 18 upper percentile rate for the general population. Thus, the USEPA consumption rate is 1.9 times
- 19 larger than that used by DWQI. For purposes of comparison, if USEPA had applied the water
- 20 consumption rate used by DWQI, the resulting USEPA Health Advisory water concentration
- 21 would be proportionally larger $(1.9 \times 70 \text{ ng/L} = 133 \text{ ng/L})$.
- 22

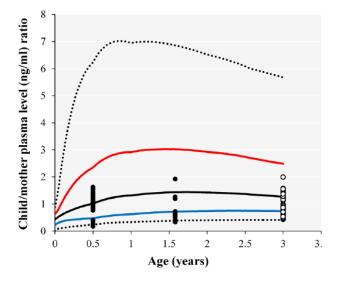

23 Consideration of increases in serum PFOS levels from exposure to PFOS in drinking water

- As noted in the table at the beginning of this Appendix, a clearance factor was used by USEPA
- 25 to relate PFOS exposures to human PFOS serum levels. This factor can be used to predict
- 26 increases in serum PFOS from ongoing drinking water exposures. The bar graph below (Fig. A-
- 27 2) shows the predicted increases in serum PFOS levels from ongoing exposure to PFOS in
- drinking water at the USEPA (2016a) Health Advisory (70 ng/L) and the DWQI Health-based
- 29 MCL (13 ng/L). The predictions shown are based on the recommended mean ingestion rate of
- 30 0.016 L/kg/day from the USEPA Exposure Factors Handbook (USEPA, 2011; Table 3-1) and the
- 31 upper percentile ingestion of 0.029 L/kg/day used by DWQI to develop the Health-based MCL.
- 32 As part of its toxicokinetic model for PFOS, USEPA (2016b) used the clearance factor
- 33 $(8.1 \times 10^{-5} \text{ L/kg/day} = 8.1 \times 10^{-2} \text{ ml/kg/day})$ to convert NOAEL and LOAEL serum levels from
- 34 laboratory animals to human equivalent doses. The NOAEL and LOAEL serum PFOS levels in
- 35 these animal studies ranged from $6.26 38 \mu g/ml (6,260 38,000 ng/ml)$ (HEDs; Section 4-14
- of USEPA, 2016b). USEPA (2016b, p. 2-23) discussed that this clearance factor relates human
- 37 PFOS dose to human PFOS serum level, including from drinking water exposure. USEPA
- 38 (2016c; 2016d) also used the clearance factor for PFOA in the same way as described above for

- 1 PFOS i.e. to convert NOAEL and LOAEL serum PFOA levels from animal studies to HEDs in
- 2 an analogous toxicokinetics model for PFOA.
- 3
- 4 With respect to PFOA, USEPA (2016e) stated that, "...the clearance equation cannot justifiably
- 5 be utilized to predict serum values for humans using a guideline value (70 ppt or 14 ppt) that is
- 6 well below the range of doses and serum values utilized in the derivation of the
- 7 [toxicokinetic]model." These USEPA conclusions apply equally to the use of the PFOS
- 8 clearance factor to estimate human serum PFOS concentrations from intake of PFOS in drinking
- 9 10

water.

- 11 The Health Effects Subcommittee does not understand the reasoning underlying this statement
- 12 from USEPA. As discussed in detail in the <u>Toxicokinetics</u> section and Appendix 3 for PFOS
- 13 (and in DWQI, 2017 for PFOA), the clearance factors for PFOS (and PFOA) were developed
- 14 from human serum PFOS (or PFOA) data within a range that is more relevant to drinking water
- 15 exposures than to the much higher range of serum PFOS (or PFOA) levels from animal studies to
- 16 which it was applied by USEPA (2016e). Furthermore, the PFOS clearance factor is in
- 17 agreement with estimates from other similarly exposed human populations using both
- 18 toxicokinetic modeling and direct measurement of exposure media.
- 19 Although the Health-based MCL is derived on the basis of animal data, as discussed above, there
- 20 is substantial evidence from epidemiology studies that decreased vaccine response occurs at
- 21 levels of serum PFOS prevalent in the general population. As shown in Figure A-2 below,
- 22 exposure to PFOS in drinking water at the USEPA Health Advisory of 70 ng/L is predicted to
- 23 increase serum PFOS concentrations to the upper end of this range and higher. Therefore, the
- 24 magnitude of elevations in serum PFOS levels expected from ongoing exposure to PFOS in
- 25 drinking water at the USEPA Health Advisory level are not desirable and may not be protective
- 26 of public health.



28 Figure A-2. Median and 95th percentile PFOS serum concentrations in the U.S. population (left of dotted line; from

29 NHANES 2013-2014; CDC, 2017). Increases in the median U.S. serum PFOS concentration (right of dotted line)

- 30 predicted from mean and upper percentile consumption of drinking water for PFOS concentrations in drinking water
- 31 at the DWQI Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L) levels.

- 1 Finally, as discussed elsewhere in this document, several studies have shown that serum PFOS
- 2 concentrations in breastfed infants, while lower than maternal levels at birth, increase several
- 3 fold during the first few months of life to levels which exceed those in the mother (see figure
- 4 below). Exposures to infants who consume formula prepared with contaminated water are also
- highest during this time-period, and serum PFOS levels remain elevated for the first several
 years of life (see figure below). Therefore, increases in serum PFOS levels in infants and
- 7 children with direct or indirect (via breast milk) exposure to drinking water contaminated with
- PEOS are arrested to be accord fold bisher there there a harry in the here each share
- 8 PFOS are expected to be several-fold higher than those shown in the bar graph above.
- 9 USEPA recognizes that lactating women and bottle-fed infants are sensitive subpopulations for
- 10 exposure to PFOS in drinking water. The Health Effects Subcommittee also concludes that the
- 11 elevated exposures during infancy and early childhood are of particular concern because
- 12 sensitive endpoints for health effects, including decreased immune response, may result from
- 13 shorter term higher exposures early in life. Additionally, the Health Effects Subcommittee
- 14 concludes that women who may become pregnant should also be included as sensitive
- 15 subpopulations, because the body burden of PFOS remains elevated for many years after
- 16 exposure ceases. Therefore, if serum PFOS levels are elevated when a woman becomes pregnant,
- 17 they will remain elevated during pregnancy and lactation.

- 19 From Verner et al. (2016). Modeling simulation of the ratio of PFOS in blood plasma in breast fed infants/children
- to plasma concentration in mother. Black line 50th percentile. Blue line 5th percentile. Red line 95th percentile.
 Dotted lines minimum and maximum values.
- 22 <u>Citations</u>
- 23 ASDWA. 2016. Association of State Drinking Water Administrators. Information for States
- about the New Health Advisories for PFOA and PFOS. Presented by USEPA Office of Water.
- 25 May 23, 2016. <u>https://www.youtube.com/watch?v=QoBBjLeOi_s&feature=youtu.be</u>
- 26

- 1 Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. 2009. Chronic effects of
- 2 perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch
- 3 Toxicol. 83:805-815.
- 4 Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, Lamb D, Liu Y, Duan L, Naidu R. 2017.
- 5 Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.6 Environ Int. 105:86-94
- 7 DWQI. 2017. New Jersey Drinking Water Quality Institute. Health-Based Maximum
- 8 Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA). New Jersey Drinking
- 9 Water Quality Institute Health Effects Subcommittee. February 15, 2017.
- 10 Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, et al. 2012.
- 11 Serum vaccine antibody concentrations in children exposed to perfluorinated compounds.
- 12 JAMA. 307:391-397.
- 13 Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, et al. 2013. Pre-natal
- 14 exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and
- 15 immune-related health outcomes in early childhood. J Immunotoxicol. 10:373-379.
- 16 Lilienthal H, Dieter HH, Hölzer J, Wilhelm M. 2017. Recent experimental results of effects of
- 17 perfluoroalkyl substances in laboratory animals Relation to current regulations and guidance
- 18 values. Int J Hyg Environ Health. 220:766-775.
- 19 Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. 2014.
- 20 Influenza vaccine response in adults exposed to perfluorooctanoate and
- 21 perfluorooctanesulfonate. Toxicol Sci. 138:76-88.
- 22
- 23 Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL. 2005a. Two-generation
- 24 reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology.
- 25 215:126-148.
- 26 Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. 2005b. Neonatal mortality from in
- 27 utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and
- 28 biochemical and pharmacokinetic parameters. Toxicology. 215:149-169.
- 29 NTP. 2016. National Toxicology Program. Systematic review of immunotoxicity associated with
- 30 exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). September
- 31 2016. https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf Accessed
- **32** January 24, 2017.

1 2 3	Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. 2016. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 79:348-57.
4 5 6	USEPA. 2005. United States Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, USEPA, Washington, DC. EPA/630.P-03/001F, March 2005.
7 8	USEPA. 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F.
9 10 11 12	USEPA 2016a. United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-005. May 2016.
13 14 15 16	USEPA 2016b. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May 2016.
17 18 19	USEPA. 2016c. United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016.
20 21 22	USEPA. 2016d. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016.
23 24 25 26 27 28	USEPA. 2016e. United States Environmental Protection Agency. U.S. Environmental Protection Agency Response to New Jersey Drinking Water Quality Institute (DWQI) Health Effects Subcommittee Draft Health-Based Maximum Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA) Appendix 2 – Comparison of USEPA Office of Water Health Advisory and DWQI Recommended Health-Based MCL for PFOA. November 21, 2016. <u>http://www.state.nj.us/dep/watersupply/pdf/comment5.pdf. Accessed 2/6/17</u>
29 30 31	Verner, M.A., Ngueta, G., Jensen, E.T., Fromme, H., Völkel, W., Nygaard, U.C., Granum, B., Longnecker, M.P. 2016. A simple pharmacokinetic model of prenatal and postnatal exposure to perfluoroalkyl substances. (PFASs). Environ Sci Technol. 50: 978-86.

1	Appendix 3: Alternate Derivation of the PFOS-Specific Clearance Factor
2	Basis for USEPA (2016) clearance factor used in Health-based MCL development
3	
4	A chemical-specific clearance factor (CL) of 8.1 x 10 ⁻⁵ L/kg/day (8.1 x 10 ⁻² ml/kg/day) that
5	relates PFOS serum levels to dose in humans at steady-state was developed by USEPA (2016)
6	and was used in development of the Health-based MCL. CL relates administered PFOS dose to
7	serum PFOS level in humans, as follows:
8	Dose (ng/kg/day) = Serum Level (ng/ml) x CL (ml/kg/day)
9	The clearance factor was based on the human half-life $(t_{1/2})$ from a study of retired workers
10	(Olsen et al., 2007) and the volume of distribution (V _d) from Thompson et al. (2010a, b) using
11	the equation below
12	$CL = V_d x (ln 2 / t_{1/2})$
13	Where:
14	$V_{\rm d} = 0.23 \ {\rm L/kg}$
15	$\ln 2 = 0.693$
16	$t_{1/2} = 5.4$ years = 1,971 days
17	The only direct measure of the human serum $t_{1/2}$ of PFOS is from retired workers who were

18 occupationally (i.e. highly) exposed to PFOS and are older than the general population. It is

19 unknown whether the $t_{1/2}$ of PFOS is age and/or concentration dependent. If that were the case,

20 the estimate of $t_{1/2}$ from a highly exposed older population could overestimate the $t_{1/2}$ in the

21 general population which includes younger individuals and have lower exposure.

22 Thompson et al. (2010a,b) based the PFOS V_d value on a previously developed V_d for PFOA of

- $23 \qquad 0.17 \text{ L/kg that had been calibrated with human data. The PFOA V_d was adjusted by 35\%, based$
- on the observation of Andersen et al. (2006) that the V_d for PFOS can be 20 to 50% greater than
- 25 for PFOA in monkeys. It is noted that, although this V_d estimate is supported by the results of
- 26 Thompson et al. (2010a) and Egeghy and Lorber (2011), the use of the PFOA V_d as a surrogate
- $\label{eq:27} \mbox{measure of V_d for PFOS and the adjustment of the PFOA V_d on the basis of a cross-species}$
- 28 analogy are sources of uncertainty in its derivation.

29 <u>Clearance factor developed with alternative approach</u>

- 30 CL can also be developed with an alternate derivation that does not require the estimation of V_d
- 31 or the $t_{1/2}$ from retired workers, using the relationship between the intake dose and the associated
- 32 serum concentration. This alternate derivation produces an estimate of CL that is in close
- 33 agreement with the value derived by the USEPA (2016). The alternative derivation is:
- 34

1	As above:
2	Dose (ng/kg/day) = Serum Level (ng/ml) x CL (ml/kg/day)
3	Therefore:
4 5	CL $(ng/kg/day) = Dose (ml/kg/day) / Serum level (ng/ml)$
6	Dose (ng/kg/day):
7	Egeghy and Lorber (2011; cited by USEPA (2016) as support for its estimated V_d), estimated the
8	daily average PFOS exposure from all sources in the U.S. population (ng/day) to account for the
9	measured serum PFOS concentration in the U.S. population as reported in the NHANES
10 11	database. These estimates were based on estimates of PFOS in different media from different sources combined with estimates of media-specific exposure rates of (e.g. food intake, inhalation
12	rate, and house dust ingestion). The estimated the geometric mean value of total PFOS intake for
13	a typical adult (i.e., not exposed to a specific source of contamination) was 160 ng/day.
14	Assuming the standard risk assessment default for adult body weight of 70 kg, the intake of 160
15	ng/kg/day is equivalent to a dose of $(160 \text{ ng/day})/70 \text{ kg} = 2.3 \text{ ng/kg/day}$.
16	Serum concentration (ng/ml):
17	The estimate of total PFOS exposure in the U.S. adult population developed by Egeghy and
18	Lorber (2011) was based on a large number of studies of PFOS in various media published
19	between 2000 to 2008. Thus, the most appropriate estimate serum PFOS concentration to
20	combine with this estimated daily PFOS intake is the geometric mean serum PFOS concentration $1 + 1 + 1 + 20$
21	in the general adult (i.e, ≥ 20 years old) U.S. population reported by NHANES for that period.
22	<u>NHANES</u> provides data for the period from 1999-2010 mostly in one year in intervals (CDC, 2017)
23	2017).
24	Based on the NHANES data for adults reported between 2000-2008 (1999-2000, 2003-04,
25	200506, 2007-08), the average of the geometric mean serum PFOS concentrations is 20.6 ng/ml.
26	(Note that the NHANES data for this range also includes data for samples collected in 1999).
27	Clearance factor
28	From this estimates of daily intake (dose) and geometric mean serum PFOS concentrations given
29	above, CL can be estimated as $(2.3 \text{ ng/kg/day})/(20.6 \text{ ng/ml}) = 0.11 \text{ ml/kg/day}$. This estimate is
30	in close agreement (i.e. 36% higher) with the CL of 0.081 ml/kg/day developed by USEPA
31	(2016).
32	It is noted that the CL of 0.11 ml/kg/day from the above alternate derivation is uncertain for
33	several reasons. The value used for total intake is based on estimates of PFOS occurrence and
34	exposure rates for different media. The serum PFOS concentration in the U.S. population has

been decreasing since at least 1999 (when NHANES began publishing estimates of serum PFOS

- 1 concentrations in the U.S. population), and there is some uncertainty as to whether NHANES
- 2 data from 1999-2008 versus 2003-2004 are most appropriate to compare to the total intake
- 3 estimate of Egeghy and Lorber (2011). Finally, the body weight assumed for this calculation (70
- 4 kg) is a default value, and body weight may be correlated with PFOS intake and/or $t_{1/2}$.

5 <u>Conclusion</u>

- 6 The close agreement of the CL of 0.11 ml/kg/day produced by this alternate approach which is
- 7 independent of estimates of V_d and $t_{1/2}$ with the USEPA (2016) CL of 0.081 ml/kg/day provides
- 8 support for use of the USEPA value as a reasonable estimate of the CL for PFOS.

9 <u>References</u>

- 10 CDC. 2017. Centers for Disease Control and Prevention. Fourth National Report on Human
- 11 Exposure to Environmental Chemicals, Updated Tables, Volume 1.
- 12 https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf
- 13 Egeghy PP, Lorber M. 2011. An assessment of the exposure of Americans to perfluorooctane
- 14 sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo
- 15 Sci Environ Epidemiol. 2011 Mar-Apr;21(2):150-68.
- 16 Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010a. Use of
- 17 pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and
- 18 perfluorooctane sulfonate. Environment International. 36:392-397.
- 19 Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010b. Corrigendum to:
- 20 Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic
- 21 acid and perfluorooctane sulfonate. Environment International. 36:647-648.
- 22 USEPA. 2016. United States Environmental Protection Agency. Health Effects Support
- Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May
 2016.

25

26

20

Appendix 4: Animal evidence tables

Reference and Study Design		Results	Comment	
Abbott et al. (2009a)	Internal PFOS concentrations: offspring data			Major Limitations:
	Internal PFOS cond WT Control 4.5 mg/kg/day 6.5 mg/kg/day 10.5 mg/kg/day KO Control 8.5 mg/kg/day 10.5 mg/kg/day 10.5 mg/kg/day Concentrations repo Serum PFOS levels dose) Maternal effects • No statistically si gain from GD15 • No statistically si	entrations: offspring entrations in offspring Number of pups examined 8 6 4 8 6 4 8 6 12 orted at means ± SEM 5 determined at PND15 gnificant effect on wei to GD18 in both WT a gnificant effect on bod	Serum PFOS (ng/mL) 7.39±2.92 24,100±1820 28,700±2610 40,700±2680 41,200±3070 6.88±1.57 42,800±3600 52,400±3620 5 (16 days after last	 Major Limitations: Serum PFOS measurements at PND15 not informative for endpoints (e.g., maternal weight at GD18) assessed at other time points Other comments: Species and strains appropriate for endpoints assessed Sample sizes ranged from generally ≥10 dams for maternal endpoints to ≤10 for some neonatal effects (e.g., body and liver weights) Oral gavage provided direct exposure to PFOS Dose selection based on previous knowledge of potential strain (129S background) sensitivity to partimeted at an articale
only pup data reported herein Exposure regimen: GD15 to GD18	sites, total numb	omes gnificant effect on nun er of pups at birth (aliv s from implantation to b	 not identify effects that might arise from exposures occurring earlier in gestation Number of doses (i.e., 2) for KO exposures do not allow for determining low-dose effects Quantitative data reporting Endpoint ascertainment used standardized assessment of 	

 on PND15, and w and KO No statistically sig in both WT and K Statistically signifi liver weight in WT in KO at PND15 Statistically signifi in WT (p<0.001) a Statistically signifi mg/kg in WT (p<0 corresponding context 	cant (p< 0.01) trend f at PND15; no effect cant trend for increa- and KO (p< 0.01) at P cant increase in rela 0.001) and KO (p< 0.01)	mortality, body and organ weights, and developmental milestone	
Percentage postnata	l survival on PND15		
	WT	КО	
Control	65%±10	84%±9	
	(n=16) ^a	(n=12)	
4.5 mg/kg/day	45%±14 ^b (n=8)	NA	
6.5 mg/kg/day	55%±6 (n=7)	NA	
8.5 mg/kg/day	43%±9 ^b	56%±12 ^b	
	(n=20)	(n=13)	
10.5 mg/kg/day	26%±9 ^b	62%±8 ^b	
	(n=17)	(n=14)	
a = number (n) of pu			
b = p<0.001, compar	red to corresponding		
NA = not applicable			
Postnatal developme	ent		
Delay in both eye	opening in WT (PN		

Reference and Study Design			Results			Comment		
Butenhoff et al. (2009) Species and strain: Rats, Crl:CD (SD) Males and females (virgin)	 Maternal effects: No statistically or PND1 as we GD20 and from Note: Based of 	body weig significant ell as in cha n PND1 to n graphical	 Major Limitations: Internal PFOS concentrations not determined Lack of histopathology 					
mated at ~12 weeks of age Group size: 4 groups (n = 25 in each)	significant (p< weight with 1.0 controls) mg/kg/day	y between Pl			 Other comments: Species and strain appropriate for endpoints assessed Sample size ~25 per dose provided 		
Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 20 Route of exposure:	Sample size Body weight (g)	0 25 365		ng/kg/day) 0.3 25 363	1.0 24 351*	 good statistical power Oral gavage provided direct maternal exposure to PFOS Doses selected based on previous observations of neonatal toxicity 		
Oral gavage Exposure levels: 0, 0.1, 0.3, 1.0 mg/kg/day Exposure regimen: GD0 to PND20	 * p<0.05 Maternal effects: food consumption No statistically significant difference between exposed and controls groups for: relative food consumption GD0 to 20 absolute food consumption PND1 to 21 relative food consumption PND1 to 21 					 but represented a narrow dose range Duration of exposure lasted length of gestation Number of exposure levels (control plus 3 doses) were standard and allowed for determining any dose- dependent effects 		
	Maternal absolute	e food cons	umption GD PFOS (m 0.1		1.0	 Qualitative and quantitative data clearly reported Endpoint ascertainment used standardized and objective 		
	Sample size Food consumption (g/rat/d)	25 25 25	23 24	25 24	24 23*	assessment of morphological, observational, and behavioral endpoints		
	 * = p<0.05 Maternal effects: No statistically gestation, implementation, implementation 	significant	effect on nu					

	aternal effects: internal macroscopic examination No treatment-related findings in dams with failure to deliver or dams necropsied on PND21	
	 Statistically significant (p<0.05) increase in body weight at vaginal patency and body weight at balanopreputial separation with 0.1 mg/kg/day compared to controls No statistically significant differences for delivered litters; pups born per litter; live litter size PND0; % males per litter at birth; % survival PND0 to 4; % survival PND4 to 21; pup weight (male and female separately) at PND1, 21, and 72; age at vaginal patency; and age at balanopreputial separation 	
	Functional observation battery (observation on PND4, 11, 21,	
	 35, 45, 60) Statistically significant (p<0.05) reduction in hind limb grip strength with 1.0 mg/kg/d (males only) on PND21 only; mean value for this group was stated to be within historic control range 	
•	 Locomotor activity (data presented graphically only, cumulative daily counts) Statistically significant (p<0.05) increase with 0.3 and 1.0 mg/kg/day (males only) at PND17 compared to concurrent controls Statistically significant (p<0.05) increase with 1.0 mg/kg/day (females only) at PND21 compared to concurrent controls 	
•	Acoustic startle response • No statistically significant differences between groups Biel maze swimming • No statistically significant differences between groups	
<u>O1</u> •	fspring effects: brain morphology (PND21 and 72) No statistically significant dose related effects on brain weight, brain length, and brain width	

Reference and Study Design				R	esults				Comment	
Butenhoff et al. (2012)	Internal PI Note: PFC			Major Limitations: • Data reporting is						
Species and strain: Rats, Sprague-Dawley	herein								inadequateIncidence of non-	
(Crl:CD(SD)ICS) Males and females	Serum PF0	<u>OS con</u> d T	centrations	(ug/mL)	Dietary	PFOS (pp	ym)		neoplastic (and app neoplastic effects) a	
~41 days old at start of treatment	Week of sampling	Sex	0	0.5	2	5	20	20 ppm (recovery)	calculated on the ba	asis of
	4	М	< LOQ	0.91	4.33	7.57	41.80	-	sacrifices, term sac	
Group size: For entire exposure duration:	14	F	0.026 < LOQ	1.61 4.04	6.62 17.10	12.60 43.90	54.00 148.0	-	and unscheduled m	ortality.
60 to 70/sex/exposure group	-	F	2.67	6.86	27.30	64.40	223.0	-	(including tumors) a	re time
For recovery group (20 ppm	53	М	0.025	-	-	-	146.0 (4)	-	dependent and occurrence with the second sec	ur with
only): 40/sex	102	F	-	-	-	-	-	-	longer durations of	
Appears that dose groups had		F	-	-	20.20 (9)	-	-	-	exposure, calculation incidences based of	
(initially) 60 rats per group excluding those for interim	105	М	0.012 (11)	1.31 (10)	7.60 (17)	22.50 (25)	69.3 (22)	-	inclusion of examination intermediate sacrific	
sacrifice		F	0.084 (24)	4.35 (15)	-	75 (15)	233 (25)	-	unscheduled mortal result in an underes	
Test article and vehicle:	106	М	-	-	-	-	-	2.42 (10)	of the full-term incid	
PFOS (potassium salt, 86.9%		F	-	-	-	-	-	9.51 (17)	 Rats (10/dose group 	
pure), acetone vehicle	Values ar LOQ = lim							046 ug/mL	interim sacrificed at weeks. Also, 5 rats	52
Route of exposure:	(week 14)								and 5 ppm diets we	
Dietary	n=5 unles - = data n	•	•	renthesis					sacrificed at weeks 14. This appears to	
Exposure levels:					account for variable					
0, 0.5, 2, 5, 20 ppm	Cumulativ				numbers (60 or 70)					
	Estimated mortality based on Kaplan-Meier model								dose group (i.e., 60	
See Results column for serum PFOS concentration		ns cons	sisted of la	irge, mott				nological rs (in 2/3 males	dose group designated for full term exposure). However, this is not clear.	
	and 1/1 fen	nales)	in 20 ppm	group					Organ weight chang only provided as	jes are

Exposure regimen:	Estimated pr	obability of	mortality t	hrough 105	5 weeks in	males		comparisons of control	s vs.
103 to 104 weeks (depending	•				PFOS (pp			20 ppm group.	
on mortality)		0	0.5	2	5	20	20		
							(recovery)	Other comments:	
For recovery exposure, 20 ppm diet for 52 weeks	Sample size	70	60	60	60	70	40	Species and strain appropriate for endpoir	ate
followed by control diet until	Estimated mortality *	0.778	0.800	0.660	0.500	0.565	0.750	assessed	
termination at week 104	p-value	-	0.98	0.18	0.01	0.03	0.74	 Sample size (n) is over 	all
10 rats/group sacrificed at 52 weeks	* Estimate a Kaplan-Mei Bold text =	er model statisticall	y significa	ant (p<0.0	5) from co	ontrols		reasonably large, but sample size varies throughout with some sample sizes (e.g., org	00
10 rats/group (0.5 and 5 ppm groups) sacrificed at weeks 4 and 14	After 105 w trend = 0.00 recovery gro	05) decre						weight), marginal. Also there is variability in n among dose groups wh	Э,
	Estimated pr	obabilitv of	mortalitv t	hrouah 105	5 weeks in	females		origin is not clear.	
Related studies:		, , .			PFOS (pp			 Dietary exposure allow 	s for
Seacat et al. (2003)		0	0.5	2	5	20	20	PFOS to interact with	
							(52 weeks recovery	tissues from the oral ca to the stomach	avity
	Sample size	70	60	60	60	70	40	Dose selection based of previous observations	
	Estimated mortality *	0.520	0.700	0.820	0.700	0.498	0.575	body weight and liver	
	p-value	-	0.17	0.002	0.23	0.86	0.94	effects in rats (Seacat of 2003)	et al.
	* Estimate a Kaplan-Mei Bold text = s Food consu	er model statisticall					sed on	Chronic duration of exposureNumber of exposure le	
	(R ² =0.99	99 for ma				ly with PF ot provide		would allow for determ any dose-dependent effects, recovery group included	Ũ
	exposure Note: statistic	tically sign groups a cally signif	ind contro ficant dec ficant dec	ols rease in ir rease in b	nterim bo ody weig	dy weights hts betwee	en weeks 3 to 61	 Internal PFOS concentrations determi Endpoint ascertainmen used standardized 	nt y,

Note: Data in (2012), whic and 20 ppm Organ weig 52 weeks of	h only pr groups ht and o	esent data	a for signif	ficant diffe	rences be	etween cor	ntrols	Note: Due to conflation of interim and term data in outcome reporting both significance and dose- response for term (i.e., chronic)
Organ	Dose group (ppm)	Organ wt (g)	Males (n=9 Organ wt/body wt (%))) Organ wt/brain wt (%)	Fe Organ wt (g)	emales (n= Organ wt/body wt	Organ wt/brain wt	outcomes are not interpretable.
Left adrenal	0 20		(%)	(%)	0.0501 0.0311	(%)	(%) 0.0235 0.0141	
Right adrenal Brain	0 20 0 20					0.5376 0.6752	0.0172 0.0144	
Left kidney	0 20					0.3357 0.4149		
Right kidney Liver	0 20 0	20.028	2.811	8.613		0.3498 0.4193 2.803		
Spleen	20 0 20	26.632 0.9792 0.8287	4.004 0.1382 0.1252	11.366 0.4208 0.3529		4.205 0.1368 0.1650		
Left thyroid (w parathyroid)	0 20	0.0246 0.0195		0.0246 0.0083				
Mean weig All data pre controls an * Note: No (with parath	sented h d 20 ppm statistica	nere are st n at p≤0.09 Ily signific	atistically 5 ant differe	significant	t differenc	es betwee		

Clinical chemistry	
Note: data presented graphically only	
Serum ALT (measured at weeks 4, 14, 27, 53 only)	
 Statistically significant (p≤0.05) increase with 20 ppm (males only) at 	
weeks 14 and 53 compared to controls, apparent borderline statistically significant increase at week 27	
Serum AST (measured at weeks 4, 14, 27, 53 only)	
 Statistically significant (p≤0.05) decrease with 20 ppm (females only) at week 4 compared to controls 	
week 4 compared to controls	
Serum total cholesterol (measured for all time points)	
 Statistically significant (p≤0.05) decrease in males with 20 ppm at weeks 14, 27, and 52 (but not at terminal aperifica) compared to controls 	
 14, 27, and 53 (but not at terminal sacrifice) compared to controls Statistically significant (p≤0.05) decrease in females with ≥2 ppm at week 	
27, apparent borderline statistical significance at week 53	
Comments and a structure of the structur	
 Serum glucose (measured at weeks 4, 14, 27, 53 only) Statistically significant (p≤0.05) decrease in males with 20 ppm at weeks 	
14 and 53 compared to controls	
• Statistically significant (p≤0.05) decrease in females with ≥2 ppm at week	
53	
Serum urea nitrogen (measured at weeks 4, 14, 27, 53 only)	
• Statistically significant (p≤0.05) increased in males with 20 ppm at weeks	
 14 and 27 or ≥2 ppm at week 53 compared to controls Statistically significant (p≤0.05) increase in females with 20 ppm at weeks 	
• Statistically significant ($p \ge 0.05$) increase in remains with 20 ppm at weeks 14 and 27 or ≥ 5 ppm at week 53 compared to controls	
Serum creatinine (measured at weeks 4, 14, 27, 53 only)	
 No statistically significant effects in males Statistically significant (p≤0.05) increase in females with 2 ppm at week 14 	
compared to controls	

 Statistic concent Statistic 	 Urine chemistry Statistically significant increase in pH and decrease in sodium ion concentration in males with 2 ppm at week 53 compared to controls Statistically significant decrease in potassium ion excretion in males with 0.5 and 5 ppm at week 53 compared to controls 										
Statistic ppm at	Hematology										
Non-neop (includes				ices and		eduled r	mortality)				
	se	ex 0	0.5	2	5	20	20 (recovery)	p- trend			
Lymphohis cytic infiltra		42/6	42/55	38/55	41/55	56/65 **	32/40	**			
Hepatocelli hypertroph (centrilobul	ular M / F	0/65 2/65	2/55 1/55	4/55 * 4/55	22/55 ** 16/55	42/65 ** 52/65	3/40 2/40	**			
Granular, eosinophilio cytoplasm (centrilobul	, M	0/65 0/65	0/55 0/55	0/55 0/55	0/55 7/55 **	14/65 ** 36/65 **	0/40 1/40	**			
Hepatocelli pigment (centrilobul	ular M	0/65 0/65	0/55 0/55	0/55 0/55	0/55 1/55	6/65 * 36/65 **	0/40 3/40	**			
Individual hepatocyte necrosis	M F	5/65 7/65	4/55 6/55	6/55 6/55	13/55 6/55	19/55 * 15/65 *	3/40 3/40	*			
Hepatocellu vacuoles (midzone/ centrilobula		3/65	3/55	6/55	13/55 **	19/65 **	3/40	**			

Cystic degeneration	М	5/65	15/55	19/55	17/55	22/CE	15/40	**
degeneration			**	**	**	22/65 **	**	
	F	0/65	1/55	1/55	2/55	4/65	1/40	*
Degeneration/ Necrosis (centrilobular)	М	1/65	0/55	0.55	1/55	5/65	1/40	*
Periportal hepatocellular hypertrophy	F	12/65	10/55	9/55	4/65	3/65 *	7/40	**
Pigmented macrophage infiltration	F	2/65	3/55	5/55	6/55	23/65 **	7/40 *	**
Note: only sta * p≤0.05, ** p		ly signif	icant ou	tcomes	shown	nerein		
Neoplastic le					crifices	and un	scheduled	
(apparently in					crifices	and un	scheduled	
				minal sa	crifices		scheduled	
(apparently in				minal sa			20 (recovery)	p- trend
(apparently in		interim	and terr	minal sa Dietary	PFOS (p	opm)	20	
(apparently in mortality) Liver Hepatocellular	sex	interim	and terr	minal sa Dietary	PFOS (p	opm)	20	
(apparently in mortality) Liver Hepatocellular Adenoma	sex M F	interim	and terr 0.5 3/50 1/50	ninal sa Dietary 2	PFOS (r 5	20 20 7/60 * 5/60	20 (recovery) 0/40 2/40	*
(apparently in mortality) Liver Hepatocellular	sex M F	0 0/60	and terr 0.5 3/50	Dietary 2 3/50	PFOS (p 5 1/50	20 20 7/60 * 5/60	20 (recovery) 0/40	trend *

Reference and Study Design		Result	s			Comment
Case et al. (2001)	Maternal toxicity					Major Limitations:
, , , , , , , , , , , , , , , , , , ,	 Reduced feed con 	sumption. scar	proomed hair	 Internal PFOS concentrations not 		
Note: study authors conducted	coats observed wit		y	determined		
dose-range finder and	 Maternal deaths a 		reported to	Results not statistically analyzed		
developmental toxicity studies.	occur between GD			,,		
Results from the dose-range						Other comments:
finder study are reported herein.	Endpoints assessed	for maternal to	xicity			Species and strain appropriate for
			FOS (mg	/kɑ/da	()	endpoints assessed
Species and strain:		Controls ^a	5	10	20	Sample size limited to 5 females
Rabbits, New Zealand white	Body weight loss ^b	0/5	3/5	4/5	5/5	Oral gavage provided direct
(Hra: (NZW) SPF)	Deaths	0/5	0/5	0/5	4/5	exposure to PFOS
5 to 6 months of age	Abortions	0/5	2/5	4/5	1/5	 Doses selected to purposely
-	Animals pregnant				1/5	identify doses to that produce
Group size:	at GD29	5/5	2/3	0/1	NA	toxicity
5/mated females/group	a = observations for (110 and 2	5 ma/ka/c	lav arc		 Gestational exposure did not last
	identical to control ob					entire pregnancy
Test article and vehicle:	b = >15% less than c			epone		 Number of exposure levels allowed
PFOS (salt not reported, 98.4%	5 females/group; NA		wailahla t	0 0 0 0 0 0		for determining any dose-related
pure) in 2% Tween 80	5 Ternales/group, NA				1	effects
Route of exposure:	Fetal toxicity					Quantitative data reported
Oral gavage	retar toxicity					Endpoint ascertainment used standardized assessment of
	Endpoints assessed	for fotal toxicity	(continue	ad in ta	ble below)	mortality, body weights, and
Exposure levels:			FOS (mg			reproductive/developmental effects
0, 0.1, 1.0, 2.5, 5.0, 10, 20		0	0.1	ry/ua	<u>/)</u> 1.0	
mg/kg/day		(n=5) ^a	(n=5	3	(n=5)	
	Corpora lutea	10.2±1.6	11.8±	/	10.0 <u>±</u> 0.8	
Exposure regimen:	Implantations	8.8±1.6	9.5±1		8.5±1.3	
GD6 to GD20, animals sacrificed	Litter size				8.5 ± 1.3	
at GD29		8.4±1.1	9.2±1			
	Resorptions	0.4±0.5	0.2±0		0.0±0.0	
Note: study reported to have	Fetal weight (g)	43.8±5.9	40.8±	C.1	44.0±2.7	
been conducted according to	Mean±SD					
GLP	a = number of pregn	ant remales in	group			

Endpoints assessed above)	Endpoints assessed for fetal toxicity (continued from table above)						
	P	FOS (mg/kg/da	ıy)				
	0	2.5	5				
	(n=5) ^a	(n=5)	(n=2)				
Corpora lutea	10.2±1.6	11.0±1.4	10.5±0.7				
Implantations	8.8±1.6	8.8±2.0	9.5±0.7				
Litter size	8.4±1.1	8.4±1.5	5.5±2.1				
Resorptions	0.4±0.5	0.4±0.5	4.0±1.4				
Fetal weight (g)	43.8±5.9	38.2±5.6	26.0±5.4				
Mean±SD							
a = number of preg	gnant females in	group					

Reference and Study Design	Results	Comment
Case et al. (2001) Note: study authors conducted dose-range finder and developmental toxicity studies. Results from the developmental toxicity study are reported herein. Species and strain: Rabbits, New Zealand white (Hra: (NZW) SPF)	 Maternal toxicity No maternal deaths Statistically significant (p≤0.05 or p≤0.01) reductions in body weight gains during exposure (GD6 to GD20) to ≥1 mg/kg/day, non-statistically significant reductions after exposure (GD21 to GD29), 3.75 mg/kg/day data not reported Reduced body weight gains generally correlated with a reduction in feed consumption Fetal and developmental toxicity One abortion reported with 2.5 mg/kg/day (on GD25) and 10 abortions with 3.75 mg/kg/day (between GD22 and GD28) 	Comment Major Limitations: • Internal PFOS concentrations not determined Other comments: • Species and strain appropriate for endpoints assessed • Sample size >10 • Oral gavage provided direct exposure to PFOS • Dose selection based on results from a dose-range finder study
5 to 6 months of age Group size: 22/mated females/group Test article and vehicle: PFOS (salt not reported, 98.4% pure) in 2% Tween 80 Route of exposure: Oral gavage	 Statistically significant (p≤0.05 or p≤0.01) reduction in fetal weight with ≥2.5 mg/kg/day No effect on corpora lutea, implantations, resorptions (early and late), and number of fetuses (alive and dead) Structural abnormalities included some reversible delays in ossification (sternebrae, hyoid, metacarpal, and pubic bones) with ≥2.5 mg/kg/day 	 Gestational exposure did not last entire pregnancy Number of exposure levels allowed for determining any dose-related effects Quantitative data reported Endpoint ascertainment used standardized assessment of mortality, body weights, and reproductive/developmental effects
Exposure levels: 0, 0.1, 1.0, 2.5, 3.75 mg/kg/day Exposure regimen: GD7 to GD20, animals sacrificed at GD29 Note: study reported to have been conducted according to GLP		

Reference and Study Design	Results	Comment
Reference and Study DesignChang et al. (2009)Note: the results reported by the authors represent thyroid parameters determined as part of a developmental neurotoxicity study with gestational and lactational exposures (Butenhoff et al. 2009). The maternal, neonatal, and developmental neurotoxicity results are reported in a separate table.Species and strain: Rats, Sprague-Dawley About 12 weeks old at mating (per Butenhoff et al. 2009)Group size: 25 pregnant females/groupTest article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 20Route of exposure: Oral gavageExposure levels:	 Internal PFOS concentration Maternal internal PFOS concentrations (i.e., in serum, liver, and brain) correlated with administered dose for GD20, PND4, and PND21 (day of maternal sacrifice) Maternal liver to serum ratio greater than brain to serum ratio at GD20 (only time point available for ratio determination) Fetal and pup internal PFOS concentrations (i.e., in serum, liver, and brain) correlated with maternal administered dose for GD20, PND4, PND21, and PND72 Fetal and pup liver to serum ratio greater than brain to serum ratio at GD20, PND4, PND21, and PND72 Fetal and pup liver to serum ratio greater than brain to serum ratio at GD20, PND4, PND21, and PND72 Maternal serum PFOS concentrations less than that of fetuses on GD20 but greater than pup serum PFOS concentrations on PND4 and PND21 Maternal liver PFOS concentrations greater than that of fetuses on GD20 (no subsequent comparisons possible) Maternal brain PFOS concentrations less than that of fetuses on GD20 (no subsequent comparisons possible) Maternal liver and brain samples not collected for PND4 and PND21 analyses Maternal effects: serum thyroid stimulating hormone (TSH) measurements No statistically significant differences between exposure groups at all time points (GD20, PND4, and PND21) 	 Major Limitations: Sample size varied by endpoint (e.g., ~10 for thyroid histology, <10 for thyroid proliferation, unclear sample size for TSH measurements) Other comments: Species and strain appropriate for endpoints assessed Oral gavage provided direct exposure to PFOS Dose selection aimed to avoid neonatal toxicity based on previous rat studies (per Butenhoff et al. 2009) Duration of exposure included gestation period through lactation Number of exposure levels allowed for determining any dose-related effects Quantitative data reported Internal PFOS measurements determined Endpoint ascertainment used standardized assessment for TSH, thyroid morphometry, and thyroid cell proliferation; subjective thyroid
25 pregnant females/group Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 20 Route of exposure: Oral gavage	 PND21 analyses <u>Maternal effects: serum thyroid stimulating hormone (TSH)</u> <u>measurements</u> No statistically significant differences between exposure groups at all time points (GD20, PND4, and PND21) <u>Offspring effects: serum TSH measurements</u> No statistically significant differences between exposure groups 	 for determining any dose-related effects Quantitative data reported Internal PFOS measurements determined Endpoint ascertainment used standardized assessment for TSH, thyroid morphometry, and thyroid cell proliferation; subjective thyroid
0, 0.1, 0.3, 1.0 mg/kg/day See Results column for PFOS concentrations in specimens from dams and offspring (fetuses and pups)	 at all time points (GD20, PND4, and PND21) <u>Offspring effects: thyroid histology</u> No changes observed between 1.0 mg/kg/day group and controls at all time points (GD20, PND4, and PND21) Thyroids collected for 0.1 and 0.3 mg/kg/day groups but not analyzed microscopically 	histology

Exposure regimen:		
GD0 to PND20	Offspring effects: thyroid morphometry	
Dams sacrificed at PND21 F1 weaned at PND21 and sacrifice at PND72	 Statistically significant (p<0.05) increase in thyroid follicular epithelial cell height in males only with 1.0 mg/kg/day at PND21 compared to controls; thyroid follicular epithelial cell height in 	
A second group of pregnant	concurrent male controls noted to be lower compared to female control group at PND21	
females (10/group) were exposed GD0 to GD19 with	 No statistically significant differences between exposed and control groups at PND4 	
sacrifice on GD20	Only control and 1.0 mg/kg/day groups analyzed	
Related studies:	Offspring effects: thyroid follicular colloid area	
Butenhoff et al. (2009)	 No statistically significant differences between exposed and control groups at PND4 and PND21 	
	Only control and 1.0 mg/kg/day groups analyzed	
	Offspring effects: thyroid proliferation	
	Statistically significant (p<0.05) increase in thyroid cell	
	proliferation in females only with 1.0 mg/kg/day at GD20	
	compared to controls; control values noted to have a wide	
	range (4 to 113 cells with positive staning)	
	Only control and 1.0 mg/kg/day groups analyzed	

Reference and Study Design		Results	Comment		
Chen et al. (2012a)	Internal PFOS conce	entration	Major Limitations:		
Species and strain: Rats, Sprague-Dawley	Note: Lung PFOS and PND21 but ne	concentrations deterr ot reported herein	 Maternal toxicity not reported Sample size not given explicitly, 10 dams/dose group appears to be 		
Males and females sexually	Serum PEOS Jevels	in pups on PND0 and		10 litters/dose group. Therefore,	
mature, virgin			Serum	histopathology sample size appears	
Group size:	Age	Dose (mg/kg/day)	concentration (µg/ml)	to be 20/sex/group at PND0 and 60 (30 males, 30 females) at PND21.	
10 dams/exposure group	PND0	0	ND	Only qualitative data presented, data	
		0.1	1.7*	presented in figures or micrographs	
Test article and vehicle:		2.0	47.52**	with no tabular data	
PFOS (salt not reported, >98%	PND21	0	ND		
pure) in 0.05% Tween 80 in deionized water		0.1	0.41*	Other comments:	
		2.0	4.46**	Species and strain appropriate for	
Route of exposure: Oral gavage		tandard deviations not mit of detection not re		 endpoints assessed Oral gavage provided direct exposure to PFOS 	
Exposure levels: 0, 0.1, 2.0 mg/kg/day Adjusted daily for body weight changes		ody weight cant (p<0.05) decreas D0 to 21 compared to	 Doses selected allowed for the determination of a LOAEL and NOAEL (e.g., for survival and body weight) Duration of exposure lasted during 		
See Results column for serum PFOS concentrations		est-natal mortality cant (p<0.01) increase y at PND3 compared t	 entire gestation period Two exposure levels may limit ability to demonstrate any dose-related effects 		
Exposure regimen: GD1 to GD21	• Normal histopatho		eolus in control and 0.1	Internal PFOS concentrations determined	
Second set of dams treated as above and survival determined on PND4	 mg/kg/day (data r At PND0: marked septa, and focal lu At PND 21: alveol 	not shown) groups at F alveolar hemorrhage, ung consolidation with lar hemorrhage, thicke	Endpoint ascertainment used standardized assessment of mortality, body weight, and lung histopathology		
At PND0, 2 male and 2 female pups randomly selected from each litter and sacrificed for serum and lung tissue analysis3 males and 3 females per litter maintained to PND21 (weaning) and then sacrificed	and inflammatory	cell infiltration with 2.0) mg/kg/day	Note: this study also presented data on apoptosis-related endpoints and oxidative stress. These data are not summarized herein.	
Sacimiceu		347			

Reference and Study Design		Comment	
Dong et al. (2009)	Internal PFOS concentration	Major Limitations:	
	Serum PFOS concentrations afterPFOS (mg/kg TAD)Control0.505252550125125For each dose group n = 10* = p≤0.05, compared to controlBody weight and food intake• Statistically significant (p<0.05) and body weight change with ≥2 controls• Statistically significant (p<0.05) ≥50 mg/kg TAD compared to prOrgan weight changes: kidney, lir (g)/body weight (g)] x 100• Statistically significant (p≤0.05) ≥50 mg/kg TAD compared to cot cot• Statistically significant (p≤0.05) ≥50 mg/kg TAD compared to cot mg/kg TAD compared to cot cot	60 days of exposure Serum PFOS (mg/L) 0.048±0.014 0.674±0.166* 7.132±1.039* 21.638±4.410* 65.426±11.726* 120.670±21.759* reduction in final body weight 25 mg/kg TAD compared to reduction in food intake with re-exposed baseline ver, spleen, thymus y authors as [organ weight reduction in kidney mass with ontrols increase in liver mass with ≥5 ls reduction in spleen and thymus pared to controls rum corticosterone	

 Splenic and thymic cellularity Dose-dependent decrease in cellularity for both the spleen and thymus Statistically significant (p≤0.05) decreases in cellularity compared to respective controls for both spleen and thymus with TAD of ≥25 mg/kg 	
Lymphocyte immunophenotypes (splenic and thymic)	
 Statistically significant (p≤0.05) decreases in some splenic T cell CD4/CD8 subpopulations with ≥25 mg/kg TAD compared to controls Statistically significant (p≤0.05) decreases in splenic B cells (B220+) with ≥50 mg/kg TAD compared to controls Statistically significant (p≤0.05) decreases in some thymic T cell CD4/CD8 subpopulations with ≥25 mg/kg TAD compared 	
to controls	
 Splenic natural killer (NK) cell activity Inverted U-shaped dose-response curve, inflection point = TAD of 5 mg/kg Statistically significant (p≤0.05, compared to controls) increase with TAD of 5 mg/kg and decrease with TAD of 50 and 125 mg/kg 	
Splenic lymphocyte proliferation	
 Dose-dependent decrease in proliferation index (PI) for both concanavalin A (conA) and lipopolysaccharide (LPS) treated lymphocytes Statistically significant (p≤0.05) decrease in PI compared to respective controls for both conA and LPS treated cells with TAD of 50 and 125 mg/kg 	
Antibody plaque forming cell (PFC) response to sheep red	
blood cells	
 Dose-dependent decrease in PFC response 	
 Statistically significant (p≤0.05) decrease in PFC response compared to controls with TAD of 5, 25, 50, and 125 mg/kg 	

Reference and Study Design	Re	Comment			
Dong et al. (2011)	Internal PFOS concentration	 Major Limitations: Only male mice used so response 			
Species and strain:	Serum PFOS concentrations a	fter 60 days of exposure	in females not known		
Mice, C57BL/6	PFOS (mg/kg TAD)	Serum PFOS (mg/L)	Sample size of 6/group per		
8–10 weeks old	Control	0.05±0.01	endpoint		
	0.5	1.07±0.11	•		
Group size:	1	2.36±0.47	Other comments:		
12/males/group	5	10.75±0.82*	• Species and strain appropriate for		
	25	22.64±2.29*	endpoints assessed		
Test article and vehicle:	50	51.71±3.81*	Oral gavage provided direct		
PFOS (potassium salt, >98%	For each dose group $n = 6$	·	exposure to PFOS		
pure) in	* = p≤0.05, compared to control	bl	Dose selection based on previous		
de-ionized water with			observations of altered immune		
2% Tween 80	Body weight and food intake		function in mice		
Route of exposure: Oral gavage Exposure levels:	 Statistically significant (p≤0. change with 50 mg/kg TAD Statistically significant (p≤0. day 60 to 61 with 50 mg/kg 	 Subchronic duration of exposure Number of exposure levels would allow for determining any dose- dependent effects 			
<u>Daily dose</u> : 0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day	 Organ weight changes: kidney Note: organ weights reporte (g)/body weight (g)] x 100 	 Quantitative data reported Internal PFOS concentrations determined Endpoint ascertainment used 			
Targeted total administered dose (TAD): 0, 0.5, 1, 5, 25, 50 mg/kg	 No statistically significant ch Statistically significant (p≤0. mg/kg TAD compared to con 	05) increase in liver mass with ≥25	standardized assessment of endpoints		
See Results column for serum PFOS concentrations	 Statistically significant (p≤0. 50 mg/kg TAD compared to Statistically significant (p≤0. 				
Exposure regimen: Once daily for 60 days	50 mg/kg TAD compared to				
Mice sacrificed on day 61 (24 hours after last exposure)	 Changes in serum corticoster No statistically significant ch 				

Г		1
	 Levels of interferon (IFN)-gamma and interleukin (IL)-4 in splenocytes isolated from exposed mice Dose-dependent decrease in IFN-gamma levels Statistically significant (p≤0.05) decrease in IFN-gamma compared to control with TAD of 50 mg/kg Dose-dependent increase in IL-4 levels Statistically significant (p≤0.05) increase in IL-4 compared to control with TAD 5, 25, and 50 mg/kg 	
	 Number of T-cells secreting IL-2⁺ and IL-10⁺ from splenocytes isolated from exposed mice Dose-dependent decrease in number of IL-2⁺-secreting cells Statistically significant (p≤0.05) decrease in number of IL-2⁺-secreting cells compared to control with TAD 50 mg/kg Dose-dependent increase in number of IL-10⁺-secreting cells Statistically significant (p≤0.05) increase in number of IL-10⁺-secreting cells Statistically significant (p≤0.05) increase in number of IL-10⁺-secreting cells 	
	 Immunoglobulin levels in serum Statistically significant (p≤0.05) reduction in IgM levels with ≥5 mg/kg TAD compared to controls Statistically significant (p≤0.05) increases in IgG, IgG1, and IgE levels with 50 mg/kg TAD compared to controls No statistically significant change on IgG2a levels Delayed-type hypersensitivity text 	
	 No statistically significant change on footpad thickness 	

Reference and Study Design			Results			Comment
Dong et al. (2012b)	Internal PFOS c			Major Limitations:		
	Serum PFOS co	oncentration	s after 60 d			Only males used
Species and strain: Mice, C57BL/6	PFOS (mg/kg TAD)	Samp	le size	Serum PFC (mg/L)	DS	Subchronic exposure
Males only	0	1	2	0.04		Other comments:
8–10 weeks old	1	1	2	4.35*		Species and strain appropriate for
	5	1	2	8.21*		endpoints assessed
Group size:	50	1	2	59.74*		Sample size of 12/group per
12/group	Values are mea	ns (standard	d errors not		ein)	endpoint
	* = p≤0.05 comp			•	,	Oral gavage provided direct
Test article and vehicle:	· · · · · ·					exposure to PFOS
PFOS (potassium salt, >98%	Body weight and	d food intak	<u>ke</u>			 Doses selected yielded clear
purity) in de-ionized water with	Change in body	weight and	food intake	after 60 days	s of	NOAEL and LOAEL
2% Tween-80	exposure	-		-		Number of exposure levels would
Pouto of expective	PFOS	Change		Food intake		allow for determining any dose-
Route of exposure: Oral gavage	(mg/kg TAD)	weight over 60 d		day 60		dependent effects
Oral gavage	(IIIg/kg TAD)	(g)			 Quantitative data reported 	
Exposure levels:	0	4.4		4.22		 Internal PFOS concentrations
Daily dose: 0, 0.0167, 0.0833,	1	4.16		4.94 3.90		determined
0.833 mg/kg/day	5		3.78			 Endpoint ascertainment used
	50	-1.3		2.24*		standardized assessment for body
Total administered dose (TAD):	Values are mea			reported here	ein)	weight and organ weights
0, 1, 5, 50 mg/kg	For each dose g					
000	* = p≤0.05 compared to controls					Note: This study also provides data on
See Results column for serum						mechanistic outcomes that are not
PFOS concentrations	Organ weights		00 davia af			reported herein.
	Relative organ v	veight alter	60 days of	exposure		_
Exposure regimen:		Spleen	Thymus	Kidney	Liver	
Once daily for 60 days	(mg/kg TAD) 0	0.53	0.32	1.52	4.87	<u> </u>
Sacrifice on day 61	1	0.50	0.32	1.52	5.09	<u> </u>
	5	0.30	0.31	1.56	5.51*	<u> </u>
	50	0.47	0.27	1.34	9.03*	_
	Values are mea		_			
	For each dose g					
	Note: relative or					
	(g)/body weight			Sy. Lorgan W	Signi	
	(g), acting in origin		250			

Reference and Study Design	Re	Comment				
Dong et al. (2012a)	Internal PFOS concentration		Major Limitations:			
	Internal PFOS concentration Serum PFOS concentrations af PFOS (mg/kg TAD) Control 0.5 1 5 25 50 125 For each dose group n = 6 * = p≤0.05, compared to control Body weight and food intake • Statistically significant (p≤0.0 with ≥25 mg/kg TAD compared • Reduced food intake in the la mg/kg TAD compared to con not reported) Organ weight changes: kidney • Note: organ weights reported (g)/body weight (g)] x 100 • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con not reported) Organ Xeight Changes: kidney • Note: organ weights reported (g)/body weight (g)] x 100 • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con • Statistically significant (p≤0.0 ≥50 mg/kg TAD compared to con • Statistically significant (p≤0.0 ≥25 mg/kg TAD compared to con	ter 60 days of exposure Serum PFOS (mg/L) 0.04±0.01 0.58±0.19* 4.35±0.63* 8.21±1.15* 24.53±5.56* 59.74±12.16* 114.19±23.72* 05) reduction in final body weight ed to controls ast day of exposure with ≥25 trols (note: statistical significance 5 , liver, spleen, thymus d by authors as [organ weight 15) reduction in kidney mass with 05) reduction in kidney mass with 05) reduction in spleen mass with 05) reduction in spleen mass with 05) reduction in thymus mass with				

Г — Г — Г		
	lacrophage numbers in the spleen and peritoneal cavity	
•	Statistically significant (p≤0.05) reduction in splenic cellularity	
	(i.e., total cell population in spleen) with ≥25 mg/kg TAD	
	compare to controls	
•	Non-statistically significant reductions in the numbers of	
	splenic macrophages	
•	Statistically significant (p≤0.05) increase in percentage of	
	splenic macrophages with ≥50 mg/kg TAD compare to controls,	
	authors noted that this increase was due to reductions in	
	splenic cellularity	
•	Statistically significant (p≤0.05) reduction in peritoneal cavity	
	cellularity with 125 mg/kg TAD compared to controls	
•	Non-statistically significant reductions in number of peritoneal	
	cavity macrophages	
•	Statistically significant (p≤0.05) increase in percentage of	
	peritoneal cavity macrophages with ≥1 mg/kg TAD compared	
	to controls	
	staking production following in vive LDC stimulation	
	sytokine production following <i>in vivo</i> LPS stimulation	
•	Note: following LPS stimulation, cells were isolated from	
	peritoneal cavity or spleen for <i>ex vivo</i> measurement of	
	cytokines	
•	Statistically significant ($p \le 0.05$) increases in TNF-alpha (≥ 25	
	mg/kg TAD), IL-1beta (\geq 50 mg/kg TAD), and IL-6 (125 mg/kg TAD) in calls from the parity compared to control	
	TAD) in cells from the peritoneal cavity compared to controls	
•	Statistically significant ($p \le 0.05$) increases in TNF-alpha (≥ 50	
	mg/kg TAD), IL-1beta (≥50 mg/kg TAD), and IL-6 (125 mg/kg TAD) in cells from the spleen compared to controls	
	(AD) in cells noin the spieen compared to controls	
S S	erum cytokines	
	Note: following LPS stimulation, serum was collected for <i>ex</i>	
	vivo measurement of cytokines	
•	Without LPS stimulation: statistically significant ($p \le 0.05$)	
	increase in IL-1beta and IL-6 (≥50 mg/kg TAD) compared to	
	controls, non-statistically significant increase in TNF-alpha	
	With LPS stimulation: statistically significant ($p \le 0.05$) increase	
	in TNF-alpha (125 mg/kg TAD), IL-1beta (\geq 50 mg/kg TAD), and	
	IL-6 (125 mg/kg TAD)	

Reference and Study Design		Re	sults			Comment
Era et al. (2009)	Internal PFOS conce	entrations	at GD17 (E	xperiment	1)	Major Limitations:
Species and strain: Mice, ICR Mature females mated with a male	 Note: serum and only graphically Dam serum PFO administered dos µg/ml) 	S concentra e of 30 mg/	e palate (control and low dose not reported; statistical significance not reported for full dose range in GD1–17; number of fetuses			
Group size: Varied by endpoint Test article and vehicle:	 Fetal serum PFO concentration unt concentration the Amniotic PFOS con serum PFOS con 	il the admir n declined oncentratio	nistered dos	e of 20 mg/	kg, the fetal	examined in each dose group for full dose range at GD17 not given; number of litters represented not reported for GD1–17 vs. GD11–15 comparison)
PFOS (potassium salt, >98%						
pure) in 0.5% Tween-20	Fetal effects: cleft p					Other comments:
Route of exposure: Oral gavage Exposure levels: Experiment 1: 0, 9, 13, 20, 30 mg/kg/day Experiment 2: 20 or 50 mg/kg/day	 Note: statistical si presented graphie Incidence of cleft were 7.3%, 78.3% palate in control g visual inspection Authors reported PFOS concentrat Maternal effects (Exmanded to the second s	cally but in palate for 1 6, and 93.8 group appea of graphica ED50 = 17 ion of 121 p	 Strain of mouse not very common and appropriateness for endpoints assessed is unclear Overall sample size is moderate; for full dose range study (GD17) it appears that 3 litters were examined per dose group, but number of fetuses not given; for maternal endpoints, n = 5–9, for fetal endpoints (GD1–17 vs. 11–15) n = 67–103, number of litters = 5– 			
Note: different set of dams	Maternal effects at terr	m				7 - 7.
apparently used for each		11	Maternal Do	sing Period		Oral gavage provided direct
experiment		GD	1–17		1–15	exposure to PFOS
		0	20	0	50	Dose selection based on previous
See Results column for serum and amniotic fluid PFOS	Number dams	mg/kg/d	mg/kg/d	mg/kg/d 5	mg/kg/d	observations of fetal defects in
concentrations	examined	6	 mice; however, dose range is narrow; from graphical incidence 			
	Body weight (g) Body weight gain (g)	71.3 36.6	data, not clear if NOAEL was			
Exposure regimen: Experiment 1: GD1 to GD17	Liver weight (g)	2.9	achieved			
	Relative liver weight (%)	4.1	5.0* 8.8*	2.6 3.8	5.0** 7.7**	 For maternal endpoints, dosing period of ≤17 days is short; for fetal developmental evenesure
						developmental, exposure encompassed most of gestation

Experiment 2: GD1 to GD17 (20) Body weight minus mg/kg/day) Body mg/kg/day) Body weight minus mg/kg/day) Body weight minus mg/kg/day) Body mg/kg/day) Body mg/kg/day							
Implantation16.515.914.215.6Implantation16.515.914.215.6Number of prenatal1.81.90.61.3Itosseviliter(11.1%)(11.8%)(4.2%)(8.3%)Values are means (standard deviations not reported herein)Values in parentheses are prenatal loss percentage per litter = mean of ((number of implantation sites) in each dam, corresponding confidence intervals not reported herein-Pc0.05; "*pc0.01Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)-Endpoint accertainment used standardized assessment of morphology, body weight, and organ weightsFetal effects at termGD11-17 GD11-15Gotto -02006mg/kg/dmg/kg/dmg/kg/dmg/kg/dTotal number of fetuses attained8811268100Number of cleft patate08210367Pfetusesitter intervestight (mg)1.691.27**1.661.45**Liver weight (g)1.691.27**1.661.45**Liver weight (%)5.06.1**5.25.7**Brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein)Values are means (standard deviations not reported herein)Values are means (standard deviations not reported herein)14.215.6Relative liver weight (%)5.06.1**5.25.7**Brain weight (%)5.06.1**5.25.	mg/kg/day) or GD11 to GD15 (50	liver weight at GD18	68.4	51.7**	65.8	60.6	allow for determining any dose-
Number of prenatal1.8 (1.1.8%)0.6 (4.2%)1.3 (3.3%)Values are means (standard deviations not reported herein)Values in parentheses are prenatal loss percentage per litter = mean of (number of implantation sites) in each dam, corresponding confidence intervals not reported hereinInternal PFOS concentrations determined, but only reported graphicallyFetal effects: GD1-17 vs. GD11-15 (Experiment 2)Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)Fetal effects: GD1-17 vs. GD11-15 (Capter inter - morkody mg/kg/d mg/kg/d graphicallyNote: this study included mechanistic data from ex-vivo tissue and histology studies that are not reported hereinTotal number of fetuses examined fetuses examined821036799Fetuses/litter 14.714.013.614.3Number of live fetuses/litter12.27**1.661.45**Liver weight (mg) use/litter12.5.710.5**12.5.0Body weight (g) use/litter16.515.914.215.615.914.215.6Relative liver weight (%) use are means (standard deviations not reported herein)5.0Values are means (standard deviations not reported herein)5.0Values are means (standard deviations not reported herein)Values are means (standard deviations n	iiig/kg/day)	Implantation	16.5	15.9	14.2	15.6	response above threshold is very
$ \cos \cos \cos \cos \cos \cos \cos \cos \cos \cos $			1.8	1.9	0.6	1.3	
$\frac{1}{10000000000000000000000000000000000$							
Image of implantation sites – number of fetuses) number of implantation sites in each dam, corresponding confidence intervals not reported herein determined, but only reported graphically * p<0.05; **p<0.01		Values are means (sta	andard devia	tions not rep	orted herein)	· · ·	-
Implantation sites) in each dam, corresponding confidence intervals not reported hereingraphicallyFetal effects: GD1–17 vs. GD11–15 (Experiment 2)Fetal effects: GD1–17 vs. GD11–15 (Experiment 2)Tetal effects: GD1–17 vs. GD11–15 (Experiment 2)Total number of retuses8810 20 0 0 20 0Standardized assessment of morphology, body weight, and organ weightsNote: this study included mechanistic data from ex-vivo tissue and histology studies that are not reported hereinNote: this study included mechanistic data from ex-vivo tissue and histology studies that are not reported hereinNote: this study included mechanistic data from ex-vivo tissue and histology studies that are not reported hereinNumber of live fetuses examined821036799Fetuses/litter14.714.013.614.3Number of cleft palate012.27**1.661.4.5**Evaluation16.515.914.215.6Brain weight (mg)84.475.9**85.680.7**Brain weight (mg)8.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)							
reported herein * p<0.05; **p<0.01Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)Fetal effects at term Maternal dosing periodMaternal dosing periodGD1-17GD1-17GD1-17GD1-15Total number of fetusesNumber of live fetuses examined8811268Number of cleft 092.0GGBody weight (g)1.26.7**Number of cleft 092.0GBody weight (g)1.26.7**Body weight (g)1.26.7**Relative liver weight (mg)126.7Relative liver weight (mg)16.5Not colspan="2">Son6.8.7**Total number of live fetuses examined82.1036792.124.5Relative liver weight (mg)126.7**Total number of live fetusesRelative liver weight (mg)126.7**Total number of live felative liver weight (mg)126.7**Total number of live felative brain weight (%) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\frac{p < 0.05; **p < 0.01}{Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)}$ $\frac{Fetal effects at term}{GD1-17 vs. GD11-15 (GD11-15)}$ $\frac{Fetal effects at term}{GD1-17 GD11-15}$ $\frac{GD1-17 GD11-15}{mg/kg/d} mg/kg/d}$ $\frac{GD1-17 GD11-15}{mg/kg/d} mg/kg/d}$ $\frac{GD1-17 GD11-15}{mg/kg/d} mg/kg/d} mg/kg/d$ $\frac{Fetuses}{120} 888 112 68 1000$ Number of live fetuses with a second herein (14.5)*** $\frac{Fetuses}{120} 1.69 (89.3\%)** 0 (6.1\%)**$ $\frac{Fetuses}{120} 1.65 15.9 14.2 15.6$ $\frac{Fetuses}{110} 16.5 15.9 14.2 15.6$ $\frac{Fetuse}{110} 16.5 15.9 14.2 15.6$ $\frac{Fetuse}{100} 16.5 15.9 14.2 15.6$ $\frac{Fetus}{100} 16.5 15.9 $			each dam, co	prresponding	confidence i	ntervals not	
Control of the second							
Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)organ weightsorgan weightsOrgan weightsMaternal dosing periodGD1-17GD1-17GD11-15OOOTotal number ofNumber of live fetuses8811268100Number of live fetuses/litter821036799Fetuses/litter14.714.013.614.3Number of cleft palate92066Cleative liver weight (g)1.691.27**1.661.45**Liver weight (g)1.6515.914.215.6Relative liver weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values are means (standard deviations not reported herein) Values are parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)		* p<0.05; **p<0.01					
Use of the second seco							
Maternal dosing perioddata from ex-vivo tissue and histologyGD1-17GD1-15data from ex-vivo tissue and histologytudies that are not reported hereinTotal number of fetusesmg/kg/dMg/kg/d103679fetuses/litter14.215.61.27**12.50124.5Relativein/mg/antionnsites/litter16.6ng		Fetal effects: GD1-	17 vs. GD1	1–15 (Expe	riment 2)		organ weights
Maternal dosing perioddata from ex-vivo tissue and histologyGD1-17GD1-15data from ex-vivo tissue and histologytudies that are not reported hereinTotal number of fetusesmg/kg/dMg/kg/d103679fetuses/litter14.215.61.27**12.50124.5Relativein/mg/antionnsites/litter16.6ng							
GD1-17GD11-15020050mg/kg/dmg/kg/dmg/kg/dmg/kg/dTotal number of fetuses8811268100Number of live fetuses examined821036799Fetuses/litter14.714.013.614.3Number of cleft palate9206Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative liver weight (%)7.58.7**7.58.5**Brain weight (mg)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)		Fetal effects at term	1				Note: this study included mechanistic
0 20 0 50 mg/kg/dmg/kg/dmg/kg/dmg/kg/dTotal number of fetuses8811268100Number of live fetuses/litter821036799Fetuses/litter14.714.013.614.3Number of cleft palate0926palate(89.3%)**0(6.1%)*Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**Iiver weight (%)7.58.7**7.58.5**Brain weight (%)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)						4.45	data from ex-vivo tissue and histology
$\begin{array}{ c c c c c c }\hline \hline mg/kg/d & mg/kg/d & mg/kg/d & mg/kg/d \\ \hline Total number of \\ fetuses \\ \hline Number of live \\ fetuses examined \\ \hline Return Service (Return Ser$							studies that are not reported herein
Total number of fetuses8811268100Number of live fetuses examined821036799Fetuses/litter14.714.013.614.3Number of cleft palate09206(89.3%)**0(6.1%)*Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative liver weight (%)7.58.7**7.58.5**Brain weight (mg)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)50.0			•		-		
fetuses8811268100Number of live fetuses examined821036799Fetuses/litter14.714.013.614.3Number of cleft palate09206galate0(89.3%)**0(6.1%)*Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative liver weight (%)7.58.7**7.58.5**Brain weight (%)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)50		Total number of				~ ~	
Number of live fetuses examined 82 103 67 99 Fetuses/litter 14.7 14.0 13.6 14.3 Number of cleft 0 92 0 $(6.1\%)^*$ Body weight (g) 1.69 1.27^{**} 1.66 1.45^{**} Liver weight (mg) 126.7 110.5^{**} 125.0 124.5 Relative 7.5 8.7^{**} 7.5 8.5^{**} Implantation 16.5 15.9 14.2 15.6 Relative 16.5 15.9 14.2 15.6 Relative 6.5 15.9 14.2 15.6 Relative 5.0 6.1^{**} 5.2 5.7^{**} Values are means (standard deviations not reported herein)Values with cleft palate(corresponding confidence intervals not reported herein)Values in parentheses are percentage of live fetuses with cleft palate			88	112	68	100	
fetuses examined 82 103 67 99 Fetuses/litter 14.7 14.0 13.6 14.3 Number of cleft0 92 0 6 palate0 $(89.3\%)^{**}$ 0 $(6.1\%)^*$ Body weight (g) 1.69 1.27^{**} 1.66 1.45^{**} Liver weight (mg) 126.7 110.5^{**} 125.0 124.5 Relative 7.5 8.7^{**} 7.5 8.5^{**} Iiver weight (mg) 84.4 75.9^{**} 85.6 80.7^{**} Brain weight (mg) 84.4 75.9^{**} 85.6 80.7^{**} Implantation 16.5 15.9 14.2 15.6 Relative 5.0 6.1^{**} 5.2 5.7^{**} Values are means (standard deviations not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)				100			
Number of cleft palate092 (89.3%)**06 (6.1%)*Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative liver weight (%)7.5 8.7^{**} 7.5 8.5^{**} Brain weight (mg)84.475.9***85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.0 6.1^{**} 5.2 5.7^{**} Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein) V			82	103	67	99	
palate0 $(89.3\%)^{**}$ 0 $(6.1\%)^*$ Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative7.5 8.7^{**} 7.5 8.5^{**} Iver weight (%)7.5 8.7^{**} 7.5 8.5^{**} Brain weight (mg)84.475.9**85.680.7**Implantation16.515.914.215.6Relative5.0 6.1^{**} 5.2 5.7^{**} Values are means (standard deviations not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)		Fetuses/litter	14.7	14.0	13.6	14.3	
palate $(89,3\%)^{**}$ $(6,1\%)^{*}$ Body weight (g)1.691.27**1.661.45**Liver weight (mg)126.7110.5**125.0124.5Relative7.58.7**7.58.5**Iver weight (%)7.515.914.215.6Brain weight (mg)16.515.914.215.6Relative16.515.914.215.6Relative5.06.1**5.25.7**Values are means (standard deviations not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)Values		Number of cleft	0	92	0	6	
Liver weight (mg)126.7110.5**125.0124.5Relative7.58.7**7.58.5**liver weight (%)7.58.7**7.58.5**Brain weight (mg)84.475.9**85.680.7**Implantation16.515.914.215.6Relative5.06.1**5.25.7**Values are means (standard deviations not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)			-		0		
Relative liver weight (%)7.58.7**7.58.5**Brain weight (mg)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)10.1**							
liver weight (%)7.58.7**7.58.5**Brain weight (mg)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)10.1**			126.7	110.5**	125.0	124.5	
liver weight (%)84.475.9**85.680.7**Brain weight (mg)84.475.9**85.680.7**Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)			7.5	8 7**	75	8 5**	
Implantation sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)				-			
sites/litter16.515.914.215.6Relative brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)5.05.7**			84.4	75.9**	85.6	80.7**	
brain weight (%)5.06.1**5.25.7**Values are means (standard deviations not reported herein)Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)			16.5	15.9	14.2	15.6	
Values are means (standard deviations not reported herein) Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)			5.0	6.1**	5.2	5.7**	
Values in parentheses are percentage of live fetuses with cleft palate (corresponding confidence intervals not reported herein)			andard devia	tions not rep	orted herein)		
		Values in parentheses	s are percent	age of live fe	tuses with cl		
* p<0.05; **p<0.01			ence interval	s not reporte	d herein)		
		* p<0.05; **p<0.01					

Reference and Study Design		Re	Comment			
Fuentes et al. (2006)	Maternal effe	cts	Major Limitations:			
Species and strain: Mice, Charles River CD1 Adult females mated with adult	 No statisti mater mater 	cally significant effe nal body weight at nal food consumpti I uterine weight	 Internal PFOS concentration not determined PFOS purity not reported 			
males	- kidney - relativ	y weight re kidney weight				Other comments: Species and strains appropriate for
Group size:	- mater	nal thyroid hormon	es or co	orticosterone	e	endpoints assessed
Maternal = 10/group (except 1.5	Maternal effect					 Sample size 10–11/group
mg/kg/d where 11/group)			g/kg/day) for GD1–18	3	(maternal effects) and 9-10/group
Litters = 9–10/group Fetuses = 67–71/group		0 (vehicle control)	1.5	3	6	(fetal effects)
	Liver wt (g)	2.3	2.5	2.8*	3.1*	Oral gavage provided direct
Test article and vehicle:	Relative liver wt (%)	4.3	4.4	5.0	5.8*	exposure to PFOSDoses selected based on previous
PFOS (potassium salt, purity not reported) in 0.5% Tween-20	Values are me * p<0.05 comp	eans (standard error o pared to control		-	ted herein).	observations in rats and mice; concentration range produced
Route of exposure: Oral gavage	 No statisti implar 	reproductive perf cally significant effe nts per litter				LOAEL and NOAEL for maternal liver weight, but no other observed effects
Exposure levels: 0, 1.5, 3, 6 mg/kg/day	- dead	tuses per litter fetuses per litter with dead fetuses				 Exposure lasted most of gestation (for fetal effects); maternal effects, exposure was short-term
Exposure regimen: GD6 to GD18	- late re - post-ii	resorptions per litte esorptions per litter mplantation loss	r	 Number of exposure levels allow for determining any dose- dependent effects 		
All animals sacrificed on GD18	- fetal s	fetal weight ex ratio developmental ef	facts			 Quantitative data reported Endpoint ascertainment used standardized assessment of
	 No statisti numbo assym dimini superior total o Statisticallo ossificatio 	cally significant effe er of litters examine hetrical sternebrae shed ossification of numerary ribs f litters with skeleta y significant (p<0.0 n (calcaneous) with cluding 6 mg/kg/day	ects on: ed skele caudal l defect 5) decre 3 mg/k	Note: This study also examined outcomes associated with the combination of maternal PFOS dosing and maternal stress due to restraint. Restraint-related data are not reported herein.		

Reference and Study Design			Results			Comment
Grasty al. (2003)	Four-day reg	imen: mater	nal effects			Major Limitations:
Species and strain:		• Statistically significant (p<0.05) decrease in weight gain during dosing in all treatment groups compared to controls, weight			 No serum PFOS measurement for pups 	
Rats, Sprague-Dawley	loss note	d following ex	posure on GE	02 to GD5 and	d GD6 to GD9	 PFOS purity not reported
F0 age not reported	Reduced	food and wat	er consumptio	on by treated a	animals	
	during and immediately following exposure (data not shown),			Other comments:		
Group size:		tion exceeded	control level	s several days	s after the	Species and strain appropriate for
Varied by endpoint	end of ex	posure				endpoints assessed
	Four-day reg	<u>jimen: pup ef</u>	ffects			 Sample size generally ≥10 litters
Test article and vehicle:		ed pup surviva	l for all treatm	nent groups, c	ontrols near	Oral gavage provided direct
PFOS (potassium salt, purity not	100% su	vival				exposure to PFOS
reported) in 0.5% Tween 20	Survival of	decreased as	treatment occ	curred later in	gestation	Doses selected meant to induce
	Deaths p	rimarily occur	red during PN	ID1		neonatal mortality
Route of exposure:		exposure du			orn pale and	Duration of exposure limited to
Oral gavage	rigid, mor	tality near 100	0% within 24	hours		specific gestational periods
	No statistically significant effect on live litter size			Number of doses selected (i.e., 1		
Exposure levels: Four-day regimen: 0, 25 mg/kg	• Statistically significant (p<0.05) decrease in pup weight for				or 2) limited the ability to determine	
Two-day regimen: 0, 25, 50		D5, GD6 to G	D9, and GD1	0 to GD14 gr	oups,	dose-related effects
mg/kg		d to controls				 Data generally quantitative,
Пуку	Two-day reg					qualitative information on food and
For four-day regimen, maternal		lly significant	. ,	r weight gain	in treated	water consumption reported
serum PFOS levels determined	dams gro	ups compare	d to controls			 Endpoint ascertainment used
24 hours after final exposure and						standardized assessment of body
on GD21, data not reported	Effects on p	ups at PND0		1		weight and mortality; lung
herein		Number of	Live litter	% survival	Pup	examination relied on subjective
		pups	size		weight (g)	assessment of histology
Exposure regimen:	0 mg/kg	26	13.6±0.5ª	100ª	6.6±0.1ª	
Four-day regimen: GD2 to GD5,	25 mg/kg	21	11.9±0.5 ^b	94 ^a	5.9±0.1 ^b	
GD6 to GD9, GD10 to GD13,	50 mg/kg	27	11.1±0.8 ^b	29 ^b	5.4±0.2 ^b	
GD14 to GD17, GD17 to GD20;	Data are mean±SE					
after fourth day of dosing	Groups not sharing a common letter have statistically significant					
pregnancies were carried out to	difference (p	0<0.05)				
full term						
Two-day regimen: GD19 to						
GD20						

•	Pups in 50 mg/kg group were moribund with troubled breathing after birth, only 3% survived by PND5	
•	Pups in 25 mg/kg group varied in physical appearance (e.g., size and color) at birth, 66% survived by PND5	
•	Pup weight remained lower (p<0.05) in 25 mg/kg group compared to control through PND5; pup weight for 50 mg/kg group not included due to only 1 litter surviving past PND0	
•	Decreased lung expansion in pups from treated dams compared to prenatal controls	
•	Difference in lung histology (i.e., thinning of epithelial walls) between pups from treated dams and control pups	

Reference and Study Design		Res	ults		Comment
Grasty et al. (2005)	Maternal and dev	velopmental tox	<u>cicity</u>		Major Limitations:
Species and strain:	 Not determined by authors during this exposure Authors referred to earlier work (Grasty et al. [2003]) for effects resulting from an identical exposure regimen 			Serum PFOS concentrations not reported	
Rats, Sprague-Dawley F0 age not reported	 Suppressed n 	naternal weight g	gain compared c	ontrols ize and pup birth	Other comments: • Species and strain appropriate for
Group size: Varied by endpoint	weight compa	ared to controls	compared to cont		endpoints assessedSmall sample size for some
Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20			thickness betwe		 endpoints (e.g., ≤10 pups for lung histopathology) Oral gavage provided direct exposure to PFOS
Route of exposure: Oral gavage	 control animals at GD21 with microscopic examination Morphological resemblance between GD21 controls and PND0 treated groups: 17% and 50% of 25 and 50 mg/kg/day groups, respectively, determined to be affected by treatment 			observations of neonatal mortalityDuration of exposure limited to	
Exposure levels:	Morphometric ar	alysis of neonat	al lung tissue		specific gestational period
0, 25, 50 mg/kg/day	PFOS (mg/kg/day)	Solid tissue proportion	Small airway proportion	Solid tissue: small airway ratio	Number of doses selected do not allow for determining low dose effects
Exposure regimen: GD19 to GD20	0 25	0.34±0.02 0.43±0.03	0.61±0.02 0.47±0.02 ^a	0.57±0.05 0.93±0.09ª	Quantitative data generally reported
Rescue studies conducted with co-exposure to either dexamethasone (Dex) or retinyl palmitate (RP) on GD19 to either	50 For all groups, lu Data are mean± a = p<0.05, com	SEM		0.94±0.09 ^a ere examined	Endpoint ascertainment used standardized assessment of mortality; lung assessed by quantitative morphometric analyses
GD20 or GD21 Related studies: Grasty et al. (2003)		y significant incre FOS and Dex o		survival from co-	 Study also assessed mechanistic endpoints (e.g., phospholipid profile, RNA microarray) that are not reported herein

Reference and Study Design	Results			Comment
Kawamoto et al. (2011)	Internal PFOS conce	entrations		Major Limitations:
Species and strain: Rats, Wistar	PFOS concentrations (mg/kg) after 13 weeks of exposure			 Serum and tissues PFOS concentrations not reported in control animals
4 weeks old	Dose group	Serum	Brain	Only males used
	0 ppm	NR	NR	 Biological significance of ultrasonic-
Group size:	2 ppm	9.50±0.68	1.91±0.37	induced convulsions not clear
5 or 6/males/group	8 ppm	44.1±5.60	6.91±1.38	
	32 ppm	177±20.0	22.3±114	Other comments:
Test article and vehicle:	128 ppm	432±75.3	105±19.8	Species and strain appropriate for
PFOS (potassium salt, purity not	Dose group	Liver	Kidney	endpoints assessed
reported) in aqueous solution	0 ppm	NR	NR	Sample size was at least 5 rats per
mixed with powdered diet	2 ppm	59.7±8.96	14.8±4.60	endpoint
Devite of eveneeuro	8 ppm	135±42.7	36.0±11.2	Dietary exposure allows for PFOS
Route of exposure:	32 ppm	647±113	188±46.8	to interact with tissues from the oral
Dietary	128 ppm	1180±156	628±169	cavity to the stomach
Exposure levels:	n = 5; NR = not repo	orted		Doses selected span over 50-fold
Exposure levels: 0, 2, 8, 32, 128 ppm See Results column for serum, brain, kidney, and liver PFOS concentrations Exposure regimen: 7 days a week for 13 weeks Rats sacrificed after 13 weeks of exposure Rats also exposed biweekly to ultrasonic stimulus (47 kHz, 10 sec at 30 cm) Related studies: Sato et al. 2009	0.13 to 0.24; liver <u>General effects: foo</u> • Statistically signif with ≥32 ppm cor • Statistically signif weight with ≥32 p <u>Organ weights (at en</u> • Statistically signif with ≥32 ppm • No statistically signif • Statistically signif	r, 2.7 to 6.3; and kidn d consumption and icant (p<0.05) decrean mpared to control icant (p<0.05 or p<0.05) opm compared to con nd of study): brain, icant (p<0.05) increan gnificant effect on kid	body weight ase in food consumptio 01) decrease in body trol kidney, liver se in relative brain weig ney weight 01) increase in absolut	 effects Generally quantitative data reported, qualitative (textual) reporting for some endpoints (behavioral abnormalities) Internal PFOS concentrations determined in multiple tissues Endpoint ascertainment used

Ne	urotoxicity: convulsions after biweekly ultrasonic stimulus	
•	No observations of convulsions in 2, 8, and 32 ppm groups	
•	In 128 ppm group, convulsions observed in 5/6 animals at	
	week 6; recovery observed in all animals except in 1 that was	
	found dead next morning, ultrasonic stimulus ceased thereafter	
Ne	urotoxicity: behavioral abnormalities	
•	Textual reporting of data only	
•	No observed behavioral abnormalities (e.g., startle response,	
	touch response, pain response, righting reflex, visual placing,	
	abdominal tone, and limb tone)	
Ne	urotoxicity: histopathology and ultrastructure	
•	No histopathological changes observed in neuronal or glial	
	cells of the cerebrum and cerebellum (textual reporting of data	
	only)	
•	No ultrastructural changes observed in the neurons in the	
	cortex and hippocampus as well as the neurons and granules	
	cells in the cerebellum	

Reference and Study Design	Results	Comment
Keil et al. (2008)	Maternal effects: body weight	Major Limitations:
Species and strain:	No significant weight loss in pregnant dams (data not shown by authors)	Internal PFOS levels not determined
Mice, B6C3F1 obtained from breeding C57BL/6N females with	Offspring effects: body weight	 Interpretation of immunotoxicity with respect to significance of
C3H/HeJ males	 No statistically significant differences between exposure groups 	adversity is not clear
	and controls at 4 weeks (6/sex/group) and	 Quantitative data reported for
Group size:	8 weeks (5–6/sex/group) of age	immunotoxicity but individual litter
Varied by endpoint		data not reported for non-
Test article and vehicle:	 Offspring effects: organ weight Note: weights normalized to body weight [(organ weight/body 	immunotoxicity endpoints (e.g., body weight, organ weights)
PFOS (potassium salt, 91%	weight) x 100]	body weight, organ weights)
pure) in distilled water with 0.5%	 At 4 weeks of age (6/sex/group): 	Other comments:
Tween-20	 Females: statistically significant (p≤0.05 compared to 	Species and strain appear to be
Route of exposure:	controls) decrease in liver weight (0.1 mg/kg/day only)	appropriate for endpoints assessed
Oral gavage	and in kidney weight (5 mg/kg/day); no effect on spleen and thymus weights	 Sample size for most endpoints was 5–7 animals/group, may have
	 Males: statistically significant (p≤0.05 compared to 	reduced power to detect changes
Exposure levels:	controls) increase in liver weight (5 mg/kg/day); no	or dose-response
0, 0.1, 1.0, 5.0 mg/kg/day	effect on kidney, spleen, and thymus weights	Oral gavage provides direct
Exposure regimen:	• At 8 weeks of age (5–7/sex/group):	exposure to PFOS
GD 1 to GD17	 Females and males: no effect on kidney, liver, spleen, and thymus 	Dose selection based on previous
		observations in rodents, dose range was adequate to detect
Pups sacrificed at 4 and 8 weeks	Offspring effects: spleen and thymus cellularity	LOAEL and NOAEL for some
of age	No statistically significant differences between exposure and	endpoints
	control groups for females and males at 4 weeks (6/sex/group)	Duration of exposure covered
	and 8 weeks (5–7/sex/group except 0.1 mg/kg/day where 2– 3/sex/group) of age	gestational period
	Sisexigroup) or age	 Number of exposure levels allowed for determining and dose-
	Offspring effects: natural killer cell function	dependent effects
	• At 4 weeks of age (genders combined for analysis, 12/group):	 Endpoint ascertainment used
	 No statistically significance differences between 	standardized methods for
	 exposure and controls groups At 8 weeks of age (genders analyzed separately, 6/sex/group) 	endpoints assessed
	• At a weeks of age (genders analyzed separately, b/sex/group unless noted otherwise):	Note: peritoneal macrophage nitric
	· · · · · · · · · · · · · · · · · · ·	oxide was also assessed, but is not

 o Females (3/group with 0.1 mg/kg/day): statistically significant (pc-0.05) decrease (35.1%) with 5.0 mg/kg/day (day compared to controls o Males (2/group with 0.1 mg/kg/day): statistically significant (pc-0.05) decrease with 1.0 mg/kg/day (42.5%) and 5.0 mg/kg/day (32.1%) compared to controls Offspring effects: specific IgM response to sheep red blood cell (SREC) immunization Note: cnalysis only performed at 8 weeks of age at 6/sew/group Females: no statistically significant differences between exposure and controls groups Males: statistically significant (pc-0.05) decrease (53%) with 5.0 mg/kg/day compared to controls Offspring effects: hyphococyte immunophenotypes (subpopulations) Note: CD3+, CD3+, CD3+, CD3+, DP (CD4+/CD8+), DN (CD4-/(CD8-), B220+ assessed At 4 weeks of age (6/sex/group): o Females: statistically significant differences between exposure and controls groups for ther splenic subpopulations o Male: no statistically significant differences between exposure and controls groups for ther splenic subpopulation o For both males and ferences netween exposure and controls groups for thrymic subpopulation o For both males and ferences between exposure and controls groups for thrymic and splenic subpopulations o Male: no statistically significant differences between exposure and controls groups for thrymic and splenic subpopulations o Male: no statistically significant differences between exposure and controls groups for thrymic and splenic subpopulation o Females: no statistically significant differences between exposure and controls groups for thrymic and splenic subpopulations o Male: controls, no statistically significant differences between exposure and controls groups for thrymic and splenic subpopulations o Male: controls, no statistically significant differences between exposure and controls groups for thrymic and splenic subpopulations		
blood cell (SRBC) immunization • Note: analysis only performed at 8 weeks of age at 6/sex/group • Females: no statistically significant differences between exposure and controls groups • Males: statistically significant (p<0.05) decrease (53%) with 5.0 mg/kg/day compared to controls Offspring effects: lymphocyte immunophenotypes (subpopulations) • Note: CD3+, CD4+, CD8+, DP (CD4+/CD8+), DN (CD4- /CD8-), B220+ assessed • At 4 weeks of age (6/sex/group): • Female: statistically significant (p≤0.05) decrease (21%) in splenic B220 cells with 5.0 mg/kg/day compared to controls, no statistically significant differences between exposure and control groups for other splenic subpopulations • Male: no statistically significant differences between exposure and controls groups for any splenic subpopulation o For both males and females: no statistically significant differences between exposure and controls groups for thymic subpopulations • At 8 weeks of age (6/sex/group): • Female: no statistically significant differences between exposure and controls groups for thrmic and splenic subpopulations • At 8 weeks of age (6/sex/group): • Female: no statistically significant (p≤0.05) reduction in thymic CD3+ (23%) and CD4+ (29%) cells with 5.0 mg/kg/day compared to controls, no statistically significant (p≤0.05) reduction in thymic CD3+ (23%) and CD4+ (29%) cells with 5.0 mg/kg/day	compared to controls Males (2/group with 0.1 mg/kg/day): statistically significant (p<0.05) decrease with 1.0 mg/kg/day (42.5%) 	summarized herein as this is an intermediate rather than apical endpoint
any splenic subpopulations	 blood cell (SRBC) immunization Note: analysis only performed at 8 weeks of age at 6/sex/group Females: no statistically significant differences between exposure and controls groups Males: statistically significant (p<0.05) decrease (53%) with 5.0 mg/kg/day compared to controls Offspring effects: lymphocyte immunophenotypes (subpopulations) Note: CD3+, CD4+, CD8+, DP (CD4+/CD8+), DN (CD4-/CD8-), B220+ assessed At 4 weeks of age (6/sex/group): Female: statistically significant (p≤0.05) decrease (21%) in splenic B220 cells with 5.0 mg/kg/day compared to controls, no statistically significant differences between exposure and control groups for other splenic subpopulations Male: no statistically significant differences between exposure and controls groups for any splenic subpopulation For both males and females: no statistically significant differences between exposure and controls groups for thymic subpopulations At 8 weeks of age (6/sex/group): Female: no statistically significant differences between exposure and controls groups for any splenic subpopulation For both males and females: no statistically significant differences between exposure and controls groups for thymic subpopulations At 8 weeks of age (6/sex/group): Female: no statistically significant differences between exposure and controls groups for thymic and splenic subpopulations Male: statistically significant (p≤0.05) reduction in thymic CD3+ (23%) and CD4+ (29%) cells with 5.0 mg/kg/day compared to controls, no statistically significant differences between exposure and controls groups for other thymic or 	

Reference and Study Design	Results	Comment
Lau et al. (2003) Note: authors assessed endpoints within 3 general outcomes, herein broadly defined as: reproductive/developmental effects (e.g., birth outcomes, age at eye opening and puberty), effects dues to cross-fostering, and neurodevelopmental effects (e.g., choline acetyltransferase activity, T-maze). Of these, neurodevelopmental effects are reported in a separate table. Study authors also conducted exposures using mice. These mice data are presented in a separate table. Species and strain: Rats, Sprague-Dawley F0 age not reported Group size: Varied by endpoint Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20 Route of exposure: Oral gavage	 Postnatal effects: mortality Statistically significant (p<0.05) reduction in postnatal survival with ≥2 mg/kg 100% of pups in 10 mg/kg group died ~60 minutes following birth 95% of pups in 5 mg/kg group survived Postnatal effects: reproductive/developmental milestones Statistically significant (p<0.05) delay in eye opening by ~1 day with ≥2 mg/kg, control group eye opening between PND14 and PND15 No effect on vaginal opening, onset and profiles of the estrous cycle, and preputial separation Postnatal effects from cross-fostering: mortality Cross-fostering pups from 5 mg/kg group with control dams did not improve postnatal survival All control pups cross-fostered with PFOS-exposed dams survived duration of observation (3 days) 	 Major Limitations: Internal PFOS concentrations not determined Other comments: Species and strain appropriate for endpoints assessed For most endpoints, sample size was ≥10 rats Oral gavage provided direct exposure to PFOS Doses selected allowed for overt toxicity at highest dose Duration of exposure lasted length of gestation Number of exposure levels allowed for determining any dose-dependent effects While generally quantitative, data not reported for some endpoints Endpoint ascertainment used standardized assessment of mortality and reproductive/developmental endpoints

Exposure levels:	
0, 1, 2, 3, 5, 10 mg/kg/day	
Nata, internal DEOC	
Note: internal PFOS	
concentrations not determined	
from rats assessed for	
developmental and cross-	
fostering effects	
-	
Exposure regimen:	
GD2 to GD21	
Note: newborns from control and	
5 mg/kg groups participated in a	
3-day cross-fostering	
experiment:	
1) control pups with their dams;	
2) PFOS-exposed pups with their	
dams; 3) PFOS-exposed pups	
with control dams; and 4) control	
pups with PFOS-exposed dams	
Related studies:	
Thibodeaux et al. (2003)	

Reference and Study Design	Results	Comment
Lau et al. (2003)	Internal PFOS concentrations in neonatal rats	Major Limitations:
Note: authors assessed endpoints within 3 general outcomes, herein broadly defined as: reproductive/developmental effects (e.g., birth outcomes, age	 At PND0, serum PFOS concentrations were proportional to administered dose, but not in a linear relationship At PND5, serum PFOS levels in each surviving group were lower than on PND0 At PND0, liver PFOS concentrations were proportional to administered dose and similar to serum PFOS concentrations 	 Measurements for internal PFOS concentrations limited to PND1 to PND5 for serum and PND0 for live Thyroid hormone measurements may be subject to negative bias based on analytical method used
at eye opening and puberty),	Postnatal effects: body weight and liver weight	Other comments:
effects dues to cross-fostering, and neurodevelopmental effects (e.g., thyroid hormones, T- maze). Neurodevelopmental effects are reported herein. Study authors also conducted exposures using mice. These mice data are presented in a separate table. Species and strain: Rats, Sprague-Dawley F0 age not reported	 Body weights were lower with ≥ 2 mg/kg compared to controls, statistically significant (p<0.05) results typically within first week of postnatal life Absolute liver weights comparable between controls and exposed groups Relative liver weights increased with ≥1 mg/kg compared to controls, statistically significant (p<0.05) results typically within first 3 weeks of postnatal life Postnatal effects: thyroid hormones Serum levels of total thyroxine and free thyroxine were decreased compared to controls Decrease in serum free thyoxine persisted through end of experiment (PND35) 	 Species and strain appropriate for endpoints assessed For most endpoints, sample size was ≥10 rats, for T-maze and thyroid hormones sample size was <10 rats Oral gavage provided direct exposure to PFOS Doses selected allowed for overt toxicity at highest dose as well as survival throughout duration of experiment in lower doses Duration of exposure lasted length of gestation
Group size: 17 to 28 dams/group	 No significant effects on serum triiodothyronine or thyroid stimulating hormone compared to controls 	 Number of exposure levels allowe for determining any dose- dependent effects
Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20	 Postnatal effects: learning behavior No significant difference between exposed (3 mg/kg) and control groups for T-maze test 	 Quantitative data reported Endpoint ascertainment used standardized assessment of body and organ weights
Route of exposure: Oral gavage		
Exposure levels: 0, 1, 2, 3, 5 mg/kg/day		

See Results column for serum and liver PFOS concentrations for neonatal rats	
Exposure regimen: GD2 to GD21	
Postnatal observations performed through PND35, weaning at PND21	
Related studies: Thibodeaux et al. (2003)	

Reference and Study Design	Res	ults	Comment
Lau et al. (2003)	Postnatal effects: mortality		Major Limitations:
Note: authors conducted two separate mouse studies, each employing the same exposure conditions but assessing	 Dose-dependent reduction in postnatal survival Majority of pups in 15 and 20 mg/kg groups did not survive past 24 hours post birth Survival in 1 and 5 mg/kg groups similar to that of controls LD50 estimated to be 10 mg/kg Postnatal effects: body weight and liver weight Postnatal effects: body weight generally comparable between exposed and controls groups, trend (p<0.05 vs control) toward growth deficit observed with 10 mg/kg Absolute and relative liver weights increased in exposed groups compared to controls throughout observation period (until PND35), statistically significant (p<0.05) results typically with ≥5 mg/kg Postnatal effects: thyroid hormone Only total serum thyroxine levels reported for mice Levels in exposed and control groups generally comparable except for 5 and 10 mg/kg groups which tended to be lower than controls 		 Internal PFOS concentrations not determined Thyroid hormone measurements may be subject to negative bias based on analytical method used
different endpoints. Mice from an initial exposure were assessed for mortality, body weight, and eye opening. Mice from a separate exposure were assessed for liver weight and serum thyroid hormone. Study authors also conducted exposures using rats. These rat data are presented in a separate table. Species and strain: Mice, CD-1 F0 age not reported			 Other comments: Species and strain appropriate for endpoints assessed Sample sizes ranged from ≥20 mice for body and liver weights to <10 for serum thyroid hormone measurements Oral gavage provided direct exposure to PFOS Doses selected allowed for overt toxicity at highest dose as well as survival throughout duration of experiment in lower doses Duration of exposure lasted length
Group size: Varied by endpoint Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20 Route of exposure: Oral gavage Exposure levels: 0, 1, 5, 10, 15, 20 mg/kg	Postnatal effects: reproductive/ Postnatal observations after PFC PFOS (mg/kg/day) 0 1 5 10 mean±SE Number of mice examined not re Statistically significant (p<0.0001	DS exposure Age at eye opening (PND) 14.8±0.1 15.1±0.1 15.5±0.1 15.6±0.1 eported	 of gestation Number of exposure levels allowed for determining any dose- dependent effects Quantitative data reported Endpoint ascertainment used standardized assessment of mortality, body and organ weights, and reproductive/developmental milestone

Exposure regimen:	
GD1 to GD17	
Postnatal observations performed through PND35, weaning at PND21	
Related studies: Thibodeaux et al. (2003)	

Reference and Study Design		R	esults			Comment
Lee et al. (2015)	Maternal effects: bo			hody weigh	t gain	 Major Limitations: No data on purity of PFOS
Species and strain: Mice, CD-1 Time-mated, entered study at GD10	 No statistically significant difference in body weight gain between any group during GD10–13 Statistically significant (p<0.05 or p<0.001 according to Kruskal-Wallis group test) differences in body weight gain 					Internal PFOS concentrations not determined
Group size: 10 pregnant mice/group Test article and vehicle:	 among four group At GD17, mean m 8.0 mg/kg/day gro respectively Fetal effects: develop 	naternal bo pups were	 Other comments: Species and strain appropriate for endpoints assessed Sample sized generally 10/group Oral gavage provided direct exposure to PFOS 			
PFOS (potassium salt, purity not reported) in 0.5% Tween						Doses selected based on previous
reported) in 0.5 % r ween	Fetal effects at GD1	/	Dose (n	ng/kg/day)		observations of development toxicity in mice; as the lowest dose
Route of exposure:		0	0.5	2.0	8.0	is a LOAEL for most endpoints,
Oral gavage	Number of pregnant dams	10	10	10	10	dose range does not permit a NOAEL
Exposure levels: 0, 0.5, 2.0, 8.0 mg/kg/day	Placental weight (mg)	185.63	177.32*	163.22*	151.54*	 Duration of exposure lasted most of gestation
Exposure regimen:	Fetal weight (g)	1.72	1.54	1.30*	1.12*	Number of exposure levels allowed
GD11 to GD16	Placental capacity ^a Number of implantations ^b	9.30 13.45	8.68* 13.20	7.96* 13.68	7.39* 13.71	for determining any dose- dependent effectsQuantitative data reported
Pregnant dams sacrificed on GD17 and fetuses and placentas were harvested	Number of resorptions and dead fetuses	0.57	1.62*	4.84*	7.58*	 Endpoint ascertainment used standardized assessment of most endpoints, determining placental
	Number of live fetuses	12.88	11.58	8.84*	6.13*	area of injury partially unclear
	Post-implantation loss ^c	4.24%	12.27%	35.38%	55.29%	Note: This research included measurement of non-apical (molecular
	Values are means (s Note: Fetal analyses * p<0.01 compared t a = ratio of fetal weig b = implantation occ c = [(total implantation x 100	s utilized lit to controls ght/placent urred prior	ters as unit tal weight to PFOS d	s of analysi osing	S	and mechanistic) endpoints that are not summarized herein.

Placental necrosis at GD17	Placental necrosis at GD17					
Dose (mg/kg)	Area of injury ^a					
Control	0%					
0.5	12.7%					
2.0	26.3%					
8.0	42.4%					
total placental area	a = approximately defined as ratio of placental area with injury to total placental area Note: for each group, three placental sections from five different					
animals (15 sections/group)						

Reference and Study Design			esults			Comment	
Long et al. (2013)	Neurotoxicity: spa	<u>tial learning</u>	Major Limitations:				
						PFOS purity not reported	
Species and strain:	Escape latency on					Internal PFOS concentration not	
Mice, C57BL6			Dose (mg/k	0 1/		determined	
8 weeks old, males and females	COI	ntrol	0.43	2.15	10.75	Missing quantitative data (i.e.,	
	Escape					lowest dose for escape latency on	
Group size:	latency 32	2.5	NR	56.75*	61.5**	day 3)	
15/group (gender distribution not	(seconds)					No specific information given on	
reported)	Values are means (s					the number of poor swimmers that	
	* = p<0.05 compared					were excluded from analyses	
Test article and vehicle:	NR = numerical data		but no statis	stically signific	cant		
PFOS (salt not reported, purity	difference compared Note: no statistically		foronco hotu	voon gondore		Other comments:	
not reported) in normal saline	Note: mice with poor					Species and strain appropriate for	
	time) excluded from					endpoints assessed	
Route of exposure:						Oral exposure provided direct	
Oral (presumed by gavage)	Neurotoxicity: spa	tial memory	/			exposure to PFOS	
Free a sume laurala.			-			 Doses selected represent a 	
Exposure levels:	Time spent in targe	et quadrant o	on day 4			reasonable range (factor of 25) and encompass NOAEL, LOAEL, and	
0, 0.43, 2.15, 10.75 mg/kg		Τ'		ng/kg/day)			
Exposure regimen:		control	0.43	2.15	10.75	high dose	
Once daily for 3 months	Percent time in	100/				 Subchronic duration of exposure 	
Once daily for 3 months	target quadrant	~43%	~35%	~25%*	~20%**	Number of exposure levels allowed	
Endpoints assessed after the 3-	Note: percent values	not provided	by study aut	hors, values	in above	for determining any dose-	
month exposure	table are estimated f	rom Figure 1t	o of the Long	et al study		dependent effects	
month exposure	* = p<0.05 compared to controls; ** = p<0.01 compared to controls					 Endpoint ascertainment used 	
	Note: no statistically significant differences between genders					standardized assessment of spatial	
	Note: mice with poor swimming velocity (<5 cm/s for >50% of swim time) excluded from analysis (number of mice not provided)					learning and memory	
	time) excluded from	analysis (num	iber of mice	not provided)			
						Note: this study also provided	
						mechanistic data that is not reported	
						herein	

Reference and Study Design	Results						
Luebker et al. (2005a)	Internal PFOS concentrations for F0 rats						
	Internal PFOS concentrations for F0 males and females						
Note: study authors conducted	Internal PFO	S concentratio	ons for F0 ma				
two-generation and cross-foster studies. Of the F0, F1, and F2		F0 fen	nales	F0 males Internal PFOS after 42			
results from the two-generation		Internal PFC	DS at LD21				
study, only the F0 results are	Dooo group	Serum	Liver	to 56 days of Serum	Liver		
reported herein. F1 and F2	Dose group (mg/kg/day)	(ug/mL)	(ug/g)	(ug/mL)			
results and the results from the	Control	NR	NR	(ug/m∟) NR	(ug/g) NR		
cross-foster study are reported in	0.1	5.28±0.358	14.8±1.71	10.5±0.946	84.9±6.28		
separate tables.	0.4	18.9±1.30	58±6.73	45.4±5.49	176±23.4		
	1.6	82±17.5	184±88.3	45.4±5.49 152±7.91	323±36.2		
Species and strain:	3.2	02±17.5 NR	NR	273±49.8	323±30.2 1360±40.7		
Rats, Crl:CD® (SD)IGS BR	-	R = not report		273±49.0	1300±40.7		
VAF®	mean±5D, N		eu				
F0 male and females were 62	F0 male effec	ts: mortality	clinical sig	ns body weig	the food		
days old at receipt followed by	consumption	to. mortanty,	chinear Sign	13, Douy Well	<u>int, 1000</u>		
14-day acclimation period prior		or treatment.	related clinic	al signs obser	ved		
to exposure				in body weigh			
				the first and te			
Group size:	of the stud				innia aayo		
35/sex/group (for exposure),		•	o≤0.05) redu	ction in body v	veight with		
group size then varied by				pitation period			
endpoint	controls	,					
Test article and vehicle:		v significant (r	o≤0.01) redu	ction in body v	veiaht with		
PFOS (potassium salt, 86.9%				36) mating/col			
pure) in 2% Tween 80		rmination corr					
	Overall body	weight gain (o	day 0 to term	ination) in F0	males		
Route of exposure:	Dose g						
Oral gavage	(mg/kg/day) Overall body weight gain (g)						
	0 153.6±41.5						
Exposure levels:	0.1		149.2±34.5				
0, 0.1, 0.4, 1.6, 3.2 mg/kg/day	0.4		132.8±34.0 ^a				
	1.6		12	21.9±30.2ª			
	3.2		9	1.0±29.9 ^a			
	mean±SD						
	374						

Comment

Major Limitations:

- Internal PFOS measurements determined after some effects were initially observed (e.g., F0 female reproductive effects at birth and F0 female internal PFOS measurements at LD21)
- Control values for internal PFOS • measurements not reported

Other comments:

- Species and strain appropriate for • endpoints assessed
- Most F0 endpoints had n>20, but ٠ GD10 observations had n≤10
- Oral gavage provided direct • exposure to PFOS
- Dose selection presumptively • based on observations of rat neonatal mortality in previous studies
- Duration of F0 exposures (i.e., ≥42 ٠ days) were subchronic (i.e., >30 days)
- Number of exposure levels allowed • for determining any dose-related effects
- Quantitative data reported
- Endpoint ascertainment used ٠ standardized assessment of mortality, body weight, food consumption, fertility indices, and reproductive effects

See Results column for serum	a = statistical	y significant but si	ignificance level n	ot reported		
and liver PFOS concentrations						
for F0 males and females			statistically signifi			
			ve (g/kg/day) feed			
Exposure regimen:	with 1.6 mg	g/kg/day (p≤0.05)	and 3.2 mg/kg/da	y (p≤0.01)		
F0 males: dosed once daily	After matin	g/cohabitation, sta	atistically significa	nt reduction in		
during the 42 day pre-mating	absolute fe	ed consumption v	vith 0.4 mg/kg/day	/ (p≤0.05) and		
period and then once daily	>1.6 mg/kg	ı/day (p≤0.01), sta	tistically significar	nt reduction		
during the mating/cohabitation	(p≤0.01) in	relative feed cons	sumption with 3.2	mg/kg/day		
period (with a maximum of 14	. ,		·			
days of mating), F0 males then	F0 female effe	cts: mortality, cl	inical signs, bod	y weight, food		
sacrificed 1 week after	consumption					
mating/cohabitation	No deaths	observed				
	 Localized a 	areas of partial alc	pecia with >0.4 m	iq/kq/day		
F0 females: dosed once daily)5) reduction in bo			
during the 42 day pre-mating			s within gestation			
period, then once daily during	compared		geetation			
the mating/cohabitation period,			01) reduction in bo	dv weight with		
then either until GD9 (for			mating, mating/cc			
caesarean group, sacrifice at	lactation pe		maning, maning/oc			
GD10) or lactation day (LD)20	lablation pe					
(natural delivery group, sacrifice	Overall body	weight gain in F0	females			
at LD21).		<u> </u>	Ill body weight gai	n (a)		
	Dose group					
F1 weaning reported to be LD21	(mg/kg/day)	Pre-mating	Gestation	Lactation		
or LD22.	0	37.1±15.8	125.1±15.9	32.8±19.7		
Deleted etudioe	0.1	36.0±10.5	123.8±13.3	27.8±12.3		
Related studies:	0.4	34.5±12.9	121.9±20.2	33.8±17.8		
Luebker et al. (2005b)	1.6	25.0±11.9ª	123.1±18.3	32.0±14.6		
	3.2	5.4±10.2ª	NR			
	-	R = not reported				
		mpared to control				
	Prior to ma	ting/cohabitation,				
	reduction in absolute and relative feed consumption with 3.2 mg/kg/day compared to controls					
	iiig/itg/ddy					

 absolute feed cor controls During lactation, sabsolute and rela compared to cont 	statistically significant (nsumption with 3.2 mg/k statistically significant (p tive feed consumption v trols, 3.2 mg/kg/day data effects: fertility indice		
Fertility indices ^a in F	0 males and females		
Dose group (mg/kg/day)	Male	Female	
Control	94.3%	94.3%	
0.1	91.4%	91.4%	
0.4	81.8%	82.4%	
1.6	85.3%	85.3%	
3.2	87.5%	85.7%	
 Comparable value estrous cycle, number of days to the first week of comparable effects at reproductive effects No effect on litter and viable embry F0 female effects for No effect on repromg/kg/day or 0.4 	GD10 (caesarean-sect	exposed groups for: r number of matings, er of matings during ion group): tea, implantations, eproductive effects exposure to 0.1 s with exposure to 1.6	

Reproductive effects in F(Reproductive effects in F0 females following natural birth					
		OS (mg/kg/d				
	Control	1.6	3.2			
Rats assigned to natural delivery	25	24	25			
Delivered litters (%)	23 (100.0)	20 (100.0)	21 (100.0)			
Duration of gestation ^a (mean±SD)	22.7±0.4	22.4±0.5	22.2±0.4°			
Implantation sites per delivered litter (mean±SD)	14.9±1.9	14.8±1.7	12.5±1.4°			
Dams with stillborn pups	5	4	15			
(%)	(21.7)	(20.0)	(71.4) ^c			
Gestation index ^b (%)	23/23	20/20	20/21			
	(100.0)	(100.0)	(95.2)			
Dams with all pups dying postpartum days 1 to 4 (%)	0 ^d (0.0)	2 (10.0)	20 (100.0) ^c			
	a = defined as time in days elapsed between confirmed mating					
(day 0) and the time in da						
	b = number of rats with live offspring/number of pregnant rats					
$c = p \le 0.01$ compared to c						
d = historical control incid	d = historical control incidence also 0					

Reference and Study Design		Results			Comment
Luebker et al. (2005a)	Internal PFOS concentra	ation for F1 rat	Major Limitations:		
			Internal PFOS measurements		
Note: study authors conducted	Internal PFOS concentrations for F1 at LD21				determined after some effects were
two-generation and cross-foster	Maternal dose group		Liver		initially observed (e.g., F1 pup
studies. Of the F0, F1, and F2	(mg/kg/day)		(ug/g)		effects at birth and F1 pup internal
results from the two-generation	Control		NR		PFOS measurements at LD21)
study, only the F1 results are	0.1	6.1	19±0.879		 Control values for internal PFOS
reported herein. F0 and F2	0.4		7.6±6.72		measurements not reported
results and the results from the	1.6		0.4±14.5		
cross-foster study are reported in	mean±SD; NR = not repo				Other comments:
separate tables.	Note: all F1 pups in 3.2 r	ng/kg/day grou	ip dead by LD	021	Species and strain appropriate for
Spacing and strain.					endpoints assessed
Species and strain: Rats, Crl:CD® (SD)IGS BR	F1 effects prior to weani	ng: mortality			Most F0 endpoint had n>20
VAF®					Oral gavage provided direct
F0 male and females were 62	F1 survival at birth				exposure to PFOS
days old at receipt followed by			(F0) dose (m		 Dose selection (for F0 parents and in utage (on F4) parents in the last
14-day acclimation period prior		Control	1.6	3.2	in utero for F1) presumptively based on observations of rat
to exposure	Delivered litters with ≥1	23	20	20	neonatal mortality in previous
	liveborn pup	202	260	200	studies, F1 gavage exposures
Group size:	Total pups delivered	323	260	200	based on surviving dose groups
35/sex/group (for F0 exposure),	(mean±SD)	13.6±2.3ª	12.7±2.6	7.8±4.0 ^b	 F1 exposure duration included
group size then varied by	Stillborn/litter				gestation and lactation periods as
endpoint	(mean±SD)	0.3±0.7	0.3±0.6	2.2±2.3 ^b	well as for >70 days post-weaning
	Note: data for 0.1 mg/kg/	day and 0.4 m	a/ka/day arou	ins not	Due to mortality and effects at 2
Test article and vehicle:	reported herein but were				highest doses, observations post-
PFOS (potassium salt, 86.9%	a = historical range of live		weaning limited to 2 dose groups		
pure) in 2% Tween 80	15.5		Generally quantitative but some		
Route of exposure:	$b = p \le 0.01$ compared to	controls	qualitative reporting (e.g., F1		
Oral gavage				reproductive effects)	
Oral gavage	With maternal dose of	3.2 mg/kg/dav	Endpoint ascertainment used		
Exposure levels:	mortality by end of LD		standardized assessment of		
0, 0.1, 0.4, 1.6, 3.2 mg/kg/day	compared to control for both time points)				mortality, body weight, food
e, e., e., e., e., egg.	With maternal dose of	1.6 mg/kg/day	26.0% F1	consumption, developmental	
See Results column for liver	pup mortality by end c	of LD1 and bet	LD4,	milestones, reproductive toxicity,	
PFOS concentrations for F1 pup					and neurotoxicity

 Exposure regimen: F1 started gavage exposure on lactation day (LD)22 at same dose level as F0 parent. Around PND90, exposure continued as F1 rats were mated/cohabitated (for a maximum of 14 days). F1 males were sacrificed after mating/cohabitation, between 100 and 112 days of age. F1 females were exposed through gestation and LD20 (sacrifice on LD21 along with F2 pup). Note: F0 dams of F1 had been exposed during pre-conception, gestation, and lactation periods (weaning at LD21/LD22). Related studies: Luebker et al. (2005b) 	 respectively (p≤0.05 compared to control for LD2 to LD4 observation) With maternal doses ≤0.4 mg/kg/day, >98% pup survived to LD4 Of F1 pups found dead or moribund: no clear cause of death, no signs of respiratory distress, no milk in stomachs of 75% of necropsied pups from 1.6 mg/kg/day and 3.2 mg/kg/day groups Note: due to 100% mortality of F1 pups in 3.2 mg/kg/day group after LD2, there was no further evaluation of pups in this group F1 effects prior to weaning: body weight change Statistically significant (p≤0.01) reduction in pup weight per litter at LD1 with 1.6 mg/kg/day and 3.2 mg/kg/day group controls, the reduction (p≤0.01) in the 1.6 mg/kg/day group controls the reduction (p≤0.01) reduction in pup weight gain per litter with 1.6 mg/kg/day compared to controls, this effect was observed at the end of LD4 through the end of LD21 F1 effects prior to weaning: developmental milestone For 1.6 mg/kg/day maternal dose group, F1 pups had statistically significant delays compared to controls for mean number of days for: 50% of pups to attain pinna unfolding (1.6 days, p<0.01); eye opening (1.4 days, p<0.01); surface righting (2.2 days, p<0.05); and air righting (2.0 days, p<0.01) For 0.4 mg/kg/day maternal dose group, F1 pups had statistically significant delay compared to controls for eye opening (0.6 day, p<0.01) At weaning, pupil constriction normal in all F1 pups Note: F1 pups in the 1.6 mg/kg/day maternal dose group were observed to be in poor clinical condition and not evaluated past weaning (LD21) 	
--	---	--

	<u>st weaning (during oral g</u>	avage): mortality,				
	<u>clinical signs</u>					
	g/kg/day and 0.4 mg/kg/da	y groups, no deaths or				
clinical sig	ins observed					
	st weaning (during oral g	avage): body weight,				
feed consum		· · · · · · · · · · · · · · · · · · ·				
		in exposed groups similar				
	s for both males and female					
	and relative feed consumpt					
groups si	nilar to controls for both ma	ales and remales				
E1 offocts po	st weaning: sexual matur	ration				
<u>FT effects po</u>	st wearing. Sexual matur	ation				
Sexual matu	ration in F1 males and fem	ales				
	Days pos					
Dose group	Preputial separation	Vaginal patency				
(mg/kg/day)	for males	for females				
Control	45.0±2.1	31.1±1.8				
0.1	45.7±2.3	31.1±2.0				
0.4	45.1±1.8	30.5±1.4				
Mean±SD						
F1 effects po	st weaning: neurotoxicity	<u>/</u>				
	nce between exposed grou					
•	voidance and water maze p	(U				
short-term	short-term retention, long-term memory)					
	st weaning: reproductive					
	on reproductive performan					
	rs: duration of gestation, nu	imber of implantations,				
and numb	er of live pups					

Reference and Study Design	Results	Comment
Luebker et al. (2005a)	F2 effects: mortality	Major Limitations:
Note: study authors conducted two-generation and cross-foster	Pup mortality similar between control and exposed groups throughout the lactation period	Internal PFOS concentration not determined for F2
studies. Of the F0, F1, and F2 results from the two-generation study, only the F2 results are reported herein. F0 and F1 results and the results from the cross-foster study are reported in separate tables. Species and strain: Rats, CrI:CD® (SD)IGS BR VAF® F1 male and females were ~90 days old at mating/cohabitation	 F2 effects: body weight change For 0.4 mg/kg/day maternal dose group, transient reduction (p≤0.05) in body weight and body weight gain On LD21, body weight parameters of exposed groups decreased but not statistically different from controls 	 Other comments: Species and strain appropriate for endpoints assessed Sample size not reported Oral gavage provided direct exposure to PFOS Dose selection based on F1 neonatal effects Duration of exposure included gestation and lactation periods Two exposure levels may limit ability to demonstrate dose-related effects
Group size: Not reported Test article and vehicle:		 Quantitative and qualitative (e.g., mortality) data reported Endpoint ascertainment used standardized assessment of
PFOS (potassium salt, 86.9% pure) in 2% Tween 80		mortality and body weight
Route of exposure: Oral gavage (of F1)		
Exposure levels: 0, 0.1, 0.4 mg/kg/day		
Exposure regimen: F1 dams of F2 had been exposed during F1 gestation and lactation periods (F1 weaning at LD21/LD22), from post-weaning through mating/cohabitation, and		

then through F2 gestation until F2 reached LD21 (sacrifice on LD21 for F2 pups and F1 dams).	
Related studies: Luebker et al. (2005b)	

Reference and Study Design	Results	Comment
Luebker et al. (2005a)	Internal PFOS concentrations	 Major Limitations: Only 1 dose tested Other comments:
Note: study authors conducted two-generation and cross-foster	 For treated dams on LD14: serum PFOS concentrations (n=2 dams) reported to be 97.5 and 218 ug/mL, PFOS concentrations in whole milk samples (n=2 dams nursing own 	
studies. Only the cross-foster results are reported herein. Two- generation (i.e., F0, F1, and F2) results are reported in separate tables.	 For pups from treated dam: serum PFOS concentration reported to be 89.3 ug/mL (n=1 pooled litter from dam with 97.5 ug/mL serum PFOS concentration) 	 Species and strain appropriate for endpoints assessed
Species and strain: Rats, CrI:CD® (SD)IGS BR VAF® Females were 66 days of age at receipt followed by an acclimation period prior to exposure	Serum PFOS concentrations for F0 and F1 participating in cross-foster study at LD21 Mean PFOS serum concentration (ug/mL) Pups (pooled by litter) Dams CL/CD <0.05 ^a (6) <0.05 ^b (12) CL/TD 22.4±17.5 ^c (6) 83.0±27.6 (13) TL/CD 53.9±5.0 (6) 2.02±1.58 ^d (13) TL/TD 89.7±7.1 (6) 89.0±28.0 (12)	 Dose selection based on previous observations of neonatal mortality Duration of exposure included gestation and lactation periods Quantitative data generally reported but p values not reported for some endpoints (e.g., F0 reproductive effects)
Group size: 33 controls females, 27 exposed females	mean±SD a = values below the limit of quantitation (LOQ) were assigned the LOQ value (i.e., 0.05 ug/mL) b = all values were <loq 0.0507="" at="" except="" for="" ml<="" one="" td="" ug="" value=""><td> Internal PFOS concentrations determined Endpoint ascertainment used standardized assessment of </td></loq>	 Internal PFOS concentrations determined Endpoint ascertainment used standardized assessment of
Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 2% Tween 80	c = Two of six values were <loq assigned="" but="" loq="" value<br="" were="">for calculating mean and SD d = Two of thirteen values were <loq assigned="" but="" loq<br="" were="">value for calculating mean and SD</loq></loq>	mortality, body weight, food consumption, reproductive effects, and liver ultrastructural effects (i.e., peroxisome number); subjective
Route of exposure: Oral gavage	Note: number in parenthesis is number of samples F0 female effects: body weight	assessment of lung ultrastructural effects and liver glycogen
Exposure levels: 0, 1.6 mg/kg/day	 Statistically significant (p value not reported) reductions in body weight with 1.6 mg/kg/day compared to control during latter portion of mating/cohabitation (i.e., day 36 onward) 	
Exposure regimen: F0 females exposed for 42 days then mated/cohabitated with an untreated male. F0 females further exposed for a maximum	 Statistically significant (p value not reported) reductions in body weight with 1.6 mg/kg/day (CL/TD and TL/TD) compared to controls (CL/CD) during LD4 through LD14 	

of 6 days during gestation and through lactation day (LD)21

Upon birth, litters were crossfostered with other dams to create the following groups: CL/CD=control litters fostered by control dams (12 litters) CL/TD=control litters fostered by treated dams (13 litters) TL/CD= treated litters fostered by control dams (13 litters) TL/TD=treated litters fostered by treated dams (12 litters)

Cross-fostering dams sacrificed on LD22, cross-fostered pups sacrificed on LD21

F0 dams and F1 pups not participating in cross-fostering sacrificed on LD14 (PFOS measurements)

Related studies:

Luebker et al. (2005b)

F0 female effects: feed consumption

- Statistically significant reduction in absolute (g/day) feed consumption with 1.6 mg/kg/day compared to controls during premating (p≤0.05) and gestation (p≤0.01), no statistically significant effect for relative (g/kg/day) feed consumption
- Statistically significant reduction (p≤0.05 or p≤0.01) in absolute and relative feed consumption with 1.6 mg/kg/day (CL/TD and TL/TD groups) compared to control (CL/CD) during LD1 to LD14
- Statistically significant reduction (p≤0.01) in absolute feed consumption for dams in TL/CD group compared to controls (CL/CD) during LD1 to LD14, no statistically significant effect for relative feed consumption

F0 effects: reproductive effects

• No effects on mating or fertility

Reproductive effects in F0 females					
Control 1.6 mg/kg/da					
Length of gestation (days)	22.4	22.0			
Implantation sites per litter 17.7 16.0					
Total litter size	16.4	15.1			
Live litter size	16.2	14.9			
Note: reductions compared to controls listed in this table were reported to be statistically significant but no p value(s) reported					

F1 effects: mortality

- No deaths at end of postpartum day 1
- Most neonatal deaths occurred by postpartum day 4

F1 mortality obse				
F1 mortality observations				
	CL/CD	CL/TD	TL/CD	TL/TD
Litters				
assigned to	13	12	12	13
cross-fostering				
Pup cross-				
fostered per	15.9±2.1	16.4±1.6	15.1±1.7	14.8±1.9
litter (mean±SD)				
Pup mortality				
between	3/191	2/181	15/166	34/177
postpartum	(1.6)	(1.1)	(9.0)	(19.2) ^a
days 2 and 4	(1.0)	(1.1)	(0.0)	(13.2)
Viability index ^b	188/191	179/181	151/166	143/177
that may make the	(98.4)	(98.9)	(91.0)	(80.8) ^a
 culling)/number of Note: number in F1 effect: body v Statistically si weight and bot treated dams TL/TD occurrent F1 effect: ultrast Note: tissues collected from collected 1 to Statistically si peroxisomes (n=4, 16.1±1.3) 	parenthesis veight gnificant (p≤ ody weight ch (i.e., CL/TD, ed from LD1 ructural exa from treated pups found 3 hours afte gnificant (p< per hepatocy 5) compared	is percentag 0.05 or p≤0.0 nange in pup TL/CD, TL/T through LD2 mination of pups (i.e., be dead, tissue r birth 0.0001) increated the in liver tis	e 01) reduction s born to or f D), effect in 1 lung and liv orn to treated s from contro ease in mear sue of treate =5, 7.0±1.9);	ostered by TL/CD and d dams) ol pups n number of d pups ; glycogen

Reference and Study Design	Results	Comment
Luebker et al. (2005b)	 Internal PFOS concentrations Paired maternal and pup serum PFOS concentrations on LD5 	 Major Limitations: Limited sample size (<10) or no
Note: study authors conducted dose-response and pharmacokinetic studies. Only the dose-response results are	 increased proportional to maternal dose, concentrations comparable between dams and pups within the same dose group Paired maternal and pup liver PFOS concentrations on LD5 	 samples available for some thyroid hormone measurements Quantitative data for internal PFOS measurements for control animals
reported herein. Results from the pharmacokinetic study are reported in a separate table.	increased proportional to maternal dose, concentrations in pup livers were about 50 to 250% higher than in the livers of paired dams	not reported Other comments:
Species and strain: Rats, CrI:CD® (SD)IGS VAF/Plus® F0 females were 71 to 72 days old at receipt followed by a 7 to 9	 F0 female effects (natural delivery group): mortality, necropsy observations No deaths were attributed to test agent or vehicle Necropsy observations (thoracic, abdominal, and pelvic viscera) were not considered related to the test agent 	 Species and strain appropriate for endpoints assessed Oral gavage provided direct exposure to PFOS Dose selection based on previous observations of neonatal effects
day acclimation period prior to exposure; age of F0 breeder males (same strain as females) not reported	 F0 female effects (natural delivery group): body weight Statistically significant (p values not reported) reduction in body weight with 1.6 mg/kg/day and 2.0 mg/kg/day compared to controls during gestation and lactation (for 2.0 mg/kg/day only) 	 Duration of F0 exposures (i.e., ≥42 days) were subchronic (i.e., >30 days), F1 exposures lasted most of gestation period Six doses used to determine dose-
Group size: 20 dams/natural delivery group 8 dams/caesarean group	 Statistically significant (p≤0.05 or p≤0.01, compared to controls) reduction in body weight gain during pre-mating (2.0 mg/kg/day only) and lactation (with doses ≥0.8 mg/kg/day) No apparent differences in body weight change during 	response curve (for dose-response study), only two doses used in caesarean group
Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 80	 F0 female effects (natural delivery group): feed consumption 	 Quantitative data reported Internal PFOS measurements determined Endpoint ascertainment used
Route of exposure: Oral gavage	 General trend of decreased absolute and relative (mean feed consumption/kg of body weight) feed consumption with increasing dose during periods of pre-mating, gestation, and lasterior 	standardized assessment of mortality, body weight, food consumption, liver weight,
Exposure levels: 0, 0.4, 0.8, 1.0, 1.2, 1.6, 2.0 mg/kg/day (natural delivery	 Iactation Statistically significant results observed during some periods F0 female effects (natural delivery group): liver weight 	reproductive and fetal effects, biochemical parameters (in serum, liver, milk), and histopathology. Multiple approaches used to
group) 0, 1.6, 2.0 mg/kg/day (caesarean group)	 Statistically significant (p value not reported, compared to controls) increase in relative liver weight by 10%, 17%, and 12% with 0.8, 1.2, and 2.0 mg/kg/day, respectively 	measure serum thyroid hormones to avoid potential of a negative bias.

See Results column for liver and					
serum PFOS concentrations for	F0 female effects (nat				
F0 and F1	Comparable observations between control and exposed groups				
	for fertility index (n				
Exposure regimen:	mated), average n				
F0 females: dosed once daily for	(number of dams v		ng/number of p	pregnant dams),	
42 days prior to	and number of liveborn pups				
mating/cohabitation, then once	 Statistically signific 			ared to	
daily during mating/cohabitation	controls) difference				
(with a maximum of 14 days of		length, decreas			
mating), then either until				h 0.4 mg/kg/day	
gestation day (GD)20 (for		stillborn pups,	decreased wi	th	
caesarean group, pup and dam	≥1.0 mg/kg				
sacrifice on GD21) or lactation		all pups dying		partum days 1	
day (LD)4 (natural delivery		eased with 2.0	007	((
group, pup and dam sacrifice on				oostpartum day	
LD5).		of live births), d	lecreased with	1≥1.6	
F0 males: no exposure	mg/kg/day				
Fo males. no exposure				ve and fatal	
Related studies:	F0 female effects (cae	esarean group): reproductiv	ve and fetal	
Luebker et al. (2005a)	effects	if and affected			
	No statistically sign				
	lutea, implantation				
	on percent live ma				
	All fetuses were all				
	F0 female effects at 0		an aroun)]	
			an group) e group (mg/kg	r/day)	
		Control	1.6	2.0	
	Dams with any	8	6	3	
	resorptions (%)	(100.0)	(75.0)	(37.5)ª	
	Percent dead or	(100.0)	(13.0)	(07.0)*	
	resorbed	9.1±6.4	8.0±5.0	2.4±3.4 ^b	
	concepti/litter	3.110.4	0.010.0	2.710.7	
	Early			+	
	resorptions/litter	1.4±1.1	0.9±1.0	0.4±0.5 ^b	
	a = p≤0.01	I	<u> </u>	<u> </u>	
	$b = p \le 0.05$				
	l b − p=0.05				

 F1 effects (natural delivery): body weight Statistically significant (p<0.05 or p<0.01) reduction in pup body weight (average per litter) at birth and LD5 with ≥0.4 mg/kg/day compared to controls Statistically significant (p<0.05 or p<0.01) reduction in pup weight gain from birth to LD5 with ≥0.4 mg/kg/day compared to controls
 F1 effects (natural delivery): mortality Dose-dependent increase in pup mortality through LD5, with statistically significant (p<0.01) increase in mortality with ≥1.6 mg/kg/day compared to controls
 F0 female effects (caesarean group): serum and liver biochemical parameters No statistically significant difference compared to controls in serum biochemical parameters: total cholesterol (CHOL), low density lipoprotein (LDL), high density lipoprotein (HDL), triglycerides (TRIG), glucose (GLUC), and mevalonic acid lactone (MAL) Statistically significant reduction in liver CHOL with 1.6 mg/kg/day (p≤0.05) and 2.0 mg/kg/day (p≤0.01) compared to controls No statistically significant difference in liver TRIG compared to controls
 Fetal effects (caesarean group): serum and liver biochemical parameters Statistically significant (p≤0.05) increase in serum CHOL with ≥1.6 mg/kg/day compared to controls Statistically significant (p≤0.01) increase in serum LDL with ≥1.6 mg/kg/day compared to controls No statistically significant differences compared to controls for the serum biochemical parameters: HDL, TRIG, GLUC, and MAL No statistically significant differences compared to controls for liver biochemical parameters: CHOL and TRIG

 F0 female effects (natural delivery group): serum, milk, and liver biochemical parameters Statistically significant (p≤0.01) reduction in serum CHOL with ≥0.4 mg/kg/day compared to controls Statistically significant reduction in serum TRIG with 1.6 mg/kg/day (p≤0.05) and 2.0 mg/kg/day (p≤0.01) compared to controls Statistically significant (p≤0.01) increase in serum GLUC with 2.0 mg/kg/day compared to controls No statistically significant differences compared to controls for the serum biochemical parameters: LDL, HDL, and MAL No statistically significant (p≤0.01) increase in liver TRIG with ≥1.6 mg/kg/day compared to controls Statistically significant (p≤0.01) increase in liver TRIG with ≥1.6 mg/kg/day compared to controls No statistically significant difference compared to controls for milk CHOL Statistically significant (p≤0.01) increase in liver TRIG with ≥1.6 mg/kg/day compared to controls No statistically significant difference compared to controls for liver CHOL and malic enzyme activity F1 effects (natural delivery group): serum and liver biochemical parameters Statistically significant (p≤0.05) reduction in serum MAL; however, n=2 and both samples were below limit of quantitation No statistically significant differences compared to controls for the serum biochemical parameters: CHOL, LDL, HDL, TRIG, and GLUC Statistically significant (p≤0.05 or p≤0.01) reductions compared to controls in liver TRIG for males (with ≥1.0 mg/kg/day) and females (with ≥1.0 mg/kg/day but not 2.0 mg/kg/day) No statistically significant differences compared to controls for liver CHOL in males and females 	
to controls in liver TRIG for males (with ≥1.0 mg/kg/day) and females (with ≥1.0 mg/kg/day but not 2.0 mg/kg/day) • No statistically significant differences compared to controls for	

 Fo family offers to family believe and the little	
F0 female effects (natural delivery group): thyroid hormone	
measurements	
 Statistically significant (p<0.01) reduction in total thyroxin (TT4) with ≥0.4 mg/kg/day compared to controls when measured by analog radioimmunoassay (RIA) approach Statistically significant (p<0.01) reduction in total triiodothyronine (TT3) with ≥1.2 mg/kg/day compared to controls when measured by analog RIA approach 	
No statistically significant effect on thyroid stimulating hormone	
(TSH) when measured by analog RIA approach	
 No statistically significant effect on free thyroxin (FT4) when measured by equilibrium dialysis RIA approach 	
F1 effects (natural delivery group): thyroid hormone	
measurements	
 Measurements using the analog RIA approach Non-statistically significant reductions in TT3 with ≥0.8 mg/kg/day Statistically significant (p≤0.01, compared to control) reduction in TT4 with ≥0.4 mg/kg/day, non-detectable levels with 0.4 mg/kg/day and 0.8 mg/kg/day and no samples available for 2.0 mg/kg/day Statistically significant (p≤0.05, compared to control) increase in TSH with 1.6 mg/kg/day, increased TSH levels at 1.0 mg/kg/day and 2.0 mg/kg/day but n=1 for each group, no sample available for 0.4 mg/kg/day and 0.8 mg/kg/day groups Measurement using the analogy chemiluminometric approach Non-statistically significant reductions in TT3 and TT4 	
 with 0.4, 0.8, and 1.0 mg/kg/day, no samples for ≥1.2 mg/kg/day Measurements using equilibrium dialysis RIA approach Comparable levels of FT3 between controls and 0.4, 0.8, and 1.0 mg/kg/day groups, no samples for ≥1.2 mg/kg/day Non-statistically significant reduction in FT4 with 0.4 	
mg/kg/day, no samples for ≥0.8 mg/kg/day	

F1 effects (natural delivery group): histopathology of heart
and thyroid
 No microscopic changes observed with 2.0 mg/kg/day
compared to controls, based on data from 1 male and 1 female

Reference and Study Design	Results	Comment
Luebker et al. (2005b)	Internal PFOS concentrations	Major Limitations:
Note: study authors conducted dose-response and pharmacokinetic studies. Only the pharmacokinetic study results are reported herein. Results from the dose-response study are reported in a separate table. Species and strain: Rats, CrI:CD® (SD)IGS VAF/Plus® F0 females were ≥60 days old at receipt; age of F0 breeder males (same strain as females) not reported Group size: 16 dams/group Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 80 Route of exposure: Oral gavage	 Internal PFOS concentrations Dam PFOS concentrations Serum: linearly proportional to dose after 42 days of dosing, concentrations and linearity remained similar through GD15, concentrations declined (<50%) on GD21 with decrease in 1.6 mg/kg/day group not as severe Liver: concentrations were linearly proportional to dose at GD21, no liver concentrations determined prior to GD21 Urine: concentrations were linearly proportional to dose and were similar in urine collected prior to cohabitation and after GD7; concentrations remained roughly similar through GD21 with ≤0.4 mg/kg/day but fluctuated with ≥1.6 mg/kg/day Feces: concentrations were linearly proportional to dose and after GD7; concentrations remained roughly similar through GD21 with ≤0.4 mg/kg/day but fluctuated with ≥1.6 mg/kg/day Feces: concentrations were linearly proportional to dose and remained consistent at all time points Paired maternal and pup serum PFOS concentrations on GD21 increased proportional to maternal dose, concentrations in pup serum were 40 to 50% greater than in the serum of paired dams, expect in the 3.2 mg/kg/day group where serum concentrations were about equal Paired maternal and pup liver PFOS concentrations on GD21 increased proportional to maternal dose, concentrations in pup liver were about one-half that in the liver of the paired dams F0 effects (GD15 and GD21 groups) : mortality, clinical and necropsy observations No deaths attributed to test agent	 Major Limitations: No quantitative reporting of control values for internal PFOS concentrations Internal PFOS measurements limited to GD21 for F1 Other comments: Species and strain appropriate for endpoints assessed Sample sizes (n=8 to 16) for dam endpoints varied Oral gavage provided direct exposure to PFOS Dose selection based on previous observations of neonatal effects Duration of F0 exposures (i.e., ≥42 days) were subchronic (i.e., >30 days), F1 exposures lasted most of gestation period Number of exposure levels allowed for determining any dose-related effects Quantitative data reported but some qualitative reporting of data (e.g., litter parameters) Endpoint ascertainment used standardized assessment of
Exposure levels: 0, 0.1, 0.4, 1.6, 3.2 mg/kg/day	 No deaths attributed to test agent Clinical observations were not considered related to the test agent 	mortality, clinical and necropsy observations, body weight, food consumption, reproductive effects,
See Results column for PFOS concentrations in specimens from F0 and F1	 No gross lesions found by necropsy (thoracic, abdominal, and pelvic viscera) 	and fetal effects

Exposure regimen:	F0 effects (GD15 and GD21 groups): body weight	
F0 females: dosed once daily for	At end of pre-mating/pre-cohabitation period, body weights	
42 days prior to	were 98.0, 96.3, 93.6, and 85.3% of controls for the 0.1, 0.4,	
mating/cohabitation then through	1.6, and 3.2 mg/kg/day groups, respectively	
gestation day (GD)14 or GD20.	During pre-mating/pre-cohabitation period, body weight gains	
Some dams (8/dose group)	were 88.8, 80.8, 66.3, and 17.4% of controls for the 0.1, 0.4,	
sacrificed and caesarean	1.6, and 3.2 mg/kg/day groups, respectively	
sectioned on GD15 (GD15	 During GD0 to GD7, reduced body weight gains with ≥0.4 	
group). The remaining dams	mg/kg/day	
(8/dose group) sacrificed and		
caesarean sectioned on GD21	F0 effects: feed consumption	
(GD21 group).	 During pre-mating/pre-cohabitation period and first week of 	
	gestation, reduced absolute (g/day) and relative (g/kg/day) feed	
F0 males: no exposure	consumption with $\geq 0.4 \text{ mg/kg/day}$	
	After first week of gestation until the end of dosing, reduced	
Related studies:	absolute feed consumption with ≥0.4 mg/kg/day in the GD15	
Luebker et al. (2005a)	group or with 3.2 mg/kg/day in the GD21 group	
	group of with 5.2 mg/kg/day in the OD2 r group	
	F0 and F1 effects: reproductive and fetal effects	
	GD15 group: no effect on caesarean section or litter	
	parameters	
	 For GD21 group: reductions in litter averages for implantations, 	
	litter sizes, and live fetuses (values for these endpoints were	
	below historical ranges observed by laboratory conducting the	
	study); 2 rats in 3.2 mg/kg/day group delivered on GD21 prior	
	to scheduled caesarean section; reduced fetal body weight with	
	3.2 mg/kg/day, no observed fetal gross external alterations	
	5.2 mg/rg/uay, no observed relat gross external alterations	

Reference and Study Design		Res	Comment		
Lv et al. (2013)	Note: maternal effe	ects not repor	Major Limitations:		
Species and strain: Rats, SPF Wistar	Internal PFOS cond	centrations: F	Maternal effects not reportedOnly 2 dose levels		
F0 age not reported	Internal PFOS con	centrations in			Other comments:Species and strain appropriate for
Group size: 10 pregnant females/group (for	Age Treatment Serum Liver (mg/kg/day) (ug/mL) (ug/g)				 endpoints assessed Sample size generally ≥25 F1 rats
exposure), group size then varied by endpoint	PND0	Control 0.5 1.5	ND ^a 3.98±0.80 ^b 36.25±4.26 ^b	ND ^a 10.49±0.80 ^b 114.93±6.14 ^b	per group but <10 for internal PFOS measurements and some lipid metabolism endpoints
Test article and vehicle: PFOS (potassium salt, >98% purity) in 0.5% Tween 20	PND21	Control 0.5 1.5	Oral gavage provided direct exposure to PFOS		
Route of exposure: Oral (presumably gavage)	mean±SEM; n=6 ra a = lower limit of do b= p<0.05	ats per group,	Authors noted that PFOS doses used in study were 2 to 3 orders o magnitude higher than concentrations observed in the		
Exposure levels: 0, 0.5, 1.5 mg/kg/day	 <u>Neonatal effects: s</u> No neonatal dea 			ared active	 general population Duration of exposure included entire gestational period through weaning Generally quantitative data were reported, but some data not reported (e.g., fasting serum cholesterol) Exposure characterized by internal PFOS concentrations (e.g., serum
See Results column for serum and liver PFOS concentrations at PND0 and PND21		s: control, 98.7	n period were co %; 0.5 mg/kg, 98 aht in exposed a	3.8%; and 1.5	
Exposure regimen: GD0 to PND21 (weaning)		pelow for PND	and PND21 da		
Pups sacrificed 19 weeks after weaning	Neonatal body wei and females)	ights at birth ar	and liver)Endpoint ascertainment used		
wouling			PFOS		standardized assessment of body
	Body weight (g)	Control	0.5 mg/kg	1.5 mg/kg	weight, survival, and glucose and
	PND0	6.7±0.4	5.9±0.4	5.7±0.1ª	lipid metabolism
	PND21	41.8±0.9	39.2±0.3 ^a	38.5±0.8ª	
	mean±SEM, n=6 p a = p<0.05 compar				

 Body weights in exposed males and females generally similar to controls from 9 weeks to 18 weeks after weaning 	
 F1 effects: glucose metabolism At 10 weeks after weaning, statistically significant (p<0.05) increase in area under the curve (AUC) value for the oral glucose tolerance test (OGTT) with 1.5 mg/kg compared to controls At 15 weeks after weaning, statistically significant (p<0.05) increase in AUC value for OGTT with 0.5 mg/kg compared to controls, non-statistically significant decrease observed for 1.5 mg/kg No effect on fasting serum glucose and glycosylated serum protein levels 	
 F1 effects at 18 weeks after weaning: hormone levels Statistically significant (p<0.01) increase in fasting serum insulin with 1.5 mg/kg compared to controls Statistically significant (p<0.05) increase in insulin resistance index with 1.5 mg/kg compared to controls Statistically significant (p<0.05) increase in serum leptin with 1.5 mg/kg compared to controls, non-statistically significant increase with 0.5 mg/kg Statistically significant decrease in serum adiponectin with 0.5 mg/kg (p<0.05) and 1.5 mg/kg (p<0.01) compared to controls 	
 F1 effects at 19 weeks after weaning: lipid metabolism Statistically significant (p<0.01) increase in liver fat accumulation (hepatic steatosis, as measured by oil red O staining) with 1.5 mg/kg compared to controls Statistically significant (p<0.05) increase in liver triglyceride content with 1.5 mg/kg compared to controls No effect on fasting serum triglyceride and serum cholesterol levels Statistically significant (p<0.01) increase in gonadal fat pad weight with ≥0.5 mg/kg compared to controls, no increase in adipocyte size with exposure 	

Reference and Study Design		Res	Comment		
Ngo et al. (2014)	Background lev	vels of PFOS in v	Major Limitations:		
Unless stated otherwise, results reported herein are for those endpoints where wild-type (WT) and Min/+ mice were assessed together and for maternal effects Results for WT mice and Min/+ mice are reported in separate	 and vehicle maintenance Potential for concentratio 	and PFOA were of water and at pg/g e feed up to 30% decrea n as determined l evels (ng/ml) in ex Dams GD18 ^a	 Data reporting sometimes combined WT and Min/+ data, which did not allow for determining how genotype affected the endpoint observation Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier 		
tables.			weaning	weaning	than some of the endpoint
Species and strain.	Experimental b	lock 1 ^{b,c}	I		observations
Species and strain: Mice, C57BL/6J	Water (vehicle)	0/0 ^d	0/0	0/0	PFOS degradation observedPotential PFOA contamination in
F0 females 6-7 weeks at mating	0.1 mg/kg	1334/1237	476/544	377/298	some exposure groups
		(23/25) ^e	(7.7/7.2)	(3.1)	
F1 resulted from mating	3.0 mg/kg	36646/44634	17227/22249	NA	Other comments:
C57BL/6J- $Apc^{+/+}$ females with	Experimental b	lock 2 ^{f,g}			Species and background strain
C57BL/6J- <i>Ap</i> ^{Min/+} males; offspring genotype identified by	Water (vehicle)	NA	0/0	NA	(C57BL/6J) appropriate for endpoints assessed
polymerase chain reaction for <i>Apc</i> gene	0.01 mg/kg	131	66/37 (23)	20/39	Sample size varied by endpoint and not always reported
Group size:	0.1 mg/kg	NA	710/496	NA	 Oral gavage provided direct
Varied when reported; 10 to 24 dams/group; 3 to 27 pups/group Test article and vehicle: PFOS (potassium salt, ≥98% pure) in water Route of exposure: Oral gavage	exposure) b = Dams sacrifi c = pups sacrifi d = samples tal e = values in pa f = Dams sacrifi to 28) g = pups sacrifi	ams sacrificed at ficed 2 days after ced 4 to 6 days a ken from one or tw arentheses are Pl iced 1 to 3 days a ced 1 day after w	 exposure to PFOS Dose selection based on previous perinatal observations in mice Duration of exposure included gestational period Only 2 exposure levels assessed, may not clarify shape of doseresponse curve Endpoint ascertainment used 		
Exposure levels: Two experimental blocks (e.g., exposures) needed to produce enough offspring for statistical analyses		osure and time to a superior of the second s	standardized assessment of endpoints		

Experimental block 1: 0, 0.1, 3.0	No statistical difference							
mg/kg	number of days to conc							
Experimental block 2: 0, 0.01,								
0.1 mg/kg	Maternal effects							
	 No overt toxicity observ 	ed during GE	01 to GD17					
See Results column for serum								
PFOS concentrations	Reproductive effects							
	 No statistically significant 	nt differences	s in incidence	of pregnancy				
Exposure regimen:	between treatment grou	ps and expe	rimental block	<s< td=""><td></td></s<>				
GD1 to GD17	 No overt toxicity observ 	ed for pups s	urviving past	weaning				
GD1 set as day after female and				-				
male co-habitation; actual	Experimental block 1: repr	oductive obs	ervations					
duration of exposure determined	· · · ·	Water	0.1 mg/kg	3.0 mg/kg				
based on actual day of birth and	# of dams exposed	20	21	21				
counting 21 days backwards	# of dams pregnant (%)	15 (75)	13 (62)	14 (67)				
Man in the DND of the L	# of successful births	12	7	5				
Weaning occurred at PND21 and	# of litters that died			7				
25 for experimental block 1 and	perinatally	1	4	7				
experimental block 2,	# of litters that died	0	0					
respectively	around weaning	0	3	1				
WT and Min/+ offspring were	# of surviving litters	12	4	4				
terminated at 20 and 11 weeks,	# of surviving pups	70 ^a	18 ^a	20				
respectively	Mean # surviving							
respectively	pups/litter	6.0	5.0	5.0				
Study also treated and assessed	a = does not include 2 pup	s/group sacr	ificed after we	eaning for				
a separate group of mice	PFOS analysis	5 1		5				
exposed to PFOA, data not								
reported herein	Experimental block 2: repr	oductive obs	ervations					
			0.01	o. t . "				
		Water	mg/kg	0.1 mg/kg				
	# of dams exposed	10	23	24				
	# of dams pregnant (%)	7 (70)	16 (70)	15 (63)				
	# of successful births	4	9	9				
	# of litters that died		-	_				
	perinatally	3	6	6				
	# of litters that died							
	around weaning	0	1	0				
	# of surviving litters	4	8	9				
i		т		ÿ				

	H of our in the owner		45	409	44	
-	# of surviving pups		15	40 ^a	41	
	Mean # surviving pups/litter		3.8	5.3	4.6	
	a = does not includ	e 2 pups/gr	oup sacrific	ed after we	aning for	
	PFOS analysis					
l I I I I I I I I I I I I I I I I I I I	Experimental block	1 and 2: re	productive	observatior	าร	
			0.01	0.1	3.0	
		Water	mg/kg	mg/kg	mg/kg	
	# of surviving litters	16	8	13	4	
	# of surviving pups	85 ^a	40 ^a	59 ^a	20	
	Mean # surviving pups/litter	5.4	5.3	4.7	5.0	
•	a = does not includ PFOS analysis Feed intake Data presented (No statistically s any of the expose Statistically signic comparisons betherein) Body weight develor Maternal data pr [AUC] in arbitrar No statistically s exposure groups Pup data for both weighed betwee No statistically s exposure group Statistically signin mg/kg group cor	graphically ignificant di ure groups ficant differ ween gend opment esented gra y units) for ignificant di h genotype n PND3 to ignificant di and water g ficant (P=0	(as g feed/g fferences ir at either we rences were lers and tim aphically (a dams weigh fference in s presented weaning (P fferences ir group .023) decre	g body weig n feed intake eek 6 or we e observed t e periods (r s area unde ned on GD1 maternal Al graphically ND21 to PN n pup AUC I	ht/day) e between eek 10 for not reported er the curve t to GD18 UC between V for pups ND25) between any	

<u>E</u> •	 Blood glucose levels Statistically significant (P=0.016) increase in blood glucose levels when comparing all pups in the 0.01 mg/kg group to all pups in the 0.1 mg/kg group Statistically significant (P=0.033) increase in blood glucose levels when comparing all male pups in the 0.01 mg/kg group to all male pups in the 0.1 mg/kg group 	
---------------	--	--

Reference and Study Design	Results	Comment
Ngo et al. (2014) Unless stated otherwise, results reported herein are for those endpoints where only wild-type (WT) mice were assessed. Results for Min/+ mice are reported in a separate table. Species and strain: Mice, C57BL/6J F0 females 6-7 weeks at mating F1 resulted from mating C57BL/6J- <i>Apc</i> ^{+/+} females with C57BL/6J- <i>Apc</i> ^{Min/+} males; WT genotype identified by polymerase chain reaction for	 Feed intake No statistically significant differences in feed intake between any of the exposure groups at week 20 Body weight development Pup data presented graphically (as area under the curve [AUC] in arbitrary units) for pups weighed between week 3 and week 11 No statistically significant difference in pup AUC between exposure groups Pup data presented graphically for pups weighed between week 12 and week 20 No statistically significant difference in pup AUC between exposure groups Do statistically significant difference in pup AUC between exposure groups No statistically significant difference in pup AUC between exposure groups No statistically significant difference in pup AUC between exposure groups Mo statistically significant difference in pup AUC between exposure groups 	 Major Limitations: Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier than some of the endpoint observations PFOS degradation observed Potential PFOA contamination in some exposure groups Other comments: Species and background strain (C57BL/6J) appropriate for endpoints assessed Sample size varied by endpoint and not always reported Oral gavage provided direct exposure to PFOS
C57BL/6J- <i>Ap</i> ^{Min/+} males; WT genotype identified by	 Terminal body mass index (BMI) Data not shown No statistically significant differences in pup BMI between exposure groups Blood glucose levels Data presented graphically Statistically significant (P=0.029) increase in blood glucose levels at 20 weeks when comparing all pups in the 0.01 mg/kg 	 Sample size varied by endpoint and not always reported Oral gavage provided direct exposure to PFOS Dose selection based on previous perinatal observations in mice Duration of exposure included gestational period Only 2 exposure levels assessed, may not clarify shape of dose-
pure) in water Route of exposure: Oral gavage Exposure levels: Two experimental blocks (e.g., exposures) needed to produce enough offspring for statistical analyses Experimental block 1: 0, 0.1, 3.0 mg/kg	 group to all pups in the 0.1 mg/kg group No statistically significant differences between exposure groups and water group All blood glucose levels were within the normal range (>3.3 to <13.3 mmol/l) Terminal absolute and relative liver and spleen weights (at week 20) Data presented numerically No statistically significant difference in absolute or relative liver weights between exposure groups and water group 	 response curve Quantitative data provided but not all data reported (e.g., terminal BMI) Endpoint ascertainment used standardized assessment of endpoints

Experimental block 2: 0, 0.01, 0.1 mg/kg For serum PFOS concentrations, see Results column of Ngo et al. (2014) table for maternal and wild-type and Min/+ results	 No statistically significant difference in absolute or relative spleen weights between exposure groups and water group Statistically significant (p<0.05) increase in relative spleen weights in water group and 0.1 mg/kg group females compared to corresponding males
Exposure regimen: GD1 to GD17 GD1 set as day after female and male co-habitation; actual duration of exposure determined based on actual day of birth and counting 21 days backwards	
Study also treated and assessed a separate group of mice exposed to PFOA, data not reported herein	

Reference and Study Design	Results	Comment
Ngo et al. (2014)	Body weight development	Major Limitations:
Unless stated otherwise, results reported herein are for those endpoints where only Min/+ mice were assessed. Results for wild- type (WT) mice are reported in a	 Pup data presented graphically (as area under the curve [AUC] in arbitrary units) for pups weighed between week 3 and week 11 No statistically significant difference in pup AUC between exposure groups 	 Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier than some of the endpoint observations PFOS degradation observed
separate table.	Terminal body mass index (BMI)	Potential PFOA contamination in
Species and strain: Mice, C57BL/6J	 Data not shown No statistically significant differences in pup BMI between exposure groups 	some exposure groups Other comments:
F0 females 6-7 weeks at mating F1 resulted from mating C57BL/6J- <i>Apc</i> ^{+/+} females with C57BL/6J- <i>Ap</i> ^{Min/+} males; WT genotype identified by polymerase chain reaction for	 Blood glucose levels Data presented graphically No statistically significant differences between exposure groups and water group All blood glucose levels were within the normal range (>3.3 to <13.3 mmol/l), except one male (13.6 mmol/l) at 6 weeks in the 	 Species and background strain (C57BL/6J) appropriate for endpoints assessed; however, direct relevance to general human population of observations in mutant mice unclear Sample size varied by endpoint
Apc gene Group size: Varied when reported	0.01 mg/kg group Terminal absolute and relative liver and spleen weights (at	 and not always reported Oral gavage provided direct exposure to PFOS
Test article and vehicle: PFOS (potassium salt, ≥98% pure) in water	 week 11) Data presented numerically No statistically significant difference in absolute or relative liver weights between exposure groups and water group No statistically significant difference in absolute or relative 	 Dose selection based on previous perinatal observations in mice Duration of exposure included gestational period Only 2 exposure levels assessed,
Route of exposure: Oral gavage	spleen weights between exposure groups and water group	may not clarify shape of dose- response curveQuantitative data provided but not
Exposure levels: Two experimental blocks (e.g., exposures) needed to produce enough offspring for statistical analyses Experimental block 1: 0, 0.1, 3.0 mg/kg	 Tumor number, diameter, and localization data presented graphically Small intestinal tumors observed in all mice, with the majority being located in the middle and distal parts of the small intestine No statistically significant difference in the number of small intestinal tumors between exposure groups and water group 	 all data reported (e.g., terminal BMI) Endpoint ascertainment used standardized assessment of endpoints

Experimental block 2: 0, 0.01, 0.1 mg/kg For serum PFOS concentrations, see Results column of Ngo et al. (2014) table for maternal and wild-type and Min/+ results	 No linear increase in small intestinal tumor number with increasing exposure dose Statistically significant (p<0.05) increase in small intestinal tumor size in 0.01 and 3.0 mg/kg females compared to water group Statistically significant (p<0.05) increase in small intestinal tumor size in 3.0 mg/kg females compared to 0.1 mg/kg females
Exposure regimen: GD1 to GD17 GD1 set as day after female and male co-habitation; actual duration of exposure determined based on actual day of birth and counting 21 days backwards	 No statistically significant effects on small intestinal tumor size in males Statistically significant increase in number of colonic tumors in water group (P=0.002) and 0.01 mg/kg group (P=0.007) males compared to corresponding females No statistically significant differences in number of colonic tumors between exposed groups and water group
Study also treated and assessed a separate group of mice exposed to PFOA, data not reported herein	

Reference and Study Design	Results	Comment
Rosen et al. (2009)	Maternal effects	Major Limitations:
Species and strain:	No observable effect on body weight or general appearance	 Limited observations (n=2) for fetal histology
Mice, CD1	Fetal effects	 No internal PFOS concentrations
F0 age not reported	No effects on litter size (data not reported)	determined
Group size:	 Liver: eosoinphilic granules suggesting peroxisome proliferation observed in 5 and 10 mg/kg groups 	Other comments:
5 dams/group 2 pups/litter for liver and lung histology Test article and vehicle: PFOS (potassium salt) in 0.5% Tween 20 Route of exposure: Oral gavage Exposure levels: 0, 5, 10 mg/kg/day Exposure regimen: GD1 to GD17 Dams and fetuses sacrificed at term	 Lung: no apparent effects with exposure, as determined by light microscopy 	 Species and strain appropriate for endpoints assessed Oral gavage provided direct exposure to PFOS Doses selected based on previous pre- and post-natal observations in rodents Exposure occurred during gestational period Only 2 exposure levels assessed, may not clarify shape of dose- response curve Only qualitative data reported Endpoint ascertainment used standardized assessment of endpoints, subjective histopathology observations

			Results	Comment		
Seacat et al. (2002)	Internal PFC	S concentra	<u>tions</u>	Major Limitations:		
Species and strain: Monkeys, cynomolgus	Internal PF0 days of exp		tions in males	Sample sizes generally 2 to 6 monkeys per group but with increased frequency of endpoint		
Young-adult to adult males and			ale	Fer	nale	measurements (i.e., during the
females, acclimated 57 days	Daily dose	Serum	Liver	Serum	Liver	course of exposure)
prior to exposure	mg/kg/day	(ppm)	(ppm)	(ppm)	(ppm)	
	0	0.05±0.01	0.12±0.03	0.05±0.02	0.11±0.03	Other comments:
Group size:	0.03	15.8±1.4 ^a	17.3±4.7 ^a	13.2±1.4 ^a	22.8±2.1 ^a	Species and strain appropriate for
6/sex/group, expect for 0.03	0.15	82.6±25.2 ^a	58.8±19.5 ^a	66.8±10.8 ^a	69.5±14.9 ^a	endpoints assessed
mg/kg/day group where 4/sex	0.75	173±37ª	395±24ª	171±22 ^a	273±14 ^a	Oral intubation provided direct
	Mean±SD		•			exposure to PFOS
Test article and vehicle:	a = p≤0.05	compared to	controls			Doses selected based on previous
PFOS (potassium salt, 86.9%						observations in monkeys
pure) in lactose	Percent of	of cumulative	PFOS that wa	as given durin	g 183 days of	Duration of exposures were
Route of exposure:			e liver ranged			subchronicNumber of exposure levels allowed
Intragastric intubation of a	8.7±1.0%	with no appa	arent correlati	on to dose or	gender	
capsule		_				for determining any dose-related
oupsuic	Mortality du					effects
Exposure levels:			y 155 with 0.7	Quantitative data reported but		
Nominal doses: 0, 0.03, 0.15,			ce of pulmona			some qualitative reporting of data
0.75 mg/kg/day			eatinine phos	phokinase an	d lost 13% of	 (e.g., pathology) Internal PFOS measurements
Cumulative doses: 0, 4.6, 22.9,	initial boo			I Pe	470 14	
114.7 mg/kg					n day 179 with	Endpoint ascertainment used standardized assessment of
			due to hyperka n serum clinic			mortality, body and organ weights,
See Results column for liver and		itial body wei		al chemistry a	and gamed	hematological and clinical
serum PFOS concentrations	14 /0 01 11	inital body wei	gm	parameters, urinalyses, hormones,		
	Body weight after 183 days of exposure					cell proliferation, and microscopy.
Exposure regimen:	 No statistically significant differences in body weight between 					More than one technique used to
26 weeks		and exposed		assess serum thyroid hormone		
Continue on days 104 and 105				ction in body	weight	(e.g., free T4)
Sacrifice on days 184 and 185 for most animals	 Statistically significant (p≤0.05) reduction in body weight change (from day 0 to sacrifice) in males and females with 0.75 					
ior most animais		y compared t				
Recovery group (2/sex/group in		-				
control, 0.15, and 0.75						

mg/kg/day groups) were	Liver weight after 183 days of exposure	
monitored for 1 year following	 Statistically significant (p≤0.05) increase in absolute liver 	
exposure then sacrificed	weights in females with 0.75 mg/kg/day compared to controls	
	 Statistically significant (p≤0.05) increase in relative (to body 	
Note: most aspects of study		
reported to have been conducted	weight) liver weights in males and females with 0.75 mg/kg/day	
according to GLP	compared to controls	
	• Statistically significant (p≤0.05) increase in relative (to brain)	
	liver weights in females with 0.75 mg/kg/day compared to	
	controls	
	Organ weights (non liver) ofter 192 days of synasyre	
	Organ weights (non-liver) after 183 days of exposure	
	• Statistically significant (p≤0.05) increase in relative (to body	
	weight) left adrenal gland weights in males with 0.75 mg/kg/day	
	compared to controls	
	No statistically significant changes in absolute or relative (to	
	body weight or to brain weight) organ weights with 0.3	
	mg/kg/day or 0.15 mg/kg/day	
	Note: authors obtained organ weights for 9 different organs	
	Hematological parameters	
	• Statistically significant (p<0.05) reduction in hemoglobin in	
	males with 0.75 mg/kg/day compared to controls at end of	
	exposure, values were considered within normal range	
	No statistically significant changes (compared to controls) in	
	other male parameters at the end of exposure	
	No statistically significant changes were consistently observed	
	in females during or at the end of exposure	
	Note: authors obtained measurements for 15 parameters	
	Clinical chemistry parameters	
	• Statistically significant (p<0.05) reductions in serum total	
	cholesterol in males and females with 0.75 mg/kg/day	
	compared to controls from 91 days of exposure to the end of	
	exposure, male levels significantly (p=0.013) lower than	
	females after 183 days of exposure	
	• Statistically significant (p<0.05) reductions in high-density	
	lipoprotein (HDL) cholesterol in males (with 0.03 and 0.75	
	mg/kg/day) and females (with 0.15 and 0.75 mg/kg/day)	

1
 compared to controls at 153 and 182 days of exposure, authors did not measure HDL prior to day 153 Statistically significant (p<0.05) reduction in serum bilirubin in males with 0.75 mg/kg/day compared to controls at 91, 153, and 182 days of exposure, no statistically significant effect in females Statistically significant (p<0.05) increase in serum bile acids in males with 0.75 mg/kg/day compared to controls at 182 days of exposure, no statistically significant effect in females Authors noted high background (i.e., prior to exposure) levels of creatine phosphokinase in males and females, measurements during the course of exposure generally significantly lower No statistically significant effects noted for sorbitol dehydrogenase, transaminases, or alkaline phosphatase as well as other clinical chemistry parameters Note: authors obtained measurements for >20 parameters Virinalyses No statistically significant changes expect on day 62 where females (0.75 mg/kg/day) had lower pH than controls
 Note: authors obtained measurements for >10 parameters Thyroid hormones Thyroid stimulating hormone (TSH): increased (by about twice control values) at day 182 and day 184 (by two techniques) in males and females with 0.75 mg/kg/day, statistically significant (p≤0.05 compare to control) with some measurements Total thyroxine (T4): no consistent changes in terms of dose response or duration of exposure in males and females, day 184 measurements comparable between two different techniques Total triiodothyronine (T3): decreased at day 182 and day 184 (by two techniques) in males and females with ≥0.15 mg/kg/day, statistically significant (p≤0.05 compare to control) with some measurements

 Free T4: no change at day 184 (only day of measurement) in males and females, values obtained by equilibrium dialysis technique slightly higher than standard approach Free T3: statistically significant (p≤0.05) decrease at day 184 (only day measured and by only one technique) in males and females with 0.75 mg/kg/day 	
Hormone analysis	
 Statistically significant (p≤0.05) reduction in estradiol at day 182 in males with 0.75 mg/kg/day compared to controls, reduction confirmed with analysis on day 184 (data not reported) Non-statistically significant reduction in estradiol at day 182 in females with ≥0.15 mg/kg/day No statistically significant changes in testosterone at day 182 in males and females 	
 Cell proliferation No statistically significant effects in the liver, pancreas, and testes at day 182 	
 Anatomic pathology, histopathology, and electron microscopy Anatomic pathology: no significant changes in tissues (liver, thymus, and spinal cord) and doses (0.03 and 0.15 mg/kg/day) analyzed Histopathology: centrilobular vacuoluation, hypertrophy, and mild bile stasis in some livers from 0.75 mg/kg/day group Electron microscopy: accumulation of lipid droplets (2 of 2 males, 2 of 4 females) and increased glycogen content (1 of 2 males, 2 of 4 females) in livers from 0.75 mg/kg/day group Note: authors obtained >30 different tissues for histopathological evaluation 	
 1-year recovery group: internal PFOS concentration Rate of elimination from serum varied between groups at beginning of recovery then similar slopes in elimination curves near end of recovery 	

•	Similar rate of serum PFOS decrease between males and females during recovery phase Liver PFOS concentrations after 1-year recovery averaged 19±8% of concentrations measured at end of exposure	
	ear recovery group: clinical chemistry parameters Serum total cholesterol returned to pre-treatment values in males and females within 36 days after exposure ended HDL cholesterol returned to control values in males and females within 61 days after exposure ended	
<u>1-y</u>	ear recovery group: thyroid hormones Values for total T3 returned to normal between 33 and 61 days after exposure ended	
<u>1-y</u>	ear recovery group: hormone analysis Estradiol levels in males returned to control values after 63 days after exposure ended	
	ear recovery group: histopathology and electron croscopy Histopathology: complete recovery observed in liver tissues collected 7 months after exposure ended, hepatocellular hypertrophy and vacuolation not observed after 1 year of recovery	
•	Electron microscopy: complete recovery observed in liver tissues collected 7 months after exposure ended; liver samples collected 1 year after exposure ended were considered ultrastructurally normal	

Reference and Study Design	Results					Comment			
Seacat et al. (2003)	Internal PFO	S concentrat	ion			Major Limitations:			
Note: the results reported by the	Internal PFOS concentration in males and females after 14				 Sample size ≤5 rats per endpoint 				
authors represent data from 4-	weeks of exp			-		Other comments:			
and 14-week interim sacrifices of		Ma	ale	Fen	nale	Species and strain appropriate for			
a 2-year bioassay (Butenhoff et	Dietary	Serum	Liver	Serum	Liver	endpoints assessed			
al. 2012). Only 14-week sacrifice results are reported herein. Data	dose	(ug/mL)	(ug/g)	(ug/mL)	(ug/g)	Dietary exposure more closely			
from the 4-week sacrifice are not	(ppm)	,				mimics potential human exposure			
summarized in a table but are	0	<loq<sup>a</loq<sup>	0.46±0.06	2.67±4.58	12.0±22.4	Dose selection based on previous			
discussed in text.	0.5	4.04±0.80	23.8±3.5	6.96±0.99 ^b	19.2±3.8	observations of body weight and			
discussed in text.	2	17.1±1.22	74.0±6.2	27.3±2.3	69.2±3.5	liver effects in rats			
Species and strain:	5	43.9±4.9	358±26	64.4±5.5	370±22	Duration of exposures were			
Rats, Crl:CD® (SD) IGS BR	20	148±14	568±107	223±22	635±49	subchronic			
About 41 days old at start of		=5 unless sp		<i>.</i> .		Number of exposure levels allowed			
study	a = limit of quantitation (LOQ)=0.046 ug/mL					for determining any dose-related			
Study	b = n=4					effects			
Group size:						Quantitative data reported but			
5/sex/dose for 14-week sacrifice	Body weight					some qualitative reporting of data			
			ant decreases	in body weigl	ht in males	(e.g., pathology, urinalysis)			
Test article and vehicle:	and femal	es				Internal PFOS measurements			
PFOS (potassium salt, 86.9%						determined			
pure) in acetone	Food consun					 Endpoint ascertainment used 			
			(p<0.05) decr	standardized assessment of body					
Route of exposure:		•	and females)			and organ weights, food			
Dietary	No effect	on food effici	ency (g weigh	nt gain/g food	consumed)	consumption, hematological and			
						clinical chemistry parameters,			
Exposure levels:	Liver weight					urinalyses, microscopy, and cell			
Nominal doses: 0, 0.5, 2.0, 5.0,				ease in absolu	ite liver	proliferation			
20 ppm	-	males only w							
- 11				ease in relative					
See Results column for liver and	weight) liv	ver weight in r	nales and fer	nales with 20	ppm				
serum PFOS concentrations									
	<u>Hematology</u>								
Exposure regimen:			(p<0.05) incre						
14 weeks	of segmented neutrophils in males only with 20 ppm								
	Note: authors	performed 8	different hem	atological eva	luations				

Related studies:		
Butenhoff et al. (2012)	<u>Urinalysis</u>	
	No toxicological important changes were observed (data not	
	reported)	
	Note: authors obtained measurements for >10 parameters	
	Clinical chemistry	
	 Statistically significant (p<0.05) decrease in serum cholesterol in males only with 20 ppm 	
	• Statistically significant (p<0.05) increase in alanine	
	aminotransferase in males only with 20 ppm	
	 Statistically significant (p<0.05) increase in urea nitrogen in males and females with 20 ppm 	
	Note: authors obtained measurements for >15 parameters	
	Histopathology	
	 Histopathological changes observed in the livers of males (≥5 ppm) and females (20 ppm) included centrilobular hepatocyte hypertrophy and midzonal to centrilobular vacuolation, incidence and severity generally greater in 20 ppm males 	
	Note: authors obtain 10 different tissues for microscopic analysis	
	Cell proliferation	
	No increase in hepatocellular proliferation index	

Reference and Study Design	Results	Comment
Thibodeaux et al. (2003) Study authors also conducted	 Internal PFOS concentrations: maternal and fetal Negligible PFOS levels in maternal and fetal control samples Maternal serum PFOS initially increased monotonically with 	 Major Limitations: Thyroid hormone measurements may be subject to negative bias
exposures using mice. These mouse data are presented in a separate table.	 administered dose during pregnancy but fell after GD14 Maternal serum PFOS at term (GD21) increased linearly with administered dose 	Other comments: Species and strain appropriate for
Species and strain: Rats, Sprague-Dawley F0 age not reported	 Maternal liver PFOS at term increased linearly with administered dose Maternal liver PFOS was approximately four times greater than corresponding serum samples Fetal liver PFOS increased with administered dose and was 	 Species and strain appropriate for endpoints assessed Most endpoints had ≥9 rats/groups Oral gavage provided direct exposure to PFOS
Group size: Varied by endpoint	approximately half the levels as in maternal counterparts	Doses selected apparently based on previous perinatal effects in
Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20	 Maternal effects: weight gain and food and water consumption Statistically significant (p<0.0001) reduction in weight gain with ≥2 mg/kg, in dose-dependent manner Initial observations of statistically significant (p<0.001) reductions in weight gain whether a CD2, CD5, and CD2 for 	 laboratory animals Duration of exposure included gestational period Number of exposure levels would allow for determining does related
Route of exposure: Oral gavage	 reductions in weight gain started on GD7, GD5, and GD3 for the 3 mg/kg, 5 mg/kg, and 10 mg/kg groups, respectively No weight gain in 10 mg/kg group until last week of pregnancy Ottained in a group in the start of the star	 allow for determining dose-related effects Quantitative data reported
Exposure levels: 0, 1, 2, 3, 5, 10 mg/kg/day	 Statistically significant reduction in food (p<0.0001) and water (p<0.05) consumption with 5 mg/kg and 10 mg/kg 	Internal PFOS concentrations determined
Exposure regimen: GD2 to GD20 Maternal and fetal sacrifices on GD21	 Maternal effects: liver weight No effect on absolute liver weight Statistically significant (p<0.05) increase in relative liver weight with 10 mg/kg 	
A separate group of non- pregnant adult female rats was exposed to 3 or 5 mg/kg for 20 days	 Maternal effects: serum chemistry Statistically significant (p<0.05) reductions in cholesterol and triglycerides with 10 mg/kg No effect on bile acid, bilirubin, glucose, and sorbitol dehydrogenase 	
Related studies: Lau et al. (2003)		

T		
<u>Ma</u>	ternal effects: serum hormones	
•	No effect on corticosterone and prolactin	
	ternal effects: thyroid hormones (data presented aphically)	
•	Statistically significant reductions in total and free thyroxine (p<0.0001) and triiodothyronine (p<0.002)	
•	No effect on thyroid-stimulating hormone	
•	Similar effects observed in non-pregnant adult female rats exposed to PFOS	
Fe	tal effects: liver weight	
•	No effect on absolute and relative liver weight	
	tal effects: reproductive and developmental indices	
•	No effect on number of implantation sites and percentage of live fetuses	
•	Statistically significant (p<0.05) reduction in body weight with	
	10 mg/kg	
•	Statistically significant (p<0.05) increases in cleft palate, sternal defects, anasarca, enlarged right atrium, and ventricular septal	
	defects, generally with 10 mg/kg	

Reference and Study Design	Results	Comment
Thibodeaux et al. (2003)	Internal PFOS concentrations: maternal	Major Limitations:
Study authors also conducted exposures using rats. These rat data are presented in a separate table.	 Negligible PFOS levels in maternal control samples Maternal serum PFOS at term (GD21) increased linearly with administered dose Maternal liver PFOS at term increased linearly with administered dose but reached saturation between 15 and 20 mg/kg 	 Thyroid hormone measurements may be subject to negative bias based on analytical method used Internal PFOS concentrations determined for dams but not for fetal tissue
Species and strain: Mice, CD-1 F0 age not reported	 Maternal liver PFOS was approximately four times greater than corresponding serum samples Internal fetal PFOS concentrations not determined 	Other comments: Species and strain appropriate for
Group size: Varied by endpoint Test article and vehicle:	 Maternal effects: weight gain and food and water consumption Statistically significant (p<0.05) reduction in weight gain with 20 mg/kg during late gestation No effect on food consumption but statistically significant 	 endpoints assessed Most endpoints had ≥10 rats/groups Oral gavage provided direct exposure to PFOS
PFOS (potassium salt, 91% pure) in 0.5% Tween 20	(p<0.05) effect for water consumption Maternal effects: liver weight	 Doses selected apparently based on previous perinatal effects in laboratory animals
Route of exposure: Oral gavage	 Statistically significant (p<0.05) increases in absolute and relative liver weights with ≥5 mg/kg 	Duration of exposure included gestational period
Exposure levels: 0, 1, 5, 10, 15, 20 mg/kg/day	 Maternal effects: serum chemistry Statistically significant (p<0.05) decrease in triglycerides, in a 	allow for determining dose-related effects
Exposure regimen: GD1 to GD17 Sacrifices on GD6, GD12, and	dose-dependent mannerNo effect on cholesterol and sorbitol dehydrogenase	Quantitative data reported
GD18 Related studies:	 Maternal effects: thyroid hormones Only data for total serum thyroxine reported Statistically significant (p<0.05) decrease in thyroxine with 20 	
Lau et al. (2003)	mg/kg at GD6, levels returned to control levels by last week of pregnancy	
	 Fetal effects: liver weight Statistically significant (p<0.05) increase in absolute and relative liver weights with 20 mg/kg 	

Fetal effects: reproduce	ve and developmental indices
 No effect on the num Statistically significant fetuses with 20 mg/k Statistically significant 10 mg/kg and 15 mg Statistically significant 10 mg/kg and 15 mg 	ber of implantation sites t (p<0.05) decrease in percentage of live t (p<0.05) reductions in body weight with kg t (p<0.05) increases in cleft palate, sternal t atrium, and ventricular septal defects,

Reference and Study Design		Results		Comment	
Wan et al. (2010)	Internal PFOS concentration			Major Limitations:	
				 Internal PFOS concentrations only 	
Species and strain:		OS concentrations in p		reported for PND21, corresponding	
Rats, Sprague-Dawley	Maternal dosing	PFOS in serum	PFOS in liver	internal PFOS concentrations at	
Age not reported	(mg/kg/day)	(ug/mL)	(ug/g)	PND3 (i.e., time point assessed for	
Mated females	0	ND	ND	pup mortality) either not reported or	
	0.1	0.37±0.12	1.43±0.59	not determined	
Group size:	0.6	1.86±0.35	7.68±1.62		
10 dams/ group	2.0	4.26±1.73	20.52±4.59	Other comments:	
Test article and vehicle:	ND = value below th study authors)	ne limit of detection (lin	nit not reported by	Species and strain appropriate for endpoints assessed	
PFOS (salt not reported, >98%	Note: data are mear	n of 6 litters/aroun		• Sample size 6 or 10 litters/group	
pure) in 0.05% Tween 80	Note: data are mea			 Oral gavage provided direct 	
	Maternal effects: bo	dy weight		exposure to PFOS	
Route of exposure:			ernal body weight with	 Doses selected yielded clear 	
Oral gavage		GD21 compared to co		LOAEL and NOAEL, doses also	
		gnificant reductions ob		produced rat serum PFOS	
Exposure levels:	gestational time		served during other	concentrations similar to human	
0, 0.1, 0.6, 2.0 mg/kg/day	gestational time	501113		serum PFOS concentrations in	
	Offspring effects: re	productive and deve	lonmental	occupational exposed workers (as	
See Results column for serum	onspring cricots. re		<u>lopinentai</u>	reported by the study authors)	
and liver PFOS concentrations in	Pups delivered and	mortality at PND3	Duration of exposure lasted		
offspring	Maternal dosing			through the majority of gestational	
	(mg/kg/day)	Delivered pups	Mortality (%)	period, lactational exposure	
Exposure regimen:	0	13.5±1.3	3.6±0.1	(through PND21) from residual	
GD2 to GD21	0.1	13.6±2.3	3.2±0.1	exposure PFOS in dams	
6 pupe/litter calested on DND4	0.6	12.7±2.1	3.5±0.1	 Number of exposure levels would 	
6 pups/litter selected on PND4 were maintained to sacrifice on	2.0	11.0±2.5*	22.9±0.1*	allow for determining any dose-	
PND21	* = p<0.05 compare			dependent effects	
PNDZT	Note: data are mear			Quantitative data reported	
		· • · · • · · • · · · • · · · · · · · ·		 Endpoint ascertainment used 	
				standardized assessment of pup	
				mortality, body weight, and liver	
				weight	
				Note: this study presented additional	
				mechanistic data (e.g., DNA	

Offspring effe	ects: body and live	methylation) that are not presented herein		
Pup body an	d liver weights at PN			
Maternal dosing (mg/kg/day	Body weight (g)	Liver weight (g)	Relative liver weight	
0	52.8±3.4	2.13±0.19	0.040±0.002	
0.1	53.5±3.7	2.18±0.18	0.040±0.002	
0.6	50.4±3.4	2.10±0.18	0.041±0.003	
2.0	45.3±3.8*	2.12±0.18	0.046±0.001*	
	mpared to control e mean of 6 litters/g	Iroup		
No signific	ects: liver histopat ant differences in p oups (e.g., no cytop	athology betwee		

Reference and Study Design			Results			Comment
Wan et al. (2014)	Internal PFC	OS concenti	rations: PND2 ²	and PND63	<u>.</u>	Major Limitations:
						Only 2 dose levels used
Species and strain:	Internal PF	OS concentr	ations for dame	s (F0) at PND	21	
Mice, CD-1	PFC	S	Serum PFOS	S Liv	/er PFOS	Other comments:
F0 females: 6 to 8 weeks old			(ug/mL)		(ug/g)	Species and strain appropriate for
	Control		0.25±0.11		.15±0.11	endpoints assessed
Group size:	0.3 mg/kg		15.33±4.62		.09±9.88	● Sample sized generally ≥6 dams or
Varied by endpoint	3 mg/kg		131.72±30.7	1 338	.87±100.71	F1 mice
The standing of the second second second	mean±SD;	n=4 per grou	qu			Oral gavage provided direct
Test article and vehicle:						exposure to PFOS
PFOS (salt not reported, 98%			ations for pups			Dose selection approximated
pure) in 0.05% DMSO and corn	PFC	S	Serum PFOS	S Liv	/er PFOS	human occupational exposure
oil			(ug/mL)		(ug/g)	levels
Route of exposure:	Control		M: 0		M: 0	Duration of exposure lasted
Oral gavage			F: 0		F: 0	gestational period to weaning
Olal gavage	0.3 mg/kg		M: 12.73±1.9		20.14±4.06	Quantitative data reported
Exposure levels:			F: 11.35±1.0		7.96±6.38	Exposure characterized by internal
0, 0.3, 3 mg/kg	3 mg/kg		M: 98.74±4.58		12.98±55.62	PFOS concentrations (e.g., serum
0, 0.0, 0 mg/kg			F: 87.23±4.2	B F: 17	′8.44±79.03	and liver)
See Results column for serum		n=4 per grou	qu			Endpoint ascertainment used
and liver PFOS concentrations at	a = p<0.05					standardized assessment of body
PND21 and PND63	F = female	es; M = male	S			and liver weights and glucose
						metabolism
Exposure regimen:	Serum PFC		ations (ug/mL) i			
GD3 to PND21 (weaning)			lales		male	
(0)	PFOS	STD	HFD	STD	HFD	
Note: All F0 dams and some F1	Control	0	0	0	0	
pups (2 per dam) sacrificed at	0.3 mg/kg	0.30±0.06		0.51±0.11	1.50±0.27 ^a	
PND21; remaining F1 pups	3 mg/kg	3.36±1.07	5.38±0.30 ^a	3.40±1.08	5.76±1.24 ^a	
allowed access to either a		n=4 per grou				
standard diet (STD) or high-fat		compared b	etween STD ar	nd HFD within	the same	
diet (HFD) until sacrifice at	gender					
PND63	HFD = high	n-tat diet; ST	D = standard di	et] [

Liver PFOS concentrations (ug/g) in F1 adults at PND63 Males Female PFOS STD HFD Control 0 0 0 0.3 3.97±0.50 5.43±0.98° 3.34±0.50 4.27±1.75° mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean:SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender HFD = high-fat diet; STD = standard diet Maternal (F0) effects at PND21: body and liver weights • No effect on body weight • No effect on body weight • Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg • No effect on absolute liver weight • No effect on absolute liver weight Maternal (F0) effects at PND21: glucose metabolism • Increasing dose but no statistical significance • No effect on absolute liver weight • Maternal (F0) effects at PND21: glucose metabolism • Increase serum fasting glucose and fasting insulin with increasing dose but no statistical significance • • Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control • No							
PFOS STD HFD STD HFD Control 0 0 0 0 0 0.3 3.97±0.50 5.43±0.98° 3.34±0.50 4.27±1.75° mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender		Liver PFC	S concentrati	ons (ug/g) in F	1 adults at PN	ID63	
Control 0 0 0 0.3 3.97±0.50 5.43±0.98° 3.34±0.50 4.27±1.75° mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean±SD; n=4 per group a = p-0.05 compared between STD and HFD within the same gender HFD = high-fat diet; STD = standard diet Maternal (F0) effects at PND21: body and liver weights • No effect on body weight • Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg			Ma	ales	Fer	nale	
0.3 3.97±0.50 5.43±0.98° 3.34±0.50 4.27±1.75° mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender		PFOS	STD	HFD	STD	HFD	
mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender		Control	0	0	0	0	
3 mg/kg 12.30±1.59 24.54±1.06° 13.77±4.05 21.34±3.36° mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender		0.3	3.97±0.50	5.43±0.98 ^a	3.34±0.50	4.27±1.75 ^a	
 mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender HFD = high-fat diet; STD = standard diet Maternal (F0) effects at PND21: body and liver weights No effect on body weight Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg No effect on absolute liver weight Maternal (F0) effects at PND21: glucose metabolism Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.2) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control 							
a = p<0.05 compared between STD and HFD within the same gender					13.77±4.05	21.34±3.36 ^a	
gender HFD = high-fat diet; STD = standard diet Maternal (F0) effects at PND21: body and liver weights • No effect on body weight • Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg							
HFD = high-fat diet; STD = standard diet Maternal (F0) effects at PND21: body and liver weights • No effect on body weight • Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg			5 compared b	etween STD a	nd HFD within	the same	
 Maternal (F0) effects at PND21: body and liver weights No effect on body weight Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg No effect on absolute liver weight Maternal (F0) effects at PND21: glucose metabolism Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to control 							
 No effect on body weight Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg No effect on absolute liver weight Maternal (F0) effects at PND21: glucose metabolism increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to control 		HFD = hig	gn-rat diet; ST	D = standard d	liet		
 No effect on body weight Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg No effect on absolute liver weight Maternal (F0) effects at PND21: glucose metabolism increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 		Maternal (E(1) offacts at	PND21. body	and liver we	iahte	
 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg No effect on absolute liver weight <u>Maternal (F0) effects at PND21: glucose metabolism</u> Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control 						Igillo	
 with 3 mg/kg No effect on absolute liver weight <u>Maternal (F0) effects at PND21: glucose metabolism</u> Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control 				•	rease in relativ	ve liver weight	
 No effect on absolute liver weight <u>Maternal (F0) effects at PND21: glucose metabolism</u> Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control 							
 Maternal (F0) effects at PND21: glucose metabolism Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control 			0 0	e liver weight			
 Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 				o inter mengine			
 increasing dose but no statistical significance Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to control, increased 		Maternal (F0) effects at	PND21: gluco	ose metabolis	sm	
 Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 							
 assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 		increas	sing dose but i	no statistical si	gnificance		
 mg/kg compared to control <u>F1 effects at PND21: body and liver weights</u> No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 		 Statisti 	cally significar	nt (p<0.02) inci	rease in home	ostatic model	
 F1 effects at PND21: body and liver weights No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 					HOMA-IR) ind	ex with ≥0.3	
 No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 		mg/kg	compared to o	control			
 No difference in body weights between exposure groups as measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 					• • •		
 measured from PND1 to PND21 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 							
 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 					een exposure	groups as	
 with 3 mg/kg in males and females compared to control Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 							
 Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased 							
weight with 3 mg/kg in males compared to controls, increased			0 0				
		absolu				iny significance	

·		
<u>F1</u>	effects at PND21: glucose metabolism	
•	No effect on fasting serum glucose in males and females	
•	Statistically significant (p<0.05) increase in fast serum insulin	
	with ≥ 0.3 mg/kg in males compared to controls, no effect in	
	females	
•	No effect on HOMA-IR in males and females	
	effects at PND63 (STD): body and liver weights	
•	No effect on body weights (measured between PND21 and	
	PND63) between exposed and control groups in both males	
	and females	
•	Statistically significant (p<0.05) increase in absolute liver	
	weight with 3 mg/kg compared to controls (in males only)	
•	Statistically significant ($p<0.05$) increase in relative liver weight with $>0.2 \text{ mg/kg}$ compared to controls (in males only)	
	with ≥0.3 mg/kg compared to controls (in males only)	
F1	effects at PND63 (STD): glucose metabolism	
	Statistically significant (p<0.05) increase in fasting serum	
	glucose with ≥ 0.3 mg/kg compared to controls in both males	
	and females	
•	Statistically significant (p<0.05) increase in fasting serum	
	insulin with 3 mg/kg compared to controls in both males and	
	females	
•	No significant effect on oral glucose tolerance test (OGTT)	
	between control and exposed groups	
•	Statistically significant (p<0.01) increase in HOMA-IR with 3	
	mg/kg compared to controls in both males and females	
<u>F1</u>	effects at PND63 (HFD): body and liver weights	
•	No effect on body weights (measured between PND21 and	
	PND63) between exposed and control groups in both males	
	and females	
•	Statistically significant (p<0.05) increase in absolute and	
	relative liver weights with 3 mg/kg compared to controls in	
	males only	

<u>F1</u>	effects at PND63 (HFD): glucose metabolism	
•	Statistically significant (p<0.05) increase in fasting serum	
	glucose in males (3 mg/kg) and females (≥0.3 mg/kg)	
	compared to controls	
•	Statistically significant (p<0.05) increase in fasting serum	
	insulin with 3 mg/kg compared to controls in males and females	
•	Statistically significant (p<0.02) increase in blood glucose area	
	under the curve (OGGT) with 3 mg/kg compared to controls in	
	both males and females	
•	Statistically significant (p<0.01) increase in HOMA-IR with 3	
	mg/kg compared to controls in both males and female	
	mg/kg compared to controls in both males and remaie	
F1	effects at PND63 comparing STD and HFD groups: liver	
	eights	
	Statistically significant (p<0.05) increase in relative liver weight	
•	with 3 mg/kg for HFD group compared to STD group in males	
	only	
	oniy	
<u>F1</u>	effects at PND63 comparing STD and HFD groups: glucose	
m	etabolism	
•	Statistically significant (p<0.05) increase in fasting serum	
	glucose with 3 mg/kg for HFD group compared to STD group in	
	males only	
•	Statistically significant (p<0.05) increase in fasting serum	
	insulin with 3 mg/kg for HFD group compared to STD group in	
	females only	
•	Statistically significant (p<0.01) increase in HOMA-IR with 0.3	
	mg/kg for HFD group compared to STD group in males and	
	females	
	Tomatoo	

Reference and Study Design		Res	ults		Comment
Wang et al. (2011c)	Internal PFOS of	concentrations			Major Limitations:
					• Sample size reported to be <10 but
Species and strain:	Serum and corte	x PFOS concentrat	ions in dams		not reported for any given endpoint
Rats, Wistar	PFOS	Serum PFOS	Cortex PFOS	Cortex/serum	. ,,, ,,,
F0 age not reported	(mg/kg feed)	(ug/ml)	(ug/g tissue)	ratio	Other comments:
3	Dams PND1				Species and strain appropriate for
Group size:	0	<lloq<sup>a (3)</lloq<sup>	<lloq<sup>b (3)</lloq<sup>	NA	endpoints assessed
Varied	3.2	2.29±0.15 (4)			 Oral gavage provided direct
4 to 9 dams/group	32	16.9±0.43 (3)	0.76±0.05 (3)	0.046±0.002 ^c	
5 to 8/female pups/group	Dams PND7				exposure to PFOS
5 to 8/male pups/group	0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td>Dose selection based on previous</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td>Dose selection based on previous</td></lloq>	NA	Dose selection based on previous
5 to o/male pups/group	3.2	4.16±0.04 (3)			observations of thyroid hormone
Test article and vahiala.	32	27.3±0.43 (4)	1.33±0.03 (4)	0.050±0.002 ^c	effects
Test article and vehicle:	Dams PND14				Exposure lasted through gestation
PFOS (potassium salt, >98%	0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td>Only 2 exposure levels assessed,</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td>Only 2 exposure levels assessed,</td></lloq>	NA	Only 2 exposure levels assessed,
pure) in 2% Tween 20	3.2	3.15±0.21 (6)			may not clarify shape of dose-
Route of exposure:	32	28.7±1.44 (6)	1.04±0.02 (6)	0.035±0.003 ^c	response curve
Dietary Exposure levels: 0, 3.2, 32 mg/kg feed See Results column for serum and brain PFOS concentrations Exposure regimen: GD1 to PND14 Rats sacrificed on PNDs 1, 7, and 14 This study also exposed rats to 2,2',4,4'-tetrabromodiphenyl	Number in paren a = lower limit of b = LLOQ for bra c = p<0.05 corte: NA = not applica	eported as Mean±S theses is sample si quantitation (LLOC ain PFOS is 0.025 u x/serum ratio for PF ble as ratio could n vere below the LLO available	ze l) for serum PFOS lg/g COS in neonate cor ot be calculated as	npared to dam	 Quantitative data reported, clinical signs assessed not reported Internal PFOS concentrations determined Endpoint ascertainment used standardized assessment of endpoints
ether (BDE-47) alone and in combination with PFOS. Results reported herein are for PFOS only exposures.					

	PFOS concentrat			
PFOS	Serum PFOS	Cortex PFOS	Cortex/serum	
(mg/kg feed)	(ug/ml)	(ug/g tissue)	ratio	
Pups PND1				
0	<lloq<sup>a (3)</lloq<sup>	<lloq<sup>c (3)</lloq<sup>	NA	
3.2	5.85±0.33 (7)	2.05±0.13 (7)	0.36±0.07	
32	32.9±0.81 (6)	11.5±0.82 (6)	0.37±0.05	
Pups PND7				
0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td></td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td></td></lloq>	NA	
3.2	3.65±0.23 (6)	1.52±0.10 (6)	0.42±0.01	
32	21.3±1.06 (5)	6.79±0.48 (5)	0.32±0.03	
Pups PND14				
0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td></td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td></td></lloq>	NA	
3.2	4.89±0.29 (5)	1.45±0.06 (5)	0.30±0.01	
32	25.2±1.27 (6)	4.92±0.29 (6)	0.20±0.04	
	eported as Mean±S			
	heses is sample si			
) for serum PFOS i	s 0.010ug/ml	
	in PFOS is 0.025 u			
		ot be calculated as	PFOS	
	ere below the LLO	2		
= no samples	available			
Maternal effects				
No signs of g	jeneral toxicity du	uring daily observ	ations	
 Dam food int 	ake similar betwe	en groups for GI	D1 to GD21	
		0		
Reproductive a	nd offspring end	lpoints		
		5) decreased pup	hody weight at	
			pared to controls	
 Pups appear 	ed pale and delid	ate in 32 mg/kg f	eea group	
Reproductive and	l offspring effects			
PFOS	Pregnancy		Mortality on	
	length	Litter size	Mortality on	
(mg/kg feed)	(days)		PND1 (%)	
0	22	8 to 14	0 to 25	
3.2	22	8 to 14	0 to 20	
32	22	6 to 14	0 to 29	

Maternal effects: serum levels of total triiodothyronine (TT3) and total thyroxine (TT4)
 Statistically significant (p<0.05) decrease in maternal TT3 levels at PND1 with 32 mg/kg compared to controls; data incomplete for PNDs7 and 14 Statistically significant (p<0.05) decrease in maternal TT4 at PND1 (≥3.2 mg/kg) and PND7 (only 3.2 mg/kg data reported) compared to controls, no control values reported at PND14
 Offspring effects: serum levels of TT3 and TT4 Statistically significant (p<0.05) decrease in TT3 levels at PND14 with 32 mg/kg compared to controls, no effects at PNDs1 and 7 Statistically significant (p<0.05) decreases in TT4 levels at PND1 with 32 mg/kg and at PNDs7 and 14 with ≥3.2 mg/kg compared to controls

Reference and Study Design				Res	sults						Comment
Wang et al. (2015)	Internal P	FOS cor	ncentratio	ns						Ма	ajor Limitations:
										•	Internal PFOS concentration
Species and strain:	Maternal	serum P	FOS conc								in offspring determined only
Rats, Wistar				Р	FOS do	se (mg	Ľ)				for PND35 and not for time
Age not reported			0)	:	5		15			points where effects were
Pregnant females	PND7		N	D	25.7	±0.8**	g	9.3±2.0*	*		observed (e.g., decrease in
	PND35		N	D	64.3	±9.5**	20	7.7±10.5			time spent in target quadrant
Group size:	For each	dose gro	pup, n = 3								with TT15 on PND42)
Varied by endpoint	* = p<0.0									•	Maternal toxicity not reported
	ND = not										
Test article and vehicle:										Ot	her comments:
PFOS (salt not reported,	PFOS cor	ncentratior	ns (ug/g) in	hippocamp	ous of litt	ers				•	Species and strain
≥97% pure) in 2% Tween				•••••	Group						appropriate for endpoints
20 (this stock solution was		CC	TT5	TT15	TC5	TC	215	CT5	CT15		assessed
diluted 500-fold with sterile	PND1	ND	123.3**	373.4**						•	Sample sizes ≤10
tap water for exposure)	PND7	ND	11.4**	32.30**	4.6**		B** ^{##}	1.0	3.5**	•	Drinking water exposure
_	PND35	ND	6.7**	14.66**	0.3#		3##	1.9**	5.7**		allows for PFOS to interact
Route of exposure:			standard er	rors not re	ported h	erein)					with tissues from the oral
Drinking water (ad libitum)	For each		p, n = 3 ol (CC): * =	0 0E+ **	n 10 01						cavity to the stomach
			same PFO				0.01			•	Doses selected based on
Exposure levels:	ND = not			0 0036. # -	- p<0.03	, ## – p•	.0.01				acute toxicity tests (LD50
0, 5, 15 mg/L			, exist at tim	e of sampli	ina						determinations) in rats, as
					5					1	stated by the study authors
See Results column for	Reproduc	tive/dev	elopment	al effects						•	Duration of exposure lastrd
maternal serum and											from the beginning of
offspring hippocampus	Litter par	ameters									gestation until PND35
PFOS concentrations					Р	FOS do	se (m	aL)		•	Two exposure levels may lim
Exposure regimen:				0			5		15		ability to demonstrate any
Dams exposed GD1 to	Number	of pups b	orn per	10.50±	0 55	11 50	±0.80	10.4	26±0.8		dose-related effects, NOAEL
weaning (PND not	litter			10.50±	0.55	11.58	±0.60	10.4	20±0.0		not identified (for escape
specified), offspring were	Number	of pup su	irviving	10.36±	0.50	44.04	±0.74	0.7	4±0.81		latency)
then exposed from weaning	to PND1			10.30±	0.52	11.24	±0.74	0.74	+±0.01	•	Quantitative data reported
to PND35	Birth to F	ND1 sur	vival (%	99±1	0	07	1.0	07	±6.0**	•	Endpoint ascertainment used
	per litter)		`	99±1	.0	975	1.0	8/:	±0.0		standardized assessment of
On PND1, control and	Mean±S			•				•			reproductive/developmental
exposure groups were	* = p<0.0	5, ** = p•	<0.01								and neurological endpoints

cross-fostered to produce									
the following groups:	Neurotoxicity	(offspring	ı): visu	al and m	otor fund	tions			Note: this study also presented
 CC = no prenatal and 		cally signific					ds and tin	ne to	data on mechanistic and
no postnatal exposure		visible platf							neurochemical effects of PFOS.
 TT5 or TT15 = prenatal 	Neurotoxicity					oups and	100111013		Those data are not reported
	Neuroloxicity	(onspring	J). Iean	ning abii	LY				herein.
and postnatal exposure	Econo lotono	(time to big	طمم مام	tform) in o	ffonring]	nerein.
to 5 or 15 mg/L,	Escape latenc			PND37			PND40		
respectively	Test day Sample size	8	PND36 6	10	PND38 10	PND39 10	9 9	PND41 10	
 CT5 or CT15 = only 	CC		6 41.48	23.76	17.76	23.64	9 16.59	17.60	
postnatal exposure to 5	TT5		41.40	19.72	22.49	23.04	15.14	15.44	
or 15 mg/L,	TT15		49.21 58.49	44.13**	22.49	26.19	22.74	23.78	
respectively	TC5		56.49 51.38	35.4	38.82*	27.24*	22.74	23.65	
 TC5 or TC15 = only 	TC15		51.56 55.66*	49.41**	35.69*	41.50**	29.61**	31.01*	
prenatal exposure to 5	CT5		48.45	39.99*	28.14*	24.17	25.36	22.67	
or 15 mg/L,	CT15		40.45 57.80	35.57	28.63*	24.17	20.53	21.29	
respectively	Values are me								
	* = p<0.05, co								
Some pups sacrificed on	= p<0.00, 00			<u>00), -</u>	~0.01, 00	iipaica to		,0)	
PND7 and PND35, other	Escape dista	nco (distan		m hoforo	roaching	cubmoro	od platfor	m) in	
pups tested for spatial	offspring	nce (uistan	ice swu	III Delute	reaching	submerg	eu platioi		
learning and memory ability		1							
starting on PND35	Training		Obs	servations	for esca	pe distan	cea		
starting on FIND 55	day								
	1			lly signific	cant diffe	ences be	tween ex	posed	
		group	os and o	control					
	2	 No st 	tatistica	Ily signific	cant diffei	ences be	tween ex	posed	
		group	os and o	control					
	3	Statis	stically	significan	t (p<0.05	increase	with TT1	5.	
	-			and CT5				ς,	
	4			significan				and	
	-			ared to co		increase		anu	
	5								
	Э			significan	t (p<0.01) increase		15	
	-			control					
	6			significan	t (p<0.05) increase	e with TC	15	
				o control					
	7	Statis	stically s	significan	t (p<0.05) increase	with TC	5 and	
		TC15	5 compa	ared to co	ontrol				
	Note: Trainin	g day 1 wa	s PND3	35					
	a = data by s				/ided in a	figure			

 Neurotoxicity (offspring): memory ability Note: probe test conducted on PND42 (i.e., 24 hours after the last hidden platform test) Statistically significant (p<0.05) decrease in time spent in target quadrant 	
 Statistically significant (p<0.05) decrease in time spent in target quadrant with TT15 compared to controls Statistically significant (p<0.05) decrease in number of platform crossings with TT15 compared to controls 	

Reference and Study			Res	ults			Comment
Design							
Yahia et al. (2008)	 Maternal e No mat 	<u>ffects</u> ernal deaths					Major Limitations:Internal PFOS concentrations
Species and strain: Mice, ICR F0: 7 weeks	GD11 u • Statistic	until end of ge	station with 20 nt (p<0.05) dec) mg/kg	se in weight ga feed consump		 not determined Sex of offspring not reported Other comments:
Group size: 5 dams/group	 Increasing signification 	ed daily wate ance [p<0.05]	r consumption from GD11 or	nward)	g (intermittent s		 Strain of mouse not very common and appropriateness for endpoints assessed is
Test article and vehicle: PFOS (potassium salt, 98% pure) in 0.5% Tween 20	with 10	and 20 mg/kg	g) with hypertr	ophy at highes eys, lungs, and	st dose	[p<0.01]	 unclear Sample size generally ≥10 dams or pups
Route of exposure: Oral gavage	fetuses	al swelling in b (incidence no	ot reported) wi	th 10 mg/kg	th 20 mg/kg an	d in some	 Oral gavage provided direct exposure to PFOS Dose selection allowed for event toxisity at highest does
Exposure levels: 0, 1, 10, 20 mg/kg/day		Control	wing PFOS ex 1 mg/kg	10 mg/kg	20 mg/kg		overt toxicity at highest doseDuration of exposure lasted
(only two highest doses for histopathology study)	# of dams	5	5	5	5		gestational periodGenerally 3 doses assessed
Exposure regimen: Prenatal study: GD0 to	Total # of fetuses	80	76	79	71		per endpoint, expect 1 dose for histopathologyGenerally quantitative data
GD17, sacrifice on GD18 Postnatal study: GD0 to	% live fetuses	98.75±1.25	98.88±1.12	96.85±1.97	90.06±3.02*		but some qualitative (textual) reporting of data
GD18,sacrifice following natural birth	% resorbed fetuses	1.25±1.25	1.11±1.11	3.15±1.97	5.36±2.63		 Endpoint ascertainment used standardized assessment of mortality, body and organ
Histopathology study: GD0 to GD17 or GD18, sacrifice	% dead fetuses	0	0	0	4.58±3.25		weights, reproductive/developmental
prior to or after birth	Fetal body weight (g)	1.49±0.01	1.46±0.01	1.41±0.01**	1.10±0.02**		 endpoints, and histology Note: biological significance of intracranial blood vessel
		, compared to	o control; ** =	p<0.01, compa	ared to		dilation not clear.

Fetal observat		FOS exposure	4.0 "						
	Control	1 mg/kg	10 mg/kg	20 mg/kg					
# fetuses examined	60	44	68	60					
% cleft palate	0	1.96±1.96	26.36±8.27**	98.56±1.44**					
% sternal defects	0	15.77±0.99**	52.44±2.79**	100**					
% delayed ossification of phalanges	0	1.96±1.96	4.34±1.80	57.23±9.60**					
% delayed eruption of incisors	3.25±1.89	6.90±0.53	22.12±2.68	36.10±4.64**					
% extra ribs	27.81±13.35	13.01±6.59	36.11±11.85	32.08±8.04					
% wavy ribs	0	0	7.31±0.34*	84.09±2.56**					
% tail abnormalities	4.41±4.41	18.38±8.73	23.05±3.25	65.00±6.71**					
% curved fetus	3.55±2.11	4.94±2.47	33.38±8.47**	68.47±1.30**					
% spina bifida occulta	0	1.96±1.96	23.13±3.94**	100**					
 Postnatal effect Neonates (immediately Neonates (hours after Bilateral firr and in some Histological all pups (n= 	 * = p<0.05, compared to control; ** = p<0.01, compared to control Postnatal effects Neonates (100%) in 20 mg/kg group born pale, weak, and inactive; di immediately after or within hours after birth Neonates (45%) in 10 mg/g group born pale and inactive; died within hours after birth Bilateral firm swelling in back of neck in all neonates of 20 mg/kg grou and in some (incidence not reported) of 10 mg/kg group Histological examination of pup lungs showed atelectasis-like histolog all pups (n=5) in 20 mg/kg group and in some (incidence not reported pups in 10 mg/kg group; 1 mg/kg and control pups had intact lung 								

Neonatal observations following PFOS exposure				
	Control	1 mg/kg	10 mg/kg	20 mg/kg
# of dams	5	5	5	5
# of pups	53	59	49	40
Neonatal body weight (g)	1.51±0.02	1.55±0.02	1.41±0.01**	1.08±0.01**
% survival rats at PDN4	98.18±1.82	100	55.20±18.98*	0**
* = $p<0.05$, compared to control; ** = $p<0.01$, compared to control PND = postnatal day				
Histopathology of fetal (20 mg/kg) and neonatal (10 mg/kg) heads and				
lungs				•
Normal lung structure in all (n=15) fetal lungs				
• All fetal heads (n=15) showed mild to severe intracranial dilatation of				
blood vessels with no inflammatory or hemorrhagic reactions				
 Lung atelectasis (slight) in 27% of pups accompanied with moderate to severe intracranial blood vessel dilatation 				
Brain blood	l vessel dilatatio	n (moderate to	severe) in 87%	of pups

Reference and Study Design	Results	Comment
Ye et al. (2012)	Maternal effects	Major Limitations:
Species and strain:	No dams died from exposure	Qualitative data reported; dam and fetal birth weights not reported
Rats, Sprague-Dawley	Fetal effects	 No internal PFOS concentrations
F0 age not reported	 No histological differences observed in lungs between exposure groups 	determined, purity of PFOS not reported
Group size:		
10 dams/group	Note: body weights of dams and fetus were recorded but not	Other comments:
	reported by authors	Species and strain appropriate for
Test article and vehicle:		endpoints assessed
PFOS (salt and purity not		 Sample size 10 dams/group but
reported) in 0.5% Tween 20		number of fetuses used endpoint observation (lung pathology) not
Route of exposure:		reported
Oral gavage		Oral gavage provided direct exposure to PFOS
Exposure levels:		 High dose used apparently based
0, 5, 20 mg/kg		on previous observations of
Exposure regimen:		neonatal mortality in rats
GD12 to GD18		Exposure occurred during a part of gestational period
Pregnant dams sacrificed on		 Only 2 exposure levels assessed, may not clarify shape of dose-
GD18.5		response curve
		Endpoint ascertainment used
		standardized assessment of
		endpoints, subjective
		histopathology observations

Reference and Study Design			Resu	ılts		Comment
Yu et al. (2009a)	Internal PFOS concentration			Major Limitations:		
						• Only males used, females may be
Species and strain:				r 91 days of exp		more sensitive
Rats, Sprague-Dawley		sure dose (r	ng/L)	Serum PF	FOS (mg/L)	• Exact sample size per dose group
Males only	0			<l< td=""><td>.OQ</td><td>not provided</td></l<>	.OQ	not provided
Age not reported	1.7			5.0	±0.3	
	5.0			33.6	6±2.1	Other comments:
Group size:	15.0			88.2	2±4.2	• Species and strain appropriate for
8–10/group	For each	dose group,	n = 7 - 8/gro	up		endpoints assessed
		uantitation (L				 Sample size ≤10/group
Test article and vehicle:			,	0		 Drinking water exposure allows for
PFOS (potassium salt, >98%	Body weig	<u>lht</u>				PFOS to interact with tissues from
pure) in drinking water						the oral cavity to the stomach
	Body weig	ght after 91 o	days of expo	osure		Doses selected cover ~1 order of
Route of exposure:	Expo	sure dose (r	ng/L)	Body w	veight (g)	magnitude and produce rat serum
Drinking water (ad libitum)	0	•		397:	±29.3	PFOS concentrations that are
	1.7			406:	±40.3	greater than human PFOS serum
Exposure levels: 0, 1.7, 5.0, 15.0 mg/L	5.0			434:	±19.2	concentrations from occupational
0, 1.7, 5.0, 15.0 mg/L	15.0			385:	±26.7	and non-occupational exposures,
See Results column for serum	For each	dose group,	n = 8 - 10/gr	oup		as reported by the study authors
PFOS concentrations				•		Subchronic duration of exposure
	Organ wei	ghts: liver a	and thyroid			Number of exposure levels would
Exposure regimen:		-				allow for determining any dose-
91 days	Organ weig	ghts after 91 o	days of expos			dependent effects
o r adyo			Liver		Thyroid	Quantitative data reported
	Exposure	Absolute		Absolute	Relative ^a	 Internal PFOS concentrations
	dose	(g)	Relative	(mg)	(x10 ³)	determined
	(mg/L)	13.7±1.1	0.035±0.0		0.068±0.004	 Endpoint ascertainment used
	1.7	13.7±1.1 15.1±1.5	0.035±0.0 0.037±0.0		0.068±0.004 0.060±0.005	standardized assessment of body
	5.0	17.9±1.0*	0.037±0.00		0.061±0.002	and organ weights; based on
	15.0	19.8±1.5**	0.052±0.00		0.067±0.002	authors' description of methods,
		ose group, n			0.001 20100 1	unclear whether free T4
	a = organ v	weight to body	y weight ratio			measurements were potentially
	* = p<0.05 compared to control, ** = p<0.01 compared to control			subject to negative bias due to		
						analytical method used

Thyroid h	ormones				Note: This paper also includes mechanistic data not reported herein.
Thyroid ho	rmone levels a	fter 91 days of	exposure		
Exposure dose (mg/L)	Total T3 (ug/L)	Total T4 (ug/L)	Free T4 (pmol/L)	TSH (IU/L)	
0	0.29±0.04	40.9±1.8	19.0±1.3	0.72±0.30	
1.7	0.48±0.08*	23.9±1.3**	16.7±1.4	0.67±0.27	
5.0	0.23±0.05	16.4±5.4**	12.6±1.5*	1.12±0.34	
15.0	0.23±0.03	8.5±1.6**	17.3±1.1	1.62±0.67	
Note: thyro T3 = triiod T4 = thyro TSH = thy	othyronine xine rotropin	: 5–6/group neasured by rac control, ** = p<0			

Appendix 5: Animal tabular review tables

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Asakawa et al. (2007)	Inhibition of feeding	Study also contains information on gene
		expression, and hypothalamus cellular
Species, strain, age of animals:	NOAEL	function.
Mice, ddy, M, 8-9 wks old	30 μg/kg	
Rats, Wistar, M, 8-10 wks old		Unusual route-of-exposure
	LOAEL	
Group size:	100 μg/kg	
N = 3-7		
	Endpoint 2	
Test article and vehicle:	Gastro-duodenal motility	
PFOS, in artificial cerebrospinal fluid w 1%		
DMSO	NOAEL	
Route of exposure:		
Intracerebrovemtricular injection	LOAEL	
	300 μg/kg (single dose level)	
Exposure levels:		
Vehicle, 30, 100, 300 µg/kg	Endpoint 3	
	Rate of gastric emptying	
Exposure regimen:		
Single dose	NOAEL	
	100 μg/kg	
	LOAEL	
	300 μg/kg	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Austin et al. (2003)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D, adult, F	1 mg/kg	
	LOAEL	
Group size:	$10 \text{ mg/kg} \downarrow (\text{for d } 11-14)$	
N = 8 for each dose group		
	Endpoint 2	
Test article and vehicle:	Food intake	
K-PFOS in DMSO		
	NOAEL	
Route of exposure:	1 mg/kg	
Intarperitoneal injection	LOĂEL	
	10 mg/kg ↓ (for d 5-14)	
Exposure levels:		
Vehicle, 1, 10 mg/kg	Endpoint 3	
	Estrous cycling (percent animals w regular	
Serum conc (mean) = ND, 10,480, 45,446	cycles)	
ng/ml		
	NOAEL	
Exposure regimen:	1 mg/kg	
[day/week, duration]	(also irregular cycle and ↑ persistent diestrus	
	vs. no observed in controls)	
Daily for 14 d	LOAEL	
	10 mg/kg ↓ % normal	
Other information	(also irregular cycle and ↑ persistent diestrus	
PFOS measured in various tissue in addition	vs. no observed in controls)	
to serum		
	Endpoint 4	
Monoamines measured in hypothalmus	Serum leptin	
	NOAEL	
	1 mg/kg	
	LOĂEL	
	10 mg/kg ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Also addresses non-apical endpoints that may
Bijland et al. (2011)	Body wt	be useful for mechanistic understanding
Species, strain, age of animals:	NOAEL	
E3LCEPT mice, M,	3 mg/kg/d	
Group size:	LOAEL	
N = 5-8 (depending on experiment)		
	Endpoint 2	
Test article and vehicle:	Food intake	
K-PFOS in food		
	NOAEL	
Route of exposure:	3 mg/kg/d	
Diet (western-type)		
Exposure levels:	LOAEL	
~3 mg/kg/d (single dose)		
	Endpoint 3	
Serum conc	Triglycerides, plasma (4 wks)	
4 wks – 85.6, 95.3 <u>μg</u> /ml		
$6 \text{ wks} - 124.7 \mu\text{g/ml}$	NOAEL	
Exposure regimen:		
4-6 wks	LOAEL	
	3 mg/kg/d ↓	
	Endpoint 4	
	Total cholesterol, plasma	
	NOAF	
	NOAEL	
	LOAEL	
	3 mg/kg/d ↓	

<u>Endpoint 5</u> VLD-cholesterol, plasma	
NOAEL	
Sing/kg/a ↓	
<u>Endpoint 6</u> HD-cholesterol, plasma	
NOAEL	
Liver wt	
NOAEL	
Endpoint 8 Liver trialyceride content	
NOAEL	
	NOAEL LOAEL 3 mg/kg/d ↓ Endpoint 6 HD-cholesterol, plasma NOAEL LOAEL 3 mg/kg/d ↓ Endpoint 7 Liver wt NOAEL LOAEL 3 mg/kg/d ↑ Endpoint 8 Liver triglyceride content NOAEL

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Bjork et al. (2008)	Maternal body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D	3 mg/kg	
Group size:	LOAEL	
Dams/fetuses		
N =5-6		
(litters constituted single unit)	Endpoint 2 Maternal liver wt	
Test article and vehicle:		
PFOS in 0.5% Tween-20	NOAEL	
	3 mg/kg	
Route of exposure:		
gavage	LOAEL	
3 ···· 3 ··		
Exposure levels:		
3 mg/kg	Endpoint 3	
5.5	Fetal liver wt	
Exposure regimen:		
Dams dosed daily	NOAEL	
GD-2 - 20	3 mg/kg	
Other information	LOAEL	
Dams weighed and sacrificed d-21		
Fetuses extracted		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Chang et al. (2008)	Total serum T4	
Species, strain, age of animals: Rats, S-D, M & F, 8-10 wks old	NOAEL	
Group size:	LOAEL	
5-15/group		
5-15/group	15 mg/kg ↓	
Test article and vehicle:	Endpoint 2	
K-PFOS in 0.5% Tween-20	Total T3	
K-FT 03 III 0.3 % Tween-20	1014115	
Route of exposure:	NOAEL	
gavage		
guvugo		
Exposure levels:	LOAEL	
0, 15 mg/kg	15 mg/kg (at 24 hr) ↓	
	······································	
Serum conc	Endpoint 3	
61.58 μg/ml (at 24 hr)	rT3	
Exposure regimen:	NOAEL	
Single dose		
(sacrifice at various time pts \leq 24 post dosing)		
	LOAEL	
Other information	15 mg/kg (at 24 hr) ↓	
This study presents data on malic enzyme		
mRNA transcripts and activity (not summarize	Endpoint 4	
here)	Free T4	
	NOAEL	
	15 mg/kg (at 24 hr)	
	LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	All 10 rats at 20 mg/kg/d died before 28 d
Cui et al. (2009)	Behavioral abnormalities	
		For spleen and brain histopath results,
Species, strain, age of animals:	NOAEL	unclear which pathology was observed at the
Rats, S-D, M, ~2 mos. old		5 mg/kg/d dose compared to observations at 20 mg/kg/d
Group size:	LOAEL	20 119/kg/u
N = 10/group	5 mg/kg/d	
Test article and vehicle:	Endpoint 2	
PFOS in Mili-Q water	lethality	
Route of exposure:	NOAEL	
gavage	? unclear	
941490		
Exposure levels:	LOAEL	
0, 5, 20 mg/kg/d	? unclear	
	Complete lethality by 26 days for 20 mg/kg/d	
Blood conc at 28 d	Endnaint 2	
5 mg/kg/d \rightarrow 72,0 µg/g 20 mg/kg/d \rightarrow not avialable	Endpoint 3 Body wt	
	body wi	
Exposure regimen:	NOAEL	
Daily for 28 days	5 mg/kg/d	
Other information		
Paper also presents data for tissue distribution	20 mg/kg/d ↓	
	Endpoint 4	
	Food consumption	
	NOAEL	
	5 mg/kg/d	
	LOAEL	
	20 mg/kg/d ↓	

Endpoint 5	
Rel. liver wt	
NOAEL	
LOAEL	
5 mg/kg/d ↑	
<u>Endpoint 6</u> Rel kidney wt	
NOAEL	
LOAEL 5 mg/kg/d ↑	
<u>Endpoint 7</u> Rel gonadal wt	
NOAEL	
LOAEL	
5 mg/kg/d ↑	
Endpoint 8 Liver histopathology	
NOAEL	
LOAEL	
5 mg/kg/d (Cytoplasmic vacuolization, focal/flakelike necrosis)	
Endpoint 9	
Lung histopathology	
NOAEL	

LOAEL	
5 mg/kg/d	
Pulmonary congestion, focal/diffuse	
thickening of epithelial walls	
······································	
Endpoint 10	
Kidney histopathology	
Ridney histopathology	
NOAEL	
5 mg/kg/d	
LOAEL	
20 mg/kg/d	
Turbidness/tumefaction in epithelium of	
proximal convoluted tubules, congestion in	
renal cortex/medulla, enhanced cytoplasmic	
acidophelia	
Endpoint 11	
Spleen histopathology	
NOAEL	
LOAEL	
5 mg/kg/d (?)	
Congestion, mild dilation of splenic antrum	
Endpoint 12	
Brain histopathology	
NOAEL	
5 mg/kg/d (?)	
Focal hyperplasia of gliocytes,	
dilation/congestion in inferior caval veins of	
cerebral arachnoid matter, slight focal	
hemorrhaging	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Curran et al. (2008)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D, 35-37 day old, M, F	20 mg/kg feed LOAEL	
Group size:]	50 mg/kg feed ↓ (males)	
11-15/sex/group	100 mg/kg feed ↓ (females, day 15)	
Test article and vehicle:	Endpoint 2	
K-PFOS in feed	Rel organ wts (rel to bw)	
Route of exposure:	NOAEL	
diet	Brain – 20 mg/kg feed	
	Liver – 2 M, - F	
Exposure levels:	Kidney – 50 M, 20 F	
2, 20, 50, 100 mg/kg feed	Adrenal – 100	
Intake	Heart – 100	
M –	Thyroid – 50 M, F	
0, 0.14, 1.33, 3.21, 6.34 mg/kg/d	LOAEL	
F–	Brain – 50 mg/kg feed M,F ↑	
0, 0.15, 1.43, 3.73, 7.58 mg/kg/d	Liver – 20 M, 2 F ↑	
	Kidney – 100 M, 50 F ↑	
<u>Serum conc (μg/g)</u>	Adrenal -	
M –	Heart -	
0.47, 0.95, 13.45, 20.93, 29.88	Thyroid – 100 M, F ↑	
F –		
0.95, 1.50 15.40, 31.93, 43.20	Endpoint 3	
	Liver pathology	
Exposure regimen:		
28 d	NOAEL	
	20 mg/kg feed	
Other information	LOAEL	
Study also contains data on RBC	50 mg/kg feed	
deformability and liver fatty acid profiles	Hepatocyte hypertrophy	
	(M only)	

<u>Endpoint 4</u> Blood cell pathology	
NOAEL 100 mg/kg feed - M 50 - F LOAEL 100 mg/kg feed – F only RBC, hematocrit, Hb conc ↓	
Endpoint 5 Clinical Chem	
NOAEL 20 mg/kg feed – M, F LOAEL 50 mg/kg feed Amylase – F \uparrow Bicarbonate – F \downarrow Conjug bilirubin - F \uparrow Cholesterol - M. F \downarrow Lipase – M \downarrow Urea – F \downarrow (50 but not 100)	
Endpoint 6 Thyroid hormones	
NOAEL T3 – 50 mg/kg feed – M, 20 mg/kg feed – F T4 – 2 mg/kg feed – M, F LOAEL T3 – 50 mg/kg feed – F, 100 mg/kg feed – M T4 – 20 mg/kg feed – M, F	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Stat sig not provided for liver histopathology
Elcombe et al. (2012a)	Body wt	results.
	(control - n = 30)	
Species, strain, age of animals:	20 ppm - n = 30;	
Rats, S-D, M, 6-7 wks old (at start)	100 ppm – n = 9)	
Group size:]	NOAEL	
As indicated by endpoint	20 ppm feed	
	LOAEL	
Test article and vehicle:	100 ppm feed ↓	
K-PFOS		
	Endpoint 2	
Route of exposure:	Food consumption	
diet	(n = 4-5)	
Exposure levels:	NOAEL	
0, 20, 100 ppm in diet	20 ppm feed	
-, 1.27, 5.62 mg/kg/d	LOAEL	
Serum conc (µg/ml):		
ND, 94, 411	Endpoint 3	
	Rel liver wt	
Exposure regimen:		
Diet for 28 d *	NOAEL	
Other information	LOAEL	
* This study also exposed rats for 1 and 7	20 ppm feed ↑	
days and sacrificed rats on 2, 8, and 29 d.		
Only 28 d exposures w 29 d sacrifices are	Endpoint 4	
reported here.	Plasma liver enzymes	
	(ALT, AST)	
	(n = 9-10)	
	NOAEL	
	20 ppm feed	
	LOAEL	

Endpoint 5	
Plasma cholesterol	
(n = 9-10)	
NOAEL	
NOAEL	
LOAEL	
20 ppm feed ↓	
pp	
Endpoint 6	
Plasma triglycerides	
(n = 9-10)	
NOAEL	
20 ppm feed	
LOAEL	
100 ppm ↓	
Endnaint 7	
<u>Endpoint 7</u> Plasma glucose	
(n = 9-10)	
(1 - 5 10)	
NOAEL	
20 ppm feed	
LOAEL	
100 ppm ↓	
Endpoint 8	
Liver histopathology	
(n = 10)	
NOAFI	
NOAEL	
LOAEL	
20 ppm feed	
Zo ppin leed Hypertrophy ↑	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Note that ↑ liver wt was observed on d 84 of
Elcombe et al. (2012b)	Body wt	recovery (although not ond 28, 56)
Species, strain, age of animals:	NOAEL	PFOS serum conc in control serum not
Rats, S-D, M, 6-7 wks old		provided
	LOAEL	
Group size:	20 ppm in feed ↓	
40/group	(sig on recovery d 21 and 28 only)	
Test article and vehicle:	Endpoint 2	
K-PFOS	Food consumption	
Route of exposure:	NOAEL	
diet	100 ppm in feed	
	LOAEL	
Exposure levels:		
0, 20, 100 ppm in feed		
	Endpoint 3	
Serum conc	Rel liver wt	
(recovery d 1)		
39.49 (20 ppm), 140.40 μg/ml (100 ppm),	NOAEL	
Exposure regimen:	LOAEL	
Diet for 7 d	20 ppm in diet (recovery d 1) ↑	
Followed by 1, 28, 56, 84 d of recovery	(Also on recovery d 84)	
Other information		
Study also presents data on liver biochemical	<u>Endpoint 4</u> Plasma liver enzymes	
assays related to proliferation and metabolism	Plasma liver enzymes	
(not summarized here)	NOAEL	
	AST – 100 ppm in feed	
Related studies:	ALT – no NOAEL	
Elcombe et al. (2012a)	LOAEL (recovery d 1)	
	AST – no LOAEL	
	ALT – 20 ppm in feed ↓	

<u>Endpoint 5</u> Plasma cholesterol	
NOAEL	
LOAEL 20 ppm in feed (recovery d 1) ↓ (also recovery d 28 and recovery d 84 for 100 ppm)	
Endpoint 6 Plasma triglycerides	
NOAEL 20 ppm in feed LOAEL 100 ppm in feed (recovery d 1) ↓	
Endpoint 7 glucose	
NOAEL 20 ppm in feed LOAEL 100 ppm in feed (recovery d 56 only) ↑	
Endpoint 8 Liver histopathology	
NOAEL	
LOAEL 20 ppm in feed (hepatocellular hypertrophy – recovery d 1: grade 1; grades 1 & 2 for 100 ppm) ↑ incidence through recovery d 84	

Endpoint 9 Thyroid histopathology	
NOAEL 100 ppm in feed	
LOAEL	

	Endpoint 1	Cmall N
		Small N
Fair et al. (2011)	Body wt	
	NOAEL	
	166 μg/kg/d	
	LOAEL	
Croup cizo:		
N = 5/group	Fradrasiant O	
	Endpoint 2 Uterine rel wt	
	Uterine rei wt	
K-PFOS in Milli-Q water, 0.5% Tween-20	NOAEL	
	33.1 μg/kg/d	
Gavage	LOAEL	
	166 μg/kg/d ↓	
	Sig for trend	
(as PFOS ⁻)		
	Endpoint 3	
	histopathology	
0, 3.31, 16.6, 33.1, 166 μg/kg/d		
	NOAEL	
	166 μg/kg/d	
	(spleen, lung, thymus, liver, adrenals, uterus,	
	kidney)	
	LOAEL	
Exposure regimen:		
Daily, 28 d	For the start 4	
	Endpoint 4	
	Glucose, serum	
	NOAEL	
	166 mg/kg/d	
	$(1.3 \text{ x} \uparrow \text{but not sig})$	
	LOAEL	

Endpoint 5 cholesterol	
NOAEL 166 mg/kg/d (27% ↓ but not sig) LOAEL 	
<u>Endpoint 6</u> Thyroid hormones (T3, T4)	
NOAEL 166 mg/kg/d LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Fuentes et al. (2007b)	Maternal food/water consumption	
Species, strain, age of animals: Mice, CD-1, F, adult	NOAEL 6 mg/kg/d	
Group size:	LOAEL	
N = 8-10/dose/treatment group		
Test article and vehicle: K-PFOS in 0.5% Tween-20	Endpoint 2 Length of gestation	
Route of exposure: Gavage (maternal)	NOAEL	
Gavage (maternal)	6 mg/kg/d	
Exposure levels: 0, 6 mg/kg/d w and w/out stress by constraint	LOAEL 	
Exposure regimen: GD 12-18	Endpoint 3 Live pups	
	NOAEL 6 mg/kg/d	
	LOAEL 	
	Endpoint 4 Time to physical maturation	
	NOAEL	
	LOAEL 6 mg/kg/d For M testes descent only ↑	

Endpoint 5 Neuromotor development	
NOAEL	
LOAEL 6 mg/kg/d (tail pull resistance - PND 10, 11 (not 12) ↓ Vertical climb, forelimb grip – PND 11 (not 10, 12) ↓	
<u>Endpoint 6</u> Habituation (open field)	
NOAEL 6 mg/kg/d	
LOAEL 	
Endpoint 7 Coordination/balance (rotorod)	
NOAEL 6 mg/kg/d	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Maternal toxicity not determined
Fuentes et al. (2007c)	Open field activity	
	(rearing, distance traveled)	
Species, strain, age of animals:		
Mice, CD-1, F, adult	NOAEL	
	6 mg/kg/d	
Group size:		
N = 8-10	LOAEL	
Test article and vehicle:		
K-PFOS in 0.5% Tween-20	Endpoint 2 Water maze	
Route of exposure:		
gavage	NOAEL	
gavage		
Exposure levels:		
0, 6 mg/kg/d (maternal)	LOAEL	
	6 mg/kg/d	
Exposure regimen:	(F only – acquisition phase d 3, 4) \uparrow distance	
GD 12-18	traveled	
Other information		
Evaluation of offspring 3 mos post-natal		
Additional data reported on corticosterone		
levels		
Related studies:		
Appears to be continuation of Fuentes et al.		
(2007a)		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Fuentes et al. (2007a)	Functional observation battery	
	(CNS activity, neuromuscular function,	
Species, strain, age of animals:	autonomic function, sensorimotor reactivity)	
Mice, CD-1, 3 mos old, M		
	NOAEL	
Group size:	6 mg/kg/d	
10/group	(sig ↑ ease of removal for 3, but not 6	
	mg/kg/d)	
Test article and vehicle:		
K-PFOS in 0.5% Tween-20	LOAEL	
Route of exposure:		
gavage	Endpoint 2	
	Open field	
Exposure levels:		
0, 3, 6 mg/kg/d	NOAEL	
Exposure regimen:		
Daily for 4 wks	LOAEL	
	3 mg/kg/d	
	(time spent in center middle 5 min of 15 min	
	total – only)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* Authors report no sig diff (i.e., \downarrow) in survival
Guruge et al. (2009)	Body wt (PFOS-only)	between controls and 5 μg/kg/d group. However, graphic shows clear diff.
Species, strain, age of animals:	NOAEL	
Mice B6C3F1, F, 6-7 wks (at PFOS exposure)	25 μg/kg/d	
Group size:	LOAEL	
PFOS-only exposure (sacrifice at 21 d)		
N = 3		
5500	Endpoint 2	
PFOS + virus	Liver wt	
N = 23-25		
Test entials and ushiple.	NOAEL	
Test article and vehicle: K-PFOS in Milli-Q water and 0.5% Tween-20	25 μg/kg/d	
K-FFOS III MIIII-Q water and 0.5% Tween-20	LOAEL	
Route of exposure:		
gavage		
gavago	Endpoint 3	
Exposure levels:	Other organ wts (rel to bw)	
0, 5, 25 μg/kg/d	(spleen, thymus, kidney, lung)	
Exposure regimen:	NOAEL	
Daily for 21 d	25 μg/kg/d	
(21 d prior to influenza A infection)		
	LOAEL	
Virus incubated 20 d post-infection		
	Endpoint 4	
	Body wt following PFOS + virus infection	
	NOAEL	
	LOAEL	
	5 μg/kg/d ↓	

Endpoint 5 Virus resistance (survival w PFOS + infection – control = infection, but no PFOS)	
NOAEL 5 μg/kg/d *	
LOAEL 25 μg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* N = 10/group reported for one behavioral
Johansson et al. (2008)	Body wt	test, but group size does not appear to be given for other tests
Species, strain, age of animals:	NOAEL	
Mice, NMRI, M offspring at 10 d	11.3 mg/kg	
	LOAEL	
Group size:		
10/group *		
	Endpoint 2	
Test article and vehicle:	Spontaneous behaviour	
K-PFOS in mixture of egg lecithin and peanut		
oil	NOAEL	
	0.75 mg/kg	
Route of exposure:	LOAEL	
gavage	11.3 mg/kg	
	(locomotion, rearing, total activity – 2 and 4	
Exposure levels:	mos) ↓	
0, 0.75, 11.3 mg/kg		
	Endpoint 3	
Exposure regimen:	habituation	
Single dose		
Testing at 2 and/or 4 mos	NOAEL	
	0.75 mg/kg	
	LOAEL	
	11.3 mg/kg	
	Endpoint 4	
	Activity w nicotine challenge	
	NOAEL	
	0.75 mg/kg	
	LOAEL	
	11.3 mg/kg	
	(locomotion, rearing, total activity) ↓	
	(······, ····, ····, ····, ···, ···, ··	

Endpoint 5 Performance in elevated plus maze	
NOAEL 11.3 mg/kg/d LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Stat sig not given for histopathology endpoints
Kim et al. (2011)	Body wt	
Species strain age of animals	NOAEL	
Species, strain, age of animals:		
Rats, S-D, M, F, 5 wk old	5 mg/kg/d - F	
Crown size	10 mg/kg/d – M	
Group size:		
12 M, 12 F/group	10 mg/kg/d – F only ↓	
Test article and vehicle:	Endpoint 2	
K-PFOS in DMSO diluted w saline	Serum liver enzymes	
Route of exposure:	NOAEL	
Gavage	5 mg/kg/d	
	LOAEL	
Exposure levels:	10 mg/kg/d	
0, 1.25, 5, 10 mg/kg/d	(AST M only ↑)	
Exposure regimen:	Endpoint 3	
Daily for 28 d	Serum lipids	
	NOAEL	
	5 mg/kg/d	
	LOAEL	
	10 mg/kg/d	
	(triglycerides, M only ↓)	
	Endpoint 4	
	Hematology	
	NOAEL	
	10 mg/kg/d	
	LOAEL	
		1

Endpoint 5	
Liver wt (rel to bw)	
NOAEL	
5 mg/kg/d	
LOAEL	
10 mg/kg/d – M and F ↑	
Endpoint 6	
Liver histopathology	
NOAEL	
1.25 mg/kg/d	
LOAEL	
5 mg/kg/d	
("fatty change" M only;	
Hypertrophy and cellular swelling in F only -	
LOAEL = 10 ma/ka/d	
LOAEL = 10 mg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Lefebvre et al. (2008)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D, adult, M and F	20 mg/kg feed - M, F LOAEL	
Group size:	50 mg/kg feed – M,F ↓	
15 M, 15 F/dose group	<u>Endpoint 2</u> Rel liver wt	
Test article and vehicle:		
K-PFOS in feed	NOAEL F	
Route of exposure:	2 mg/kg feed – M	
dietary	LOAEL	
,	2 mg/kg feed – F ↑	
Exposure levels: diet	20 mg/kg feed – M ↑	
0, 2, 20, 50, 100 mg/kg/feed	<u>Endpoint 3</u> Rel spleen wt	
Intake		
M - 0, 0.14, 1.33, 3.21, 6.34 mg/kg/d	NOAEL	
F – 0, 0.15, 1.43, 3.73, 7.58 mg/kg/d	50 mg/kg feed – F 100 mg/kg feed – M	
Serum conc.	LOAEL	
0.47 (control), 0.95, 13.45, 20.93, 29.88 µg/g	100 mg/kg feed – F ↑	
Exposure regimen:	Endpoint 4	
28 d	Rel thymus wt	
Other information	NOAEL	
This study also presented information (not	100 mg/kg feed – M, F	
summarized here) on sub-clinical	LOAEL	
immunological parameters		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Lopez-Doval et al. (2014)	Organ wts (rel to bw)	
	(hypothalamus, pituitary, testes)	
Species, strain, age of animals:		
Rats, S-D, adult, M,	NOAEL	
	6.0 mg/kg/d	
Group size:		
5/group	LOAEL	
Test article and vehicle:		
K-PFOS in 2.5% Tween-20	Endpoint 2	
Deute of our course	Serum LH	
Route of exposure:	NOAEL	
gavage	NOAEL	
Exposure levels:		
0, 0.5, 1.0, 3.0, 6.0 mg/kg/d	LOAEL	
0, 0.3, 1.0, 3.0, 0.0 mg/kg/d	0.5 mg/kg/d ↓	
Exposure regimen:		
Daily for 28 d	Endpoint 3	
	Serum FSH	
	NOAEL	
	LOAEL	
	0.5 mg/kg/d ↑	
	Endpoint 4	
	Serum testosterone	
	NOAEL	
	LOAEL	
	0.5 mg/kg/d ↓	
	0.5 mg/kg/u ↓	

<u>Endpoint 5</u> Histopathology – hypothalamic neurons	
NOAEL 1.0 mg/kg/d	
LOAEL 3.0 mg/kg/d (reduced size, basophilia of nuclei and cytoplasm)	
<u>Endpoint 6</u> Histopathology – pituitary gonadotrophic cells	
NOAEL	
LOAEL 0.5 mg/kg/d (ultrastructural changes)	
<u>Endpoint 7</u> Histopathology - testes	
NOAEL 0.5 mg/kg/d	
LOAEL 1.0 mg/kg/d (interstitial edema, degeneration of sperm heads)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Martin et al. (2007)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D (CrtcCD(SD)IGS BR), M, 10 wks	10 mg/kg/d	
old		
	LOAEL	
Group size: 5/group		
5/group	Endpoint 2	
Test article and vehicle:	Rel liver wt	
K-PFOS		
	NOAEL	
Route of exposure:		
gavage		
	LOAEL	
Exposure levels:	10 mg/kg/d ↑	
0, 10 mg/kg/d		
	Endpoint 3	
Serum conc	Liver histopathology	
87.7 μg/ml		
(d-3)	NOAEL	
Exposure regimen:		
5 d		
	10 mg/kg/d	
Other information	(hepatocyte eosinophilia, hepatocyte	
This study also presented data on gene	hypertrophy, non-zonal microvesicular lipid)	
expression (not summarized here)	Endpoint 4	
	Serum cholesterol	
	NOAEL	
	LOAEL	
	10 mg/kg/d ↓	

Endpoint 5 Serum testosterone	
NOAEL 10 mg/kg/d	
LOAEL	
<u>Endpoint 6</u> Total T4	
NOAEL	
LOAEL 10 mg/kg/d ↓	
<u>Endpoint 7</u> Free T4	
NOAEL	
LOAEL 10 mg/kg/d ↓	
Endpoint 8 Total T3	
NOAEL	
LOAEL 10 mg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Mollenhauer et al. (2011)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, B6C3F1, adult, F	3 mg/kg/d	
Group size:	LOAEL	
5/group	300 mg/kg/d ↓	
o, gi o ap	000 mg, ng, a t	
Test article and vehicle:		
K-PFOS in Milli-Q water w 0.5% Tween-20		
Route of exposure:		
gavage		
gavago		
Exposure levels:		
0, 0.0331, 0.0993, 9.93 mg/kg/d		
0, 0.000 1, 0.0000, 0.00 mg/kg/u		
Total admin dose		
0, 1, 3, 300 mg/kg		
0, 1, 0, 000 mg/kg		
Exposure regimen:		
Daily for 28 d		
Daily for 20 a		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Onishchenko et al. (2011)	Maternal wt gain	
Species strain are of enimals:	NOAEL	
Species, strain, age of animals:	NOAEL	
Mice, C56BL/6/Bkl, adult	0.3 mg/kg/d	
Group size:	LOAEL	
maternal		
control, $n = 10$		
PFOS, n = 6	Endpoint 2	
	Litter size, sex ratio	
Offspring		
Control, exposed $-n = 8$	NOAEL	
(1-2 per litter)	0.3 mg/kg/d	
Test article and vehicle:	LOAEL	
K-PFOS in 95% ethanol		
Route of exposure:	Endpoint 3	
Food	Offspring body wt	
Exposure levels:	NOAEL	
0.3 mg/kg/d	0.3 mg/kg/d	
Offspring brain – 3.1 μg/g	LOAEL	
Offspring liver – 11.8 µg/g		
Exposure regimen:	Endpoint 4	
Maternal	Offspring brain wt	
GD 1 – delivery		
	NOAEL	
	0.3 mg/kg/d	
	LOAEL	

Endpoint 5 Offspring liver wt	
NOAEL 0.3 mg/kg/d	
LOAEL 	
<u>Endpoint 6</u> Locomotor activity	
NOAEL	
LOAEL 0.3 mg/kg/d (M only) ↓	
<u>Endpoint 7</u> Circadian activity	
NOAEL	
LOAEL 0.3 mg/kg/d	
Novel environment (M only) ↓	
Endpoint 8 Elevated plus maze	
NOAEL	
LOAEL 0.3 mg/kg/d (various parameters) M only	

Endpoint 9 Muscle strength (hanging wire test)	
NOAEL	
LOAEL 0.3 mg/kg/d (M only) ↓ fall latency	
Endpoint 10 Motor coordination (accel. rotorod test)	
NOAEL	
LOAEL 0.3 mg/kg/d (M and F, but only on some trials)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* PFOS serum concentrations indicated by ''
Peden-Adams et al. (2008)	Body wt	were not reported by authors
Species, strain, age of animals:	NOAEL	
Mice, B6C3F1, adult, M, F	166 μg/kg/d	
Group size:	LOAEL	
5/group		
(for antigen challenge, 10/group)	Endpoint 2	
Test article and vehicle: K-PFOS in Milli-Q water w 0.5% Tween-20	Organ wts (rel to bw)	
	NOAEL	
Route of exposure:	166 μg/kg/d	
gavage	(spleen, thymus, liver, kidney)	
Exposure levels:	LOAEL	
Dose (as PFOS ⁻)		
0, 0.166, 1.66, 3.31, 16.6, 33.1, 166 μg/kg/d		
Total admin dose	Endpoint 3 Spleen cellularity/cell viability	
0, 0.005, 0.05, 0.1, 0.5, 5 mg/kg		
e, e.e.e, e.e., e.e, eg,g	NOAEL	
Serum conc (ng/g)	166 µg/kg/d	
M – 12.1 (control), 17.8, 91.5, 131, -, -, - *		
F – 16.8 (control), 88.1, -, 123, 666, -, - *	LOAEL	
Exposure regimen:		
Daily for 28 d	Endpoint 4	
(for antigen challenge – daily for 21 d)	Thymus cellularity/cell viability	
Other information	NOAEL	
Study also reports lymphocyte proliferation	166 μg/kg/d	
response, and lymphocyte phenotypes (not		
summarized here)	LOAEL	

Endpoint 5 IgM antigen challenge	
NOAEL Μ - 0.0166 μg/kg/d F – 3.31 μg/kg/d	
LOAEL M – 1.66 μg/kg/d ↓ F - 16.6 μg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* Authors report that fasculata zona cells of
Pereiro et al. (2014)	Rel wt hypothalamus, pituitary	adrenal cortex did not appear to have "important" morphological or ultrastructural
Species, strain, age of animals:	NOAEL	alterations, but then describe the appearance
Rats, S-D, M, adult	6.0 mg/kg/d	of these cells as "activated" with the presence of liposomes in the cytoplasm.
Group size:	LOAEL	
10/group		
Test article and vehicle:	Endpoint 2	
K-PFOS in 2.5% Tween-20	Rel wt adrenal gland	
Route of exposure:	NOAEL	
gavage		
Exposure levels:	LOAEL	
0, 0.5, 1.0, 3.0, 6.0 mg/kg/d	0.5 mg/kg/d ↓ (although adrenal wt was sig ↓ compared to	
Exposure regimen:	controls at all doses, adrenal wt \uparrow w \uparrow dose)	
Daily for 28 d	, , , , ,	
	Endpoint 3	
Other information	Histopathology of fasciculata zona cells of	
Study presents data of effects on	adrenal cortex	
corticosterone and ACTH, NOS gene expression and SOD activity (not summarized	NOAEL	
here)	6.0 mg/kg/d ?? *	
	LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* For studies w PPARα-null/WT mice, only 0,
Qazi et al. (2009b)	Body wt (C57BL)	0.005% and 0.02% concentrations in food were used (no 0.001% exposure group)
Species, strain, age of animals:	NOAEL	
Mice, C57BL/6(H-2 ^b), M, 6-8 wks old	0.005% in feed	
Mice, PPARα-null 129/Sv	LOAEL	
And corresponding wild-type (WT), age?	0.02% in feed ↓	
Group size:	Endpoint 2	
4/group	Food consumption (C57BL)	
Test article and vehicle:	NOAEL	
Tetrabutylammonium-PFOS in acetone and mixed w feed	0.005% in feed	
	LOAEL	
Route of exposure: diet	0.02% in feed ↓	
	Endpoint 3	
Exposure levels: 0, 0.001%, 0.005%, 0.02% in feed	Rel liver wt (C57BL)	
	NOAEL	
<u>Serum conc (</u> C57BL mice)		
0.0287 (control), 50.8, 96.7, 340 μg/ml		
	LOAEL	
Exposure regimen: 10 d	0.001% in feed ↑	
	Endpoint 4 Rel thymus wt (C57BL)	
	NOAEL	
	0.005% in feed	
	LOAEL	
	0.02% in feed ↓	

· · · · · · · · · · · · · · · · · · ·		
	<u>Endpoint 5</u> Rel spleen wt (C57BL)	
	NOAEL 0.005% in feed	
	LOAEL 0.02% in feed ↓	
	Endpoint 6 Epididymal fat wt	
	NOAEL 0.005% in feed	
	LOAEL 0.02% in feed ↓	
	Endpoint 7 * Abs liver wt (PPARα-null, WT)	
	NOAEL PPARα-null – no NOAEL WT – no NOAEL	
	LOAEL PPAR α -null – 0.005% in feed \uparrow WT – 0.005% in feed \uparrow	
	<u>Endpoint 8</u> Abs thymus wt (PPARα-null, WT)	
	NOAEL PPARα-null – 0.005% in feed WT – 0.005% in feed	

LOAEL PPAR α -null – 0.02% in feed \downarrow WT – 0.02% in feed \downarrow	
<u>Endpoint 9</u> Abs spleen wt (PPARα-null, WT)	
NOAEL PPARα-null – 0.005% in feed WT – 0.005% in feed	
LOAEL PPAR α -null – 0.02% in feed \downarrow WT – 0.02% in feed \downarrow	
<u>Endpoint 10</u> Abs epididymal fat wt (PPARα-null, WT)	
NOAEL PPARα-null – 0.02% in feed WT – 0.005% in feed	
LOAEL PPARα-null – no LOAEL WT – 0.02% in feed	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qazi et al. (2009a)	Liver wt	
Species, strain, age of animals: Mice, C56BL/6 (H-2 ^b), M, 6-8 wks old	NOAEL 0.001%	
Group size: 4/group	LOAEL 0.02% in feed ↑	
Test article and vehicle: Tetraammonium-PFOS in acetone added to feed	Endpoint 2 Thymus wt (absolute)	
Route of exposure: diet	NOAEL 0.001%	
Exposure levels:	LOAEL 0.02% in feed ↓	
0, 0.001%, 0.02% in feed\ Total intake for 0.02% ~6 mg	<u>Endpoint 3</u> Body wt (0.02% only)	
Serum conc by ref to Qazi et al. 2009b	NOAEL	
Exposure regimen:		
10 d	LOAEL 0.02% ↓	
Related studies:		
Study also presents data on populations of macrophages in different organs/tissues;	Endpoint 4 Spleen wt (absolute)	
inflammatory response of macrophages, and <i>in vivo</i> cytokine response (not summarized	NOAEL 0.001%	
here)	LOAEL 0.02% ↓	
	··	

<u>Endpoint 5</u> Epididymal fat wt	
NOAEL 0.001%	
LOAEL 0.02% ↓	
Endpoint 6 Food consumption (0.02% only)	
NOAEL	
LOAEL 0.02% ↓	
Endpoint 7 Total WBC count	
NOAEL 0.001%	
LOAEL 0.02% ↓ (sig for lymphocytes, but not for neutrophils)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qazi et al. (2010b)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, C57BL6(H-2 ^b), M, 6-8 wks	0.005%	
Group size:	LOAEL	
4/group		
, group		
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in water mixed w feed	Food intake	
Route of exposure:	NOAEL	
diet	0.005%	
Exposure levels:	LOAEL	
0, 0.005% in feed	-	
Serum conc	Endpoint 3	
0.052 (control), 125.8 μg/ml	Rel liver wt	
	NOAEL	
Exposure regimen: Diet for 10 d	NOAEL	
Other information	LOAEL	
Study presents effects on functional	0.005% ↑	
properties of isolated B and T cells, hepatic		
levels of cytokines, and hepatic levels of	Endpoint 4	
erythropoietin (not summarized here)	Rel spleen, rel thymus wt, rel epididymal fat	
	pad wt	
	NOAEL	
	0.005%	
	LOAEL	

<u>Endpoint 5</u> Serum liver enzymes	
Serum liver enzymes	
NOAEL	
0.005%	
(ALT, AST)	
LOAEL	
0.005% - ALP ↑	
<u>Endpoint 6</u> Serum cholesterol (total)	
Serum cholesterol (total)	
NOAEL	
0.005%↓	
Endpoint 7	
Serum triglycerides	
NOAEL	
0.005%	
LOAEL	
Endpoint 8	
Hematological parameters	
(hematocrit, Hb)	
NOAF	
NOAEL 0.005%	
0.00070	
LOAEL	

Endpoint 9 Liver histopathology	
NOAEL	
LOAEL 0.005% (hypertrophy of parenchymal cells, cytoplasmic acidophilic granules)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	PFOS concentration in diet is reported prior to
Qazi et al. (2010a)	Body wt	drying of feed.
Species, strain, age of animals:	NOAEL	
Mice, B6C3F1(H-2 ^{b/k}), M, 7-8 wks old		
Group size:	LOAEL	
5/group	250 μg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
Tetraethylammonium-PFOS	Food consumption	
Route of exposure:	NOAEL	
diet	250 μg/kg/d ↑	
Exposure levels:	LOAEL	
administered		
1.56 μg/kg feed		
Intake	Endpoint 3	
~250 μg/kg/d	Liver wt (rel to bw)	
Total admin dose		
~ 7mg/kg	NOAEL	
Serum conc		
Control – 0.0409 μg/ml		
Exposed – 11.6 μg/ml	LOAEL	
	250 μg/kg/d ↑	
Exposure regimen:		
Diet for 28 d	Endpoint 4	
	Thymus wt, spleen wt (rel to bw)	
Other information		
Study presents data on effects on sub-	NOAEL	
populations of thymic cells (not summarized here)	250 μg/kg/d	
	LOAEL	

Endpoint 5 Specific antigen response	
NOAEL 250 μg/kg/d	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	35% diet restriction resulted in comparable \downarrow
Qazi et al. (2012)	Body wt	in body wt, thymus wt, spleen wt, and wt of
Species, strain, age of animals:	NOAEL	epididymal fat, but did not affect bone marrow cell number. However, note that for 0.02%
Mice, C57BL/6 (H- 2^{b}), M, 6-8 wks old	0.002% in feed	PFOS in feed the reduction in food
		consumption was 24% (not 35%).
Group size:	LOAEL	
4/group	0.02% in feed \downarrow	
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in water and mixed w feed	Food consumption	
leed	NOAEL	
Route of exposure:	0.002% in feed	
diet		
	LOAEL	
Exposure levels:	0.02% in feed ↓	
0, 0.001%, 0.002%, 0.02% in feed	Endnaint 2	
Exposure regimen:	Endpoint 3 Rel liver wt	
10 d		
	NOAEL	
Other information		
This study also presents data on the effect of		
PFOS exposure on the populations of B-	LOAEL	
lymphoid and myeloid cells in bone marrow (not summarized here)	0.001% ↑	
(Endpoint 4	
	Rel thymus wt	
	NOAEL	
	0.002%	
	LOAEL	
	0.02%↓	

<u>Endpoint 5</u> Rel spleen wt	
NOAEL	
0.002%	
LOAEL	
0.02%↓	
<u>Endpoint 6</u> Rel epididymal fat	
NOAEL 0.002%	
LOAEL 0.02% ↓	
Endpoint 7 Cellularity of thymus, cellularity of spleen	
NOAEL 0.002%	
LOAEL 0.02% ↓	
Endpoint 8 Cell content of bone marrow	
NOAEL	
LOAEL 0.02%	
0.02% ↓ Endpoint 7 Cellularity of thymus, cellularity of spleen NOAEL 0.002% LOAEL 0.02% ↓ Endpoint 8 Cell content of bone marrow NOAEL 0.002%	

Reference and Study Design	Results	Comment
Author	Endpoint 1	PFOS concentration in feed measured prior to
Qazi et al. (2013)	Body wt	drying of feed
Species, strain, age of animals:	NOAEL	
Mice, C57BL/6 (H-2b), M, 6-8 wks	6 mg/kg/d – 10 d 0.144 mg/kg/d – 28 d	
Group size:	LOAEL	
6-8/group		
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in feed	Spleen, thymus, epididymal fat pad (absolute)	
Route of exposure:	NOAEL	
diet	6 mg/kg/d – 10 d	
	0.144 mg/kg/d – 28 d	
Exposure levels:	LOAEL	
0.004% in feed – 10 d exposure		
0.0001% in feed – 28 d expousre		
	Endpoint 3	
10 d exposure - 6 mg/kg/d 28 d exposure - 0.144 mg/kg/d	Liver wt (rel to bw)	
	NOAEL	
Exposure regimen:	0.144 mg/kg/d – 28 d	
Dietary, 10 and 28 d	LOAEL	
	6 mg/kg/d – 10 d ↑	
Related studies:		
Study also presents data on liver effects of	Endpoint 4	
PFOS in conjunction w ConA-induced hepatitis (not summarized here)	Serum enzymes – AST, ALT	
	NOAEL	
	6 mg/kg/d – 10 d	
	0.144 mg/kg/d – 28 d	
	LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qiu et al. (2013)	Sperm count	
Species, strain, age of animals:	NOAEL	
Mice, ICR, 8 wks old	0.25 mg/kg/d	
Group size:	LOAEL	
20/group	2.5 mg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
PFOS (salt not reported) in corn oil	Testicular histopathology (light microscopy of seminiferous tubules)	
Route of exposure:	,	
gavage	NOAEL	
	0.25 mg/kg/d	
Exposure levels:		
0, 0.25, 2.5, 25, 50 mg/kg/d	LOAEL	
	2.5 mg/kg/d ↑ (Sertoli cell vacuolization,	
Exposure regimen:	derangement of cell layers)	
28 days		
	Endpoint 3	
Other information	Testicular histopathology (electron	
Serum and testes levels of PFOS reported	microscopy of seminiferous epithelia)	
	NOAEL	
	0.25 mg/kg/d	
	LOAEL	
	2.5 mg/kg/d ↑ (Sertoli cell vacuolization)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Ribes et al. (2010)	Body wt (offspring)	
Species, strain, age of animals:	NOAEL	
Mice, CD-1, adult, F	6 mg/kg/d	
Group size:	LOAEL	
maternal		
N = 5/group		
	Endpoint 2	
Offspring	Maternal care	
N = 10 M,F/treatment group		
(1-2/ litter)	NOAEL	
	6 mg/kg/d	
Test article and vehicle:		
0.5% in Tween-20	LOAEL	
Route of exposure:		
gavage	Endpoint 3 Open field activity	
Exposure levels:		
0, 6 mg/kg/d	NOAEL	
	6 mg/kg/d	
Exposure regimen:		
GD 12-18	LOAEL	
Other information		
Study also includes measurement of		
corticosterone in serum		
Related studies:		
Design and open-filed portion appear to be		
close to or identical to Fuentes et al. 2007b)		
,		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Rogers et al. (2014)	Maternal wt gain	
Species, strain, age of animals:	NOAEL	
Rats, S-D pregnant		
Group size:	LOAEL	
Maternal, $n = 21$ (control and treatment)	LOAEL 18.75 mg/kg/d ↓	
Maternal, $\Pi = 2 \Pi$ (control and treatment)	18.75 mg/kg/u ↓	
Offspring, n = 21 litters/group (for bw)	Endpoint 2	
1-2/litter for BP	Birth wt	
Test article and vehicle:	NOAEL	
In 0.5% Tween-20		
Route of exposure:	LOAEL	
gavage	18.75 mg/kg/d (F only)	
Francisco la color		
Exposure levels:	Endpoint 3	
18.75 mg/kg/d	Wt gain (offspring)	
Exposure regimen:	NOAEL	
GD 2-6	18.75 mg/kg/d	
0020	10.75 mg/kg/d	
Other information	LOAEL	
Fostering on unexposed dams		
	Endpoint 4	
	Systolic blood pressure (offspring)	
	NOAEL	
	LOAEL	
	LOAEL 18.75 mg/kg/d ↑	
	(M at 7, 52 wks; F at 37, 65 wks – not 7 wks)	

Endpoint 5 Nephron endowment (offspring) (at 22 d, M only)	
NOAEL	
LOAEL 18.75 mg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Rosen et al. (2010)	Rel liver wt	
Species, strain, age of animals:	NOAEL	
Mice,	3 mg/kg/d (WT and null)	
wild type-129S1/Svdm,		
PPARα-null 129S4/Sv]ae-Pparatm1Gomz/, M, 6-	LOAEL	
9 mos old	10 mg/kg/d (WT and null) ↑	
Crown size:	Endneint 2	
Group size: 5/group	Endpoint 2	
Siglidup	Liver histopathology	
Test article and vehicle:	NOAEL	
K-PFOS in 0.5% Tween-20	3 mg/kg/d	
Route of exposure:	LOAEL	
gavage	10 mg/kg/d (WT and null)	
Exposure levels:	(vacuole formation)	
0, 3, 10 mg/kg/d		
Exposure regimen:		
7 d		
Other information		
Other information		
This study also presents data on gene profiling for WT and null mice (not		
summarized here)		
Summunzou noroj		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Ryu et al. (2014)	Body wt gain (offspring, 12 wks)	
Species, strain, age of animals:	NOAEL	
Mice, Balb/c, pregnant		
Group size:	LOAEL	
4-5 M, 4-5 F per group	4 mg/kg feed ↑	
Test article and vehicle:	Endpoint 2	
In food	Liver enlargement (rel liver weight, offspring)	
Route of exposure:	NOAEL	
dietary		
Exposure levels:	LOAEL	
4 mg/kg in food	4 mg/kg feed ↑	
Maternal		
~0.016-0.024 mg/d/animal	Endpoint 3	
Offspring	Airway hyperresponsiveness (offspring)	
No serum data (PFOA data only)	NOAEL	
Exposure regimen:	4 mg/kg feed	
Maternal - GD 2-lactation		
Offspring – weaning-12 wks (dietary)		
	Endpoint 4	
	Airway sensitivity (methacholine challenge in	
	offspring)	
	NOAEL	
	4 mg/kg feed	

En du sint E	
Endpoint 5	
Airway allergic hyperresponsiveness	
(offspring)	
NOAEL	
4 mg/kg feed	
LOAEL	
Endpoint 6	
Lung inflammation (offspring)	
NOAEL	
4 mg/kg feed	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Sato et al. (2009)	Body wt (rats and mice)	
Species strain age of animals	NOAEL	
Species, strain, age of animals:	-	
Rats, Wistar, M, 6 to 7 weeks old	125 mg/kg	
Mice, ICR, M, 6 to 7 weeks old	LOAEL	
	250 mg/kg ↓	
Group size:	200 mg/ng \$	
Neurobehavioral observations = 2 to 3/group	Endpoint 2	
(rats and mice)	Brain histopathology (neuronal or glial cells of	
	cerebrum and the cerebellum)	
Histopathology = 3/group (rats only)	Note: no exposure to ultrasonic stimulus	
Test article and vehicle:	NOAEL	
PFOS (potassium salt, ≥98% pure) in 2%	500 mg/kg	
carboxymethyl cellulose	5 5	
····· , ··· , ····	LOAEL	
Route of exposure:		
Oral gavage		
	Endpoint 3	
Exposure levels:	Neurobehavioral observation (e.g., excited	
0, 125, 250, 500 mg/kg	locomotion, convulsion)	
Brain, kidney, liver, and serum PFOS	NOAEL	
concentrations determined 24 hrs after	Rats: 125 mg/kg	
exposure for rats only (not reported herein)	Mice: -	
Exposure regimen:		
Single exposure	Rats: 250 mg/kg	
Other information	Mice: 125 mg/kg	
Other information	↑ locomotion	
Neurobehavioral observations made following		
a daily exposure to ultrasonic stimulus		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Wan et al. (2012)	Body wt	
Species, strain, age of animals: Mice, CD-1, M, 6-8 wks old	NOAEL 5 mg/kg/d	
Group size: "≥ 4/group"	LOAEL 10 mg/kg/d ↓	
Test article and vehicle: PFOS (salt?) in < 0.4% DMSO and corn oil	Endpoint 2 Liver wt	
Route of exposure: gavage	NOAEL 	
Exposure levels:	LOAEL	
0, 1, 5, 10 mg/kg/d	1 mg/kg/d ↑	
Exposure regimen: Daily for 21 d (also, 3, 7, 14 d) Other information	Endpoint 3 Liver size (length) NOAEL 1 mg/kg/d	
Study data reported at d-3, 7, 14 as well as 21. Only d-21 data are summarized here.	LOAEL 5 mg/kg/d ↑	
	Endpoint 4 Liver triglycerides	
	NOAEL 1 mg/kg/d	
	LOAEL 5 mg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* "fat index" is not defined. Unclear what
Wang et al. (2011a)	Body wt	organ(s) this applies to. For 20 mg/kg/d exposure (normal and fat diet) this is reported
Species, strain, age of animals:	NOAEL	as 0. The meaning of this is unclear.
Mice, BALB/c, M, F, 5-6 wks old (after	Reg diet – 5 mg/kg/d	Summary effects for this endpoint are as per
adaptation period)	Fat diet – 5 mg/kg/d	the text of the paper rather than the tabular results from the table.
Group size:	LOAEL	
8 M, 8F/group	Reg diet – 20 mg/kg/d ↓	** Text notes subtle histopathology changes in
	Fat diet – 20 mg/kg/d ↓	thymus at 5 mg/kg/d in regular diet. No data
Normal diet and high-fat diet groups		are reported for 5 mg/kg/d for high fat diet.
5 5 1	Endpoint 2	
Test article and vehicle:	Food intake	
PFOS (salt?) in 0.5% Tween-20		
	NOAEL	
Route of exposure:	Reg diet – 5 mg/kg/d	
gavage	Fat diet – 5 mg/kg/d	
Exposure levels:	LOAEL	
0, 5, 20 mg/kg/d	Reg diet – 20 mg/kg/d ↓	
	Fat diet – 20 mg/kg/d ↓	
Exposure regimen:		
Daily for 2 wks	Endpoint 3	
	Rel Liver wt	
	NOAEL	
	Reg diet – 5 mg/kg/d	
	Fat diet – 5 mg/kg/d	
	LOAEL	
	Reg diet – 20 mg/kg/d ↑	
	Fat diet – 20 mg/kg/d ↑	

Endpoint 4 "fat index" *	
NOAEL Reg diet – 5 mg/kg/d Fat diet - no NOAEL	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	
Endpoint 5 Rel. thymus wt	
NOAEL Reg diet – 5 mg/kg/d Fat diet – no NOAEL (M) (for F, NOAEL is 5 mg/kg/d)	
LOAEL Reg diet – 20 mg/kg/d (F) ↓ Fat diet – 5 mg/kg/d (M) ↓	
<u>Endpoint 6</u> Rel spleen wt	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	

Endpoint 7	
Thymus histopathology **	
NOAEL	
Reg diet – no NOAEL	
Fat diet - ? **	
LOAEL	
(vasodilation, congestion)	
Reg diet – 5 mg/kg/d	
Fat diet - ? **	
Endpoint 8	
Spleen histopathology	
(dilation of splenic sinus)	
NOAEL	
Reg diet – no NOAEL	
Fat diet – no NOAEL	
LOAEL	
Reg diet – 5 mg/kg/d	
Fat diet – 5 mg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* "Fat content" is not defined in the paper.
Wang et al. (2014a)	Body wt	This appears to be different from "liver fat content," that is addressed separately.
Species, strain, age of animals:	NOAEL	
Mice, BALB/c, M, 4-5 wks old	Reg diet – 5 mg/kg/d	** Liver pathology was more severe at each
	Fat diet – no NOAEL	dose group for the high fat diet
Group size:		
8/group	LOAEL	
	Reg diet – 20 mg/kg/d ↓	
Test article and vehicle:	Fat diet – 5 mg/kg/d ↓	
PFOS in 0.5% Tween-20		
	Endpoint 2	
Route of exposure:	Food consumption	
gavage		
Francisco Investor		
Exposure levels:	Reg diet – 5 mg/kg/d	
0, 5, 20 mg/kg/d	Fat diet – 5 mg/kg/d	
Exposure regimen:	LOAEL	
Daily for 14 d	Reg diet – 20 mg/kg/d ↓	
	Fat diet – 20 mg/kg/d ↓	
Mice received either regular or high fat diets		
<u></u>	Endpoint 3	
	Rel liver wt	
	NOAEL	
	Reg diet – no NOAEL	
	Fat diet – no NOAEL	
	T at thet - HO NOALE	
	LOAEL	
	Reg diet – 5 mg/kg/d ↑	
	Fat diet – 5 mg/kg/d ↑	
		<u> </u>

Endpoint 4 Rel fat content *	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	
Endpoint 5 Liver fat content	
NOAEL Reg diet – no NOAEL Fat diet – 20 mg/kg/d	
LOAEL Reg diet – 5 mg/kg/d ↑ Fat diet – no LOAEL	
Endpoint 6 Liver glycogen content	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL Reg diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	

<u>Endpoint 7</u> Liver histopathology	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL ** (hydropic degeneration and vacuolation) Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
Endpoint 8 Serum glucose	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	
Endpoint 9 Serum triglycerides	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	

Endpoint 10	
Serum HDL cholesterol	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL Reg diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	
Endpoint 11 Serum albumin	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
-OAEL Reg diet – 5 mg/kg/d ↑ Fat diet – 5 mg/kg/d ↑	
Endpoint 12 Serum cholesterol	
NOAEL Reg diet - 5 mg/kg/d Fat diet – no NOAEL	
-OAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	
	IOAEL Reg diet – no NOAEL Fat diet – no NOAEL IOAEL Reg diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓ Fat diet – no NOAEL Berum albumin IOAEL Reg diet – no NOAEL Fat diet – no NOAEL Fat diet – no NOAEL COAEL Reg diet – 5 mg/kg/d ↑ Fat diet – 20 mg/kg/d ↓

Endpoint 13 Serum LDL cholesterol	
NOAEL Reg diet - 5 mg/kg/d Fat diet – 20 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – no LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Maternal toxicity determined in a separate,
Yu et al. (2009b)	Body wt (pups)	preliminary experiment
Species, strain, age of animals:	NOAEL	
Rats, Wistar, adult, F	3.2 mg/kg feed	
Group size:	LOAEL	
Dams - N = 20 (control, exposed)		
Pups $- 5 \text{ M}, 5 \text{ F}$ per treatment group		
	Endpoint 2	
Test article and vehicle:	Rel. liver wt	
K-PFOS in 0.5% Tween-20		
	NOAEL	
Route of exposure:		
dietary		
	LOAEL	
Exposure levels:	3.2 mg/kg feed ↑	
3.2 mg/kg feed		
	Endpoint 3	
Serum conc. (range over time)	Total T3	
- gest exp only		
M = 3.78-0.41 μg/ml F = 3.78-1.02	NOAEL	
- lact exp only	3.2 mg/kg feed (all exposure groups)	
M = 1.22-6.64	LOAEL	
F = 1.22-7.04		
- gest + lact exp		
M = 10.6	Endpoint 4	
F = 11.5	Total T4	
Exposure regimen:	NOAEL	
Exposure from diet from GD 0 – PND 0-35		
Full cross-fostering design	LOAEL	
(pups cross-fostered w exposed dams	3.2 mg/kg feed ↓	
received PFOS diet post-weaning)	(gest, lact, gest + lact)	

Endpoint 5 Reverse T3	
NOAEL 3.2 mg/kg feed	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Zheng et al. (2009)	Body wt	
Species, strain, age of animals:		
Mice, C57BL/6, M, 8-10 wks old	5 mg/kg/d	
Group size:	LOAEL	
12/group	20 mg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
K-PFOS in deionized water and 2% Tween-80	Food intake	
Deute of eveneeuro		
Route of exposure:	NOAEL 5 mg/kg/d	
gavage	5 mg/kg/d	
Exposure levels:	LOAEL	
0, 5, 20, 40 mg/kg/d	20 mg/kg/d ↓	
	5 5 ¥	
Serum conc	Endpoint 3	
ND (control), 110.46, 280.65, 338.01 µg/ml	Rel spleen wt	
	NOAEL	
Exposure regimen: 7 d	5 mg/kg/d	
/ u	5 mg/kg/d	
Other information	LOAEL	
This study also presents data on serum	20 mg/kg/d ↓	
corticosterone, lymphocyte		
immunophenotypes, NK cell function (not	Endpoint 4	
summarized here)	Rel thymus wt	
	NOAEL	
	5 mg/kg/d	
	LOAEL	
	20 mg/kg/d ↓	

Endpoint 5 Rel liver wt	
NOAEL	
LOAEL 5 mg/kg/d ↑	
<u>Endpoint 6</u> Spleen/thymus cellularity	
NOAEL 5 mg/kg/d (for both organs)	
LOAEL 20 mg/kg/d (for both organs) ↓	
Endpoint 7 Lymphocyte proliferation and plaque formation (in response to antigen challenge)	
NOAEL	
LOAEL 5 mg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Zheng et al. (2011)	Body wt	
Species, strain, age of animals: Mice, C57BL/6, M 8-10 wks old	NOAEL 5 mg/kg/d	
Group size: 12/group	LOAEL 20 mg/kg/d ↓	
Test article and vehicle: K-PFOS in deionized water and 2% Tween-80	Endpoint 2 Food intake	
Route of exposure: gavage	NOAEL 5 mg/kg/d	
Exposure levels: 0, 5, 20 mg/kg/d	LOAEL 20 mg/kg/d ↓	
<u>Serum conc</u> ND (control), 97.25, 250.34 μg/ml	<u>Endpoint 3</u> Rel spleen, rel thymus wt	
Exposure regimen: 7 d	NOAEL 5 mg/kg/d (for both organs)	
Other information This study presents data on serum	LOAEL 20 mg/kg/d (for both organs) ↓	
corticosterone levels, interleukin levels, cytokines (not summarized here)	<u>Endpoint 4</u> Rel liver wt	
	NOAEL	
	LOAEL 5 mg/kg/d ↑	

Endpoint 5	
Serum IgM	
NOAEL	
NOAEL	
LOAEL	
5 mg/kg/d ↓	
o …g,g, ∞ ↓	
Endpoint 6	
Serum IgG	
NOAEL	
LOAEL	
5 mg/kg/d ↑	
(not sig diff from control for 20 mg/kg/d)	

Appendix 6: Epidemiology evidence tables

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Alexander and Olsen (2007)	Same as in Alexander et al. (2003). Assignment of	SIRs calculated based on exposure categories; and by weighted cumulative	Exposure classification based on correspondence of job category to exposure levels (serum PFOS).
"Bladder cancer in perfluorooctanesulfonyl fluoride	exposure by job title based on limited biomonitoring of	exposures	However, correspondence was based on a sample of 186 = 12% of the number of
manufacturing workers. Ann Epidemiol. 2007 Jun;17(6):471-8	serum PFOS in Olsen (2003b)	Rate ratios calculated based on Non- exposure category as internal referent	respondants. Variability for some job categories was high including some with high PFOS
Study Design:	Population-Level	and SIRs based on US pop. Incidence data	exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)).
Information on cases (current and deceased) of bladder cancer among current and former employees. Combinatio of self-reporting (with	Exposure: - Non-expousre – 0.11-0.29 μg/ml - Low– 0.39-0.89 μg/ml	Outcome: Confirmed bladder cancer cases Major Findings:	"No-exposure" category is 5.5 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth National Report on Human Exposure to Environmental Chemicals; <u>http://www.cdc.gov/exposurereport/pdf/fourthrepor</u> <u>t.pdf</u>)
physician follow-up) and death certificate data.	- High – 1.30-1.97 μg/ml	Cases were more likely to have smoked regularly compared to non-cases (83% vs.	Thus, use of "no-exposure" category as referent will bias against finding significantly elevated risk ratios based on No-exposures as internal
Follow-up 1970-2002	Cumulative exposure estimated on basis of	56%). However, similar to national smoking rates	referenants.
Location:	summation of weighted assigned to job titles on	11 total cases of bladder cancer observed	Other comments:
Decatur, AL	basis of exposure potential:	8.6 expected (SIR = 1.28; CI = 0.64-2.29; not sig)	This study was straightforward in terms of case definition and ascertainment, However, exposure
Population:	- Non = 1 - Low = 3	- 2 (18%) of cases were "Non-	assessment is subject to uncertainty due to small biomonitoring sample size, significant variability of
Same population as Alexander et al. (2003) – workers in 3M Decatur facility.	- High = 10	exposed" - 9 (82%) of cases worked in L or H exposure job. 6 of these for ≥1 yr	serum PFOS within exposure categories and sig background exposure in "No-exposure" referants.
≥365 cumulative days of employment prior to 1998.		 - 3 (27%) worked in H exposure job ≥1 yr 	Lack of clear evidence of elevated bladder cancer as a function of exposure. However, consistently elevated (but not sig) risk for exposed workers.
1,400/2083 current employees responded, plus death certificate data on 185/188 decedents.		SIRs = 1.12-2.26 for the exposure groups (highest SIR for L exp group)	

Reference and Study Design	Exposure Measures	Results	Comment
73.9% response relative to eligible		Highest SIR for cumulative exp = 2.72 for	
(43,739 person-yrs of follow-up)		5-10 yrs exposure in H exp job (CI = 0.55-	
		73.95; <u>not sig</u>)	
Related Studies:			
		Rate ratios for cumulative exp for 5-10	
Alexander et al. (2003)		yrs and >10 yrs exposure = 1.92 and	
		1.52 (<u>not sig</u>)	
		(based on internal referent grouo)	
		Sensitivity analysis for inclusion of non-	
		respondants assuming doubling of	
		expected bladder cancer rate. Overall	
		SIRs not sig.	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Alexander et al. (2003) Study Design:	Assignment of exposure by job title based on limited biomonitoring of serum PFOS in Olsen (2003b)	Calculation of SMR adjusted for age, gender and calendar period.	Significant co-exposure to PFOA. Exposure classification based on correspondence of job category to
Mortality study linking employment records with cause of death-specific vital records search. Comparison to	Population-Level Exposure:	All-cause and specific cause mortality	exposure levels (serum PFOS). However, correspondence was based on a sample of 186 = 13% of the number of
sister plant with no specific PFC exposure. and to AL state and local	<u>Exposure Category</u> - Ever- $H - n = 982$	Major Findings:	questionnaire respondents. Variability for some job categories was high including
counties mortality	- Ever-H – II = 982 (47%) - Ever-L, but Never-H –	<u>All-cause mortality</u> - Total - SMR = 0.63	some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)).
3M plant, Decatur, AL	n = 298 (14%) - Ever No/minimal exposure – n = 812	 Ever H – SMR = 0.69 Ever L, but never H – SMR = 0.64 Ever No/minimal – SMR = 0.60 	Observation of high SMR for bladder cancer rests on only 3 observations.
Population:	(39%)	- <1.0 for ≥ 1 yr H or Ever L	Mortality as an endpoint does not address
All employees working ≥365 days by end of 1997 with a verified death certificate		<u>All cancer mortality</u> - Total – SMR = 0.72	the full potential range of adverse outcomes.
M = 83% (84% of H exposure)		 Ever H – SMR = 0.72 Ever L, but never H – SMR = 0.52 	Other comments:
Related Studies:		 Ever No/minimal – SMR = 0.73 SMR <1.0 for ≥ 1 yr H or Ever L 	The cause-of-mortality data collection and ascertainment were well conducted and appear to be reasonably comprehensive.
Olsen et al.(2003a) Olsen et al. (2003b)		Liver cancer	The exposure assignment was based on a relatively small sample and could not
Olsen et al.(2004) Grice et al. (2007) Alexander et al. (2007)		SMR = 1.61 (2 obs. vs. 1.24 expected) – not stat. sig.	control for confounding by (e.g.) smoking.
Olsen et al. (2012)		<u>Bladder cancer</u>	
		SMR = 4.81 (border line stat. sig – lower CI = 0.99) 3 obs. vs. 0.62 expected. All M, all worked H exposure job for \geq 5 yr. SMR for \geq 5 yrs = 25.5 (3 obs. vs. 0.12 expected)	

Study:	Exposure Assessment:	Stat Method:	Major Limitations:
 Andersen et al. (2010). Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol. 172(11):1230-7 Erratum in: Am J Epidemiol. 2011 Jun 15;173(12):1475. Study Design: Danish National Birth Cohort Blood sample collected during regular antenatal care visit during 1st trimester. Telephone interviews - preg. wks 16 and 30 and 6 and 18 mos postnatal Self-reported data on maternal pregnancy wt. and ht. → BMI 	Maternal Plasma PFOS and PFOA by HPLC-MS Population-Level Exposure: <u>PFOS</u> (ng/ml) median = 33.4 IQR = 17.2 Range = 6.4-106.7 <u>PFOA</u> (ng/ml) Med. = 5.21 IQR = 3.06 Range = 0.5-21.9	Multiple linear regression of wt, length and BMI (as z-scores) against PFOS (and PFOA) Co-variates – maternal age; parity; pregnancy BMI; smoking during pregnancy; SES; geststional wk at blood samples; duration of breastfeeding; child's exact age at measurements; wt, length, BMI at 5 mos (for models at 12 mos). Child's sex, in stratified analyses. Exclusion of one hig-value outlier for PFOA Outcome: Children's wt, length and BMI as function of PFOS (PFOA) and co-variates Major Findings: <u>All Children</u>	Significant co-exposure to PFOA. Although outcomes associated with PFOS and PFOA did not completely overlap (little effect of PFOA at 12 mos), interactions between PFOS and PFOA were not investigated. Maternal self-reporting of wt and length data. However, data were generated by physicians and provided to mothers using a formal and common format. Fetal exposure estimated from maternal blood sample from first trimester. Variability in maternal fetal transfer and changes in maternal exposure after 1 st trimester introduce some uncertainty in the exposure assessment. However, resulting exposure misclassification would tend to bias outcomes away from observing relationships between plasma PFOS and infant measures of growth.
Birthweight and gestational age from Danish Nat'l Birth Reg. Child wt and length obtained from mothers based on recorded information in child's data book entered by physician and kept by mother Location: Denmark		 PFOS Sig. inverse assoc. with wt (adjusted, but not crude model *) Sig. inverse assoc. BMI at 12 mos.(adjusted and crude models *) PFOA Sig. inverse assoc with birth wt. (crude and adjusted models) * crude model – adjusted for child's exact age at measurement only Adjusted model – as detailed above 	Other comments: This was a well designed and conducted longitudinal cohort study using well supported and standardized databases and a reasonable surrogate of fetal gestational exposure (1 st trimester maternal plasma PFOS and PFOA). Co-exposure to PFOA prevents clear conclusions about the independent influence of PFOS.

Population:	** crude model – adjusted for gestational age
	(quadratic and linear terms)
1,400 mothers with 1 st trimester	Adjusted model – as detailed above
	Aujusieu model – as detalleu above
blood samples, and 4 telephone interviews	Pove only
Interviews	Boys only
1,147 w weight and height data	PFOS
children at 5 mos.; 1,076 w wt and	Sig. inverse assoc w wt at 12 mos (adjusted
ht data at 12 mos.	model only)
1010 with data at both time points	Sig inverse assoc w BMI at 12 mos (crude and
	adjusted models)
Related Studies:	
	PFOA
Fei et al. (2008)	Sig. inverse assoc w birth wt (crude and
· · · /	adjusted models
Fei et al. (2007)	Sig inverse assoc w wt at 5 mos (adjusted
	model only)
Andersen et al. (2013)	Sig inverse assoc w BMI at 5 mos (adjusted
	model only)
	Sig inverse assoc w BMI at 12 mos (crude
	model only)
	Girls only
	RE00
	PFOS
	Sig. inverse assoc w birth wt (crude and
	adjusted models)
	PFOA
	Sig inverse assoc w birth wt (crude model only)
	Breastfeeding
	Duration of breastfeeding as a co-variate did
	not produce sig changes in β s for wt or BMI.
	Thus, effects at 12 mos do not appear to be
	due to continued exposure through breast milk

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Major Findings:	
Denmark		No differences with original cohort for PFOS (PFOA), maternal age, preg BMI, preg wt gain,	
Population:		or child's growth measures.	
1,400 mothers with 1 st blood sample, and 4 telephone interviews from Andersen et al (2010) eligible for this 7 yr follow-up if provided information on - Height and wt (n = 811) Or - Waist circumference (n = 804) ~58% recruitment of original cohort		However, sig. differences with original cohort Original cohort mothers "slightly" older, higher preg BMI, and higher birth wt No sig effect of PFOS (PFOA) on BMI or waist circumference for boys or girls	
Related Studies:			
Fei et al. (2008)			
Fei et al. (2007)			
Andersen et al. (2010)			

Apelberg et al.(2007)Apelberg BJ, Witter FR, Herbstman BC, Calafat AM, Halden RU, Cord serum concentrations of perfluoroctane suffonate (PFOS) interview for the set of th	Reference and Study Design	Exposure Measures	Results	Comment
Apelberg BJ, Witter FR, Herbstman BJ, Calatat AM, Halden RU, Needham LL, Goldman LR. Cord serum concentrations of perfuorocctanes culfonate (PFOS) and perfuorocctanes culfonate (PFOS) and perfuorocctanes culfonate (PFOS) and perfuorocctanes culfonate (PFOS) in any size at birth. Environ Health Perspect. 2007 Nov;115(11):1670-6.by HPLC-MS LOD tor PFOS and PFOA = 0.2 ng/mlcruster provide the study. conc's below LOD set to LOD for regression analysiscruiteria did not have a cord blood sample volume and were, therefore, excluded from the study. Births without useable blood conc's below LOD set to LOD for regression analysiscruiteria did not have a cord blood sample volume and were, therefore, excluded from the study. Births without useable blood conc's below LOD set to LOD for regression analysiscruiteria did not have a cord blood sample volume and were, therefore, excluded from the study. Births without useable blood conc's below LOD set to LOD for regression analysiscruiteria did not have a cord blood sample or had too small a blood sample volume and were, therefore, excluded from the study. Birth without useable blood conc's below LOD set to LOD for regression analysiscruiteria did not have a cord blood sample or had too small a blood sample volume and were, therefore, excluded from hasociations. Unclear whether PFOS results reflect control for PFOA.All singleton, live births at Johns Hopkins U. Hospital bet 11/26/2004 and 3/16/2005 Major congenital anonrmalities excluded Cord blood collectedPFOA median conc = 1.6 ng/mL (range, 0.3 to 7.1 ng/mL)PFOA median conc = 1.6 ng/mL (range, 0.3 to 7.1 ng/mL)ProD have a conce of the concentration). Investigated interaction term between PFOS (PFOA) and birth mode (vaginal and	Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	Study: Apelberg et al.(2007) Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect. 2007 Nov;115(11):1670-6. Study Design: Cross-sectional, All singleton, live births at Johns Hopkins U. Hospital bet 11/26/2004 and 3/16/2005 Major congenital abnormalities excluded Cord blood collected Maternal characteristics and infant anthropometric data obtained from hospital medical records Birth wt, length, head circum., Ponderal index (birth wt/length ³ x 100) Location: Baltimore, MD	PFOS, PFOA and other PFCs by HPLC-MS LOD for PFOS and PFOA = 0.2 ng/ml Population-Level Exposure: PFOS detected in >99% of samples (PFOA in 100%) PFOS median conc = 5 ng/mL [range, < LOD (0.2) to 34.8 ng/mL] PFOA median conc = 1.6 ng/mL (range, 0.3 to	Univariagte and multivariate linear regression analysis of assoc. of PFOS and PFOA on: gestational age; birthwt; length, head circumference; ponderal index Conc's below LOD set to LOD for regression analysis <u>Co-variates</u> For gestational age – smoking status, age, race, prepregnancy BMI, previous preterm birth, diabetes,hypertension. For birthweight and birth size – smoking status, age, gestational age, race, prepregnancy BMI, net weight gain during pregnancy (weight gain minus birth weight), height, parity, infant sex, diabetes, hypertension Investigated interaction term between PFOS (PFOA) and birth mode (vaginal and Caesarian) Analysis w and w/out controlling for total lipids, total cholesterol, triglycerides For subjects (<4%) with missing data on preg wt., height or wt gain, median values were	 50% of births meeting other inclusion criteria did not have a cord blood sample or had too small a blood sample volume and were, therefore, excluded from the study. Births without useable blood samples had lower gestational age and birth wt.(sig?). This could bias findings of study against finding assoc. with these outcomes. Sig co-exposure to PFOA with similar associations. Unclear whether PFOS results reflect control for PFOA. Other comments: This is a cross-sectional study. However, direct contact with mothers allowed control of key co-variates including smoking (based on cotinine concentration). The main weaknesses of this study are: the co-exposure to PFOA in effects associated with PFOS Loss of 50% of subjects from full cohort and differences between full cohort and lost subjects in

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
n = 293		Major Findings:	
Related Studies:		Assoc. of PFOS with anthropometric measures	
		Birthweight – Stat sig decrease in birthwt only with model adjusted for gestational age (but not other co-variates)	
		Head circumference – Stat sig decrease for full adjusted model and for gestational age adjust only Inclusion of (sig) interaction term with mode of delivery (vaginal/Cesarean) limited assoc to vaginal births	
		Ponderal Index – Stat sign decrease for univariate, gestational age adjust only, and fully adjusted models	
		Note: PFOA showed essentially the same relationships with approx. the same coefficients.	
		Total serum cholesterol, total lipids, triglycerides - No sig assoc with PFOS (PFOA)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Audet-Delage (2013) Audet-Delage Y1, Ouellet N, Dallaire R, Dewailly E, Ayotte P. Persistent	PFOS by LC-MS/MS (OH-PCBs and chlorophenols by GC-MS)	Multiple linear regression models created separately for PFOS, OH-PCBs and chlorophenols	T4-TTR levels in this population were lower than expected based on other populations. Although it does not appear that PFOS (or PCB-OH, or chlorophenols)
organic pollutants and transthyretin- bound thyroxin in plasma of Inuit women of childbearing age. Environ Sci Technol. 2013 Nov 19;47(22):13086-92. doi:	LOD = 0.10 ng/ml Plasma conc of contaminants <lod 2<br="" as="" lod="" reported="">(Note; LODs not reported)</lod>	<u>Co-variates</u> Total T4, Total thyroid binding globin (TBG), Total TTR, Plasma lipids	influenced these levels, there are other contaminants not measured in this study that could have competed with TTR for T4 binding. In the absence of these competitors, PFOS might have significantly
10.1021/es4027634. Epub 2013 Nov 11.	T4-TTR measured by polyacrylamide gel	Age, BMI, smoking status, alcohol, total marine food (g/d), education level	competed with TTR for T4 binding. Other comments:
Study Design:	electrophoresis	Outcome:	Other comments:
Archived plasma samples from 2004 study	Population-Level Exposure:	T4-TTR	This is a well conducted study with good control for known co-variates and a reasonable sample size. The exposure of
Regression of T4-TTR (transthyretin- bound T4) levels against PFOS (and OH-PCBs and chlorophenols)	PFOS detected in 100% of samples Geom mean = 10.92 ng/ml 95% CI = 9.84-12.13 ng/ml Range = 2.30-97.00 ng/ml	Major Findings: PFOS not a sig determinant of T4-TTR in regression model (likewise PCB-OH, and chlorophenols)	this population to other POPs at high in the Arctic environment could have confounded assessment of the ability of PFOS to bind T4. However, overall the study did not indicate decreased T4 due to PFOS.
(Note: transthyretin is one of the T4 transport protein in plasma)	OH-PCB conc geom mean = 0.11-0.02 ng/ml (for 10		
Location:	congeners)		
Nunavik, Quebec	Pentachlorophenol geom mean = 0.80 ng/ml		
Population:	C C		
Inuit women previously participating in 2004 cross-sectional study	Tetrachlorophenol geom mean = 0.21 ng/ml		
18-39 yrs old	PFOS plasma conc in this population is in the range of US adult pop based on 4 th		
Restrictions – pregnant, use of thyroid medication	NHANES Biomonitoring Report		

Reference and Study Design	Exposure Measures	Results	Comment
N = 120 - randomly selected from eligible pop.			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Bloom et al. (2010)	Analysis of TSH and FT4 from archived serum samples	Multiple linear regression for total PFCs and individual PFCs	Authors suggest that pop size would need to be increased 9x and 3x in order to
Bloom MS1, Kannan K, Spliethoff HM, Tao L, Aldous KM, Vena JE.	in 2003 by immunoassay	<u>Covariates</u>	achieve 80% power to detect sig associations for TSH and FT4
Exploratory assessment of perfluorinated compounds and human	Analysis of PFC from archived serum samples in	Included if p<0.1 in bivariate analysis	(respectively) at observed effect size. Thus, study appears to be underpowered.
thyroid function. Physiol Behav. 2010 Feb 9;99(2):240- 5. doi:	2006 PFOS PFDA	Variables examined for potential inclusion in models:	Due to small n, study did not conduct simultaneous regression modeling of all
10.1016/j.physbeh.2009.02.005. Epub 2009 Feb 10.	PFNA PFOA	Age, BMI, gender, smoking, self-reported sportfish consumption	measured PFCs. Thus, PFOS analysis did not control for pos or neg effects of other
Study Design:	PFHpA PFUmDA	Outcome:	PFCs on PFOS assoc with TSH or FT4.
Nested cross-sectional study	PFHxS PFOSA	Assoc of PFOS (and other PFCs) with TSH and FT4	Other comments:
"Hypothesis screening" investigating associations between 8 PFCs (incl. PFOS) and TSH and free T4 (FT4) in	Analysis by Electrospray tandem MS (ESj-MS/MS)	Major Findings:	Study was well conducted, but was limited by small sample size
sub-population from NY State Angler's Cohort Study cohort	LOD for PFOS = 2.00 ng/ml (LOD for other PFC were ≤LOD for PFOS by ≥10x)	Neither TSH, or FT4 associated with PFOS (or other PFCs) in multiple linear regression	
Blood sample and survey questionnaire (sportfish, game,	Population-Level Exposure:		
lifestyle, demographics, medical conditions) completed 1995-1997.	PFOS geom mean = 19.57 (7.25-76.88) ng/ml		
Location:	83% of total PFCs		
NY State	PFOS serum concentration consistent with NHANES		
Population:	levels from 4 th National Report on Human Exposure		
31 of 38 cohort members previously selected on the basis of high level	to Environmental Chemicals		
sportfish consumption	PFOS sig correlated with PFDA (r = 0.7); PFNA (0.53).		

Reference and Study Design	Exposure Measures	Results	Comment
N = 31 (4 F)	Non-sig assoc with PFOA (r =		
	0.35)		
Mean age = 39 (31-45) yrs			
No history of thyroid or goiter problems			
Related Studies:			

Study:Exposure Assessment:Stat Method:Major Limitations:Bonefeld-Jorgensen et al. (2011)PFOS extraction by ion pairing Analysis by LC-MS-MS w electrospray ionizationPFOS and other vars In-transformed OR from unconditional logistic regressionSmall n for cases (9 for PFOS OR analysis)Bonefeld-Jorgensen EC1, Long M, Bossi R, Ayotte P, Asmund G, Krügerelectrospray ionizationOR from unconditional logistic regressionPFOS analysis not adj for PFOA or or	Reference and Study Design	sign Exposure Measures	Results	Comment
Bonefeld-Jorgensen EC1, Long M, Bossi R, Ayotte P, Asmund G, KrügerAnalysis by LC-MS-MS w electrospray ionizationOR from unconditional logistic regressionanalysis)PFOS analysis not adj for PFOA or or			Stat Method:	Major Limitations:
Nzulumiki P, Dewailly E. Environ Health. 2011 Oct 6;10:88. doi: 10.1186/1476-069X-10-88. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study.Population-Level Exposure: $PFOS$ median conc $-$ cases = 45.6 ng/ml $-$ controls = 21.9 ng/ml- age $-$ BMI $-$ no.full term pregnancies $-$ breastfeeding $-$ menopausal status $-$ serum cotinineOther comments: Case-control studyStudy Design:(NOTE: PFOS concs ~ 2.5 -5 xIncluded in model if $\Delta\beta > 15\%$ Sig, but small effect	Bonefeld-Jorgensen et al. (2011) Bonefeld-Jorgensen EC1, Long M, Bossi R, Ayotte P, Asmund G, Krüger T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E. Environ Health. 2011 Oct 6;10:88. doi: 10.1186/1476-069X-10-88. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Study Design: Case-control Cases – 80% of breast cancer cases in Greenland 2000-2003 Controls – from study of POP exposure and Artic Monitoring and Assessment Prgm (AMAP) Age, district-matched to cases Blood samples on diagnosis (cases) or on enrollment (controls) Analysis blind to disease status Plasma fatty acids Serum cotinine Serum 17β-estradiol Measurement of ER, AR, and AhR	 PFOS extraction by ion pairing Analysis by LC-MS-MS w electrospray ionization LOD = 0.1-0.4 ng/ml BOD = 0.1-0.4 ng/ml PODUlation-Level Exposure: PFOS median conc - cases = 45.6 ng/ml - controls = 21.9 ng/ml (NOTE: PFOS concs ~ 2.5 -5 x current US F (NHANES 4th Rpt) r cases and cases) s 	PFOS and other vars In-transformed OR from unconditional logistic regression $\frac{\text{Co-variates considered}}{- age}$ - BMI - no.full term pregnancies - breastfeeding - menopausal status - serum cotinine Included in model if $\Delta\beta > 15\%$ Outcome: OR for breast cancer as function of unit increase in PFOS Major Findings: (adj model) OR for breast cancer per unit PFOS sig > 1.0 (OR = 1.03, p = 0.05)	Small n for cases (9 for PFOS OR analysis) PFOS analysis not adj for PFOA or other PFCs Other comments: Case-control study Small N Sig, but small effect (However, see Ghisari et al. follow-up study)

Reference and Study Design	Exposure Measures	Results	Comment
Location:			
Greenland			
Population:			
Greenland Inuit F			
Full N:			
Cases $-n = 31$			
Controls $- n = 115$			
N for PFOS OR analyses:			
Unadj analysis			
Cases = 31			
Controls = 98			
<u>Adj analysis</u>			
Cases= 9			
Controls = 69			
Related Studies:			
Ghisari et al. (2014)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Caserta et al. (2013) Caserta D, Ciardo F, Bordi G, Guerranti C, Fanello E, Perra G, Borghini F, La Rocca C, Tait S, Bergamasco B, Stecca L, Marci R, Lo Monte G, Soave I, Focardi S, Mantovani A, Moscarini M Correlation of endocrine disrupting chemicals serum levels and white blood cells gene expression of nuclear receptors in a population of infertile women Int J Endocrinol. 2013;2013:510703. doi: 10.1155/2013/510703. Epub 2013 Apr 21. Study Design: Lifestyle questionnaire Exclusions: - smoking - vegetarian diet - occup exposure to EDCs - BMI > 30 - inflammatory/infectious disease - diagnosis of M infertility factor Blood sample		Stat Method:Comparison of normally distrib variables compared w t-test, non-normally distrib var by Mann-Whitney U test. Chi-sq and Fisher for comparison of rates and proportionsOutcome:Assoc PFOS w fertility statusMajor Findings:No sig diff in % PFOS detects between fertile and infertile womenOutcome:Assoc PFOS w nuclear receptorsMajor Findings:InfertilePFOS sig corr w AR (r = 0.236) (androgen receptor) and PXR (r = 0.239) (not w ER α , ER β , AHR PPAR γ)Fertile	
Blood sample - for infertile, collection before hormone treatment		Fertile PFOS not sig corr w any nuclear receptor	
 for infertile, collection before hormone treatment Nuclear receptor gene expression determined on peripheral blood 		PFOS not sig corr w any nuclear receptor	
mononuclear cells (PBMNCs)			

Reference and Study Design	Exposure Measures	Results	Comment
Location:			
Rome, Ferrara, Sora; Italy			
Population:			
Infertile n = 111 F, 18-40 Enrolled in IVF clinics Recruited 6/09-4/10			
Fertile n = 44 F 18-40 Spontaneous preg in prev year Regular menstrual cycle Stopped breastfeeding ≥ 6 mos prev			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Chan et al.(2011) Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW. Perfluorinated acids and	Serum TSH and free T4 by chemoluminescent immunoassay – "standard laboratory procedure" CV for TSH at lowest conc = 10%,	PFC conc <lod as="" entered="" lod<br="" ½="">OR by conditional logistic regression <u>Co-variates</u> - maternal age, maternal</lod>	N for cases and controls is modest. Women self-selected for the trisomy/Down's/spina bifida screening and therefore, cohort is not necessarily
hypothyroxinemia in pregnant women. Environ Res. 2011 May;111(4):559-	CV at greater values = 2.7% CV for free T4 = 3-4%	wt., gestational age at blood draw (dichotomized), race (Caucasian/other)	representative of al pregnancies.
64. doi: 10.1016/j.envres.2011.01.011. Epub	PFOS, PFOA and PFHxS by HPLC-	Outcome:	Other comments:
2011 Feb 9.	triple quodripole MS LOD (for ea.) = 0.25 ng/ml	TSH, free T4	This was a well-controlled study with minimal opportunity for uncontrolled
Study Design:		Major Findings:	confounding. However, the small N and
Matched case-control.	PFC measurement precision demonstrated in QC analyses	For PFOS independently (in model without other PFCs), OR < 1.0	non-randomness of the sample reduce the generalizability of the findings.
<u>Cases</u> – Normal TSH, no hyperthyroidism, free T4 in lowest 10^{th} percentile of samples N = 96	Population-Level Exposure: Geom. Mean (nmol/L)	For model with all PFCs, OR for PFOS <1.0 (OR for PFHxS adj OR = 1.27, but not	
$\frac{Controls}{50^{th}-90^{th}}$ percentile of samples N = 175	PFOS PFOA PFHxS cases 14.15 3.10 2.86 controls 15.18 3.32 2.59	stat sig) For sum of PFCs, OR <1.0	
Matching - Cases matched to 1-3 controls each based on: Referring physician; maternal age (+/-3 yrs)	(PFOS conc in ng/ml = cases - 7.08 controls - 7.50)		
Location:			
Edmonton, Alberta, Canada Population:			
Pregnant women providing second trimester blood samples in			

Reference and Study Design	Exposure Measures	Results	Comment
conjunction with trisomy 18//Down's			
syndrome/spina bifida screening			
(Dec. 2005-June 2006). Women ≥18			
yrs old, singleton delivery >22 wks			
N for total samples = 974			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Chan et al.(2011) Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW.	Serum TSH and free T4 by chemoluminescent immunoassay – "standard laboratory procedure"	PFC conc <lod as="" entered="" lod<br="" ½="">OR by conditional logistic regression</lod>	N for cases and controls is modest. Women self-selected for the trisomy/Down's/spina bifida screening and
Perfluorinated acids and hypothyroxinemia in pregnant women. Environ Res. 2011 May;111(4):559-	CV for TSH at lowest conc = 10%, CV at greater values = 2.7% CV for free T4 = 3-4%	<u>Co-variates</u> - maternal age, maternal wt., gestational age at blood draw (dichotomized), race (Caucasian/other)	therefore, cohort is not necessarily representative of al pregnancies.
64. doi:		Outcome:	Other comments:
10.1016/j.envres.2011.01.011. Epub 2011 Feb 9.	PFOS, PFOA and PFHxS by HPLC- triple quodripole MS LOD (for ea.) = 0.25 ng/ml	TSH, free T4	This was a well-controlled study with minimal opportunity for uncontrolled
Study Design:		Major Findings:	confounding. However, the small N and
Matched case-control.	PFC measurement precision demonstrated in QC analyses	For PFOS independently (in model without other PFCs), OR < 1.0	non-randomness of the sample reduce the generalizability of the findings.
<u>Cases</u> – Normal TSH, no hyperthyroidism, free T4 in lowest 10^{th} percentile of samples N = 96	Population-Level Exposure: Geom. Mean (nmol/L)	For model with all PFCs, OR for PFOS <1.0 (OR for PFHxS adj OR = 1.27, but not	
$\frac{Controls}{50^{th}-90^{th}}$ percentile of samples N = 175	PFOS PFOA PFHxS cases 14.15 3.10 2.86 controls 15.18 3.32 2.59	stat sig) For sum of PFCs, OR <1.0	
Matching - Cases matched to 1-3 controls each based on: Referring physician; maternal age (+/-3 yrs)	(PFOS conc in ng/ml = cases - 7.08 controls - 7.50)		
Location:			
Edmonton, Alberta, Canada Population:			
Pregnant women providing second trimester blood samples in			

Reference and Study Design	Exposure Measures	Results	Comment
conjunction with trisomy 18//Down's			
syndrome/spina bifida screening			
(Dec. 2005-June 2006). Women ≥18			
yrs old, singleton delivery >22 wks			
N for total samples = 974			
Related Studies:			

Château-Degat et al. (2010) Château-Degat ML1, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E. Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit	Exposure Assessment: Fasting HDL-C, LDL-C, triglycerides TG) and glucose determined in plasma samples by autoanalyzer PFOS extracted by alkaline ion-	Stat Method: Assoc. of lipids and PFOS investigated with multiple linear regression Confounders considered: age; gender;	Major Limitations: PFOS w/in range of age comparable US pop according to CDC-NHANES
(T Château-Degat ML1, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E. Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit	TG) and glucose determined in blasma samples by autoanalyzer PFOS extracted by alkaline ion-	with multiple linear regression	pop according to CDC-NHANES
Dallaire R, Ayotte P, Dery S,Dewailly E. Effects ofperfluorooctanesulfonate exposureon plasma lipid levels in the Inuit	PFOS extracted by alkaline ion-	Confounders considered: age; gender;	
	pairing extraction. Quantification by HPLC-quadrapole-MS ³ C4-PFOS internal std. Recovery =	self-identified smoking; fasting glycaemia; fasting insulinaemia; circulating DHA + EPA; lipid lowering drugs; BMI	Other PFCs not reported. Cannot determine confounding by exposure to other PFCs Results are opposite from most reported associations in US pop (i.e.,
doi: 10.1016/j.envres.2010.07.003. LC Epub 2010 Aug 8. LC	37% _OD = 0.1 ng/ml _OQ = 0.3 ng/ml	Interaction between PFOS and gender investigated	PFOS $\rightarrow \downarrow$ HDL, \uparrow TG PUFA (DHA + EPA) exposure very high in
Study Design:	ntra, and inter assay CVs = 4%, 6% Population-Level Exposure:	Co-factors included in model if inclusion resulted in >10% change in dependent variable	this pop. Authors hypothesize that high PUFA intake could confound effects of PFOS (despite inclusion of PUFA in
	PFOS (geom mean) = 18.5 ng/ml 95% CI = 17.8-19/5)	Outcome:	models as statistically appropriate) Other comments:
Investigation of association between PFOS and plasma lipid levels		Assoc. of lipid parameters with plasma PFOS Major Findings:	Except for the failure to investigate potential confounding by other PFCs, this study was well controlled with a reasonably
Blood samples collected in conjunction with large-scale community health study		Interaction term sig for PFOS-gender for PFOS-HDL and PFOS-triglycerides.	sixed N. Although cross-sectional, long PFOS
Questionnaires (self-administered and interview) on socio-		These outcomes were stratified by gender	serum half-life and likely consistency of diet suggests that observations are generalizable in this pop.
demographic, environmental, dietary, lifestyle factors		Adjusted models HDL (good cholesterol) sig. positively	
Location: Nunavik Inuit.		assoc w. PFOS (M and F) TC/HDL sig negatively assoc w PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		TG sig (p = 0.040 negatively assoc w PFOS for F only (M neg., but not sig)	
Participants in community-based stratified randomized household sampling.			
Exclusion criteria: Pregnancy, non-Inuit, not fasted for 8-hrs			
N = 723			
Mean age = 36.9 yrs F = 55% Mean BMI = 27.2 kg/m²			
Related Studies:			
Dallaire et al. (2009)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Chen et al. (2013) Chen MH, Ha EH, Liao HF, Jeng SF,	PFOS and PFOA measured in cord plasma by UPL-triple quadrupole MS	<u>Co-factors/confounders</u> HOME scale (support available for	No indication of inter-tester QA determinations.
Su YN, Wen TW, Lien GW, Chen CY, Hsieh WS, Chen PC.	LOQ = 0.22 ng/ml PFOS, 1.58 ng/ml PFOA	children at home) Cord blood cotinine	Number of testers not specified.
Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology. 2013 Nov;24(6):800- 8. doi: 10.1097/EDE.0b013e3182a6dd46.	Population-Level Exposure: PFOS detection = 100% PFOA detection = 82%	Sex Gestational age Maternal education (≤ > 12 yr)Family income (dichotomized) Breastfeeding (never/ever) Postnatal ETS	Testers were "physical therapists." Not clear if this is a mis-translation. However, not clear that physical therapists are appropriate for this testing. Does not appear that PFOS models were
Study Design:	Mean conc (sd) PFOS = 7.0 (5.8) ng/ml	Linear and logistic regression	adjusted for PFOA conc.
Longitudinal birth cohort	PFOA = 2.5 (2.6) ng/ml	PFOS, PFOA as continuous and categorical variables	Other comments:
Investigation of assoc between cord plasma PFCs and neurodevelopment in 2-yr olds "Comprehensive Developmental Inventory for Infants and Toddlers"		Outcome: Whole test and sub-test outcomes of Comprehensive Developmental Inventory for Infants and Toddlers	Study was well controlled with reasonable N. However, lack of information about testers, testers qualifications, number of testers, and inter-tester variability results in uncertainties. Failure to adjust PFOS models for other PFCs (although PFOA, alone, not assoc with outcomes)
Domains – cognitive; language; motor, social; self-help		Major Findings: (adjusted model)	,
Tests administered by "specially trained physical therapists"		PFOS	
Location:		↑ in PFOS equal to inter-quartile range of cord plasma conc \rightarrow stat sig \downarrow in whole test score	
Taiwan			
Population:		 ↑ in PFOS equal to inter-quart range → stat sig ↓ in gross motor test component 	
Children at 2 yrs old from birth cohort assembled 2004-2005		All other components assoc w non-sig decrease for inter-quart ↑ in PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Initial cohort $n = 402$. After exclusion			
for incomplete information and loss		For categorical analysis, test score for	
to follow-up, n = 239 mother-child		gross motor for highest quartile PFOS	
pairs		conc stat sig. ↓ compared to lowest quartile PFOS	
Av. Materinal age = 32 yrs			
		OR for lowest 10% of performance for	
First birth for 40% of mothers		gross-motor component w inter-quart ↑	
		in PFOS = 2.4 (95% CI = 1.3-4.2)	
Education >12 yrs over-represented		For boys only, OR = 4.2 (1.7-10.8)	
in study pop. compared to full cohort			
		PFOA	
Related Studies:			
		No sig effects on test outcomes	
Chen et al. (2012b)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Christensen et al. (2011) Christensen KY, Maisonet M, Rubin C, Holmes A, Calafat AM, Kato K,	AnalyteLOD (ng/ml) PFOS 0.2PFOA0.1	Confounders investigated Maternal pre-preg BMI Maternal age at delivery Maternal age at own menarche	Modest n's Sig PFOA exposure
Flanders WD, Heron J, McGeehin MA, Marcus M Exposure to polyfluoroalkyl chemicals during pregnancy is not associated with offspring age at menarche in a contemporary British cohort	PFOSA0.1Et-PFOSA-0.2AcOH0.2Me-PFOSA-0.2AcOH0.4	Maternal education Child's ethnicity (white/non-white) Child's birth order SES/class	PFOS exposure is consistent with US exposure in NHANES 4 th Report Analysis based on single serum sample (however, relatively long half life).
Environ Int. 2011 Jan;37(1):129-35. doi: 10.1016/j.envint.2010.08.007. Epub 2010 Sep 16.	PFHxS 0.1 PFNA 0.1 PFDeA 0.2	Outcome: OR for assoc PFOS with ↓ age at menarche.	Because preg period sampling dates varied, later samples, maternal-fetal transport could reduce measured maternal serum levels leading to underestimating
Study Design: Prospective case-control nested within ALSPAC (Avon Longitudinal Study of Parents and Children) "Self"-reporting (by mothers?) of menarche status and age at first menarche	Analysis by CDC – on-line solid phase extraction coupled to isotope dilution HPLC-tandem MS For analytes in >30% of samples, < $LOD \rightarrow LOD/2$ For analystes in < 30% of samples, < LOD entered as missing Population-Level Exposure:	 Major Findings: OR for PFOS < 1.0 for continuous and binary analysis - non-adj and adjusted models. No OR sig > 1.0 for any PFCs. Non-sig ↓ ORs for PFOS 	fetal exposure Other comments: The study was generally well conducted and well controlled. However, concerns about exposure misclassification based on preg sampling time (see above), and small N, make lack of assoc uncertain.
Maternal serum samples collected "during pregnancy." If multiple samples, earliest preg sample was chosen. Investigation of OR for early menarche (cases) with maternal prenatal PFCs Location: Avon, UK	AnalyteMedian (ng/ml)PFOS19.8PFOA3.7PFOSA0.2Et-PFOSA-0.6AcOHMe-PFOSA-0.4AcOHPFHxS1.6PFNA0.6PFDeA-		

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
From original cohort of 14,610 \rightarrow singleton F $\rightarrow \geq$ 1 maternal prenatal serum sample $\rightarrow \geq$ 2 puberty stage questionnaires (one, post-menarche) \rightarrow report of age at menarche \rightarrow analyzable samples			
Menarche < 11.5 yrs = cases (n = 218)			
Menarche > 11.5 yrs = controls Random sample \rightarrow n = 230			
N's based on calc to achieve 80% power to detect OR \ge 1I7 w control/cases n = 225			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
		Stat Method:Multiple linear regression5 participants with extreme TSH excludedInteraction terms for sex not sig. M and F combined in analyses.Co-variates with $p \le 0.1$ considered - Sex; menopause; age, BMI; Se; smoking (no. cigarettes); alcohol freq; fish consumption; marine mammal consumption; education; thyroid altering medication, plasma lipidsIncluded in PFOS model if inclusion altered PFOS β by > 10%Included co-variates age, sex, BMI, plasma lipids, smoking, educationPCB-153, and BDE-47 examined in model w PFOsOutcome: Assoc PFOS w THS, free T4, total T3, TBGMajor Findings: PFOS correlated w PCBs and metabolites (r = 0.47-0.55)	
N = 621 Age - 36.8 ± 13.9, range = 18–73		Other org chlor $r = 0.36-0.51$ BDE-153 $r = 0.23$ (adj models)	

Reference and Study Design	Exposure Measures	Results	Comment
		PFOS	
Related Studies:		Sig assoc w ↓ TSH	
		Sig assoc w ↑ free T4	
Chateau-Degat et al. (2010)		Sig assoc w↓ total T3	
		Sig assoc w↓TBG	
		For TSH, and free T4, β for adj model for PFOS was largest of all contaminants. And second largest for TBG.	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Darrow et al. (2013) Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ Health Perspect. 2013 Oct;121(10):1207-13. doi: 10.1289/ehp.1206372. Epub 2013 Jul 8. Study Design: Prospective study Assoc of birth outcomes w PFOS serum conc in blood samples collected from mothers at enrollment in C8 Health Project (2005-6) Birth outcome ascertained by interview Births 2005-2010 Live birth data obtained from birth records - Preterm - Low birth wt - Birth wt (continuous variable) of full-term infants			
Location:			
Mid-Ohio Valley			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Major Findings:	
 Pop living near Dupont Washington Works Births to participants in C8 Community Follow-Up study after Jan. 1, 2005 Enrollment in C8 2005-2006, completion of demographic health questionnaire, provided blood sample, participated in ≥ 1 follow-up Interview 2008-2011, ≥ 1 live birth 2005-2010 Singleton births White mothers 		Pretern - No sig assoc w PFOS (also not sig with PFOS and PFOA in same model) PIH - ↑ PFOS (and PFOA) sig assoc w ↑ incidence PIH (higher β and OR when analysis restricted to post-partum blood samples). Also sig w PFOA in same model Low birth wt - No sig assoc w PFOS Continuous birth wt in full term - ↑ PFOS (but not PFOA) sig assoc w ↓ birth wt (first preg. post-sample only). Also sig for trend (but not	
- Maternal age at birth ≤ 45		monotonic) across quintiles	
yrs			
N = 1,630			
~26% of births were in 2005, but prior to C8 enrollment			
~52% of PFOS samples collected prior to conception			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
 Darrow et al. (2014) Darrow LA1, Howards PP, Winquist A, Steenland K. Epidemiology. 2014 Jul;25(4):505-12. doi: 10.1097/EDE.0000000000000103. PFOA and PFOS serum levels and miscarriage risk. Study Design: Nested cohort (C8 study), prospective pregnancy outcome Not preg at enrollment (exclusion) Blood sample at enrollment, interview reporting ≥ 1 pregnancy conceived after blood sample Ending (successfully or unsuccessfully) prior to follow-up interview Follow-up interview – reproductive history 40% online 60% by telephone Gestational age from OH birth records Miscarriage = ges age ≤ 20 wks Stillbirth = > 20 wks 	PFOS LOD = 0.5 ng/ml < LOD (n = 7) = LOD/2 Population-Level Exposure: Mean PFOS = 16.9 ng/ml (sd = 9.7 ng/ml) Geom mean PFOS = 14.3 ng/ml (sd = 1.9 ng/ml)	Stat Method: Logistic regression w generalized estimating equations Log-PFOS as continuous measure and quintiles <u>Covariates (a priori)</u> - maternal race - pre-preg BMI - education - diabetes - maternal age at conception - smoking at conception - time between serum measurement and conception Outcome: OR for miscarriage rel to serum PFOS <u>Full analysis</u> (miscarriages = 304; live births = 1,438) Major Findings: OR not sig > 1.0 for continuous analysis borderline sig OR = 1.21 (0.94-1.55) Outcome: OR for miscarriage rel to serum PFOS <u>Restricted to first preg</u> (miscarriages = 213; live births = 1,129)	Major Limitations: Other comments: Large overall N (moderate number of cases Prospective study design Good analytical reliability Multiple sensitivity analyses Results are ambiguous and difficult to interprt

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Major Findings:	
OH, WV		OR sig > 1.0 For continuous analysis (OR = 1.34	
Population:		(1.02-1.76) And for Q2-Q5	
C8 study cohort F		(but response not monotonic)	
≥ 20 yrs old		Outcome:	
- Live births, n = 1,134 (incl 11 stillbirths)		OR for miscarriage rel to serum PFOS Restricted to first preg and excluding	
- miscarriage, $n = 304$		recent preg (≤ 40 wks before last	
Related Studies:		interview) (miscarriages = 190; live births = 1,105)	
		(Note: recent preg exclusion corrects bias of miscarriages but not live births	
		reported)	
		Major Findings:	
		OR not sig > 1.0 For continuous analysis	
		Or for any quintile except Q3	
		Outcome:	
		Condition at enrollment:	
		Gravity = 0; parity = 0; or parity >0	
		Major Findings:	
		OR not sig >1.0 For continuous analysis	
		Or for any quintile except Q3	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
de Cock et al. (2014a)	Plasma Isotope dilution, on-line trapping	Mixed models	Small n
de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M.	column-LC-triple quadrupole MS	PFOS as quartiles	Low PFOS expsoure
Int J Environ Res Public Health. 2014 Jul 10;11(7):7001-21. doi:	CV = 16-17% (internal? External repeats?)	Exposure quartile, timing of anthropomorphic meas, sex, as fixed	Other comments:
10.3390/ijerph110707001. First year growth in relation to	PFOS (cord plasma) LOQ 0.04-1.4	effects in model, random effect added for subject	Small n
prenatal exposure to endocrine disruptors - a Dutch prospective	ng/ml	<u>Co-variates</u>	Low PFOS exposure
cohort study.	Population-Level Exposure:	- Maternal/paternal BMI	Incomplete statistical reporting (βs not given)
Study Design:	Mean cord plasma PFOS = 1.6 ng/ml	- gest age - parity	
Recruited 1/2011-1/2013	(NOTE: PFOS conc appears low compared to US pop (NHANES 4 th Rpt),	- alcohol - smoking	
Preg F recruited through midwife clinics	but pop data on cord plasma not available)	educationduration breast feeding	
Recruitment at 1 st ante-natal visit (10-12 wks of preg)		Co-variates added to model if $\Delta\beta > 10\%$	
Exclusions - twins		Outcome: BMI	
- major congenital abnormalities		Major Findings:	
Cord blood, breast milk (at mean 6.3 wks post-natal) collected		PFOS not sig assoc w BMI Sig interaction w time (post-natal) and	
Growth during first yr obtained from regional youth health authority (pop		wsex	
has regularly scheduled visits – aver = 6 visits)		Outcome:	
Parental anthropometry from midwives		Weight	

Reference and Study Design	Exposure Measures	Results	Comment
Questionnaire on parental health,		Major Findings:	
lifestyle, prev preg			
		PFOS not sig assoc w weight	
Follow-up visits to child health		Sig interaction w time (post-natal) and	
centers at 1, 2, 4, 6, 9, 11 mos. after		w sex	
birth		Outcome:	
Location:		Outcome.	
		Height	
Zwolle, The Netherlands			
		Major Findings:	
Population:			
		PFOS not sig assoc w height	
LINC cohort (maternal-child)		Sig interaction w time (post-natal) and	
90 methor shild pairs from general		wsex	
89 mother child pairs from general regional pop		Outcome:	
M = 56		outcome.	
F = 33		Head circum	
N for PFOS = 61		Major Findings:	
Related Studies:		PFOS not sig assoc w head circum	
		Sig interaction w time (post-natal) and	
		w sex	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
de Cock et al. (2014b)	Plasma Isotope dilution, on-line trapping	Co-variates investigated	Low PFOS exposure level
de Cock M1, de Boer MR, Lamoree M, Legler J, van de Bor M.	column-LC-triple quadrupole MS	 Thyroid related health issues thyroid related meds during preg 	Small N
Environ Health. 2014 Dec 10;13:106. doi: 10.1186/1476-069X-13-106. Prenatal exposure to endocrine	CV = 16-17% (internal? External repeats?)	- birth wt - maternal/paternal wt at10-12 wks preg	No controlling of PFOS analyses for PFOA
disrupting chemicals in relation to thyroid hormone levels in infants - a	PFOS (cord plasma) LOQ 0.04-1.4 ng/ml	- maternal/paternal length at 10-12 wks preg)	Other comments:
Dutch prospective cohort study.	No PFOS samples < LOQ	- maternal wt at 36 wks preg (gest wt gain)	Well controlled
Study Design:	Population-Level Exposure:	- caesarian delivery (Y/N) - maternal birth date	Low LOQ for PFOS
Prospective birth cohort	Mean and median PFOS cord serum	- parity - 1 st trimmest maternal smoking	Low power given small sample size and low PFOS exposure
Recruited 1/2011-1/2013	conc = 1.6 ng/ml (range 0.57-3.2 ng/ml)	- 1 st trimester alcohol	
Preg F recruited through midwife clinics		Linear regression	
Recruitment at 1 st ante-natal visit (10-12 wks of preg)		Stratified by sex Analysis by quartiles	
Exclusions		Sensitivity analyses (for maternal	
- twins - major congenital abnormalities		factors) by exclusion of - gest wt gain	
Cord blood, breast milk (at mean 6.3		- birth wt	
wks post-natal) collected		Outcome:	
T4 from heel-prick blood sample collected between postnatal days 4-		T4 (from heel-prick on filter paper)	
7		Major Findings: (full adj model)	
Parental anthropometry from midwives		T4 not sig assoc w PFOS for either M or F	

Reference and Study Design	Exposure Measures	Results	Comment
Questionnaire on parental health,		(for M, PFOS Q2 and Q3 sig neg assoc	
lifestyle, prev preg		w T4 in crude model and for Q2 in	
		partial adj model. No sig assoc in F)	
Location:			
Zwolle, The Netherlands			
Population:			
LINC cohort (maternal-child)			
infants			
62 M			
62 F			
PFOS N = 64			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Donauer et al. (2015) Donauer S, Chen A, Xu Y, Calafat AM, Sjodin A, Yolton K J Pediatr. 2015 Mar;166(3):736-42. doi: 10.1016/j.jpeds.2014.11.021. Epub 2014 Dec 16. Prenatal exposure to polybrominated diphenyl ethers and polyfluoroalkyl chemicals and infant neurobehavior. Study Design: Prospective birth-cohort Neonatal Intensive Care Unit Network Neurobehavioral Scale administered during home visits (13 dimensions)		Stat Method: PFOS conc log-transformed Multiple linear regression of endpoints on maternal serum PFOF for all individual NNNS endpoints except: - hypotonicity (logistic regression - assymetric reflexes (Poisson regression) NNNS composite endpoints (high arousal/difficult or hypotonic vs. social/easygoing) by logisitic regression Co-variates investigated - maternal age - race - income - maternal depression	
Maternal serum collection at 16 wks gestation (85% of mothers), or 26 wks gest (10% mothers), delivery (5%) Location:		 BMI at 13-19 wks gest alcohol during preg marijuana during preg cotinine infant monthly wt change (birth-5 wks) maternal BPb during preg (max of 16, 	
Cincinnati, OH		26 wks, delivery) - gestational age < 37 wks	
Population:			
Mother-child participants in Health Outcomes and Measurements of the Environment (HOME) Study		Co-variates retained if Δ in β PFOS w removal > 10% Multivariate models constructed for NNNS outcomes w bivariate p < 0.15	
Recruited 3/03-1/06			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
N = 349 infants M = 164 F = 185		NNNS outcomes	
		Major Findings:	
Related Studies:			
		PFOS not sig assoc w NNNS for:	
		Attention Self-regulation	
		Quality of movement	
		Arousal	
		Excitability	
		Special handling required	
		Lethargy Non-optimal reflexes	
		Asymmetric reflexes	
		Hypotonicity	
		Stress abstinence (borderline sig)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Dong et al.(2013)	Outcomes	$PFC < LOQ = LOQ/\sqrt{2}$	PFOS conc is higher (median ≈ 75 th percentile of US 12-19 yrs old (NHANES)
Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, Jin YH, Hsieh	Venous blood	OR for asthma by logistic regression	PFTA conc is comparable to PFOS.
WS, Lee YL, Chen PC. Serum polyfluoroalkyl	Absolute eosinophil count (AEC) x 10 ⁶ by automatic analyzer	A priori model adj for age and sex	Overall p-value sig for controls > cases. However, mean and median conc differ
concentrations, asthma outcomes, and immunological markers in a	Eosinophil cationic protein (ECP) µg/L	Other confounders considered: Parental education	as to cases or controls higher
case-control study of Taiwanese children.	by ELISA	BMI ETS	Authors state that because of intercorrelations among PFCs
Environ Health Perspect. 2013 Apr;121(4):507-13, 513e1-8. doi:	IgE (IU/ml) by Pharmacia UniCap assay test	Month of survey	contribution of individual PFCs cannot be determined (i.e., other PFCs were
10.1289/ehp.1205351. Epub 2013 Jan 7.	Asthma control test (ACT) questionnaire	Factor included if inclusion changed PFC effect by ≥ 10%	not controlled for in PFOS model)
Study Design:	for asthma symptoms in prev 4 wks and asthma severity questionnaire	Multiple gen linear regression for IgE,	Other comments:
Case-control study of assoc of	administered to cases	AEC, ECP by PFC quartile	The study was reasonably well designed and conducted. The N was modest.
asthma w PFOS exposure	PFC exposure	Outcome:	However, the failure and/or inability to statistically isolate PFOS (or other PFCs)
8-hr fasting urine and serum	PFC from serum by HPLC-QQQ- MS/MS	Assoc PFOS w asthma and immune markers	does not permit ascertainment of a specific PFOS effect.
samples Location:	PFOS LOQ = 0.03 ng/ml	Major Findings:	
	Deputation Level Evacement	<u>Asthma</u>	
Taiwan	Population-Level Exposure:	OR for PFOS sig for all quartiles	
Population:	PFOS ≥ 97% detect	(compared to lowest) OR 4 th quartile = 2.63	
10-15 yr old children diagnosed w asthma by physician 1 yr prior to	PFOS (ng/ml) mean = 33.4 controls; 45.5 cases	Also sig for (pos) trend	
entry into study (2009-2010)	median = 28.9 controls; 33.9 cases	ORs also sig for most other PFCs	
Controls (non-asthmatic) selected from 7 public schools w various	<u>PFOA (ng/ml)</u> Mean = 1.0 controls; 1.5 cases		
SES, and geographic/climate			

Reference and Study Design	Exposure Measures	Results	Comment
locations in Taiwan. Same age		<u>lgE</u>	
group as cases. No family or	<u>PFTA (ng/ml)</u>		
personal asthma history	Mean = 29.9 controls; 54.6 cases	No sig diff among quartiles of any PFC	
	Median = 5.2 controls; 4.1 cases	for controls	
Cases = 225			
Controls = 231	PFDoA (ng/ml)	For cases, PFOS 4 th quart sig > 1 st	
	Mean = 4.5 controls; 3.8 cases	(ref) quartile	
		Sig for (pos) trend	
Related Studies:	Note: all other PFCs < PFDoA		
		Also sig for upper quartiles and trend	
		for other PFCs (PFOA, PFDA, PFNA)	
		AEC	
		No sig diff among quartiles of any PFC	
		for controls	
		For PFOS, not sig for any individual	
		quartile, but sig for (pos) trend	
		4	
		ECP	
		No sig diff among quartiles of any PFC	
		for controls	
		For PFOS, 4 th quart sig > 1 st quart. Sig	
		for trend	
		Upper quartiles and trend also sig for	
		several other PFCs	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Eriksen et al. (2009) Eriksen KT, Sørensen M,	Plasma samples at recruitment PFOS and PFOA analysis by HPLC-MS	Confounders investigated: Prostate cancer	Plasma sample represent exposure ≤ 12 yrs prior to diagnosis. Potential for exposure misclassification
McLaughlin JK, Lipworth L,	FFOS and FFOA analysis by TIFEC-WS	Yrs school	
Tjønneland A, Overvad K, Raaschou-Nielsen O.	LOQ (apparently for all PFCs) = 1 ng/ml	BMI Fat intake	PFOS exposure higher than US adult pop (~ 75 th percentile) (NHANES)
Perfluorooctanoate and	Non-detects as LOQ/√2	Fruit and veg intake	
perfluorooctanesulfonate plasma		Distances	Other comments:
levels and risk of cancer in the general Danish population. J Natl Cancer Inst. 2009 Apr 15;101(8):605-9. doi: 10.1093/jnci/djp041. Epub 2009 Apr	Mean CV for PFOS (50 samples) = 1.8% Population-Level Exposure:	Bladder cancer Smoking (status, duration, intensity) Yrs of school Specific occupation exposures	This is a high quality study with a reasonable n and relevant exposure levels. The potential for exposure misclassification due to temporal offset of
7. Study Design:	PFOS (ng/ml) M F cases 35.1 32.1	<u>Pancreatic cancer</u> Smoking (status, duration, intensity) Fat intake	sampling and diagnosis is the main caveat.
otady besign.	controls 35.0 29.3	Fruit and veg intake	
Prospective cohort enrolled 12/93- 5/97. Age 50-65 yrs. No prev cancer diagnosis Total cohort n = 57,051	PFOA conc \approx 20% of PFOS conc PFOS correlated w PFOA, r = 0.7	<u>Liver cancer</u> Smoking (status, duration, intensity) Yrs of school Alcohol intake	
Nested case-control w/in cohort		Specific occupation exposures	
Questionnaire at enrollment		Quartiles of PFC exposure defined on basis of separate distributions for each	
Location:		cancer	
Denmark		Linear assoc of PFOS conc and each cancer by linear spline to yield	
Population:		incidence rate per 10 ng/ml ↑ in PFOS	
Danish cancer and pathology reg's used to identify spec cancers diagnosed 0-12 (median = 7) years) post-enrollment		Analysis for total pop and stratified by sex	
L			

Reference and Study Design	Exposure Measures	Results	Comment
Prostate (n = 713)		Outcome:	
Bladder (n = 332)			
Pancreatic (n = 128)		Incident rate ratio (IRR) for each	
liver (n = 67)		cancer by PFOS (and PFOA) plasma	
		conc	
Control group 680 M, 92 F (~ ratio			
among cases) randomly selected		Major Findings:	
from same cohort			
		No sig ↑ IRR for PFOS (or PFOA) for	
		any cancer at any quartile. No sig	
Related Studies:		trend for any cancer (crude or adj	
		models)	
Eriksen et al. (2013) (non-cancer)		No significance of solv	
		No sig influence of sex	
		For prostate	
		<u>1 of prostate</u>	
		quartile IRR 95% CI	
		1 1.00 (ref.)	
		2 1.35 0.97-1.87	
		3 1.31 0.94-1.82	
		4 1.38 0.99-1.93	
		Given lack of trend authors suggest	
		either a low threshold for (modest) ↑	
		risk, or chance	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Eriksen et al. (2013) Eriksen KT, Raaschou-Nielsen O,	PFOS Plasma samples at recruitment	Generalized linear analysis Linearity verified graphically by linear	Study pop highly skewed to M (due to previous use of cohort as controls for cancer incidence study (Eriksen et al.
McLaughlin JK, Lipworth L,		splines	(2009))
Tjønneland A, Overvad K, Sørensen M.	PFOS and PFOA analysis by HPLC-MS	PFOS (PFOA) as continuous variables	PFOS exposure > US adult pop (~75 th
Association between plasma PFOA and PFOS levels and total	LOQ (apparently for all PFCs) = 1 ng/ml	and as octiles (100 in ea).	percentile)
cholesterol in a middle-aged Danish population.	Non-detects as LOQ/√2	<u>Co-variates</u> Age	Unclear if regression for PFOS controlled for PFOA
PLoS One. 2013;8(2):e56969. doi: 10.1371/journal.pone.0056969.	Mean CV for PFOS (50 samples) = 1.8%	Sex Yrs school	Total cholesterol, not LDL measured
Epub 2013 Feb 18.	Cholesterol	BMI Smoking	Although sig, overall effect of PFOS on
Study Design:	Determination by reflectance	Alcohol Phys activity (hrs/wk)	cholesterol is small
Danish Diet, Cancer, and Health study. Prospective cohort enrolled	photometer reading of test strips (range 100-500 mg/dL)	Egg intake Animal fat intake	Other comments:
12/93-5/97. Age 50-65 yrs. No prev			This is a generally well-conducted study
cancer diagnosis Total cohort n = 57,053	Population-Level Exposure:	Outcome:	with a reasonable N. However, it is hampered somewhat by lack of clarity as
M = 27,178	Mean PFOS = 36.1 ng/ml Mean PFOA = 7.1 ng/ml	Cholesterol	to possible contribution of PFOA to PFOS assoc
F = 29,875	$M > F$ (mean $\Delta = 6.1$ ng/ml)	Major Findings:	
Nested cross-sectional case-control w/in cohort		(fully adj model)	
Questionnaire at enrollment		For total pop, \uparrow PFOS sig $\rightarrow \uparrow$ cholesterol Stratified by sex, assoc sig only for F	
Blood for PFOS and cholesterol samples taken at enrollment		(and $\beta \sim 3 x$ for M)	
Analysis of assoc bet PFOS (PFOA) and cholesterol levels		Cholesterol ↑ ~ 4 mg/dL (1.7% of total mean conc) for each interquartile range of PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Location:		diabetes increased β for assoc PFOS	
Denmark		w cholesterol	
Population:		BMI had no effect on PFOS- cholesterol assoc	
Danish (middle-aged), native born			
Control pop from Eriksen et al. (2009).			
Excluded under medication for high cholesterol, and no cholesterol blood data			
N = 754 M = 663 F = 90			
Related Studies:			
Eriksen et al. (2009) (cancer)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei and Olsen (2011)			
	((Note: The following information is from	Logistic reg using dichotomous	Does not appear that PFOS analyses
Prenatal exposure to perfluorinated	Fei (2007), which used the same	outcomes for "high" DSQ and "low"	were controlled for PFOA (However, high
chemicals and behavioral or	population and blood samples. The	DCDQ scores	corr. between PFOS and PFOA may
coordination problems at age 7	current publication provides less detail)		have precluded including both in same
years.		Also ordinal linear regression for DSQ	model)
Fei C, Olsen J.	Plasma PFOS (PFOA) conc by HPLC-	and DCDQ scores as categorical	
Environ Health Perspect. 2011	MS	variables (3-6 categories depending on	Although the overall N was mod high, the
Apr;119(4):573-8. doi:		spec subscales)	top j10% of (SDQ) and bottom (DCDQ)
10.1289/ehp.1002026. Epub 2010	Isotope dilution in extraction procs		scores defining the high category for
Nov 9.		PFOS plasma conc in quartiles	dichotomous analysis had rel small n's
	PFOS CV for between batch spiked		for each subscore category ($n = 15-36$).
Study Design:	controls = 2.5-2.8%	Potential confounders investigated:	Thus, power may have been low
	Dependence and a second stime of 0.000	Parity	No. do an indiantion of a summer of
Assoc between pre-natal PFOS	Repeat sample correlation $- r = 0.993$	Maternal age	No clear indication of accuracy of
exposure (maternal) and behavioral, social and motor dev. of children at 7	LOQ = 1.0 ng/ml	Pre-preg BMI Preg smoking	parental scoring (no gold std applied to assess reliability of scoring)
	LOQ = 1.0 ng/m	Preg alcohol	assess reliability of scoring)
yrs	Sample < LOQ as LOQ/2	Maternal SES	
Danish National Birth Cohort.	Sample < LOQ as LOQ/2	Sex of child	Other comments:
Danish National Birth Cohort.		Parental behavior problems score	other comments.
Maternal PFOS exposure in plasma	Population-Level Exposure:	Breastfeeding	Study design was reasonable, but (see
Blood draw pre-preg		Birth yr	above) uncertainties in high/low n's and
Blood didit pro prog	Median PFOS = 34.4 ng/ml (IQR = 26.6	Household density	reliability of parental scoring.
Parental interview w questionnaires	-44.5)	Gestational age at blood draw	fondonký of paronikal obornígi
when child was 7 yrs based on	(Median PFOA = 5.4 ng/ml		
assessment in prev 6 mos	(Co-variates retained in model if	
- Strength & Difficulties	PFOS-PFOA correlated $- r_s = 0.70$	changed PFOS estimates by $\geq 5\%$	
Questionnaire (SDQ)		, , , , , , , , , , , , , , , , , , ,	
- (behavioral problems)		Outcome:	
Dev Coordination Disorder			
Questionnaire (DCDQ)		High DSQ scores (i.e., elevated	
		behavioral difficulties scores)	
For SDQ, scores > highest 10%			
defined as high behavior score		Major Findings:	
		No sig or consistent assoc w PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
For DCDQ, scores in < lowest 10%		Outcome:	
defined as potential dev coordination			
disorder		Low DCDQ scores (i.e., low dev	
		coordination ability)	
Location:		Maior Findings.	
Denmark		Major Findings:	
Denmark		No sig or consistent assoc w PFOS	
Population:		No sig of consistent assoc w PPOS	
Danish Nat'l Birth Cohort			
91, 827 preg F from 3/96-11/02			
60% of Danish preg women			
Single live birth \rightarrow no reported			
congenital malformation \rightarrow 1st blood			
sample wks 4-14 \rightarrow all interviews \rightarrow			
1,400/43,045 randomly selected for			
follow-up study at 7 yrs (children) \rightarrow			
n = 787 for SDQ and			
n = 537 for DCDQ			
Related Studies:			
Fei et al. (2007, 2008, 2009, 2010a,			
2010b)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei (2007) Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Fei C, McLaughlin JK, Tarone RE, Olsen J.	Plasma PFOS (PFOA) conc by HPLC- MS Isotope dilution in extraction procs PFOS CV for between batch spiked controls = 2.5-2.8%	Stat analyses based on 1 st maternal blood sample Multiple linear reg for continuous birth wt OR by logistic regression for low birth	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt) Does not appear that PFOS models were adjusted for PFOA Only 1 st trimester maternal blood sample
Environ Health Perspect. 2007 Nov;115(11):1677-82.	Repeat sample correlation $-r = 0.993$	wt; small for gest age (SGA); and preterm birth	used in stat analyses, but 2 nd trimester sample differed (↓ mean) analyses could have differed with the later exposure
Study Design:	LOQ = 1.0 ng/ml	PFOS (PFOA) as continuous and categorical variables (< 25 th percentile	metric
Nested cross-sectional study (birth	Sample < LOQ as LOQ/2	as ref group)	Other comments:
outcomes w single 1 st trimester blood sample)	Population-Level Exposure:	Log-transf and non-transf PFOS conc investigated in models	The study had thorough statistical analysis. However, the n was small and
Maternal preg assoc between PFOS (PFOA) and birth wt, length of gestation from Danish Nat'l birth cohort	No overall mean PFOS reported Maternal mean for F = 35.3 ng/ml Maternal mean for M = 35.2 ng/ml PFOs and PFOA correlated (r = 0.87)	<u>Co-variates investigated in models</u> Maternal age Parity SES Pre-preg BMI	the later of the two blood samples was not analyzed in the models
Interviews at ges. wks 12 and 30, and post natal mos. 6 and 18		Smoking during preg Infant sex Gest wk of blood drawing	
Food freq questionnaire at ges wk 25			
Blood drawn 1 st and 2 nd trimester		Models also stratified by Parity, pre- preg BMI and pre-term/term/post-term birth	
Cord blood sample at birth		Outcome:	
Birth wt and gestational age from Danish Nat'l Hospital Discharge Reg.		Birth wt	
Location:			
Denmark			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Major Findings:	
Danish Nat'l Birth Cohort		For continuous variable No sig assoc of PFOS with birth wt	
91, 827 preg F from 3/96-11/02		For OR for low birth wt (< 2,500 g) - ORs for all quartiles elevated	
60% of Danish preg women		but – - No quartile OR sig	
Single live birth \rightarrow no reported congenital malformation $\rightarrow 1^{st}$ blood		- Trend not sig	
sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected \rightarrow 200/1,102 w 2 nd blood sample		For OR SGA (< 10 th perc of corresponding gest age - No elevated ORs for any	
randomly selected \rightarrow 50 /146 w cord blood sample randomly selected		quartile - No sig ORs	
(<u>i.e.</u> , N = 50)		- Trend not sig	
Related Studies:		Outcome:	
Fei et al. (2008, 2009, 2010a, b; Fei and Olsen 2011)		Length of gestation	
		Major Findings:	
		For continuous var No sig assoc of PFOS w length of gestation	
		For OR for pe-term birth - ORs for all quartiles elevated but –	
		 Only OR for 3rd quart sig Trend not sig 	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei et al. (2008) Fei C, McLaughlin JK, Tarone RE, Olsen J. Fetal growth indicators and perfluorinated chemicals: a study in the Danish National Birth Cohort.	((<u>Note</u> : The following information is from Fei (2007), which used the same population and blood samples. The current publication provides less detail) Plasma PFOS (PFOA) conc by HPLC- MS	PFOS (PFOA) as continuous and categorical (quartile) variables (< 25 th percentile as ref group) Investigated as log-transformed and unstransformed variables	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt) Does not appear that PFOS analysis were controlled for PFOA concentration
Am J Epidemiol. 2008 Jul 1;168(1):66-72. doi: 10.1093/aje/kwn095. Epub 2008 May 5. Study Design: Nested cross-sectional study (birth outcomes w single 1 st trimester blood sample) Maternal preg assoc between PFOS (PFOA) and birth wt, length of gestation from Danish Nat'l birth cohort Interviews at ges. wks 12 and 30, and post natal mos. 6 and 18 Food freq questionnaire at ges wk 25 Blood drawn ges wk 4-14 (median = 8 wks) Birth wt and gestational age from Danish Nat'l Hospital Discharge Reg. Location:	Isotope dilution in extraction procs PFOS CV for between batch spiked controls = 2.5-2.8% Repeat sample correlation – r = 0.993 LOQ = 1.0 ng/ml Sample < LOQ as LOQ/2 Plasma preparation not available for 12 samples. Sampled as whole blood and concentrations x 2 to estimate plasma conc. Population-Level Exposure: Mean PFOS = 35.3 ng/ml Mean PFOA = 5.6 ng/ml	Placental wt, birth length, head circum., abdominal circum., ponderal index (kg/m3) as continuous variables <u>Coveriates investigated</u> Ges. age Infant sex Parity SES Pre-preg BMI Smoking in preg Ges wk of blood draw Alcohol Diet (fish, protein, fat, carbohydrates, energy) Maternal preg wt gain Maternal hypertension Maternal diabetes Mode of delivery Co-variates retained in model if changed parameter (presumably PFOS, PFOA) by ≥ 5% Gest age at birth as linear and quadratic term PFOS-PFOA interaction terms with outcome variables investigated and	Other comments: Other than apparent failure to control for PFOA in PFOS analyses, this study was well designed and appropriately analyzed with a large N
Denmark			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome: (Results for adj models unless	
Danish Nat'l Birth Cohort		indicated)	
91, 827 preg F from 3/96-11/02		Placental wt	
60% of Danish preg women		Major Findings:	
Single live birth \rightarrow no reported congenital malformation $\rightarrow 1^{st}$ blood sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected		For categorical analysis Inconsistent β across quartiles no quartile sig	
Related Studies:		For continuous analysis Neg β No sig assoc w PFOS	
Fei et al. (2007, 2009, 2010a, b, 2011)		Outcome:	
		Birth wt	
		Major Findings:	
		For categorical analysis Inconsistent β across quartiles no quartile sig	
		For continuous analysis Neg β No sig assoc w PFOS	
		Outcome:	
		Head circum	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		For categorical analysis	
		Inconsistent β across quartiles no quartile sig	
		qualitie sig	
		For continuous analysis	
		Neg β No sig assoc w PFOS	
		Outcome:	
		Abdominal circum	
		Maion Findinasa	
		Major Findings:	
		For categorical analysis	
		Inconsistent β across quartiles no quartile sig	
		quartile sig	
		For continuous analysis	
		Neg β Sig in for crude β (unadjusted model)	
		In adjust model, no sig assoc w	
		PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei et al (2009) Fei C, McLaughlin JK, Lipworth L, Olsen J. Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod. 2009 May;24(5):1200-	((<u>Note</u> : Parts of the following information are from Fei et al. (2007), which used the same population and blood samples. The current publication provides less detail) Plasma PFOS (PFOA) conc by HPLC-	PFOS (PFOA) as continuous and categorical (quartile) variables (< 25 th percentile as ref group) OR for infertility by logistic regression for elevated PFOS compared to lowest quartile	Stat analyses for PFOS do not appear to have controlled for PFOA Cohort included "partly planned" pregnancies. This results in uncertainty in determination of TTP
5. doi: 10.1093/humrep/den490. Epub 2009 Jan 28.	MS Isotope dilution in extraction procs	Fecundity OR (FOR) by Cox model modify for discrete time data (FOR =	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt)
Study Design: Nested case-control study (birth outcomes w single 1 st trimester blood	PFOS CV for between batch spiked controls = 2.5-2.8%	odds of successful conception at a given PFOS quartile) in a given month given non-conception in prev month	No data available on sperm quality. If PFOS reduces sperm quality, the paternal effect could confound the assessment of maternal fertility
sample)	Repeat sample correlation $- r = 0.993$	Potential confounders investigated: Maternal age at delivery	Because only eventual pregnancies
Maternal preg assoc between PFOS (PFOA) and birth wt, length of gestation from Danish Nat'l birth	LOQ = 1.0 ng/ml	Parity Pre-preg BMI History of miscarriage	included, unsuccessful at > 12 mos not included. If PFOS decreased fertility overall, this would result in
cohort	Population-Level Exposure:	Abdominal disease Maternal SES	underestimating effect of PFOS on fertility
Interviews at ges. wks 12 and 30, and post natal mos. 6 and 18	All PFOS samples > LOQ Median PFOS = 33.7 ng/ml (IQR =	Pre-preg alcohol Paternal age Paternal occupation	Potential for reverse causality because longer TTP would result in longer time
Time-to-pregnancy (TTP) determination based self-reporting in	26.6-43.5 ng/ml) (Median PFOA = 5.3 (IQR = 4.0-7.0	Ges wk at blood draw	for PFOS accum \rightarrow assoc of \uparrow TTP w \uparrow PFOS
1 st interview	ng/ml)	Outcome:	
Food freq questionnaire at ges wk 25		Assoc. of PFOS w TTP	Other comments:
Blood drawn ges wk 4-14 (median = 8 wks)		Major Findings:	Except for the apparent failure to control PFOA concentrations in the PFOS
Birth wt and gestational age from Danish Nat'l Hospital Discharge Reg.		Compared to TTP < 6 mos (n = 861), TTP 6-12 mos (n = 191), or \ge 12 mos (n = 188) had sig \uparrow PFOS conc (also PFOA)	analyses, the study appears to have adequately addressed issues of confounding The overall N is reasonably large although the n's for > 6 mos TTP are relatively small. Uncertainites about

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Outcome:	"partially" planned pregnancies increase uncertainty about accurate TTP values.
Denmark		Infertility (TTP > 12 mos)	uncertainty about accurate TTF values.
Population:		Major Findings:	
Danish Nat'l Birth Cohort		OR for infertility in 2 nd , 3 rd or 4 th quart of PFOS sig > 1.0 (1.7 2.34, 1.77	
91, 827 preg F from 3/96-11/02		respectively) compared to 1 st (ref) quart	
60% of Danish preg women		p-trend sig (p = 0.025)	
Single live birth \rightarrow no reported congenital malformation \rightarrow 1 st blood		Odds of infertility ↑ 70-134% in 2 nd , 3 rd and 4 th quarts	
sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected \rightarrow		Similar odds for PFOA	
160 unplanned pregnancies or unknown time-to-pregnancy excluded		Outcome:	
→ N = 1240		Fecundity	
30% of TTP ≥ 6 mos 15% of TTP ≥ 12 mos		Major Findings:	
Only eventual preg (i.e., at > 12 mos)		FOR for PFOS sig < 1.0 for 2 nd , 3 rd , and 4 th guarts (compared to 1 st)	
included. Non-pregnancy at > 12 mos, not included		p-trend sig ($p = 0.002$)	
Av. age = 30.6 yrs			
Location:			
Denmark			
Related Studies:			
Fei et al. (2007, 2008, 2010a, b; Fei and Olsen, 2011)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
 Study: Fei et al. (2010a) Fei C, McLaughlin JK, Lipworth L, Olsen J. Maternal concentrations of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) and duration of breastfeeding. Scand J Work Environ Health. 2010 Sep;36(5):413-21. Epub 2010 Mar 3. Study Design: Cross-sectional study nested in Danish National Birth Cohort Assoc of uration of <i>exclusive</i> breast feeding (i.e., no other nutrition source) w maternal PFOS plasma conc Single 1st trimester blood sample Info on infant breast feeding collected at 6 and 18 mo. Interviews (If conflict between reported termination of exclusive breastfeeding and date of first formula by > 2 wks (n = 50), date of first formula used) Location: 			
Denmark		Weaning at < 6 mos	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Major Findings:	
Danish Nat'l Birth Cohort 91, 827 preg F from 3/96-11/02 60% of Danish preg women Single live birth \rightarrow no reported congenital malformation \rightarrow 1 st blood sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected Related Studies: Fei et al. (2007, 2008, 2009, 2010b; Fei and Olsen, 2011)		 For women w first child, sig OR for ea. 10 ng/ml PFOS = 1.20 For multiparous women, sig OR for ea 10 ng/ml PFOS = 1.20 (PFOA also sig) Outcome: Duration of any breastfeeding Major Findings: For women w first child, HR not sig For multiparous women, sig HR for three highest quart (1st quart as ref) of PFOS (1.42-1.55) and sig for trend 	

Reference and Study DesignExposure MeasuresStudy:Exposure Assessment:	Stat Method:	
	Stat Wethou.	Major Limitations:
Fei et al. (2010b)((Note: Parts of the following information are from Fei et al. vhich used the same populatic blood samples. The current publication provides less detailFrenatal exposure to PFOA and PFOS and risk of hospitalization for infectious diseases in early childhood. Environ Res. 2010 Nov;110(8):773-7. doi: 10.1016/j.envres.2010.08.004. Epub 2010 Aug 30.((Note: Parts of the following information are from Fei et al. which used the same populatic blood samples. The current publication provides less detail Plasma PFOS (PFOA) cone by MSStudy Design: Longitudinal cohort studyPFOS CV for between batch sp controls = 2.5-2.8%Assoc. of maternal PFOS with early childhood hospitalization for infectious disease over 11 yrs following birth Av age at end of follow-up = 8.2 yrs (range = 5.8-10.7 yrs)PFOS CV for between batch sp controls = 2.5-2.8%Hospitalizations data from Danish Nat'l Hospital RegistryPopulation-Level Exposure: Mean PFOS = 35.3 ng/mlTotal hospitalizations (incl multiple hospitalizations per child)11,350 person/yr of follow-upLocation: DenmarkDenmark	(2007), on andIncident rate ratio (IRR) based on Poisson distribution(2007), on andCovariates considered: Maternal age at delivery Parity(1)Maternal age at delivery Parityy HPLC-Pre-preg BMI Alcohol consumption during preg Smoking during pregrocsMaternal SES Birth season Birth yr House density Number children in household Age diff w youngest sibling Child's gender Duration of breastfeeding Ges age at blood draw	Major Limitations: PFOS exposure > 75th percentile US F >20 yrs old (NHANES 4th Biomonit Rpt) Does not appear that PFOS analyses were controlled for PFOA. Other comments: The study is based on a large N. Outcome data are well defined and records are reliable and not subject to recall limitions Although no clear assoc is apparent, some weak assoc's are difficult to interpret.

Reference and Study Design	Exposure Measures	Results	Comment
Population:		For girls, sig \uparrow IRR for 3 rd (1.61) and 4 th	
		(1.59) quart PFOS, sig for trend (IRR =	
Danish Nat'l Birth Cohort		1.18)	
91, 827 preg F from 3/96-11/02		(Also for PFOA)	
60% of Danish preg women			
Single live birth \rightarrow no reported		For boys, IRRs for all quart's neg (sig	
congenital malformation \rightarrow 1st blood		only for 3 rd quart (IRR = 0.77)	
sample wks 4-14 \rightarrow all interviews \rightarrow			
1,400/43,045 randomly selected		For primiparous, IRR \uparrow w \uparrow PFOS, but	
N = 1,400		not sig at any quart or for trend	
363 (25.9%) hospitalized \geq one time			
for infectious disease			
577 total hospitalizations for			
infectious disease			
Related Studies:			
Fai at al (2007, 2008, 2000, 2010a)			
Fei et al. (2007, 2008,. 2009, 2010a;			
Fei and Olsen, 2011)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei (2012)	See Fei et al (2009)	Findings of delye TTP in Fei et al. (20090 was criticized as possibly	Other comments:
Epidemiology. 2012 Mar;23(2):264-6. doi: 10.1097/EDE.0b013e3182467608. Commentary: perfluorinated	Population-Level Exposure:	reflecting reverse causation - longer TTP provides longer time for PFOS exposure leading to assoc of ↑ PFOS and ↑ TTP. Concept is plausible for	See Fei et al. (2009) Reasonable n for nulliparous and parous
chemicals and time to pregnancy: a link based on reverse causation? Fei C, Weinberg CR, Olsen J.		parous women since pregnancy and nursing reduce PFOS body burden, thus allowing PFOS levels to increase post-natally. However, as nulliparous	sub-pop's.
Study Design:		women are presumed to be at steady- state, early preg blood samples should	
Re-investigation of Danish Nat'l Birth Cohort data on time-to-pregnancy (TTP) examined in Frei et al. (2009). In response to concerns about		reflect a preg-related change in PFOS regardless of TTP.	
reverse causation. Analysis of TTP stratified on the basis of parity		Outcome:	
(nulliparous vs parous) women.		OR for TTP	
See Fei et al (2009)		Major Findings:	
Location:		Nullparous OR (compared to 1 st quart) sig for 3 rd	
See Fei et al (2009)		quart (2.50) and borderline sig for 4 th quart (2.14 (95% CI = 1.0-4.60)	
Population: Nulliparous preg women (n = 558)		Sig for trend (p = 0.036)	
Parous preg women (n = 683)		Parous OR (compared to 1 st quart) sig for 2 nd	
See Fei et al (2009)		and 3 rd quart, but not 4 th quart. Not sig for trend	
Related Studies:		Outcome:	
Fei et al. (2009)		OR for Fecundity (see Fei et al. (2009)	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		$\frac{\text{Nulliparous}}{\text{OR (compared to 1st quart) sig (i.e., < 1.0) for 2^{nd}-4^{th} quart}}$ Sig fro trend (p = 0.006)	
		Parous OR (compared to 1 st quart) sig for 2 nd - 4 th quart Not sig for trend	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fisher et al. (2013)	Fasted requested prior to blood samples	Analyses presented as weighted and unweighted relative to sampling	Does not appear that PFOS analyses were controlled for PFOA or PFHxS
Fisher M, Arbuckle TE, Wade M, Haines DA.	PFOS measured in plasma	strategy in the original cohort	Participants on cholesterol controlling
Do perfluoroalkyl substances affect metabolic function and plasma lipids?Analysis of the 2007-2009,	PFOS by MS (apparently no HPLC)	Multiple linear reg to est assoc between log transf continuous outcomes and PFOS	drugs excluded. This may eliminate those w ↑ cholesterol resulting from ↑ PFOS
Canadian Health Measures Survey	LOD = 0.3 ng/ml		
(CHMS) Cycle 1. Environ Res. 2013 Feb;121:95-103. doi: 10.1016/j.envres.2012.11.006.	Samples < LOD = ½ LOD	Potential co-variates considered: - Age - Gender	Interpretation of weighted vs. unweighted analysis is unclear.
Epub 2012 Dec 22. Erratum in: Environ Res. 2013 Oct;126:221.	Population-Level Exposure:	- Marital status - Income adequacy	Other comments:
Study Design:	PFOS geom mean = 8.40 ng/ml	- Race - Education	Large N. Reasonable statistical analysis (controlling) strategy. Rel modest PFOS
Nested Cross-sectional	PFOS consistent w US exposure for ≥ 20 yrs old (NHANES 4 th Rpt)	- BMI - Smoking - Alcohol	exposure reducing power
Assoc of PFOS (PFOA, PFHxS) and metabolic function, plasma lipid levels	(PFOA geom mean = 2.46 ng/ml)	Co-variates included if sig in bivariate	
	PFOS-PFOA correlated, $r = 0.36$	model w either outcome or exposure at	
Measured Trigylcerides		$\alpha = 0.1$ and in > 1 multivariate mode, $\alpha = 0.05$	
Glucose			
HDL LDL		Multiple logistic regression for	
Total cholesterol Insulin		dichotomous outcomes	
Insulin samples < LOD (72/1325)		Mandatory co-variates - Age	
discarded		- Sex	
HDL and total cholesterol on all samples		Co-variates initially added with p < 0.15 and retained w Δ OR ≥ 10%	
LDL glucose, insulin and triglycerides on fasted samples only			

Reference and Study Design	Exposure Measures	Results	Comment
Homoeostasis Model Assessment – Insulin Resistance (HOMA-IR) calc as function of glucose and insulin levels (formula not provided)		Outcome: HDL Major Findings:	
Metabolic syndrome – occurrence of 3/5 of following: - Elevated abdominal waist circum - Elevated triglycerides - Reduced HDL-cholesterol - Elevated systole BP - Elevated fasting glucose		Adj model PFOS not sig assoc w HDL in unweighted or weighted model Outcome: Total cholesterol (TC)	
Location:		Major Findings:	
Canada		<u>Adj Model</u>	
Population: Canadian Health Measures Survey		PFOS sig assoc (pos) for TC in unweighted model, but not in weighted model	
Designed to provide nationally rep sample of health conditions $w \ge 10\%$ prevalence in Canadians 6-79 yrs old		Outcome: TC/HDL	
Self-reported questionnaire and mobile exam clinic 69.6% household response		Major Findings: Adj Model	
Current study incl non-preg 18-74 yrs old (M & F)		PFOS sig assoc w TC/HDL (pos) in unweighted model, but not in weighted model	
N = 2,700 (for clinical outcomes)		Outcome:	
		LDL	

Reference and Study Design	Exposure Measures	Results	Comment
Cholesterol lower med use excluded		Major Findings:	
for cholesterol and metabolic syndrome determinations		<u>Adi model</u>	
N = 2366			
Related Studies:		PFOS not sig assoc w LDL in either weighted or unweighted models	
		Outcome:	
		Non-HDL	
		Major Findings:	
		<u>Adj Model</u>	
		PFOS sig assoc w non-HDL (pos) in unweighted model, but not in weighted model	
		Outcome:	
		Triglycerides (TRIG)	
		Major Findings:	
		<u>Adj model</u>	
		PFOS not sig assoc w TRIG in either weighted or unweighted models	
		Outcome:	
		Insulin	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		Adj model	
		PFOS not sig assoc w insulin in either weighted or unweighted models	
		Outcome:	
		Glucose	
		Major Findings:	
		Adj model	
		PFOS not sig assoc w glucose in either weighted or unweighted models	
		Outcome:	
		HOMA-IR	
		Major Findings:	
		PFOS not sig assoc w HOMA-IR in either weighted or unweighted models	
		Outcome:	
		Metabolic syndrome (Y/N)	
		Major Findings:	
		Adj model	
		PFOS not sig assoc w metabolic syndrome in either weighted or unweighted models	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		High cholesterol (Y/N)	
		Major Findings:	
		<u>Adj model</u>	
		PFOS not sig assoc w high cholesterol in either weighted or unweighted models	
		Outcome:	
		High cholesterol by quartile PFOS exposure	
		Major Findings:	
		<u>Adj model</u>	
		Unweighted analysis - PFOS not sig assoc w high cholesterol for any quart of exposure (although borderline for 4 th quart), but sig for trend	
		Weighted analysis – PFOS not sig assoc w high cholesterol for any quart and not sig for trend	

xposure Assessment: aseline sample analyzed by protein recip, reverse-phase HPLC-MS ollow-up sample analyzed by solid- hase extraction, reverse-phase IPLC, isotope dilution MS NOTE: authors claim that both nethods are essentially equivalent)	Stat Method: Linear regression models For log ratio (follow-up/baseline) PFOS conc Model structure eliminates co-variates that are constant between baseline and follow up	Major Limitations: Small N Inability to see change if initial effect of PFOS is irreversible Other comments:
recip, reverse-phase HPLC-MS ollow-up sample analyzed by solid- hase extraction, reverse-phase IPLC, isotope dilution MS NOTE: authors claim that both	For log ratio (follow-up/baseline) PFOS conc Model structure eliminates co-variates that are constant between baseline and follow up	Inability to see change if initial effect of PFOS is irreversible Other comments:
ollow-up sample analyzed by solid- hase extraction, reverse-phase IPLC, isotope dilution MS NOTE: authors claim that both	conc Model structure eliminates co-variates that are constant between baseline and follow up	PFOS is irreversible Other comments:
IPLC, isotope dilution MS	that are constant between baseline and follow up	
	Models adj for	Longitudinal study
opulation-Level Exposure:	- age at baseline - fasting status	Statistical analysis mechanism eliminates most issues of confounding
eom mean PFOS conc – baseline = 8.5 ng/ml	 time between measurements baseline BMI (in sens analysis) 	
ollow-up = 8.2 ng/ml	Analyses included joint PFOS, PFOA	
	decrease in PFOS	
	Major Findings:	
	Sig (4.6-5.0%) decrease in LDL cholesterol for 50% ↓ in serum PFOS (Also sig when PFOA incl in model)	
	Outcome:	
	Percent Δ in total cholesterol for 50% decrease in PFOS	
	Major Findings:	
	Sig (2.8-3.2%) decrease in Total cholesterol for 50% ↓ in serum PFOS	
8.5	5 ng/ml	5 ng/ml Analyses included joint PFOS, PFOA Outcome: Percent ∆ in LDL cholesterol for 50% decrease in PFOS Major Findings: Sig (4.6-5.0%) decrease in LDL cholesterol for 50% ↓ in serum PFOS (Also sig when PFOA incl in model) Outcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Percent ∆ in total cholesterol for 50% decrease in PFOS Øutcome: Pictorease in PFOS Ø

Reference and Study Design	Exposure Measures	Results	Comment
Reference and Study DesignSerum creatinine measured.Used to calculate glomerular filtration rateFollow-up exclusions: - Lipid lowering drugs at baseline or follow-up - Exclusion for LDL when triglycerides > 400 mg/dLLocation:	Exposure Measures	Results Outcome: Percent ∆ in HDL cholesterol for 50% decrease in PFOS Major Findings: ∆ HDL cholesterol not sig assoc w 50% change in PFOS Outcome:	Comment
OH, WV Population: C8 study cohort N = 560 (for total cholesterol, HDL cholesterol, triglycerides) N = 521 (for LDL cholesterol) F = 54%		 Percent ∆ in triglycerides for 50% decrease in PFOS Major Findings: ∆ triglycerides cholesterol not sig assoc w 50% change in PFOS 	
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Frisbee et al. (2010) Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, Ducatman AM. Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: results from the C8 Health Project.			

Population: Sig OR > 1.0 for 2 nd -5 th quintile (1 st as ref)	Reference and Study Design	Exposure Measures	Results	Comment
N = 3.857 1-11.9 yrs Outcome: M = 1.971 LDL-C F = 1.886 Major Findings: N = 5.293 12-17.9 yrs Continuous linear regression (adj model) F = 2,520 Sig pos assoc w PFOS (and PFOA) -40% overweight/obese (BMI > 85 th Analysis of est. marginal mean (EMM) percentile Analysis of est. marginal mean (EMM) Related Studies: 1 Trend sig for M, F and both for 1-11.9 Geiger et al. (2014) 1 Trend sig for M, F and both for 1-11.9 Vis And 12-17 yrs OR for risk of abnormal level Sig OR > 1.0 for 4 th and 5 th qunit (1 st as ref) Outcome: HDL-C Major Findings: HDL-C Major Findings: HDL-C pos assoc w PFOS (sig?)	Population: Children 1-17.9 yrs old in C8 Health Study N = 3,857 1-11.9 yrs M = 1,971 F = 1,886 N = 5,293 12-17.9 yrs M = 2,773 F = 2,520 ~40% overweight/obese (BMI > 85 th percentile Related Studies:	Exposure Measures	OR for risk of abnormal level Sig OR > 1.0 for 2 nd -5 th quintile (1 st as ref) Outcome: LDL-C Major Findings: Continuous linear regression (adj model) Sig pos assoc w PFOS (and PFOA) Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model) ↑ Trend sig for M, F and both for 1-11.9 yrs And 12-17 yrs OR for risk of abnormal level Sig OR > 1.0 for 4 th and 5 th qunit (1 st as ref) Outcome: HDL-C Major Findings:	Comment

Reference and Study Design	Exposure Measures	Results	Comment
		Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model)	
		\uparrow Trend sig for M, and both for 12-17 yrs Marginally sig for F (p = 0.06)	
		↑ Trend sig for M and both (but not F) for 1-11.9 yr	
		<u>OR for risk of abnormal level</u> Sig OR < 1.0 for 4 th and 5 th quint (1 st as ref)	
		Outcome:	
		Triglycerides (fasting)	
		Major Findings:	
		<u>Continuous linear regression (adj model)</u> Not sig assoc w PFOS	
		Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model) ↓ trend sig for F only	
		OR for risk of abnormal level OR not sig for any quintile	
		Outcome:	
		Interaction of PFOS and PFOA	
		Major findings:	
		No sig interaction of PFOS and PFOA for any blood lipid outcome	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study:Fu et al. (2014)Fu Y, Wang T, Fu Q, Wang P, Lu Y. Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population.Ecotoxicol Environ Saf. 2014 Aug;106:246-52. doi: 10.1016/j.ecoenv.2014.04.039. Epub 2014 May 23.Study Design: Cross-sectionalTotal cholesterol (TC) Triglycerides (TG) HDL-C, LDL-C MeasuredLocation: Yuangyang, ChinaPopulation: Recruited randomly from patients at local hospital			
Age range – 0-88 yrs Mean = 34 yrs		Change in TG per quartile PFOS not sig	
N (for PFOS) = 133		OR for abnormal TG not sig >1.0 for any quartile	
Related Studies:			

Exposure Measures	Results	Comment
	Outcome:	
	HDL-C	
	Major Findings: (adj models)	
	Change in HDL-C per quartile PFOS not sig	
	OR for abnormal HDL-C not sig >1.0 for any quartile	
	Outcome:	
	LDL-C	
	Major Findings: (adj models)	
	Change in LDL-C per quartile PFOS not sig	
	OR for abnormal LDL-C not sig >1.0 for any quartile	
	Exposure Measures	Outcome: HDL-C Major Findings: (adj models) Change in HDL-C per quartile PFOS not sig OR for abnormal HDL-C not sig >1.0 for any quartile Outcome: LDL-C Major Findings: (adj models) Change in LDL-C per quartile PFOS not sig Outcome: LDL-C Major Findings: (adj models) Change in LDL-C per quartile PFOS not sig OR for abnormal LDL-C not sig >1.0 for

Study: Exposure Assessment: Stat Method: Major Limitations: Gale et al. (2012) Automated solid-phase extraction, reverse-phase HPLC-MS. Ln transformation of all outcome measures of linear regression PFOS outcomes were not controlled for PFOA conc, which was much reverse-phase HPLC-MS. Galo to V, Leonardi G, Genser B, Lopez-Espinosa MJ, Friebee SJ, Karlsson L, Ducatman AM, Fletcher T. Intra-laboratory CV for PFOS = 0.1 Ln transformation of all outcome measures of linear regression PFOS outcomes were not controlled for PFOA conc, which was much impler than US average (NHANES 4 th Rpt) Serum perfluorooctaneate (PFOA) and perfluorooctaneate (PFOA) in perfluorooctaneate (PFOS n = 230) = LOD/2 Phoseshold income Educational level Cross-sectional, but long-term exposure of pop. May:120(5):65-66.0 Other comments: Study is straightforward in design. Study is straightforward in design. Very large N, May:120(5):65-66.0 I. F- 17.4 (IGR = 16.8-32.6) HOMA-IR investigated as co-variate Study is straightforward in design. Very large N, May:120(5):65-66.0 Levels consistent w National background (NHANES 4 th Rpt) HOMA-IR investigated as co-variate Cotsomer Galo diamine aminotransferase) Gat (camma-guitamy) transpet/dase) Linear regression Very large N, Although cross-sectional exposure of pop. Measured matters of liver fun	Reference and Study Design	Exposure Measures	Results	Comment
Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Kartsson L, Ducatman AM, Fletcher T.freverse-phase HPLC-MS.of linear regressionfor FFOA conc. which was much higher than US average (NHANES 4th Rpt)Serum perfluorooctanastle (PFOA) and perfluorooctanastic (PFOA) notate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure.Do = 0.5 ng/mlPotential confounders: AgeFor FFOA conc. which was much higher than US average (NHANES 4th Rpt)Population-Level Exposure: PFOS medianPopulation-Level Exposure: PFOS medianPotential confounders: AgeOther comments: Study is straightforward in design. Very large N. AlcoholStudy Design: C 8 Study cohortPFOS medianNon-23.5 (IQR = 16.8-32.6)Non-23.5 (IQR = 16.8-32.6)HOMA-IR investigated as co-variate Logistic regression models for dichotomous assoc of PFOS w abnormal levels of outcome variablesOutcome: Logistic regressionStudy is straightforward in design. Very large N. AltoholMassured markers of liver function AIT (alanine aminotransferase) GGT (Gamma guitamy) transpeptidase) Direct bilrubinMajor Findings: Linear regressionLogistic regression PFOS stat sig assoc w 1Logistic regression OR for abnormal ALT stat sig > 1.0 for decise > 5th Sig for 1 trend		Exposure Assessment:	Stat Method:	Major Limitations:
Blood samples (at collection of questionnaire data) Outcome: Measured markers of liver function Ln ALT (fully adj model) AIT (alanine aminotransferase) Major Findings: GGT (Gamma-glutamyl transpeptidase) Linear regression Direct bilirubin PFOS stat sig assoc w ↑ Measured in commercial clinical lab (LabCorp) OR for abnormal ALT stat sig > 1.0 for deciles > 5 th Sig for ↑ trend	Study: Gallo et al. (2012) Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, Ducatman AM, Fletcher T. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect. 2012 May;120(5):655-60. doi: 10.1289/ehp.1104436. Epub 2012 Jan 3	Exposure Assessment:Automated solid-phase extraction, reverse-phase HPLC-MS.Intra-laboratory CV for PFOS = 0.1LOD = 0.5 ng/mlNon-detect (PFOS n = 230) = LOD/2Population-Level Exposure:PFOS median - All - 20.3 ng/ml (IQR = 13.7- 29.4 ng/ml)- F - 17.4 (IQR = 1.6-25.5) - M - 23.5 (IQR = 16.8-32.6)Levels consistent w National	Stat Method: Ln transformation of all outcome measures of linear regression Potential confounders: Age Physical activity BMI (underweight, normal, overweight, obese) Household income Educational level Race Alcohol Smoking HOMA-IR investigated as co-variate Logistic regression models for dichotomous assoc of PFOS w abnormal	Major Limitations:PFOS outcomes were not controlled for PFOA conc, which was much higher than US average (NHANES 4th Rpt)Cross-sectional, but long-term exposure of pop.Other comments:Study is straightforward in design. Very large N. Although cross-sectional exposure can reasonably be assumed to have
AIT (alanine aminotransferase) Linear regression GGT (Gamma-glutamyl transpeptidase) Linear regression Direct bilirubin PFOS stat sig assoc w ↑ Measured in commercial clinical lab (LabCorp) Logistic regression Homeostasis model assessment of insulin resistanace (HOMA-IR) as measure of insulin resistanace OR for abnormal ALT stat sig > 1.0 for deciles > 5 th Sig for ↑ trend	Blood samples (at collection of			
(LabCorp) OR for abnormal ALT stat sig > 1.0 for deciles > 5 th Homeostasis model assessment of insulin resistanace (HOMA-IR) as measure of insulin resistanace Sig for ↑ trend	AIT (alanine aminotransferase) GGT (Gamma-glutamyl transpeptidase)		Linear regression	
	(LabCorp) Homeostasis model assessment of insulin resistanace (HOMA-IR) as		OR for abnormal ALT stat sig > 1.0 for deciles > 5 th	

Reference and Study Design	Exposure Measures	Results	Comment
(Basal glucose x insulin level)/2.25		Outcome:	
Location:		Ln GGT (fully adj model)	
Mid-Ohio valley, WV.		Major Findings:	
Population:		Linear regression	
C8 Study cohort		PFOS not sig assoc	
Exposed to PFC contaminated drinking water for ≥ 1yr (prior to 2005-		Logistic regression	
2006)		OR for abnormal GGT not sig for any decile	
69,030 total cohort → adults \ge 18 yrs old → 46,452 w complete co-variate		Outcome:	
information		Ln direct bilirubin (fully adj model)	
F - n = 24,171 M - n = 22,281		Major Findings:	
		Linear regression	
Related Studies:		PFOS sig assoc w ↑	
Frisbee et al. (2010)		Logistic regression	
		OR for abnormal direct bilirubin not sig for any decile Sig for ↑ trend	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gallo et al. (2013)	Solid-phase extraction, reverse-phase HPLC	Logistic regression	Self-reported categorical assessment of memory loss
Gallo V, Leonardi G, Brayne C,		Co-variates:	
Armstrong B, Fletcher T.	PFOS LOD = 0.5 ng/ml	- age (1 yr bands)	Other comments:
Serum perfluoroalkyl acids	< LOD = LOD/2 (n = 101, 0.5%)	- race	
concentrations and memory		- gender	Cross-sectional study
impairment in a large cross-sectional	Population-Level Exposure:	- education	
study.	Madian DEOC cons a 24 na/ml	- income	Length of exposure not controlled for
BMJ Open. 2013 Jun 20;3(6). pii: e002414. doi: 10.1136/bmjopen-	Median PFOS conc ≈ 24 ng/ml (mean not given, median est as	- physical activity - alcohol	in analyses
2012-002414.	average of 3 rd quintile range)	- smoking	Self-reported outcome status
2012-002414.	average of 5 quintile range/	- BMI	Self-reported outcome status
Study Design:	(NOTE: median is ~ 2.4 x current US >	- diabetes	Unclear respondents used a
, ,	20 yr old conc (NHANES 4 th Rpt)		consistent and objective scale of
Cross-sectional		PFOS as continuous variable – assoc	memory loss
		based on doubling PFOS conc	
Exclusions for missing co-variate data			Large N
		PFOS as quintiles	
Self-identified categorical short-term		Ordinal regression (autoence of Alevela of	
memory loss: "frequent," "sometimes," "rarely,"		Ordinal regression (outcome as 4 levels of memory loss)	
"never"			
		Sensitivity analyses:	
Analyses based on comparison of		$- \ge 65$ yrs old (n = 7,097)	
frequent/ sometimes vs. rarely/never		- full sample w outcome as any memory	
		loss	
Location:		- geographic clustering of water districts	
OH, WV			
Population:			
C8 study population			
≥ 50 yrs old			
N = 21,024			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
Related Studies:			
		Assoc memory loss w serum PFOS	
		Major Findings:	
		OR for memory loss not sig > 1.0 for any	
		quintile PFOS	
		Trend for continuous PFOS conc sig neg	
		assoc w memory loss	
		Memory loss not sig pos assoc w PFOS	
		for any sensitivity analysis	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Reference and Study DesignStudy:Geiger et al. (2013)Geiger SD, Xiao J, Shankar A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am J Epidemiol. 2013 Jun 1;177(11):1255-62. doi: 10.1093/aje/kws392. Epub 2013 Apr 3.Study Design: Cross-sectionalBlood sample and personnel questionnaire data from NHANESSerum uric acid and serum PFOS from NHANES blood sampleUric acid analysis by clinical labAssoc of PFOS w serum uric acid/hyperuricemia (elevated uric acid) (No std definition hyperuricemia for children- defined in study as ≥ 6 mg/dL			
Location:		Uric acid not assoc w PFOS in adjusted model	
		Trend not sig	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Ln-transformed PFOS	
NHANES 199-200, 2003-2008 data		Uric acid pos assoc w In-transform PFOS	
Children 12-18 yrs old completing sampling and interview portions of		Outcome:	
NHANES and complete information for critical variables		Assoc of hyperuricemia and PFOS	
		Major Findings:	
N = 1,772		OR for hyperuricemia sig > 1.0 for 4^{th}	
Mean age = 15.0		quart serum PFOS (adj and unadj models) (OR for Quart 2, 3 > 1.0, but not sig)	
M = 51.9%			
F = 48.1%		↑Trend stat sig	
Deleted Studies		Also, In-transformed PFOS	
Related Studies:		Similar results for alt cutoffs for definition hyperuricemia (5.5-7.7 mg/dL)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Geiger et al. (2014a) Geiger SD, Xiao J, Shankar A. No association between perfluoroalkyl chemicals and hypertension in children. Integr Blood Press Control. 2014 Jan 13;7:1-7. doi: 10.2147/IBPC.S47660. eCollection 2014. Study Design: Cross-sectional Data from NHANES - 1999-2000; 2003-2004; 2005-2006; 2007-2008 BP taken at examination portion of NHANES process (mean of ≤ 3 separate readings) Hypertension defined as BP ≥95 th percentile Adj: age, height .sex Location: US Population: NHANES cohort 12-18 yrs old Excluding those w missing co-variate data	Exposure Assessment: CDC-NHANES analytical proc Population-Level Exposure: Mean PFOS conc = 18.4 ng/ml	Stat Method: PFOS as continuous and categorical var linear regression Continuous PFC In-transformed Co-variates: - age - sex - race/ethnicity - BMI - moderate physical activity (Y/N) - income - serum total cholesterol Categorical PFOS in quartiles Logistic regression OR of hypertension for ea quart Sample weights adj per NHANES Outcome: Assoc systolic BP/hypertension w PFOS Major Findings: (adj model) Systolic BP/hypertension not sig assoc w PFOS for either continuous or categorical (OR) regression	Major Limitations: PFOS analysis not adj for PFOA Other comments: Large N Reliable analytical methodology Cross-sectional study
N = 1, 655			

Reference and Study Design	Exposure Measures	Results	Comment
Deleted Studies		Outcome:	
Related Studies:		Assoc diastolic BP/hypertension w PFOS	
		Major Findings: (adj model)	
		Diastolic BP/hypertension not sig assoc w PFOS for either continuous or categorical (OR) regression	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Geiger et al. (2014b) Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere. 2014 Mar;98:78-83. doi: 0.1016/j.chemosphere.2013.10.005. Epub 2013 Nov 13. Study Design: Nested corss-sectional from NHANES 1999-2000, 2000-2008 Assoc PFOS w serum: Total cholesterol LDL-C HDL-C triglycerides Location: U.S. Population: Children 12-18 yrs Mean age = 15.1 yrs Completed laboratory and examination/ portions of NHANES Complete information on key variables N = 815	PFC analysis by Nat'l Center Env. Health (CDC) Solid-phase extraction, isotope dilution HPLC-MS Non-detects as LOD/√2 LOD? Population-Level Exposure: PFOS detected in > 98% of samples Mean (SE) PFOS serum conc = 17.7 ng/ml (0.7 ng/ml)	PFOS as continuous and categorical variable w In-transformed PFOS conc Models included: Age Sex Race-ethnicity Bw categories Household income Moderate activity (Y/N) Serum cotinine OR for dyslipidemia by Multivariate logistic regression Outcome: Total cholesterol Major Findings: (adj models) <u>Categorical analysis</u> Change in cholesterol conc (mg/dL) by PFOS tertile to 1 st tertile (ref) ↑ cholesterol 2 nd and 3 rd tert Sig for 3 rd tert , but not sig for 2 nd tert Trend borderline sig <u>Continuous analysis (In-PFOS)</u> Sig pos assoc (small)	Cross-sectional study PFOS analyses did not control for PFOA Other comments: Relatively large N Reasonable statistical control for co-vartiates – except PFOA

Reference and Study Design	Exposure Measures	Results	Comment
Related Studies:		Risk of dyslipidemia	
Frisbee et al. (2010)		↑ OR across tertiles Stat sig for 3 rd tert Sig for trend Ln-PFOS sig in continuous analysis	
		Outcome:	
		LDL-C	
		Major Findings: (adj models)	
		Categorical analysis	
		↑ in LDL-C in 2 nd and 3 rd tert (1 st as ref) Sig for 2 nd and 3 rd tert Sig for trend	
		Continuous analysis (In-PFOS)	
		Sig pos assoc	
		Risk of dyslipidemia	
		↑ OR across tertiles Stat sig for 3 rd tert Sig for trend Ln-PFOS sig in continuous analysis	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		HDL-C	
		····	
		Major Findings: (adj models)	
		Categorical analysis	
		Inconsistent	
		Sig pos assoc for 2 nd , but not 3 rd tert	
		Trend not sig	
		Risk of dyslipidemia	
		ORs not sig	
		Trend not sig Ln-PFOS not sig in continuous analysis	
		Outcome:	
		Triglycerides	
		Ingrycendes	
		Major Findings:	
		(adj models)	
		Categorical analysis	
		No sig assoc	
		Trend not sig	
		Risk of dyslipidemia	
		ORs not sig	
		Trend not sig	
		Ln-PFOS not sig in continuous analysis	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ghisari et al. (2014)	(from Bonefeld-Jorgensen et al. Environ Health. 2011; 10: 88.	Unconditional logistic regression for interaction of CYP SNPs, PFOS and	Small n
Ghisari M, Eiberg H, Long M, Bonefeld-Jørgensen EC.	Published online 2011 October 6. doi: 10.1186/1476-069X-10-88)	breast cancer risk	Other comments:
Polymorphisms in phase I and phase II genes and breast cancer risk and	Ion-pairing extraction	PFOS In-transformed	Largely a mechanistic assessment of PFOS influence on breast cancer
relations to persistent organic pollutant	LC-MS-MS) with electrospray	Co-variates:	through assoc PFOS w spec SNPs
exposure: a case-control study in Inuit women.	ionization	- age - cotinine	Case-control methodology
Environ Health. 2014 Mar 16;13(1):19. doi: 10.1186/1476-069X-13-19.	LOD = 0.1 to 0.4 ng/ml	(other variables not included due to small n for cases)	Clear ascertainment of endpoint
Study Design:	Population-Level Exposure:	PFOS as categorical (high/low relative to	
Further investigation of Bonefeld- Jorgensen (2011) examining assoc of	(from Bonefeld-Jorgensen et al. Environ Health. 2011; 10: 88)	control median) var and Continuous variable	
spec SNPs w PFOS and breast cancer	Median PFOS conc: Cases = 45.6 ng/ml	Analysis stratified by genotypes	
Case-control study	Controls = 21.9 ng/ml	OR calculated for > median (high) vs. < median (low) PFOS (
N = 31 breast cancer cases		Outcome:	
Cases matched by age and district of residence to controls (n = 115)		OR for assoc PFOS (high/low) w breast cancer	
Blood samples at breast cancer diagnosis		Major Findings:	
Questionnaire data for Demographic, lifestyle		For all CYP genes tested, OR sig > 1.0 for high PFOS for at least one SNP (for all other SNPs, OR could not be calculated	
PCR for SNPs of multiple CYP polymorphisms		due to lack of cases or controls)	

Reference and Study Design	Exposure Measures	Results	Comment
Location:			
Greenland - Nuuk, Upernavik, Qeqertensuaq, Narsaq, Tarsilaq, Qaqortoq, Sisimiut, Assiat, Nanortalik			
Population:			
Inuit women			
Related Studies:			
Bonefeld-Jorgensen et al. (2011)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gleason et al. (2015) Gleason JA, Post GB, Fagliano JA.	Solid-phase extraction, HPLC-MS > LOD as LOD/ $\sqrt{2}$	Outcomes non-normal based on visual assessment In-transformed PFOS In-transformed	Cross-sectional PFOS not controlled for other PFCs
Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US	Population-Level Exposure:	Multiple-linear regression	Other comments:
population (NHANES), 2007-2010. Environ Res. 2015 Jan;136:8-14. doi: 10.1016/j.envres.2014.10.004. Epub 2014 Nov 19.	PFOS geom mean = 11.0 ng/ml (95% Cl = 10.2-11.8) median = 11.3 (IQR = 7.0-8.0)	<u>Co-variates:</u> Age Gender Race/ethnicity BMI (dichotomized)	Large N Reasonable statistical analysis (except for other PFCs)
Study Design: NHANES 2007-2008, 2009-2010	(PFOA Geom mean = 3.5 ng/ml)	Poverty (dichotomized) Smoking (dichotomized on cotinine) Alcohol (categorical)	
combined databases	Also PFNA, PFOS and PFHxS measured	Ln-serum creatinine	
PFOS measured in random 1/3 of sample \geq 12 yrs old		Logistic regression-OR PFOS as quartiles Outcomes dichotomized on 75 th percentile	
Liver enzymes: ALT GGT		Outcome:	
AST ALP		uric acid	
Total bilirubin		Major Findings: (fully adj models)	
Uric acid Location:		Linear regression Sig pos assoc w PFOS (p < 0.01)	
U.S. Population:		Logistic regression OR < 1.0	
Hepatitis B/C carriers excluded			
N = 4,333			

	Outcome:	
Related Studies:		
	Ln-ALT	
Geiger et al. (2013) (Uric acid and		
PFOS in adolescents from NHANES)	Major Findings:	
	(fully adj models)	
	Linear regression	
	Not sig assoc w PFOS	
	Logistic regression	
	OR < 1.0	
	Outcome:	
	Ln-GGT	
	Major Findings:	
	(fully adj models)	
	(rully auj models)	
	Linear regression	
	Not sig assoc w PFOS	
	Not sig assoc w Pros	
	Logistic regression OR < 1.0	
	UR < 1.0	
	Outroand	
	Outcome:	
	Ln-AST	
	Major Findings:	
	(fully adj models)	
	Linear regression	
	Not sig assoc w PFOS	
	Logistic regression	
	OR < 1.0	

Outcome:	
Ln-ALP	
Major Findings: (fully adj models)	
Linear regression Not sig assoc w PFOS	
Logistic regression OR < 1.0	
Outcome:	
Total bilirubin	
Major Findings: (fully adj models)	
Linear regression Not sig assoc w PFOS	
Logistic regression OR quart 2,3, 4 (1 as ref) sig > 1.0 (~ 1.4 1.7 – visually from graphic) P trend = 0.026	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Grandjean et al. (2012) [w. erratum 2012]	Gestational maternal serum PFOS exposure from last maternal ant-natal exam (32 wks)	Antibody conc's log-transformed Age, sex as obligatory co-variates	Maternal PFOS concs at ~75 th percentile US female conc (4 th Nat'l Rpt)
Grandjean P, Andersen EW, Budtz- Jørgensen E, Nielsen F, Mølbak K, Weihe P, Heilmann C. Serum vaccine antibody concentrations in children exposed to	Post-natal PFOS exposure from child's serum 5 (pre-booster) Solid-phase extraction, HPLC-MS	5 yr post-booster assessment adjusted for time since vaccination Co-variates investigated:	Combined sig neg assoc of tetanus and diphtheria antibodies in structural equation models suggest that est of independent PFOS effect is
perfluorinated compounds. JAMA. 2012 Jan 25;307(4):391-7. doi: 10.1001/jama.2011.2034. Erratum in:	w/in and between batch imprecision (by CV) < 3.0%, 5.2% (respectively)	PCBs Birth wt Maternal smoking during preg	influenced by overall PFC effect Other comments:
JAMA. 2012 Mar 21;307(11):1142. Study Design:	Population-Level Exposure:	Duration breastfeeding Booster type (for 2 most-recent examinations)	The prospective study design is powerful.
Prospective follow-up through 7 yrs: Examination of antibody response: 5 yrs (pre-booster)	PFOS Geom mean (IQR) Maternal – 27.0 (23.2-33.1) 5 yrs old – 16.7 (13.5-21.1)	Structural equation models to investigate joint influence of PFCs	The N's are reasonable, but larger n's may have yielded more definitive results
4 wks post-booster 7 yrs		OR calculated for assoc of PFC exposure on antibody conc < 0.1 UI/mI	
Measurement of specific antibodies <u>Tetanus</u> – by enzyme-linked immunosorbent assay		Est 90% power to detect Δ 18% in antibody conc	
<u>Diphtheria</u> – by cell-based neutralization assay		Outcome: Tetanus antibody	
Location: Faroe Is.		Major Findings:	
Population:		Multiple linear regression	
Faroe Is. Birth cohort 1997-2000		Maternal PFOS – No sig neg assoc Sig pos assoc for 7 yr old antibody level adj for 5 yr old level (not sig for unadj) (33.1% ↑ for doubling PFOS conc)	

Reference and Study Design	Exposure Measures	Results	Comment
		<u>Child's PFOS age 5 –</u> Sig neg assoc for 7 yr old antibody level (27.6% ↓ for doubling PFOS conc)	
		OR for below protective antibody level (0.1 IU/ml)	
		Maternal PFOS – Sig OR (2.48) for 5 yr old antibody level	
		 Childs PFOS at age 5 yr – Sig OR (1.60) for 5 yr old antibody level OR 2.38 (but not sig) for 7 yr old antibody level 	
		Structural equation model	
		Maternal combined PFC and child's combined PFC (PFOS, PFOA, PFHxS) at age 5 yr sig neg assoc w antibody level age 7 yr W and w/out adj for maternal PFC conc	

Granum B1, Haug LS, Namork E, Stølevik SB, Thomsen C, Aaberge IS, van Loveren H, Løvik M, Nygaard UC. J Immunotoxicol. 2013 Oct-LOQ = 0.05 ng/ml COUCH COUCH	gression analysis for with counts (e.g., number of f colds) gression for binary outcomes
Granum B1, Haug LS, Namork E, Stølevik SB, Thomsen C, Aaberge IS, van Loveren H, Løvik M, Nygaard UC. J Immunotoxicol. 2013 Oct- Dec;10(4):373-9. doi:LOQ = 0.05 ng/ml < LOQ = 0.035 ng/ml PFOS conc as integrated area under linear and branched isomer peaksLOQ = 0.05 ng/ml episodes of LOQ = 0.035 ng/ml	with counts (e.g., number of f colds) gression for binary outcomes but nearly 100 % for colds PFOS analyses not adj for other PFCs
Epub 2013 Jan 25. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood.Population-Level Exposure: Mean PFOS conc in maternal plasma = 5.6 ng/ml (median = 5.5 ng/ml)Multivariate regressionStudy Design:Nested cross-sectional Voluntary recruitment from MoBa maternal-child cohortNested cross-sectional • maternal autoimmune disease 	health outcome analysis health outcome analysis PFOS analyses not controlled for other PFCs although other PFCs also sig neg assoc w rubella vaccine antibody paternal allergies asthma educ on

Reference and Study Design	Exposure Measures	Results	Comment
Vaccine antibody levels measured for:		Outcome:	
- Measles			
- tetanus		PFOS assoc w vaccine antibody level	
- rubella - <i>hoemophilus influenza</i> -b (Hib)			
		Major Findings:	
Serum samples for allegen-specific IgE		(multivariate model)	
Cutoff for pos response at 0.35 PAU/I		(
		PFOS sig assoc only w rubella	
Questionnaire at 1, 2, 3 yrs on		antibodies	
children's 12 mo history of:			
infectious diseases		PFOS sig neg assoc w rubella vaccine	
- cold/upper resp - otitis media		antibody levels ($p = 0.007$) ($n = 50$)	
- pneumonia		(NOTE: PFOA, PFNA, PFHxS also sig	
- gastroenteritis w vomiting/diarrhea		neg assoc w rubella anitbodies)	
- urinary tract infect			
		Outcome:	
Allergy/asthma			
- diagnosis asthma/asthma bronchitis		Episodes/diagnosis of health outcomes	
 > 10 d dry cough, chest tightness, wheeze 		Majar Findingo.	
- eczema/itches in face or joints		Major Findings:	
- diagnosis ectopic eczema		PFOS not sig assoc w any health	
- diagnosis of allergy		outcomes	
Location:			
Oslo and Akershus, Norway			
Population:			
BraMat cohort (est. 4/2007-3/2008)			
Nested in MoBa maternal-child cohort			
N (antibody) = 49-51			
N (health outcomes) = 65-93			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Grice et al. (2007) Grice MM, Alexander BH, Hoffbeck	Based on biomonitoring sample (n = 186) reported in Olsen et al. (2003b)	Logisitcal regression of exposure categories against reported outcomes.	Exposure classification based on correspondence of job category to exposure levels (serum PFOS). However, correspondence was based on a sample of
R, Kampa DM.	(AIHA J (Fairfax, Va). 2003 Sep-	reported outcomes.	186 = 13% of the number of questionnaire
Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers.	Oct;64(5):651-9.) Job titles characterized according to characteristic serum PFOS	"No exposure" category as referent category.	respondents. Variability for some job categories was high including some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)).
J Occup Environ Med. 2007 Jul;49(7):722-9.	levels (ppm). Each employee assigned to an exposure category based on job history by title	Adjustment for age and gender. Associations with exposure	"No-exposure" category is 5.5 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth National Report on Human Exposure to Environmental
Study Design:	Categories –	examined based on	Chemicals;
Self-reported medical conditions. Included yr of first diagnosis for each condition.	 No direct exposure (0.11- 0.29 ppm) Low (0.39-0.89 ppm) High (1.30-1.97 ppm) 	 Ever exposed in a given category Exposed >1 yr in a given category Ever exposed 	http://www.cdc.gov/exposurereport/pdf/fourthreport.pdf) Thus, use of "no-exposure" category as referent will bias against finding associations with medical conditions.
Preg outcomes (F only)	Population-Level Exposure:	- Weighted expose (No =1; Low =3; H = 10)	Females accounted for only 19% of returned questionnaires.
Attempted follow-up of diagnosis with subjects' physicians.	No exposure – 25% Low – 30%	Outcome:	Significant co-exposure to PFOA (and less to other PFCs) not reported here, but based on Olsen et al.
Location:	High – 45%	Major Findings:	(2003b).
3M facility, Dacatur, AL		<u>Cancer</u> No association with exposure	Ability to detect exposure-related cancer is diminished by significant percentage of employees with <20 yrs of
Population:		category for any reported cancer (colon, prostate).	employment in this facility.
All current, retired, and former		Breast cancer risk not calculated because	Other comments:
employees with cumulative employment ≥1 yr eligible		denominator too small for each exposure cateogroy.	This study is weak both with respect to accurate exposure classification and with respect to chronic
1,400 participated with returned questionnaire – 74% of eligibile.			disease ascertainment, particularly cancer, given the relatively short exposure period relative to cancer latency. The use of "no-exposure" category with

Reference and Study Design	Exposure Measures	Results	Comment
58% of respondents worked: <20 yrs 42% <10 yrs; 31% <5 yrs. Related Studies: Olsen et al.(2003a) Olsen et al. (2003b) Alexander et al. (2003) Olsen et al.(2004) Alexander et al. (2007) Olsen et al. (2012)		Non-cancer conditions No association with exposure categories for commonly reported conditions: Cystitis Prostate hypertrophy Prostatitis Colon polyps Cholelithiasis (gallstones) Gastric ulcers Or for any other reported condition. Birth outcomes - Birthweight lowest in no-exposure category and not different across exposure categories - No association of exposure categories with stillbirths	significant exposure relative to NHANES pop. Median biases against finding association at higher exposure categories. Weak exposure assessment, disease ascertainment, and biased statistical structure.

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gump et al. (2011) Gump BB1, Wu Q, Dumas AK, Kannan K. Environ Sci Technol. 2011 Oct 1;45(19):8151-9. doi: 10.1021/es103712g. Epub 2011 Jun 17. Perfluorochemical (PFC) exposure in children: associations with impaired response inhibition.	PFOS in whole blood Extraction by ion-pairing HPLC-electrospray tandem-MS (HPLC-ESI-MS/MS) Quantification by isotope dilution – 98 +/- 5% recovery LOQ PFOS = 0.2 ng/ml Population-Level Exposure:	Potential confounders investigated: Age (child, mother, father) Family income "Parent's"(?) education "Parent's"(?) occupational class BMI (child, mother, father) Child's gender Child's race Family history of chronic illnesses	Exposure to PFOS ~ ½ that in general US pop 12-19 yrs old (NHANES, 4 th Rpt.) Cross-sectional design PFOS assoc not controlled for other PFCs. However, IRT effect most sig for total PFCs, suggesting possible confounding of specific PFOS effect Other comments:
Study Design:	Mean PFOS = 9.90 ng/ml (SD =	Blood Pb Blood Hg	Relatively small N. Lack of stat controlling of PFOS results for other PFCs
Cross-sectional nested in Pb study cohort PFOS from Pb blood draw Testing of assoc of differential reinforcement of low-rates of responding (DRL) w PFOS (other PFCs) - Money reward for learning	6.09 ng/ml) (NOTE: PFOS levels are low compared to NHANES 12-19 yrs old, mean = 19.3 ng/ml)	Confounders included in model if bivariate relationship w outcome p < 0.2 PFOS conc log-transformed Outcome: Median IRT (Inter-response	Equivocal results, small N, lack of controlling for other PFCs
 correct hidden time interval (20 s) between computer level presses Positive response corresponds to response inhibition (neg. results indicate impulsivity) 		time – time between lever pushes) (5 min bins) (NOTE: Learning is indicated by ↑ IRT in successive 5 min bins – total bins = 4) Major Findings:	
Brief Mood Introspection Scale (BMIS) subsequent to DRL test (measurement of emotional response)		For total PFCs, β neg for all bins) and sig for bins 2-4 For PFOS, all β neg, but sig for only bin 3	

Reference and Study Design	Exposure Measures	Results	Comment
Location:			
Oswego, NY			
Population:			
Children 9-11 yrs old			
N = 83 F = 30 M = 53			
Mean age = 10.13 yrs			
 Exclusions: Use of medication for cardiovascular function on day of testing Developmental disorders affecting test outcome Related Studies: 			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Halldorsson et al. (2012) Halldorsson TI1, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF. Environ Health Perspect. 2012 May;120(5):668-73. doi: 10.1289/ehp.1104034. Epub 2012 Feb 3. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study.	Column switching-LC-triple quadropole MS (not in this MS, but in J Chromatogr A. 2009 Jan 16;1216(3):385-93) LOQ for PFOS (and others) = 0.05 ng/ml Population-Level Exposure: Median PFOS = 21.5 ng/ml (IQR = 9.1)	NOTE: co-variates reported for PFOA, but not PFOS. It is assumed that these co- variates were at least investigated for PFOS Maternal age Maternal education Smoking (categorical) Pregnancy BMI Parity Infant birth wt Offspring age at follow-up	Did not account for offspring PFOS exposure post- natal. Other comments: Reasonable cohort size (although only moderate for each sex) Longitudinal follow-up Lack of investigation for confounding by post-natal (and older) exposure PFOS
Study Design:	Consistent with US female pop (NHANES 4 th report)	Outcome: Offspring BMI	Stat control for other PFCs in analyses
Face-to-face interview at wk 30 of gestation and blood sample collected		Major Findings: (adj model)	
Maternal health and birth outcomes from hospital records		No sig assoc w PFOS	
Offspring at ~20 yrs (2008-2009) web-based questionnaire health status, lifestyle, dietary habits, height, wt		Outcome: Offspring waist circumference Major Findings:	
Clinical/anthropometric exam (incl. BMI and waist circum data) for partial N		(adj model) No sig assoc w PFOS	
Clinical BMI/waist circum from clinical exam, $n = 423$ Self reported $n = 242$			

Reference and Study Design	Exposure Measures	Results	Comment
Adiponectin and leptin by		Outcome:	
immunofluorescence		Risk of overweight (BMI > 25 kg/m ²)	
Plasma insulin by commercial lab			
Location:		Major Findings:	
Aarhus, Denmark		(adj model)	
Population:		Rel risk (RR) not significantly > 1.0 for PFOS	
Birth cohort recruited 4/88-1/89		Outcome:	
N = 665 M = 320 F = 325		Waist circum > action level (> level 2 – value not specified)	
Related Studies:		Major Findings:	
		(adj model)	
		RR not significantly > 1.0 for PFOS	
		NOTE:	
		Positive assoc were seen for several outcomes with PFOA.	
		Authors state that models for PFOA effects that included	
		other PFCs (incl. PFOS) did not change the relationship	
		between PFOA and outcomes	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Hamm et al. (2010)	Solid-phase extraction	PFOS concs as untransformed and In-transformed	Small N
 Hamm et al. (2010) Hamm MP1, Cherry NM, Chan E, Martin JW, Burstyn I. J Expo Sci Environ Epidemiol. 2010 Nov;20(7):589-97. doi: 10.1038/jes.2009.57. Epub 2009 Oct 28. Maternal exposure to perfluorinated acids and fetal growth. Study Design: Cross-sectional maternal-child study Maternal cohort screened at 15-18 wks gestation Blood samples collected 12/2005- 6/2006 <u>Outcomes</u> Birth wt Small for gestational age Length of gestation Pre-term delivery Location: 	Solid-phase extraction HPLC-triple quadrupole linear ion trap MS PFOS % recovery = 91.1 +/- 13.9 LOD = 0.125 ng/ml < LOD as LOD/2 Population-Level Exposure: PFOS mean = 9.0 ng/ml Geom mean = 7.4 (geom SD = 2.0) NOTE: geom mean PFOS conc < ½ US female geom mean (NHANES 4 th report)	and In-transformed Birth wt, length of gestation by linear regression Small for gestational age, preterm-delivery as risk ratio (RR) by Poisson regression <u>Potential confounders</u> Maternal age Maternal age Maternal wt (dichotomized for high and low) Maternal ht (dichotomized) Smoking during preg (Y/N) Infant gender Maternal race parity Outcome: Birth wt Major Findings: (adj model)	Small N PFOS analyses not controlled for other PFCs PFOS exposure low compared to US female pop Other comments: Good analytical methodology and statistical control (except for PFC co-exposure), but small N and low expsorue
Edmonton, Alberta, Canada		PFOS not sig assoc w birth wt (PFOA and PFHxS not sig assoc)	
		assuc)	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
Preg women		Length of gestatsion	
 > 18 yrs old Live, singleton births No evidence of malformation Delivery ≥ 22 wks gestation Initial N = 1588 		Major Findigs: PFOS (PFOA,) not sig assoc w. length of gest (PFHxS sig assoc w ↑ length gest)	
252 serum samples selected for analysis		Outcome:	
Related Studies:		Small for gest age (SGA) Major Findings: 3 rd tertile (but not 2 nd (1 st as ref)) PFOS sig assoc w ↓ risk of SGA	
		Outcome:	
		Preterm delivery	
		Major Findings:	
		PFOS not sig assoc w risk preterm delivery	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Hardell et al. (2014) Hardell E, Kärrman A, van Bavel B,	UPC, E-MS/MS PFOS LOD = 0.1-? ng/ml (upper	OR by unconditional logistic reg	PFOS analyses not controlled for other PFCs Exposure is relatively low compared to adult US males
Bao J, Carlberg M, Hardell L. Environ Int. 2014 Feb;63:35-9. doi:	limit not clear due to typo in MS)	<u>Co-variates</u> Age	(NHANES 4 th Rpt)
10.1016/j.envint.2013.10.005. Epub 2013 Nov 16.	$<$ LOD \rightarrow LOD/2	BMI Year of sampling	N is moderate for a case-control study
Case-control study on perfluorinated alkyl acids (PFAAs)	Population-Level Exposure:	Outcome:	Other comments:
and the risk of prostate cancer.	PFOS (mean) Cases = 11 ng/ml	OR for prostate cancer	Although the number of cases (and controls) is only moderate this does not appear to add uncertainty to
Study Design: Case-control prostate cancer	Controls = 10 ng/ml (NOTE: exposure level $\sim \frac{1}{2}$ the	Major Findings:	the finding of an increased risk for PFOS under conditions of hereditary risk
Controls matched to cases on	geom mean for US mean > 20 yrs old (NHANES 4 th Rpt))	OR for PFOS not sig > 1.0	However, similar hereditary associations were found for all other PFCs in this study. Lack of
Age Location (county)		Outcome:	control for other PFCs in PFOS analysis of heredity raises concerns about specificity of the PFOS
Cases = 201		Gleason score	finding
Controls = 186		Major Findings:	
Blood samples from cases and controls drawn during "same time		OR for score 2-6 (n = 70) and 7-10 (n = 123)	
period"		not sig > 1.0	
Analysis blinded to case-control status		Outcome:	
Reporting of Gleason Score		PSA	
(prostate cancer stage), prostate spec antigen (PSA) from medical		Major Findings:	
records		OR for PSA \leq 10 (n = 110) and PSA \geq 11 (n = 91)	
Information on first degree relatives w prostate cancer (Y/N)		Not sig > 1.0	

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Outcome:	
Õrebro, Sweden		PFOS-heredity interaction (heredity = first order relative w	
Population:		prostate cancer)	
Prostate cancer patients admitted 2007-2011 to University Hosp,		Major Findings:	
Õrebro		No heredity, PFOS ≤ median as ref	
Controls from Swedish pop registry			
Related Studies:		Heredity, PFOS ≤ median – OR not sig	
		No heredity PFOS > median – OR not sig	
		Heredity, PFOS > median – OR sig (2.7)	

Reference and Study Design	Exposure Measures	Results	Comment
	Exposure Assessment:	Stat Method:	Major Limitations:
Study:IHoffman et al. (2010)SHoffman K1, Webster TF, Weisskopf MG, Weinberg J, Vieira VM.FEnviron Health Perspect. 2010IDec;118(12):1762-7. doi: 10.1289/ehp.1001898. Epub 2010IJun 15. Exposure to polyfluoroalkylI	Exposure Assessment: Solid-phase extraction, reverse- phase HPLC-MS PFOS LOD = 0.2 ng/ml LOD → LOD/√2 Population-Level Exposure: Median PFOS conc 22.6 ng/ml (IQR = 15.9 ng/ml)	Stat Method: Potential confounder/co-variates Age Sex Race/ethnicity NHANES sample cycle SES Routine health care provider (Y/N) Health insurance coverage (Y/N) Pb ETS Birth wt Admittance to NICU Maternal preg smoking Pre-school Loistic regression (PFOS as continuous variable) Variables added to model if p < 0.1 in bivariate regression	Major Limitations: Total n is moderate Case n is relatively small Overall effect (OR) is relatively small Other comments: Data set is well vetted. PFOS analysis is well conducted Control of PFOS analysis for other PFCs provides evidence for independent PFOS effect Self (parental) identification of cases introduces uncertainty

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Major Findings:	
National data (NHANES) children 12-15 yrs old		(adj model) OR = 1.03 (sig) for each 1	
PFOS sample from children's serum.		ng/ml ↑ in PFOS based on parental reporting of diagnosis	
N = 571 -Parental rpt of ADHD diagnosis n = 48 -Parental rpt ADHD + ADHD medication n = 21		OR = 1.05 (sig) for each 1 ng/ml ↑ in PFOS based on parental reporting of diagnosis + ADHD medication	
Related Studies:		OR = 1.60 for each IQR ↑ in PFOS (which case definition?)	
		Outcome:	
		Risk of ADHD for PFOS in combined PFC model	
		Major Findings:	
		Principle component analysis showed combined PFCs accounted for 58% of variability for individual PFCs	
		For logistic regression including combined PFC variable and individual PFCs (incl PFOS), combined PFC variable sig, also PFOS (and PFOA, and PFHxS; but not PFNA) sig.	

Reference and Study Design	Exposure Measures	Results	Comment
		Although combined PFCs appear to be pos assoc w risk ADHD, PFOS appears to be independently sig associated w ADHD.	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
		Stat Method: NHANES weighting factors not applied – oversampling instead addressed by co- variates OR for assoc PFOS w asthma status vars <u>Co-variates</u> - NHANES cycle - Age - sex - Race/ethnicity - poverty income ratio (income/poverty income	
Cross-sectional Self-reported asthma status: - wheezing/whistling in chest past 12 mos		 Race/ethnicity poverty income ratio (income/poverty income definition) ever smoking health insurance 	
 Yes to wheezing + still have symptoms = current asthma physician-diagnosed asthma (ever) = ever asthma 		Analysis by 3 models: - linear - In-linear - tertiles	
Comparison group for "current asthma" = never diagnosis of asthma		(In-linear model gives OR for doubling PFOS conc)	
Location:			
US			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
NHANES 1999-2000; 2003-2004; 2005-2006;		OR for PFOS and Ever asthma	
2007-2008		Major Findings:	
12-19 yrs old		OR not sig <> 1.0 for any model	
N – never asthma = 1,559 N – ever asthma = 318 N – no wheeze past 12 mos =		Outcome:	
1,660 N – wheeze past 12 mos = 217		OR for PFOS and wheeze	
N – no current asthma = 1,559		Major Findings:	
N – current asthma = 191 Related Studies:		OR not sig <>1.0 for any model	
		Outcome:	
		OR for PFOS and current asthma	
		Major Findings:	
		OR not sig <> 1.0 for any model	

Am J Epidemiol. 2011 Aug phase HPLC-triple quadrupole MS continuous variables Cross-sectional Am J Epidemiol. 2011 Aug LOD? Co-variates Other comments: 10.1093/aje/kwr107. Epub 2011 LOD? BMI Charles Other comments: Innes KE, Ducatman AM, Luster MI, Shankar A. Mean PFOS = 23.5 ng/ml (SD = 16.2 ng/ml), median = 20.3 ng/ml (consistent w US pop – NHANES and perfluorooctanoate and perfluorooctane sulfonate in a large Appalachian population. Mean PFOA = 87.4 ng/ml (high – local contamination) Mean PFOA = 87.4 ng/ml (high – local contamination) Nege targe for the (Y/N) Smoking Alcohol Study Design:	Reference and Study Design	Exposure Measures	Results	Comment
Am J Epidemiol. 2011 Aug phase HPLC-triple quadrupole MS continuous variables Cross-sectional 15;174(4):440-50. doi: LOD? Co-variates Other comments: 10:1093/aje/kwr107. Epub 2011 Jun 27. Mean PFOS = 23.5 ng/ml (SD = Age Innes KE, Ducatman AM, Luster MI, Shankar A. Mean PFOS = 23.5 ng/ml (SD = Age Large N allowed detailed model w numerous convariates Association of osteoarthritis with serum levels of the environmental contaminants perfluorooctanoate and perfluorooctane sulfonate in a large Appalachian population. Mean PFOA = 87.4 ng/ml (high - local contamination) Mean PFOA = 87.4 ng/ml (high - local contamination) Vegetarian diet (Y/N) Smoking Alcohol Vegetarian diet (Y/N)	Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Assoc of osteoarthritis and PFOS (PFOA) in 6 water districts w known drinking water contamination by PFOA Baseline data 8/2005-8/2006 Medical history incl. diagnosis of osteoarthritis self-reported by questionnaire Location: Population: Subset of C8 cohort OH, WV.	Innes et al. (2011) Am J Epidemiol. 2011 Aug 15;174(4):440-50. doi: 10.1093/aje/kwr107. Epub 2011 Jun 27. Innes KE, Ducatman AM, Luster MI, Shankar A. Association of osteoarthritis with serum levels of the environmental contaminants perfluorooctanoate and perfluorooctane sulfonate in a large Appalachian population. Study Design: Cross-sectional Assoc of osteoarthritis and PFOS (PFOA) in 6 water districts w known drinking water contamination by PFOA Baseline data 8/2005-8/2006 Medical history incl. diagnosis of osteoarthritis self-reported by questionnaire Location: Subset of C8 cohort	Protein precip extraction, reverse- phase HPLC-triple quadrupole MS LOD? Population-Level Exposure: Mean PFOS = 23.5 ng/ml (SD = 16.2 ng/ml), median = 20.3 ng/ml (consistent w US pop – NHANES 4 th Rpt) Mean PFOA = 87.4 ng/ml	PFOS as categorical and continuous variables <u>Co-variates</u> Age BMI Age Gender Race/ethnicity Marital status SES Exercise prog (Y/N) Vegetarian diet (Y/N) Smoking Alcohol Menopausal status Hormone replacement Specific co-morbidity (by condition) Treatment for hypertension Treatment for hyperlipidemia Serum uric acid Serum cholesterol C-reactive protein Estradiol	No validation of self-reporting data for osteoarthritis Cross-sectional Other comments: Large N allowed detailed model w numerous co-

Reference and Study Design	Exposure Measures	Results	Comment
Adults \geq 21 yrs old at time of		Outcome:	
Adults \ge 21 yrs old at time of baseline \rightarrow exclude rheumatoid arthritis \rightarrow exclude missing data for PFOA or PFOS \rightarrow exclude missing data for other co-variates of interest \rightarrow N = 49.432 Cases (osteoarthritis) = 3,731 Controls = 45.701 Related Studies:		Outcome: Risk of osteoarthritis Major Findings: (adj model) PFOS sig <u>neg</u> assoc w risk of osteoarthritis p (trend) = 0.00001 (PFO sig pos assoc w risk of	
		osteoarthritis)	
		No evidence of modifying effect of age or BMI for PFOS assoc w osteoarthritis	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Jain (2013a) Jain RB. Effect of pregnancy on the levels of selected perfluoroalkyl compounds for females aged 17-39 years: data from National Health and Nutrition Examination Survey 2003-2008. J Toxicol Environ Health A. 2013;76(7):409-21. Study Design: Cross-sectional NHANES 2003-4; 2005-6; 2007-8 Location: U.S. (nationwide) Population: US pregnant and non-preg women 17-39 yrs old (Preg women oversampled in NHANES 2003-4 and 2005-6 (not 2007-8)) pregnant women in NHANES, age 17-39 N = 180 - 1 st trimes n = 32 - 2 nd trimes n = 59 -3 rd trimes n = 70	Exposure Assessment: Solid-phase extraction, HPLC- turbo ion spray, MS-MS LOD? Population-Level Exposure: PFOS conc (median) - Pregnant 10.07 (95% CI = 7.90-12.20) ng/ml - Non-preg 12.11 (11.14-13.09)	Stat Method:Linear regressionLog transformed PFCs Co -variatesEthnicity/racePregnancy status (Y/N)Breast feeding (Y/N)Age(Age) ² NHANES cycleParityBMISerum albuminSerum cotinineSerum cotinineSerum cotinineSerum proteinBackward elimination toachieve all terms w p \leq 0.1Age as mandatoryOutcome:(combined preg + non-preg)Serum cholesterolPFOS sig pos assoc w serumcholesterol	Major Limitations: Preg n is small, not permitting conclusions re adverse outcomes (cholesterol, triglycerides) for preg pop alone Other comments: Reasonable consideration of co-variates in model. However, study is largely focused on factors assoc w PFOS (and PFC) levels rather than outcomes Relatively small preg N precludes conclusions for preg-specific outcomes

Reference and Study Design	Exposure Measures	Results	Comment
Non-pregnant women in NHANES,		Outcome:	
ages 17-39		(combined preg + non-preg)	
N = 899			
		Serum triglycerides	
Related Studies:			
		Major Findings:	
		DEOS not sig assas w sarum	
		PFOS not sig assoc w serum	
		triglycerides	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Jain et al (2013b) Jain RB. Association between thyroid profile and perfluoroalkyl acids: data from NHNAES 2007-2008. Environ Res. 2013 Oct;126:51-9. doi: 10.1016/j.envres.2013.08.006. Epub 2013 Sep 18. Study Design: Cross-sectional Thyroid function variables TSH (thyroid stimulating hormone) FT4 (free thyroxine) TT3 (free triiodothyroxine) TT3 (total triiodothyroxine) TGN (thyroglobulin) Location: US (nationwide) Population: NHANES 2007-8 ≥ 12 yrs old		Stat Method:Co-variates consideredAgeGenderRace/ethnicitySmokingIodine status(deficient/replete)C-reactive proteinBMIFasting time before blooddrawCalories in prev 24 hrsThyroid and PFOS (PFC)variables log-transformedEach thyroid variableexamined separately.Interaction terms among age,race, gender investigated apriori and non-sig interactionterms eliminatedPFCs as continuous variables(alternatively as categorical ifcontinuous not sig)Outcome:FT3	
 Pregnant Diagnosed thyroid problems TPOAb (thyroid autoantimbodies) ≥ 35 UI/mI 		Major Findings: PFOS not sig assoc w FT3	

Reference and Study Design	Exposure Measures	Results	Comment
- TgAB (thyroglobin antibody) ≥ 20		Outcome:	
UI/mI - prescription thyroid med		FT4	
- "Other" race/ethnicity category			
- missing data		Major Findings:	
N = 1,540		PFOS not sig assoc w FT4	
Related Studies:		Outcome:	
		ТТ3	
		Major Findings:	
		PFOS not sig assoc w TT3	
		Outcome:	
		TT4	
		Major Findings	
		PFOS not sig assoc w TT4	
		Outcome:	
		тѕн	
		Major Findings:	
		PFOS not sig assoc w TSH	
		Outcome:	
		TGN	
		Major Findings:	
		PFOS not sig assoc w TGN	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ji et al.(2012)	¹³ C ₄ -internal PFOS standard	<u>Co-variates considered</u> Age	Cross-sectional;
Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, Kim S, Choi K.	HPLC-triple quadrupole-MS in electrospray negative ionization	Sex BMI	Minimal co-variates considered
Serum concentrations of major perfluorinated compounds among	mode	PFOS, T4, TSH log-	Exposure ~50% of US (NHANES 4 th Rpt)
the general population in Korea: dietary sources and potential	Recovery = 100.2 +/- 6.6%	transformed	N relatively small
impact on thyroid hormones. Environ Int. 2012 Sep 15;45:78-85.	LOD = 0.04 ng/ml CV = 6.6%	< LOD as LOD/√2	Other comments:
doi: 10.1016/j.envint.2012.03.007. Epub 2012 May 9.		Bonferroni correction for sig	Rel low exposure and rel low N result in low power
Study Design:	Population-Level Exposure:	PFOS considered in model containing other PFCs	Compared to other studies, few co-variates were controlled for in the models
Nested cross-sectional	PFOS Median (inter-quartile range)	Outcome:	
Blood sampled July-Aug, 2008	M – 9.58 (6.54 -14.00) ng/ml F – 7.16 (5.02-10.60) ng/ml	T4 (total)	
Demographic and dietary questionnaire	1 1.10 (0.02 10.00) fig.iii	Major Findings:	
		PFOS not sig assoc w T4	
T4 (total) TSH		Outcome:	
By commercial chemoluminescence immunoassay.		тѕн	
CV ≤ 11%		Major Findings:	
Location:		PFOS not sig assoc w TSH	
Siheung, S. Korea			

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
Portion of previously established Siheung cohort			
≥ 12 yrs old			
Total = 633 M – 258 F - 375			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Jiang et al. (2014)	Examination of linear and	PFOS conc and blood metrics	No information provided on subject recruitment
	branched PFOS	log-transformed	
Jiang W, Zhang Y, Zhu L, Deng J.	- "n" specifies linear	5	No information on subject demographics (e.g., age,
Serum levels of perfluoroalkyl acids	- "iso" specifies branched	Outcomes based on Pearson	BMI)
(PFAAs) with isomer analysis and	- "m _x " specified degree of	correlation coeff between	
their associations with medical parameters in Chinese pregnant	branching - Nm (e.g., 4m) refers to carbon on	∑PFOS isomers, or proportion PFOS isomers;	PFOS analysis not adj for PFOS or other PFCs
women.	which branch occurs	and hematological/serum	Other comments:
Environ Int. 2014 Mar;64:40-7. doi:		chem parameters	
10.1016/j.envint.2013.12.001. Epub	Solid phase extraction		Moderate N
2013 Dec 20.	Samples spiked with labeled	Outcome:	
Study Decign	internal stds	WBC count	Correlation analysis rather than regression
Study Design:	HPLC-MS/MS analysis		No information on subject recruitment or demographics
Pregnant women		Major Findings:	No information on subject recruitment of demographics
8-12 wks gest (1 st trimest)	RSD (CV):	(unless specified PFOS forms	
	- linear PFOS < 5%	not sig correlated w outcome)	
samples collected 8-9/2012	- branched PFOS isomers <10%		
(NOTE: text specified serum	(except 4m-PFOS, 1m-PFOS, and	1m-PFOS sig pos corr w WBC count	
samples collected, but whole blood was used to obtain RBC count)	∑m₂-PFOS < 30%)	$(r = 0.2, p \le 0.05)$	
	LOD (all PFAs = 0.1-19.0 ng/ml	(1 - 0.2; p = 0.00)	
Subject recruitment??		4m-PFOS sig pos corr w	
Subject demographics??	PFOS detected in 100% of	WBC count	
	samples	(r = 0.187, p ≤ 0.05)	
Hematological assessments/serum chem:	Population-Level Exposure:		
- WC count	Fopulation-Level Exposure.	3 + 5m-PFOS sig pos corr w WBC count	
- RBC count	Mean n-PFOS = 4.75 ng/ml	$(r = 0.183, p \le 0.05)$	
- Hb	Mean iso-PFOS = 0.74 ng/ml	· · · · · · · · · · · · · · · · · · ·	
- platelet	Mean ∑PFOS = 7.32 ng/ml	% n-PFOS sig neg corr w	
- total bilirubin		WBC couont	
- total protein	(NOTE: PFOS conc appear to be	(r = -0.254, p ≤ 0.01)	
- albumin - glucose	consistent w US F pop (NHANES 4 th Rpt))		
- glucose - AST			
- ALT	n-PFOS = 66.7% of ∑PFOS		

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
Location:		DBC count	
Tianjin, China		RBC count	
Thanjini, Ohina		Major Findings:	
Population:		(unless specified PFOS forms	
		not sig correlated w outcome)	
N = 141			
Related Studies:		n-PFOS sig pos corr w RBC count	
Related Studies.		$(r = 0.205, p \le 0.05)$	
		(
		iso-PFOS sig pos corr w	
		RBC count	
		(r = 0.284, p ≤ 0.01)	
		3 +5m-PFOS sig pos corr w	
		RBC count	
		(r = 0.172, p ≤ 0.05)	
		Outcome:	
		Hb	
		Major Findings:	
		(unless specified PFOS forms	
		not sig correlated w outcome)	
		n-PFOS sig pos corr w Hb	
		(r = 0.279, p ≤ 0.01)	
		iso-PFOS sig pos corr w Hb	
		$(r = 0.325, p \le 0.01)$	
		1m-PFOS sig pos corr w Hb	
		(r = 0.233, p ≤ 0.01)	

Reference and Study Design	Exposure Measures	Results	Comment
		4m-PFOS sig pos corr w Hb (r = 0.235, p ≤ 0.01)	
		3 + 5m-PFOS sig pos corr w Hb	
		(r = 0.258, p ≤ 0.01)	
		∑m₂-PFOS sig pos corr w Hb (r = 0.182, p ≤ 0.05)	
		Outcome:	
		Platelet count	
		Major Findings:	
		(unless specified PFOS forms not sig correlated w outcome)	
		Iso-PFOS sig pos corr w platelet count (r = 0.207, p ≤ 0.05)	
		Outcome:	
		Glucose	
		Major Findings:	
		PFOS not sig corr w glucose	
		Outcome:	
		Total protein	
		Major Findings:	
		PFOS not sig corr w total protein	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Albumin	
		Major Findings:	
		PFOS not sig corr w albumin	
		Outcome:	
		Total bilirubin	
		Major Findings:	
		$\sum m_2$ -PFOS sig pos corr w total bilirubin (r = 0.201, p ≤ 0.05)	
		Outcome:	
		AST	
		Major Findings:	
		PFOS not sig corr w AST	
		Outcome:	
		ALT	
		Major Findings:	
		PFOS not sig corr w ALT	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Joensen et al. (2009)	¹⁴ C ₄ -PFOS internal isotope spike	PFOS < LOD = 0 ng/ml	Relatively small N
Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jørgensen N.	HPLC-MS-MS tandem triple quadrupole w electro-spray ionization	Sperm conc, semen vol, total sperm count adj for duration of ejaculation abstinence	Few co-variates examined Other comments:
Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009	Population-Level Exposure:	period Sex hormone variables adj for	Few co-variates and small N
Jun;117(6):923-7. doi: 10.1289/ehp.0800517. Epub 2009 Mar 2.	Median PFOS = 24.5 ng/ml (consistent w US pop (NANES 4 th Rpt))	hour of sampling PFOS comparison Goup 1	
Study Design:		vs.2 investigated for BMI, smoking status	
Nested case-control (high testosterone, low testosterone)		Semen and hormone variables (except morph) In- transformed	
Subset of cohort selected on basis of testosterone level		Assoc analyzed as PFOS and PFOA separately and as	
Semen and blood samples collected		PFOS + PFOA Outcome:	
Analysis of repro hormones:		Outcome.	
-Testosterone -Estradiol		Sperm morphology	
-Sex hormone binding globin (SHBG)		Major Findings:	
-Luteinizing hormone (LH) -Follicle stimulating hormone (FSH		Number and percent morph normally spermatozoa sig	
-Inhibin B -Free androgen index (testosterone x 100/SHBG)		neg assoc with sum of PFOS + PFOA, but <u>not sig for</u> PFOS alone	
Semen analysis:			
-vol by wt -sperm conc			

Reference and Study Design	Exposure Measures	Results	Comment
-total sperm count		Outcome:	
-percent motile spermatozoa			
-sperm morphology		Sperm vol, conc, total count,	
		motility,	
Location:			
		Major Findings:	
Copenhagen, Denmark			
		not sig assoc w PFOS (or	
Population:		PFOS + PFOA) serum conc	
Military recruits (compulsory) 2003		Outcome:	
Med age = 19 yrs		Outcome.	
Med age = 19 yrs		Sex hormones:	
N = 105		(Testosterone, Estradiol,	
		SHBG, LH, FSH, Inhibin B,	
- Group 1		Free androgen index	
High testosterone (median = 31.8		· · · · · · · · · · · · · · · · · · ·	
nmol/L, range = 30.1-34.8)		Major Findings:	
N = 53			
- <u>Group 2</u>		PFOS (and PFOS + PFOA)	
Low testosterone (median = 14.0		not sig assoc w any sex	
nmol/L, range = 10.5-15.5)		hormones	
N = 52			
<u>_</u> , , , , , , , , , , , , , , , , , , ,			
Thawed serum samples analyzed			
2008			
Related Studies:			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Joensen et al. (2013)	Solid-phase extraction HPLC-MS	Repro hormones (and ratios bet hormones and serum vol)	Cross-sectional study
Joensen UN1, Veyrand B, Antignac		- In-transformed	
JP, Jensen MB, Petersen JH,	PFOS LOD = 0.05 ng/ml		Other comments:
Marchand P, Skakkebaek NE,	LOQ = 0.15 ng/ml	Sperm conc, total sperm	
Andersson AM, Le Bizec B, Jørgensen N.	Population-Level Exposure:	count – cubic root transformed	Cross-sectional design
PFOS			Moderate N
(perfluorooctanesulfonate) in serum	Mean PFOS conc = 8.46 ng/ml	Progressively motile values –	
is negatively associated with	(median = 7.79 ng/ml)	squared	Small effects (βs)
testosterone levels, but not with			
semen quality, in healthy men. Hum Reprod. 2014 May 8.	PFOS detected in 100% samples	Morphologically normal counts = sq root transformed	Good statistical control
Hum Reprod. 2014 May 8.		counts = sq toot transformed	
Study Design:		PFOS as continuous var in	
		linear regress	
Cross-sectional			
2008-9		Co-variates incl if sig predictor of individual	
2008-9		outcome and $\rightarrow \Delta$ outcome >	
247 M undergoing compulsory		10%	
Danish military physical randomly		- BMI in models for T, E,	
selected		SHBG, FAI, T/LH, T/E	
Abstinence from ejaculation for 48		- smoking in models of T and FT	
hrs		(BMI and smoking incl in all	
		models of all repro hormones)	
Blood sample at time of semen		- abstinence time in models of	
collection		semen vol, conc., total count	
FSH, LH and SHBG (sex hormone		Co-variates considered but	
binding globin) by		not included	
fluoroimmunoassay		- time of day of blood sample	
		- ethnicity	
		- alcohol 632	

Reference and Study Design	Exposure Measures	Results	Comment
Total testosterone (T) and estradiol		- in utero exposure to	
(E) by radioimmunoassay		smoking	
Inhibin-B by double antibody		 previous/current disease recent fever 	
enzyme immunometric assay		- recent medication	
FAI (free androgen index) as T x		Outcome:	
100/SHBG			
		Serum/sperm parameters	
FT (free testosterone) from T and SHBG		Major Findings	
5000		Major Findings:	
Semen parameters		PFOS not sig assoc with	
- semen volume		any serum or sperm	
- sperm conc (in duplicate)		parameters	
- total sperm count (volume x conc)		(vol, conc, total count,	
- % progressively motile sperm		progressively motile, morph	
- % motile sperm (in duplicate)		normal, total normal count)	
- morphology (two analysts)		Outcome:	
Location:		Outcome.	
		testosterone	
Denmark			
		Major Findings:	
Population:		5500	
		PFOS sig neg assoc w	
M undergoing compulsory military physical		serum testosterone $\beta = -0.010$	
physical		ρ = -0.010	
N = 247		Outcome:	
Mean age = 19.6 yr		FAI	
Related Studies:		Major Findings:	
Joensen et al. (2009)		PFOS sig neg assoc w	
		serum FAI	
		$\beta = -0.20$	
		•	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		FT	
		Major Findings	
		PFOS sig neg assoc w serum FT β = -0.016	
		Outcome:	
		FT/LH	
		Major Findings	
		PFOS sig neg assoc w serum FT/LH β = 0.022	
		Outcome:	
		FAI/LH	
		Major Findings:	
		PFOS sig neg assoc w serum FAI/LH β = -0.025	
		Outcome:	
		T/LH	
		Major Findings:	
		PFOS sig neg assoc w serum T/LH β = -0.016	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Other sex hormones	
		Major Findings:	
		PFOS not sig assoc w: E, T/E, SHBG, LH, FSH, inhibin-B, inhibin-B/FSH	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Jørgensen et al. (2014)	PFOS by LC-MS	Fecundity ratio (FR) ([prob _{exposure group}	PFOS analyses not adj for PFOA (or other PFCs) although PFOS corr w PFOA – $r_s = 0.50$
Jørgensen KT, Specht IO, Lenters V, Bach CC, Rylander L, Jönsson	PFOS LOD = 0.2 ng/ml	conceiving/time]/[probref groupconceiving/time])	Moderate N for individual countries
BA, Lindh CH, Giwercman A, Heederik D, Toft G, Bonde JP.	PFOS detected in 100% of samples	Calculated:	Measurement of serum PFOS during preg may not
Perfluoroalkyl substances and time to pregnancy in couples from	PFOS CV (dup samples) = 8%	Country specific tertiles	represent serum conc at time of conception despite adj for gest age
Greenland, Poland and Ukraine. Environ Health. 2014 Dec 22;13:116. doi: 10.1186/1476-	Population-Level Exposure:	Country specific continuous log-transformed	Time point for attempting preg may not be precisely defined
069X-13-116	F - PFOS pooled median conc = 10.6 ng/ml	Pooled sample continuous log-transformed	Other comments:
Study Design:	- Greenland median = 17.17 ng/ml - Poland median = 6.98 ng/ml	<u>Co-variates (F)</u>	Use of F and M serum PFOS
Cross-sectional, multiple cohorts	- Ukraine median = 3.98 ng/ml	- maternal age - gest wk at interview	Control for reverse causation by primaparous sens
Enrollment during anti-natal visits 3/2002-2/2004	(NOTE: PFOS conc for Greenland ~2.2 x US F	- smoking - parity - maternal BMI	analysis
Questionnaire and blood sample at enrollment	Poland consistent w US F Ukraine ~ 52% of US F (NHANES 4 th Rpt))	- country (pooled analysis)	Reasonable N Multiple country cohorts w diff exposure levels
Exclusion:		Logistic regression – OR for infertile (TTP > 13 mo)	
- pregnant while using birth control (not time-to preg (TTP))		Same vars as analysis of fecundity ratio	
- no information on TTP - no blood sample		Co-variates (M)	
- primaparous		- paternal age - paternal BMI	
Questionnaire info: - Starting Time = intercourse w/out birth control in order to conceive		- maternal age - country (pooled sample)	
- How long from Starting Time until preg?			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
Location:		FR (fecundity ratio)	
Greemland, Poland (Warsaw),			
Ukraine (Kharkiv)		Major Findings:	
		FR not sig assoc w maternal	
Population:		PFOS for pooled or individual countries	
INUENDO cohort		countries	
		Restriction to primaparous (N	
≥ 18 yrs old		= 59% of total) – FR not sig	
Born in country of study		assoc w maternal PFOS for	
		pooled or individual countries	
Total N (F) = 938 - Greenland = 448		Outcome:	
- Poland = 203			
- Ukraine = 287		OR infertility	
		Major Findings:	
Total (M spouses) = 401 - Greenland = 160		major i mango.	
- Poland = 146		OR infertility not sig > 1.0 for	
- Ukraine = 95		any tertile, or for continuous	
		analysis for pooled or	
Related Studies:		individual countries	
		Restriction to primaparous (N	
		= 59% of total) – OR infertility	
		not sig > 1.0 for any tertile, or	
		for continuous analysis for	
		pooled or individual countries	
		Outcome:	
		Assoc TTP w PFOS for M	
		Major Findings:	
		↑ TTP not sig assoc w M serum PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Kielsen et al (2016)	On-line solid-phase extraction, HPLC-tandem MS	PFOS and Ab concs. log- transformed	Small n
Kielsen K, Shamim Z, Ryder LP, Nielsen F, Grandjean P, Budtz- Jørgensen E, Heilmann C. Antibody response to booster vaccination with tetanus and	Population-Level Exposure: Median PFOS conc = 9.52 ng/ml	Relationship of Ab and PFOS conc over time estimated assuming 4-d lag in Ab response, (log)linear increase	Simultaneous background exposure to a variety of PFCs, PFOS yielded second strongest effect (PFHxS had stronger effect, but borderline sig). Other comments:
diphtheria in adults exposed to perfluorinated alkylates.		4-10 d and constant > 10 d	Samll n, but longitudinal study w close temporal
J Immunotoxicol. 2016;13(2):270- 3. doi: 10.3109/1547691X.2015.1067259.		Model calculates ∆ model prediction of Ab conc for doubling PFOS conc	monitoring PFOS effect could not be clearly dissociated from other
Epub 2015 Jul 16.		Co-variates in model	PFCs (PFOS effect not controlled for other PFCs)
Study Design:		Age Sex	
Prospective Booster vaccination w. tetanus-		(co-variates allowed to affect intercept and linear slope day 4-10)	
diphtheria vaccine – antibody response during 1 month follow-up		Outcome:	
Serum PFOS 10 d post-		Increase in diphtheria Abs	
vaccination		Major Findings:	
Pre-vaccine Ab determination. Post vaccine Ab determined day- 2, 4, 7, 10, 14, 30		Doubling of PFOS predicted to account for 11.90% decrease in expected linear	
Ab measurement by ELISA		increase (d 4-10) p = 0.044	
Location:		(adj for sex and age \rightarrow slightly stronger effect)	
Copenhagen, Denmark			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		(NOTE: PFHxS accounted for 13.31% decrease, but borderline sig (p = 0.055)	
Healthy adult hospital staff volunteers (n = 12) with no history of tetanus- diphtheria booster vaccination in prev. 5 yrs		Outcome: Increase in tetanus Abs Major Findings:	
Childhood initial vaccination median age = 37.9 yrs 50% M		Not sig assoc. Doubling of PFOS predicted to account for 3.59% decrease in expected linear increase (d 4-10)	
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Kim et al. (2011)	HPLC-triple quadruple MS in	Thyroid hormones log- transformed	Limited information on statistical methodology
Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, Kim S, Park S, Hwang	electrospray neg ion mode Quantification w ¹³ C-PFOS stds	Adj for	Small N
I, Jeon J, Yang H, Giesy JP.			Overlap of effects between PFOS and Σ PFCs makes
Trans-placental transfer of thirteen perfluorinated	All > LOD for PFOS	T3: Maternal age	determination of PFOS-specific effects uncertain
compounds and relations with fetal thyroid hormones.	Population-Level Exposure:	Gestational age	Low exposure relative to US pop
Environ Sci Technol. 2011 Sep	Median PFOS (IQR) (ng/ml)	T4 and TSH:	
1;45(17):7465-72. doi: 10.1021/es202408a. Epub 2011	Maternal blood:	Maternal age Gest age	Other comments:
Aug 12.	(mean) All – 2.93 (2.08-4.36)	Maternal BMI	Small N
Study Design:	20-29 yrs old – 2.02 (1.57-3.66)	Analysis for PFOS and ΣPFCs	Statistical methodology not well described
Cross-sectional	30-39 yrs old – 2.91 (2.25-4.16)	Outcome:	Low exposure
Blood samples collected - Most (n = 27) during 3^{rd} trimest, N = 7 during late 2^{nd} trimest	40-49 yrs old – 7.85 (n = 2)	T3 - maternal serum	
Cord blood - Total n = 43	NOTE – exposure levels < 50% those reported for US women (CDC- NHANES 4 th Rpt)	Major Findings: (adj model)	
- From matched maternal-child		Sig neg correlated w PFOS	
pairs N = 35	Fetal cord blood	(p < 0.05) Sig neg correlated w ΣPFCs	
Breast milk at hospital at ~1 mo.	All – 1.26 (0.81-1.82)	(p < 0.05)	
Post-partum	Maternal 20-29 yrs – 0.94 (0.5-1.19) Maternal 30-39 yrs – 1.52 (1.08-	Outcome: T3 – fetal serum	
Questionnaire:	2.01)		
Current/prev preg history Med history	Maternal 40-49 yrs – 1.95 (n =2)	Major Findings: (adj model)	
Demographic parameters Infant sex		Non-sig neg correlated w PFOS and ΣPFCs	

Reference and Study Design	Exposure Measures	Results	Comment
Thyroid hormone analysis data in Suppl Information		Outcome: T4 – maternal serum	
Location: Souel, Cheongju, and Gumi, S.		Major Findings: (adj model)	
Korea Population:		Non-sig neg correlated w PFOS and ΣPFCs	
Preg women in three hospitals 8/2008-3/2009		Outcome:	
N = 44		T4 – fetal serum Major Findings:	
Related Studies:		(adj model) Non-sig neg correlated w PFOS and ΣPFCs	
		Outcome:	
		TSH – maternal serum Major Findings: (adj model)	
		Non-sig neg correlated w PFOS and ΣPFCs	
		Outcome:	
		TSH – fetal serum Major Findings:	
		(adj model)	
		Non-sig neg correlated w PFOS and ΣPFCs	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Knox et al. (2011)	Protein precipition, reverse-phase HPLC-triple quadrupole MS	Regression analyses	Cross-sectional
Knox SS, Jackson T, Frisbee SJ,		Separate analysis of M, F and	↓ T3 uptake w ↑ total T4 suggests ↑ TBG levels.
Javins B, Ducatman AM.	LOQ = 0.5 ng/ml	two age groups ≥ 20-50, >50	However, TBG was not measured
Perfluorocarbon exposure,	_	yrs old	
gender and thyroid function in the	Population-Level Exposure:		Other comments:
C8 Health Project.		Log-PFOS as quintiles	
J Toxicol Sci. 2011	(NOTE; no overall statistic reported)		Large N
Aug;36(4):403-10.		<u>Co-variates</u> :	
	Mean (by water district) = 20.97-	Age	
Study Design:	26.15 ng/ml	Serum estradiol	
		Alcohol	
Cross-sectional	(NOTE: corresponds to 75-90 th		
	percentile US distribution (NHANES	Stratification of analyses by	
Analysis of clinical parameters by	4 th Rpt)	BMI (< ≥30)	
LabCorp			
Total T4			
T3 uptake (TBG saturation)		Outcome:	
TSH			
Serum albumin		Total T4	
Location:		Major Findings:	
WV and OH		PFOS sig pos assoc w T4 For M and F and all ages in	
Population:		study	
C8 Health Project		Sig higher in F compared to	
\geq 20 yrs old		M	
No thyroid dieseae			
N = 50,044			

Reference and Study Design	Exposure Measures	Results	Comment
M = 25,026		Outcome:	
F = 25, 018			
Deleted Otypicas		TSH	
Related Studies:		Major Findings:	
		PFOS not sig assoc w TSH for M or F for any age	
		Outcome:	
		T3 uptake	
		Major Findings:	
		PFOS sig neg assoc w T3 uptake in M, F all age groups	
		Sig lower in F compared to M	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Kristensen et al. (2013)	Column-switching LC/MS	PFOS in tertiles:	Low exposure compared to US
		Low – 0.1-3.0 ng/ml	
Kristensen SL, Ramlau-Hansen	LOQ 0.05 ng/ml	Med – 18.0-23.6	Retrospective/recall for determination of age at
CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI,	Population-Level Exposure:	High – 23.6-53.1	menarchy
Becher G, Haug LS, Toft G.	Population-Level Exposure:	Outcomes	Other comments:
Long-term effects of prenatal	Median maternal PFOS = 3.6 ng/ml	Age at menarchy	Other comments.
exposure to perfluoroalkyl	(IQR = 2.8-4.8 ng/ml)	Menstrual cycle length	Longitudinal design
substances on female		Number of follicles	
reproduction.	(NOTE : exposure ~ 1/2 US F	Level of reprod hormones	Relatively small n for contraceptive and non-
Hum Reprod. 2013	NHANES 4 th Rpt)	(total testosterone, SHBG,	contraceptive groups
Dec;28(12):3337-48. doi:		DHEAS, FSH,	
10.1093/humrep/det382. Epub		LH, FAI (free androgen	Relatively low median PFOS exposure compared to US
2013 Oct 15.		index), estradiol,	pop., but relatively large range (high PFOS 23.6-53.1
		AMH)	ng/ml)
Study Design:			
Longitudinal, nested cohort-		PFOS regression analyses w and w/out PFOA entered in	
mother/daughter		model	
mother/daughter		model	
Enrollment in cohort at 30-wk		Co-variates	
routine visit		(selected a-priori based on	
		literature and included in	
Questionnaire:		models w/out prior testing of	
Age		effect on models)	
Parity			
Height		Age of menarchy:	
Pre-preg wt		Maternal preg smoking (Y/N)	
Smoking Alcohol		Social class	
Alconor		BMI	
Blood sample at enrollment (preg		Menstrual cycle length;	
wk 30)		reprod hormones; follicle	
,		number:	
Perinatal data from birth cert and		Maternal smoking (Y/N)	
hosp records		Social class	
		Daughter's BMI	

Reference and Study Design	Exposure Measures	Results	Comment
2008 Follow-up of F offspring at		Daughter's smoking	
20 yrs old		Menstrual cycle phase at	
N = 436		exam (FSH	
		LH, estradiol)	
Questionnaire:			
- Age at menarchy		Analyses stratified on	
- History of hormonal		contraceptive hormone use at	
contraception		exam (except age at	
N = 367		menarchy) – FSH, LH and	
		estradiol analyses on non-	
Clinical examination of daughters		users only	
Partial exclusions (for some			
analyses) for:			
- menstrual cycle length (?)		Outcome:	
- reproductive hormone levels (?)			
- Follicle number (?)		Age at menarchy	
- Breast feeding			
- Signs of premature ovarian		Major Findings:	
failure			
- incomplete data (incl.		PFOS not sig assoc w age at	
contraceptive hormones)		menarchy	
		(Low PFOS n = 110	
Final N varied by outcome (147-		Med PFOS $n = 113$	
246)		High PFOS n = 114)	
Location:		Outcome:	
Denmark		Reproductive parameters	
		Cycle length	
Population:		Total testosterone	
		SHBG	
1988-9 Danish Pregnancy Cohort		FAI	
Original n = 1,212		DHEAS	
		АМН	
Daughters' mean age = 19.6 yrs		Number of follicles/ovary	
old (sd = 0.4 yrs)		FSH	
		LH	
Related Studies:		estradiol	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		PFOS not sig assoc w any reprod parametrs (contraceptive (n = 50-66) and non-contraceptive (n = 17-30) users)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
 Kvist et al. (2012) Kvist L1, Giwercman YL, Jönsson BA, Lindh CH, Bonde JP, Toft G, Strucinski P, Pedersen HS, Zvyezday V, Giwercman A. Reprod Toxicol. 2012 Dec;34(4):644-50. doi: 10.1016/j.reprotox.2012.09.007. Epub 2012 Oct 5. Serum levels of perfluorinated compounds and sperm Y:X chromosome ratio in two European populations and in Inuit from Greenland. Study Design: Blood and semen samples collected (48 hr sexual abstinence) Analysis of PFOS in serum Lifestyle factors by interview Sperm X and Y chromosome microscopic analysis by fluorescent-bound nucleic acid hybridization probes Location: 	Labeled internal standard Analysis by LC/MS/MS LOD? Population-Level Exposure: (mean (95% CI) PFOS conc) Greenland (Inuit) – 51.65 ng/ml (48.04-55-26) Poland – 12.12 ng/ml (17.19-19.05) Ukraine – 8.20 ng/ml (7.52-8.88)	Y:X chromosome ratio calculated as mean +/- sd Analysis of assoc w continuous PFOS in linear regression. Also, MANOVA w categorical (quartile) PFOS conc. Analysis w full dataset And w data set w extremem and influential data points removed <u>Mandatory confounders included</u> Age Abstinence time Alcohol intake PCB-153 Outcome: Assoc PFOS and Y:X chromosome ratio Major Findings: Linear regression analysis Full dataset Pooled data: PFOS sig assoc (pos) w Y:X ratio (p = 0.026, r ² = 0.016	 41% exclusion rate from original collected sample pool Relatively small overall N and individual country n (Note; exact n for individual countries not provided) Relationships are not consistent across countries or by type of analysis (continuous regression, categorical MANOVA) (although note that Greenland exposure much larger than Poland or Ukraine) Other comments: Relatively small N (and individual n's) High non-participation rate possibly resulting in bias Lack of consistency across populations (although note exposure diff)

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Individual Countries:	
		PFOS not sig assoc w Y:X	
M spouses of pregnant women in Greenland (Inuit), n = 201;		ratio	
Warsaw, Poland, $n = 198$; and		Dataset excluding outliers,	
Kharkiv, Ukraine, $n = 208$		influential pts	
3/2002-2/2004			
		PFOS not sig assoc w Y:X	
Exclusions		ratio for pooled or individual	
Insufficient semen $(n = 98)$		data sets	
Insufficient sperm $(n = 95)$			
Lack of exposure data (n = 55)		MANOVA Full dataset	
Final N = 359			
		Pooled data:	
		Sig diff in Y:X ratio between	
Related Studies:		2^{nd} and 4^{th} quart of PFOS (p =	
		0.006)	
		Pos trend Y:X ratio (p =	
		0.017)	
		Individual Countries:	
		Inuit – Sig diff in Y:X ratio	
		between 2 nd -4 th and 3 rd -4 th	
		quart PFOS exposure	
		Neg trend (p = 0.028)	
		Dataset excluding outliers,	
		influential pts	
		Pooled data:	
		Sig diff in Y:X ratio between	
		2^{nd} and 4^{th} quart of PFOS (p =	
		0.043)	
		Pos trend in Y:X ratio (p = 0.039)	
		0.000,	
		Individual Countries:	
		<u>Inuit</u> – Neg trend (p = 0.044)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
La Rocca et al. (2014)	PFOS measurement in whole blood	Diff between fertile and infertile F by Wilcoxon-Mann-	PFOS measurement in whole blood (vs. serum) is unusual. Unclear how this could affect exposure
La Rocca C, Tait S, Guerranti C,	Extraction with liquid-liquid	Whitney test (non-parametric	assessment
Busani L, Ciardo F, Bergamasco B, Stecca L, Perra G, Mancini FR,	extraction, HPLC- electrospray ionization-MS	equivalent of 2-sample t-test)	Small overall N and smaller for each geog area. This is
Marci R, Bordi G, Caserta D,		Bonferroni adj for multiple	particularly a limitation given the geog stratification of
Focardi S, Moscarini M,	PFOS LOD = 0.4 ng/ml	comparisons	the analysis.
Mantovani A.	< LOD = LOD/2	Analyzan attratified by	No indication of an variate adj of statistical analysis
Exposure to endocrine disrupters and nuclear receptor gene	Population-Level Exposure:	Analyses stratified by geographic area	No indication of co-variate adj of statistical analysis
expression in infertile and fertile			PFOS analysis not controlled for PFOA
women from different Italian	Mean PFOS conc for total pop:	Outcome:	
areas.	- infertile = 3.5 ng/ml		Other comments:
Int J Environ Res Public Health. 2014 Sep 29;11(10):10146-64.	- fertile = 2.2 ng/ml	Assoc of PFOS with fertile/infertile status	Unusual PFOS analysis in whole blood
doi: 10.3390/ijerph111010146.	Median (both categories) = < 0.4		
	ng/ml	Major Findings:	Small overall and area N's
Study Design:			No apparent as variate adjustment of statistical
Population data from Italian Nat'l	(NOTE: mean PFOS conc = 29-36% of US F (NHANES 4 th Rpt))	PFOS not sig assoc w fertility status for any	No apparent co-variate adjustment of statistical analysis
Inst Statistics		geographic study area	
1/2009-12/2011			
Location:			
Italy			
Rome ("metropolitan area),			
Ferrara ("urban area"),			
Sora ("rural area")			
Population:			
Women			

Reference and Study Design	Exposure Measures	Results	Comment
Total: - 110 infertile, 43 fertile Metropolitan: - 49 infertile; 13 fertile Urban: - 38 infertile, 22 fertile Rural: 23 infertile, 8 fertile			
Fertile: - regular menstrual cycle - spontaneous preg in prev yr - stopped breastfeeding ≥ 6 mos before entry into study			
Infertile: - diagnosis of primary infertility, or unexplained infertility - enrolled in study prior to infertility treatment			
Inclusion criteria: - residence in one of study areas - 18-40 yrs old - BMI < 30 - PBMC (periph blood mononuclear cells) in normal range			
Exclusion criteria: - occupational exposure to PFOS (or other study substs) - smoking - vegetarian diet - BMI > 30 - evidence of inflammatory or infectious disease			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Liew et al. (2014)	Solid-phase extraction	1 st trimester blood sample used preferentailly	Different times of maternal blood sample during gest
Am J Epidemiol. 2014 Sep	LC-MS		Other comments:
15;180(6):574-81. doi:		PFOS as continuous var w	
10.1093/aje/kwu179. Epub 2014 Aug 19.	Population-Level Exposure:	and w/out log-transform	Case-control design
Prenatal exposure to perfluoroalkyl substances and the	PFOS median maternal serum conc. by sex of child:	Also quartiles based on control disturb	Adj of PFOS for all PFCs analyzed
risk of congenital cerebral palsy	conc. by sex of child.		Clear case ascertainment
in children.	Boys	Risk ratios from GLM w	
Liew Z, Ritz B, Bonefeld- Jørgensen EC, Henriksen TB,	- cases = 28.90 ng/ml - controls = 27.60	Poisson distrib	Blood samples from either 1 st or 2 nd tri-mest
Nohr EA, Bech BH, Fei C, Bossi	Girls	Generalized additive models	CP is likely to be an umbrella rubric for several diff
R, von Ehrenstein OS, Streja E,	- cases = 27.50	to examine non-linear assoc	conditions
Uldall P, Olsen J.	- controls = 26.20	bet PFOS and CP	
Study Design:	(NOTE: PFOS med conc ~ 3.5 x US F (NHANES 4 th Rpt))	Analyses stratified by sex, term and pre-term birth status	
Case-control cohort study			
	PFOS detected in 100% of samples	Adjustment for potential	
Two blood samples for most, 1 st		<u>confounders</u>	
and 2 nd trimester		- maternal age at birth	
Inclusion criteria:		- parity - SES	
- singleton births		- smoking	
- telephone interview 14-19 wks t		- alcohol	
gest		- education	
 blood sample during 1st or 2nd 		 maternal psychiatric 	
tri-mest		illnesses	
Source per - 82 280 methor		- child's sex	
Source pop = 83,389 mother- child pairs			

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Co-variates included	
		- fish consumption	
Denmark		 organic food consumption 	
		 housing attributes 	
Population:		- bisphenol-A exposure	
		- phthalate exposure	
Danish National Birth Cohort			
(1996-2002)		Co-variates investigated, but	
		not included	
Source pop = 83,389 mother-		- gest wk blood sampling - birth yr	
child pairs		- father's age at birth	
Cerebral palsy (CP) cases in		- maternal pre-preg BMI	
source pop identified from Danish		- season of conception	
Nat'l CP Re		- maternal preg illness	
N = 156		material preg intess	
N = 100		Outcome:	
Controls			
Random selection from source		CP - Boys	
рор			
N = 550		Major Findings:	
M = 440			
F = 110		<u>All Boys (n = 86)</u>	
		Risk ratio sig > 1.0	
Related Studies:		(= 1.7 (1.0-2.8)	
		Risk ratio sig >1.0 for quarts	
		1 and 3 (but not quart 2)	
		Adj for other PFCs did not sig	
		affect outcome	
		Boys born at term (n = 65)	
		Risk ratio sig >1.0	
		(= 2.1 (1.2-3.8)	
			1

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		CP – Girls	
		Major Findings:	
		<u>All Girls (n = 66)</u> Risk ratio not sig > 1.0	
		<u>Girls born at term (n = 45)</u> Risk ratio not sig > 1.0	

Reference and Study Design	Exposure Measures	Results	Comments
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Liew et al. (2015)	Plasma samples	Risk ratio by generalized linear models	Most PFOS analyses from 1 st trimester sample
Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr EA, Fei C,	Solid phase extraction	- PFOS continuous conc In- transformed	13% from 2 nd trimester sample – possible exposure misclassification
Bossi R, Henriksen TB, Bonefeld- Jørgensen EC, Olsen J.	LC-MS	- Gen. additive models to investigate non-linear	Moderate N in general
Attention deficit/hyperactivity disorder and childhood autism in	LLOQ PFOS = 0.28 ng/ml 100% PFOS analyses > LOD	relationships	Weighted toward boys because of higher risk of autism, however, results in low power for girls
association with prenatal exposure to perfluoroalkyl	Population-Level Exposure:	OR by unconditional logistic regression	Other comments:
substances: a nested case- control study in the Danish National Birth Cohort.	Median PFOS conc: - controls = 27.40 ng/ml	- categorized in quartiles Potential confounders in final	Case-control
Environ Health Perspect. 2015 Apr;123(4):367-73	- ADHD cases = 26.80 ng/ml - autism cases = 25.40 ng/ml	model (a priori) - maternal age at delivery	Mostly 1 st trimmest exposure analysis – unclear as to predictive value
Study Design:		- parity - SES	Also, possible confounding by partial 2 nd trmest sampling
Nested case-control		 smoking alcohol self-reported psychiatric 	
Recruitment at 6-12 wks gest		illness - gest wk of blood draw	
Exclusion - not fluent in Danish		- birth yr - sex	
- non-singleton births		Multiple PFAS model	
Telephone interviews - 2 x during preg - ~ 12 wk;		considered	
 timing of 2nd interview? 2 postpartum (dates?) 		Outcome:	
1-2 blood samples (1 st and/or 2 nd trimester)		ADHD	

- 87% of samples analyzed were from 1 st trimester	Major Findings: (adj model)	
Singleton births	RR not sig > 1.0 No quart sig > 1.0 (1 st quart	
ADHD, autism diagnosis through Danish Nat'l Hosp reg based on	as ref)	
10.7 yr follow-up of birth cohort	Outcome:	
Cases and controls matched on sex	autism	
Location:	Major Findings:	
Denmark	(adj model)	
Population:	RR not sig > 1.0 No quart sig > 1.0 (1st quart	
Danish National Birth Cohort 1996-2002	as ref)	
60% participation		
ADHD - N = 220 - M = 179		
-F = 41		
Autism - N = 220		
- M = 187		
- F = 33 control - N = 550		
-M = 440		
- F = 110		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lin et al. (2009)	Solid-phase extraction, HPLC,	Stratification of analyses by	Corss-sectional
	negative ion turbo-ion spray	age	
Lin CY, Chen PC, Lin YC, Lin LY.	ionization tandem MS	- 12-20 yrs	PFOS analyses not controlled for PFOA or other PFCs
Association among serum	la store a la bala d'interna al store da nda	- > 20 yrs	
perfluoroalkyl chemicals, glucose	Isotope-labeled internal standards		Incomplete alcohol consumption data for adolescents
homeostasis, and metabolic syndrome in adolescents and	LOD(?)	Multiple linear reg models for assoc PFOS w glucose,	Other comments:
adults.		insulin, HOMA-IR	Other comments.
Diabetes Care. 2009	Population-Level Exposure:		Large N
Apr;32(4):702-7. doi:		OR for metabolic syndrome	
10.2337/dc08-1816. Epub 2008	Mean (SE)	by logistic regression	Thorough consideration of co-variates (although
Dec 29.	12-20 yrs = 22.42 ng/ml (1.15)		incomplete alcohol data for 12-20 yrs)
	> 20 yrs = 24.29 ng/ml (0.99)	Covariates – linear regression	
Study Design:		- Age	
		- Sex	
Cross-sectional		- Race	
		- Smoking	
Data from NHANES 1999-2000;		- Alcohol	
2003-2004		- Household income	
		- Waist meas	
Serum total cholesterol and		- CRP	
triglycerides by enzymatic assay		- Insulin/glucose/HOMA - Medications	
HDL cholesterol by dedicated		(antihypertensive,	
instrument (?)		antidepressive,	
		antihyperglycemic	
Serum C-reactive protein (SCRP)			
by latex enhanced neflalometry		Covariates – logistic	
		regression	
Plasma insulin by		As above + other components	
immunoendymatic assay		of metabolic syndrome	
Insulin resistance (HOMA-IR) by		Outcome:	
homeostasis model assessment			
(HOMA2)		Glucose	
		050	

Reference and Study Design	Exposure Measures	Results	Comment
Metabolic syndrome determined		Major Findings:	
based on:		(fully adj models)	
 Waist measurement (↑) 			
Serum triglyceride (↑)		<u>12-20 yrs</u>	
- serum HDL (↓)		Glucose not sig assoc w	
- BP (SBP, DBP) (↑) (or anti-		PFOS	
hypertensive med)			
		> <u>20 yrs</u>	
Location:		Glucose not sig assoc w	
		PFOS	
US			
		Outcome:	
Population:			
		Insulin	
US sample (NHANES)			
		Major Findings:	
≥ 12 yrs old, blood sample for		(fully adj models)	
PFCs (3,695) →			
Morning exam, fasting glucose,		<u>12-20 yrs</u>	
insulin, triglyceride data (1,788)		Insulin not sig assoc w	
\rightarrow		PFOS	
No other missing data \rightarrow			
N = 1,443		> <u>20 yrs</u>	
12-20 yr old n = 474		Insulin sig pos assoc w	
> 20 yrs old n = 969		PFOS (p < 0.01)	
		. ,	
Related Studies:		Outcome:	
Fisher et al. (2013) (Canada)		HOMA-IR	
		Major Findings:	
		(fully adj models)	
		<u>12-20 yrs</u>	
		HOMA-IR not sig assoc w	
		PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
		> <u>20 yrs</u> HOMA-IR sig pos assoc w PFOS (p < 0.01)	
		Outcome:	
		β cell function	
		Major Findings: (fully adj models)	
		<u>12-20 yrs</u>	
		β cell function not sig assoc w PFOS	
		> <u>20 yrs</u>	
		β cell function sig pos assoc w PFOS (p < 0.01)	
		Outcome:	
		Metabolic syndrome	
		Major Findings: (fully adj model)	
		<u>12-20 yrs</u>	
		OR for metabolic syndrome (waist) sig < 1.0 (OR = 0.37, p < 0.05)	
		OR for full metabolic syndrome and other components not sig diff from 1.0	

Reference and Study Design	Exposure Measures	Results	Comment
		<u>> 20 yrs</u>	
		OR for metabolic syndrome (HDL cholesterol) sig > 1.0 (OR = 1.61, p < 0.05)	
		OR for full metabolic syndrome and other components not sig diff from 1.0	

Lin et al. (2011) Lin CY, Lin LY, Wen TW, Lien	Exposure Assessment: PFOS (PFCs) by UPLC-triple quadrupole MS PFOS LOQ = 0.22 ng/ml	Stat Method: Linear regression models with categorical PFOS (< 50 th , 75 th -89 th , > 90 th	Major Limitations: Small N (n for 12-19 yrs old is only 78)
Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, Liao CC, F	quadrupole MS	with categorical PFOS (<	
Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol. 2013 Oct 9;168(4):3309-16. doi: 10.1016/j.ijcard.2013.04.042. Epub 2013 May 7 Study Design:	< LOQ (1.7% for PFOS) = LOQ/2 Population-Level Exposure: PFOS median conc (total) = 8.93 ng/ml (range (max-min) = 67.14 ng/ml) M = 11.82 ng/ml (range = 67.14) F = 8.10 ng/ml (range = 28.34) Note: - PFOS conc consistent w US pop (NHANES 4 th Rpt)	percentiles) Ln-transform of adiponectin, CRP, HOMA-IR, triglyceride to produce normal distrib Co-variates Age Gender Smoking Alcohol Income Waist circum SBP Total cholesterol HOMA-IR creatinne Outcome: Glucose homeostasis Major Findings: Glucose homeostasis not sig assoc w PFOS	PFOS analyses not adjusted for other PFCs Other comments: Small n – especially for adolescents raises issues of power to detect relatively subtle associations
Blood draw after ≥ 8 hr fasting		Outcome:	
		Adiponectin	

Reference and Study Design	Exposure Measures	Results	Comment
Reference and Study Design Triglycerides, plasma cholesterol, LDL, HDL, glucose by autoanalyzer Adiponectin and Insulin by commercial kit C-reactive protein (CRP) by enzyme-immunoassay HOMA-IR calculated BP measured twice Height, wt → BMI Metabolic syndrome determination based on ≥ 3 of: - ↑ waist circum - ↑ SBP or ↑DBP or antihypertensive med - ↑ glucose or anti-hyperglycemic med Location: Tapei, Taiwan	Exposure Measures	ResultsMajor Findings:Adiponectin levels not sig assoc w PFOSOutcome:Lipid profileMajor Findings:Lipid profile not sig assoc w PFOSOutcome:Inflamatory markersMajor Findings:Inflammatory markers not sig assoc w PFOS	Comment
Location:			
Population:			
Exclusion for insuff vol, budgetary constraints, diabetes meds \rightarrow N = 287 M = 121 F = 166			

Reference and Study Design	Exposure Measures	Results	Comment
Hypertensive = 17			
Non-hypertens = 270			
12-19 yrs, n = 78 20-30 yrs n = 209			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lin et al. (2013a)	Serum PFOS	PFOS as categorical variable (<50 th , 50-75 th , 75-	CVs for TSH and FT4 reported twice w different values
Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Hsu SH, Chien KL,	UPLC-triple quadrupole MS	90 th , > 90 th percentiles)	PFOS analyses not adj for other PFCs
Liao CC, Sung FC, Chen PC, Su TC.	LOQ = 0.22 ng/ml	Linear regression (TSH and FT4 as dependent vars):	Other comments:
The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults.	< LOQ (1.6% of PFOS samples) = LOQ/2	 TSH In-transformed Analyses stratified by sex and age categories 	Moderate N for age subgroups. Power may not be sufficient to discern diff in thyroid function w age
J Hazard Mater. 2013 Jan 15;244-245:637-44. doi:	Population-Level Exposure:	Logistic regression (OR for TSH > normal range:	
10.1016/j.jhazmat.2012.10.049. Epub 2012 Nov 2.	<u>Geom mean (geom sd)</u>	- stratified by BMI, smoking, hypertension	
	Total – 7.78 ng/ml (2.42)		
Study Design:		<u>Co-variates</u>	
Cross-sectional	M – 8.82 ng/ml (2.60) F – 7.18 ng/ml (2.29)	Age Gender Smoking	
Interview: Age	12-19 yrs – 7.04 (2.38) 20-30 yrs – 8.28 (2.44)	alcohol	
Gender		Outcome:	
Med history Household income	(Note: consistent w US pop (NHANES 4 th Rpt))	FT4	
Questionnaire: Alcohol Smoking		Major Findings: (adj model)	
Measurement:		FT4 not sig assoc w PFOS (for total N or for subgroups	
 Wt, height → BMI BP → ↑ BP (or reported BP med) 		– smoking, BMI, hypertension)	
· ·			

Reference and Study Design	Exposure Measures	Results	Comment
Blood sample (when?):		Outcome:	
- Fasting glucose (or reported			
insulin med→ diabetes		TSH	
- Thyroid (immunoluminescence assay)		Major Findings:	
- TSH (CV = 2.09%, 3.34% <u>?</u>)		(adj model)	
- FT4 (CV = 1.37%, 4.51% <u>?</u>)			
(TSH not sig assoc w PFOS	
Location:		_	
		Outcome:	
Tapei, Taiwan			
Denulation		OR for TSH > normal range	
Population:		Major Findings:	
School children (gr 1-12)		Major i mungs.	
participants in pop-wide urine		OR TSH > normal range not	
screening		sig > 1.0 for PFOS conc	
		categories	
Nested cohort from urine			
screening 1992-2000 w and w/out			
↑BP			
↑ BP			
Nested cohort – 707 \rightarrow n = 40			
Normal BP			
Nested cohort – 6,390 w \rightarrow n =			
505			
M n 214			
M - n = 214 F – n = 337			
1 - 11 - 337			
12-19 yrs old – n = 212			
20-30 yrs old $- n = 339$			
Related Studies:			
$\lim_{n \to \infty} \operatorname{at} \left(2011 \right)$			
Lin et al. (2011)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lin et al. (2013b)	Serum PFOS	To correct for multiple	Moderate N
Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, Liao CC,	UPLC-triple quadrupole MS	comparisons among 4 PFCs, Bonferoni correcton applied to p-value (α =	Authors identify limitation resulting from original urine screening cohort consisting of subjects w abnormal
Sung FC, Chen PC, Su TC. Association between levels of	LOQ = 0.22 ng/ml	0.025) for sig	urinalysis (proteinuria, glucosuria, hematuria). However, it is not clear if all subjects were abnormal in urine
serum perfluorooctane sulfate and carotid artery intima-media	< LOQ (1.6% of PFOS samples) = LOQ/2	Linear regression models	screen. Does not appear that urine screen positives will necessarily bias CIMT outcomes.
thickness in adolescents and young adults. Int J Cardiol. 2013 Oct	Population-Level Exposure:	PFOS treated as categorical (< 25 ^{ht} , 25 th 50 th -75 th , >75 th percentile)	Other comments:
9;168(4):3309-16. doi: 10.1016/j.ijcard.2013.04.042.	(geom mean (95% CI on geom mean))	assoc between [SBP, BMI,	Moderate N – particularly for adolescents
Epub 2013 May 7		LDL, CRP, triglycerides (TG), HOMA-IR] and PFOS	PFOS investigated as individual factor and adjusted for other PFCs
Study Design:		(PFCs)	
Cross-sectional	M = 8.97 ng/ml (3.24-12.72) F = 7.21 ng/ml (4.41-11.75)	Ln-transformation (for CRP, HOMA-IR, TG)	Pop may not be normal w respect to urinalysis. This may introduce a bias
Interview:	12-19 yrs = 7.25 ng/ml (2.44-23.69)		
Age	20-30 yrs = 8.21 ng/ml (6.27-34.71)	Co-variates:	
Gender		Gender	
Med history		Age	
Household income		Smoking	
		SBP	
Questionnaire:		BMI	
Alcohol		LDL CRP	
Smoking		HOMA-IR	
Measurement:		HOMA-IR	
- Wt, height \rightarrow BMI		For analysis of assoc CIMT	
- BP $\rightarrow \uparrow$ BP (or reported BP		and PFOS, PFOS analyzed	
med)		separately and adj for other	
- Heart rate		PFCs	
- cholesterol			

Reference and Study Design	Exposure Measures	Results	Comment
- triglycerides		Logistic regression	
- HDL			
- LDL		OR of ↑ CIMT w 50% ↑ in	
- glucose		PFOS conc	
- insulin (commercial kit)			
- C-reactive protein		Outcome:	
(chemoluminescence-			
immunoassay)		Cardiovascular risk factors	
- HOMA-IR (glucose x insulin)		(SBP, BMI, LDL, TG, UA,	
- Diabetes (↑ glucose or diabetes		HOMA-IR)	
med)			
- Uric acid (UA) (reported but not		Major Findings:	
in Methods)			
		Cardiovascular risk factors	
CIMT (Carotid artery intima-		not sig assoc w PFOS	
media thickness)			
- sub-clinical marker of		Outcome:	
atherosclerosis			
- by ultrasonography		CIMT – linear regression	
- computer assisted, 150			
measurements of 10 mm section		Major Findings:	
of common carotid artery		(fully adj model)	
- repeat measurement of record			
of 30 random samples after 2 wks		PFOS individual model	
\rightarrow 98.5-98.8% coeff correlation			
reliability		CIMT sig pos assoc w	
		PFOS	
Apiloprotein E (APOE) genotypes			
measured by sequence specific		PFOS model adj for other	
PCR		<u>PFCs</u>	
Location:		CIMT sig pos assoc w	
		PFOS	
Taipei, Taiwan			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		PFOS individual model	
		stratified by subpopulations	
School children (gr 1-12)		(as indicated)	
participants in pop-wide urine			
screening		Sex – CIMT sig pos assoc	
		w PFOS for F	
Nested cohort from urine		CIMT not sig assoc	
screening 1992-2000 $-790 \rightarrow \text{full PFC}$ analysis only \rightarrow		w PFOS for M	
$\sim 190 \rightarrow 1011 \text{ PFC}$ analysis only $\rightarrow \mathbf{N} = 644$		Age – CIMT sig pos assoc	
14 - 044		w PFOS for	
M - n = 250		12-19 yrs	
F - n = 394		CIMT not sig assoc	
		w PFOS for	
12-19 yrs old – n = 231		20-30 yrs	
20-30 yrs old – n = 413		-	
		BMI – CIMT sig pos assoc	
		w PFOS for	
Related Studies:		$BMI = < 24 \text{ kg/m}^2$	
		CIMT not sig assoc	
		w PFOS for	
		BMI > 24 24 kg/m ²	
		Smoking – CIMT sig pos	
		assoc w PFOS	
		for never smoked	
		CIMT not sig	
		assoc w PFOS	
		for has smoked	
		HOMA-IR – CIMT not sig	
		assoc w PFOS	
		for HOMA-IR ≤ 0.93	
		CIMT sig assoc	
		w PFOS for	
		HOMA-IR >	
		0.93	

Reference and Study Design	Exposure Measures	Results	Comment
		APOE genotype – CIMT sig	
		assoc w	
		PFOS for	
		E2 carrier and	
		E3/E3	
		. CIMT not	
		sig assoc w	
		PFOS for	
		E4 carrier	
		Outcome:	
		OR of ↑ CIMT w 50% ↑ in	
		PFOS – logistic regression	
		Major Findings:	
		OR sig > 1.0 (2.93) for	
		APOE E2 carriers	
		OR sig > 1.0 (1.84) for	
		APOE E3/E3	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lin (2014)	CDC analytical proc PFOS LOD = 0.2 ng/ml	<u>Co-variates</u> - age	Cross-sectional design
Lin LY, Wen LL, Su TC, Chen PC, Lin CY.	PFOS LOD = 0.2 Hg/IIII	- race - BMI	Self-reported fracture
Negative association between serum perfluorooctane sulfate	Population-Level Exposure:	- smoking - alcohol	Other comments:
concentration and bone mineral density in US premenopausal	Geom mean PFOS serum conc	 osteoarthritis daily use of prednisone or 	Large N
women: NHANES, 2005-2008. J Clin Endocrinol Metab. 2014	M = 19.23 ng/ml F = 12.09	cortisone - prior osteoporosis	Careful statistical design and analysis
Jun;99(6):2173-80. doi: 10.1210/jc.2013-3409. Epub 2014	< 40 yrs old = 11.95	treatment	
Feb 28	< 60 = 15.22 ≥ 60 = 21.13	Separate models for: - men	
Study Design:		- women non-menopausal - women menopausal	
Cross-sectional		NHANES sample weights	
F ≥ 12 yr old		Multiple linear regression	
Dual x-ray absorptiometry (DXA)		And	
measurement over lumbar and spine for bone mineral density		Logistic regression of OR for self-reported fractures w unit	
(BMD)		increase in In- PFOS	
Self-reported fractures		Outcome:	
Exclusion: - pregnant - radiographic contrast material use in past 7 d		Total lumbar spine BMD (g/cm ²)	
- nuclear med study past 3 d - wt > 300 lb		Major Findings:	
Location:		\underline{M} – lumber spine BMD not sig assoc w PFOS	
US			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		<u>F- Non-menopausal</u> – lumber spine BMD sig neg assoc w PFOS	
Premenopausal women in NHANES		sig for trend across quartiles	
(2005-6; 2007-8) N = 2339 (w PFOS and DXA		<u>F - Menopausal</u> – lumber spine BMD not sig assoc w	
measurement)		BMD	
Related Studies:		Outcome:	
		Total hip BMD (g/cm ²)	
		Major Findings:	
		<u>M</u> – hip BMD not sig assoc w PFOS	
		<u>F- Non-menopausal</u> – hip BMD not sig neg assoc w PFOS	
		<u>F - Menopausal</u> – hip BMD not sig assoc w BMD	
		Outcome:	
		OR for bone fracture as function of unit incr in In- PFOS	
		Major Findings:	
		For all groups (M, F-non- menopausal/menopausal) OR not sig <>1.0	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lind et al. (2014)	Rapid protein precip,automated column-switching UPLC-MS/MS	Logisitic regression for assoc PFOS and prevalent diabetes	Cross-sectional design
Lind L, Zethelius B, Salihovic S, van Bavel B, Lind PM.	Electrospray interface in neg ion mode	(OR) PFOS as linear and squared	Low-moderate n for diabetes
Circulating levels of perfluoroalkyl substances and prevalent	LOD (all PFAS) = 0.01-0.17 ng/ml	forms	Confined to spec, elderly pop.
diabetes in the elderly. Diabetologia. 2014	Population-Level Exposure:	For continuous analysis adj for:	Other comments:
Mar;57(3):473-9. doi: 10.1007/s00125-013-3126-3.	Mean PFOS plasma conc (linear) =	- sex - serum cholesterol	Moderate n for diabetes
Epub 2013 Dec 14.	13.2 ng/ml	- triglycerides - BMI	Reasonable stat analysis
Study Design:	(NOTE adult geiom mean PFOS = 9.7 ng/ml (NHANES 4rh Rpt))	- smoking - exercise	
Cross-sectional		 energy intake alcohol 	
Fasting \geq 8 hrs prior to sampling		- education	
Questionnaire:		Linear regression for assoc	
- med history - edu		PFOS w proinsulin/insuln ratio and HOMA-IR	
- exercise		(analysis for non-diabetic	
- smoking		subjects only)	
 regular medication diagnosis of diabetes (Y/N) 		Bonferroni correction for p-	
Measure plasma proinsulin and insulin by ELISA		values for prevalent diabetes due to 7-PFAS, $\alpha = 0.0071$	
-		No Bonferroni correction for	
Proinsulin/insulin ratio as measure of insulin secretion		proinsul/insulin ratio or HOMA-IR	
HOMA-IR as index of insulin resistance		(i.e., α = 0.05)	
		074	

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Outcome:	
Upsala, Sweden		Prevalent diabetes	
Population: PIVUS cohort 2001-2004		Major Findings: (adj model) OR for assoc PFOS w prevalent diabetes not sig <>	
Age = 70 yrs		1.0	
N = 1, 016 N w diabetes = 119		Outcome:	
(mean duration diabetes = 8.9 yrs)		Proinsulin/insulin ratio	
Related Studies:		Major Findings: (adj model)	
		PFOS not sig assoc w proinsulin/insulin ratio	
		Outcome:	
		HOMA-IR	
		Major Findings: (adj model)	
		PFOS not sig assoc w HOMA-IR	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Looker et al. (2014) Looker C1, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, Fletcher T. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci. 2014 Mar;138(1):76- 88. doi: 10.1093/toxsci/kft269. Epub 2013 Nov 27. Study Design: Longitudinal (?) 2010- 2011 Part of C8-Science Panel Interview of subset 2010 Participants (not already vaccinated) received influenza vaccine (FLUVIRIN) 1 st serum sample collected at vaccination 2 nd serum sample 21 +/- 3 days post-vaccination (HI)	Exposure Assessment: Solid-phase extraction, reverse- phase HPLC, isotope dilution tandem MS PFOS LD = 0.2 ng/ml Inter-day precision (CV for 60 repeat measurements) = 7.3-7.6% Intra-day precision (CV 5 measurements) = 4.9-5.8% Population-Level Exposure: Log ₁₀ median PFOS conc = 0.96 = 9.12 ng/ml (linear) IQR = 5.75-14.45 ng/ml (linear)	Stat Method: Antibody titer ↑ post-vaccine – pre-vaccine (value log-transformed) Ratio Post-vaccination/Prevaccination (value log-transformed) PFOS analyzed as log-transformed and categorical (quartiles) Linear regression Co-variates: - Age (obligatory) (as non-linear cubic spline) - Gender (obligatory) Retained if p in model ≤ 0.05: - smoking - previous (> 3 mos) influenza vaccine - day of serum collection - co-existing medical conditions - anti-inflamatory/pain-relief meds - mobility (no. of address since 1970)	Major Limitations: Moderate N PFOS analyses not controlled for PFOA Influenza vaccinations in prev yrs was found to be a sig determinant of these outcomes, but was self-reported. This raises possibility uncertainty w respect to control by this variable. However, unclear if this is directional Other comments: Study is well designed with clear cut determination of outcomes. Co-variattes appear to be reasonably complete. The N is moderate

Reference and Study Design	Exposure Measures	Results	Comment
assay for A/H3N2, A/H1N1 and		Logistic regression	
influenza B			
Influence energific titer measured		OR of achieving	
Influenza-specific titer measured		Seroconversion (4 x ↑ in titer) seroprotection (≥ 40 x	
Location:		absolute titer 1)	
WV, OH		Co-variates retained in model	
		if p < 0.05	
Population:		Age (obligatory) as	
Adult (* 19. vro) C9. otudu		categorical variable (10 yr	
Adult (> 18 yrs) C8- study participants who had not received		bands)	
influenza vaccine in prev 3 mos		OR of self-reported	
······		cold/influenza in past yr	
N = 403 (titer studies)		- Age (obligatory), gender	
N = 755 (self-reported		(obligatory)	
cold/influenza in past yr)		- smoking, alcohol, BMI,	
		diabetes, educatin – considered, but rejected	
Related Studies:		considered, but rejected	
		Outcome:	
		Antibody titer ↑; antibody titer	
		ratio post-vaccine	
		Major Findings:	
		(adj model)	
		Titer ↑ or ratio not sig assoc	
		w PFOS conc	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		OR seroconversion	
		Major Findings: (adj model)	
		OR for seroconversion not sig assoc w PFOS conc	
		Outcome:	
		OR seroprotection	
		Major Findigns:	
		OR for seroprotection not sig assoc w PFOS conc	
		Outcome:	
		OR self-reported cold/influenza in past yr	
		Major Findings:	
		OR for self-reported cold/influenza past yr not sig assoc w PFOS conc	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:

Reference and Study Design	Exposure Measures	Results	Comment
Hormone determination in clinical	-	3 and 4 (1 st Q as ref) and for	
lab		continuous model.	
Estradiol (LOD = 7 pg/ml), total		Delays for Q3 (compared to	
testosterone (LOD = 10 ng/dL)		Q1) = 118, 122 days based	
by electrochemiluminesscent		on total, free testosterone	
immunoassay		Delays for Q4 (compared to	
Free to standards have		Q1) = 187, 123 days (total,	
Free testosterone by		free testosterone	
radioimmunoassay (LOD = 0.2		Delay for In unit PFOS in continuous model = 128, 76 d	
pg/ml)		continuous model = 126, 76 d	
F w estradiol < LOD = 149		Outcome:	
M w total, free testosterone <			
LOD = 158, 608		F Age at puberty assoc w	
		PFOS	
Questionnaire:			
- Residential history		Major Findings:	
- Employment history		(fully adj model incl PFOA)	
- Lifestyle (?)			
- Family medical history		Based on age at menarche:	
- Health variables (?)		PFOS sig assoc w delay in	
- F – age at first menstruation		puberty for Q3,	
(don't know \rightarrow exclusion)		Borderline sig assoc w delay for Q4	
M - free testosterone levels		PFOS sig assoc w delay for	
dichotomized as indicators of		continuous model	
sexual maturation		continuous moder	
		Delay for Q3 (compared to	
F – estradiol levels confounded		Q1) = 117 d	
by contraception medication.		Delay for In unit PFOS in	
Therefore, sexual maturation		continuous model = 94 d	
based on estradiol cutoff or			
menarche		Based on estradiol levels	
		PFOS sig assoc w delay in	
		puberty for Q3 and Q4 (1 st Q	
Related Studies:		as ref)	
		And for continuous model	

Reference and Study Design	Exposure Measures	Results	Comment
		Delay for Q3 (compared to	
		Q1) = 175 d	
		Delay for Q4 (compared to	
		Q1) = 268 d	
		Delay for In unit PFOS in	
		continuous model = 76 d	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lopez-Espinosa et al. (2012a)	Liquid chromatography (HPLC?) – MS	Co-variates considered	Cross-sectional
Lopez-Espinosa MJ, Mondal D,		Age	Other comments:
Armstrong B, Bloom MS, Fletcher	PFOS precision +/- 10% w multiple	Sex	
T.	replicates	Race/ethnicity	Large N
Thyroid function and perfluoroalkyl acids in children	LOD = 0.5 ng/ml	BMI Month of sampling	Reasonable statistical controls
living near a chemical plant.	< LOD (PFOS = 16) as LOD/2	Household income	
Environ Health Perspect. 2012		Ever smoking	Measurement of clinical and sub-clinical endpoints
Jul;120(7):1036-41. doi:	Population-Level Exposure:	Ever alcohol	
10.1289/ehp.1104370. Epub			Note, however, that the magnitude of endpoints assoc w
2012 Mar 27.	Median PFOS = 20 ng/ml	Co-variates employed	PFOS were small, ≤ 2%
	(IQR = 15-28 ng/ml)	(> 10% change when omitted)	
Study Design:	Note: 2 x most recent NHANES	A	
Cross-sectional	(Note; ~ 3 x most recent NHANES levels for 12-19 yrs old (NHANES 4 th	Age Sex	
Closs-sectional	Rpt))	Month of sampling	
TSH by		Month of Sampling	
electrochemiluminescence		TSH In-transformed	
immunosassay			
		Linear regression of TSH or	
total T4 (TT4) by cloned enzyme		$\frac{T4}{4}$	
immunodonor assay		(exclusion of clinical	
Sub clinical hypothyraidism		thryroidism)	
Sub-clinical hypothyroidism defined as TSH > age-specific		Regression w continuous In-	
normal range and TT4 w/in		transformed PFOS (stratified	
normal range		by sex and age group)	
(N = 365)			
		Regression w (non-	
Sub-clinical hyperthyroidism		transformed) categorical	
defined as TSH < age-specific		(quartile) PFOS concs.	
normal range <i>and</i> TT4 w/in normal range		PFOS analyzed w and w/out	
(N = 78)		adj for other PFCs	
		1	

Reference and Study Design	Exposure Measures	Results	Comment
Clinical hypo/hyperthyroidism		Logistic regression	
based on self-reported diagnosis			
or medication		OR for:	
(n = 61)		- Clinical hypo-	
		hyperthyroidism	
(NOTE: In addition to measured		- sublinical hypo-	
serum PFOS in 1-17 yr olds at		- sublicinical hyper-	
time of entry into study, Lopez-			
Espinosa et al. also modeled in		Outcome:	
utero PFOS exposure. As this is			
not empirical, those results are		TSH level	
not reported here)			
		Major Findings:	
Location:		(adj model)	
WV, OH		PFOS borderline sig pos	
		assoc w TSH level for 4th Q	
Population:		(1 st Q as ref) for full cohort	
2005-6 C8 cohort		For M, PFOS sig pos assoc	
		w TSH levels 1-5 yrs old	
Children 1-17 yrs			
		(NOTE: results for PFOS	
N = 10,657 w serum PFOS		similar in models adj for	
measurement		PFOA)	
		,	
(N =4, 713 matched to maternal			
serum PFC)		Outcome:	
Related Studies:		TT4 level	
		Major Findings:	
		(adj model)	
		PFOS sig pos assoc w TT4	
		level for 4 th Q (1 st Q as ref) for	
		full cohort	

Reference and Study Design	Exposure Measures	Results	Comment
		PFOS sig pos assoc w TT4 for full cohort And for 6-10 yrs and > 10 yrs – continuous analysis	
		For M, PFOS sig pos assoc w TT4 for full cohort And for >10 yrs	
		For F, PFOS sig pos assoc w TT4 for full cohort And for 6-10 yrs and >10 yrs	
		(NOTE: results for PFOS similar in models adj for PFOA)	
		Outcome:	
		Clinical thyroid disease/hypothyroidism	
		Major Findings:	
		OR for clinical thyroid disease or hypothyroidism not sig for PFOS	
		Outcome:	
		Sub-clinical hypothyroidism	
		Major Findings:	
		OR for sub-clinical hypothyroidism not sig for PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Sub-clinical hyperthyroidism	
		Major Findings:	
		OR for sub-clinical hyperthyroidism not sig for PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Louis et al. (2012) Louis GM, Peterson CM, Chen Z, Hediger ML, Croughan MS, Sundaram R, Stanford	lon-pair extraction w ¹³ C₄- PFOS spike Recovery 98-140%	OR for endometriosis relative to PFOS by logistic regression	Small N for endometriosis (190, operative + 14, non- operative) Moderate N for non-endometriosis (283, operative + 113,
JB, Fujimoto VY, Varner MW, Giudice LC, Kennedy A, Sun L, Wu Q, Kannan K	RSD for duplicate analyses < 5%	PFOS conc log-transformed	non-operative)
Perfluorochemicals and endometriosis: the ENDO study	HPLC-MS + tandem	<u>Co-variates</u>	LOD/LOQ not reported for PFOS (or other PFCs)
Epidemiology.2012ov;23(6):799- 805.doi:10.1097/EDE.0b013e31826cc0cf.	electrospray MS (?) PFOS 100% > LOQ	Age (a priori) BMI (a priori)	Other comments: N (depending on category) was small to moderate
Study Design:	LOD (LOQ) ?	Investigated in sens analyses:	Categorization of status (operative positive, operative
Case-control	Population-Level Exposure:	- Parity (conditioned on gravidity)	neg, non-operative pos, non-operative neg, normal pelvis, non-normal pelvis) is complicated and not clearly
Baseline interview by nurses 2 mos before surgery (cases) or MRI (controls)	PFOS geom mean conc (endometriosis – operated,	 restriction of endometriosis to stage 3 and 4 restricting cases to post- 	explained and makes interpretation relative to cases and controls difficult
Std anthropometric assessment	non-operated) = 6.11-7.41 ng/ml	operative finding of (otherwise) normal pelvis	
Non-fasting blood sample	(Note: consistent w US F pop (NHANES 4 th Rpt))	Outcome:	
MRIs read by 2 radiologists	(NHANES 4" Kpt))	OR for endometriosis per log-unit change in PFOS conc	
Salt Lake City, UT San Francisco, CA		(operative sample, non- operative sample)	
Population:		Major Findings: (adj model)	
Women scheduled for surgery (laparoscopy, laparotomy)		OR for endometriosis not sig assoc w PFOS log-unit	
N = 473 (79% eligible participation)		change for either operative or non-operative sample	

Reference and Study Design	Exposure Measures	Results	Comment
Non-surgery pop identified through UT		Outcome:	
Pop Database and phone directory			
		OR for endometriosis per	
age-matched surgery pop		log-unit change in PFOS	
limited to menstruating women in referent		conc	
pop to same clinical facilities (50 mile		Operative sample restricted	
radius)		to endometriosis stage 3	
		and 4	
Exclusions (non-surgery):			
-Pelvic MRI to exclude unknown cases		Major Findings:	
- previous case of endometriosis			
- <18, > 44 yrs		OR (1.86) sig for PFOS adj	
- history of cancer		for age, BMI	
- injectable hormones in ≤ 2 yrs prev			
- current breastfeeding ≥ 6 mos N = 127		OR (1.50) not sig for PFOS	
(81% eligible participation)		adj for age, BMI and parity	
		Outcome:	
Surgery pop \rightarrow N = 190 endometriosis		Outcome.	
cases		OR for endometriosis per	
		log-unit change in PFOS	
Non-surgery \rightarrow N = 113 non-		conc	
endometriosis (based on MRI)		Comparison pop = operative	
		sample w normal pelvis	
Related Studies:		, , ,	
		Major Findings:	
		(adj model)	
		OR not sig for PFOS (w or	
		w/out parity adj)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Louis et al. (2015) Louis GM, Chen Z, Schisterman EF, Kim S, Sweeney AM, Sundaram R, Lynch CD, Gore-Langton RE, Barr DB. Perfluorochemicals and human semen quality: the LIFE study. Environ Health Perspect. 2015 Jan;123(1):57-63. doi: 10.1289/ehp.1307621. Epub 2014 Aug 15. Study Design: Yr sample collection? Data and sample collection in participants' homes - blood - BMI - ejaculate 2 sample following 2-day abstinence - 80% provided 2 samples - General characteristics e.g., vol - Motility measures - sperm head measures - morphology measures - chromatin stability measures - chromatin stability measures	Analyses by NIEHS-CDC Isotope dilution HPLC-MS < 1% PFOS samples < LOD Population-Level Exposure: MI - geom mean = 17.39 ng/ml - median = 19.15 TX - geom mean = 21.23 ng/ml - median = 21.6 ng/ml (NOTE: PFOS conc ~ 42% (MI) and 75% larger than current US M (NHANES 4 th Rpt))	Linear mixed models to investigate assoc semen/sperm parameters w ∆ 1 unit In-PFOS Co-variates - age (a priori) - BMI (a priori) - smoking (a priori) - abstinence time (a priori) - study site (a priori) - study site (a priori) - sample age (a priori) (Note; only sig outcomes are noted here) Outcome: Motility (distance migrated in straw) Major Findings: PFOS sig pos assoc w distance migrated Outcome: Morphology (coiled tail) Major Findings: PFOS sig neg assoc w % sperm w coiled tail	There were 35 parameters assessed w α = 0.05. No Bonferroni correction. Therefore ~ 2 sig associations expected by chance Other comments: Modest size N Good analytical methodology Multiple comparisons w chance outcome (~2 sig findings expected, 2 sig outcomes observed) PFOS spec findings are not a priori biologically plausible.
, -	1	005	

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
LIFE cohort - MI, n = 96 - TX, n = 366			
M of couples discontinuing contraception to achieve preg			
Recruiting through marketing database in MI; Hunting/fishing licensing in TX			
M ≥ 18 yrs old			
No medical diagnosis of sterility			
Related Studies:			
Joensen et al. (2009) Raymer et al. (2012) Toft et al. (2012)			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lyngsø et al. (2014) Lyngsø J1, Ramlau-Hansen CH, Høyer BB, Støvring H, Bonde JP, Jönsson BA, Lindh CH, Pedersen HS, Ludwicki JK, Zviezdai V, Toft G. Menstrual cycle characteristics in fertile women from Greenland, Poland and Ukraine exposed to perfluorinated chemicals: a cross- sectional study. Hum Reprod. 2014 Feb;29(2):359-67. doi: 10.1093/humrep/det390. Epub 2013 Oct 25. Study Design: Cross-sectional questionnaire Menstrual cycle characteristics pre- preg w intercourse w/birth control Length from one "bleeding" to next "bleeding" as average cycle length (if given as range, average was calculated) Location: Ukraine, Poland, Greenland	LC-MS LOD = 0.2 ng/ml 100% samples > LOD for PFOS CV for repeat analyses (diff days) = 9% Population-Level Exposure: Median PFOS conc Greenland – 20.2 ng/ml Poland – 8.0 ng/ml Ukraine – 5.0 ng/ml (Note: Poland and Ukraine PFOS concs are consistent w US pop, Greenland PFOS ~ 3 x current US F population (NHANES 4 th Rpt.))	Stat Method. <u>Co-variates/confounders</u> investigated Age BMI Parity Smoking Education Alcohol Imputation of missing data by replacement of missing values by random plausible values by random plausible values through model using following data as predictors: PFOS, PFOA levels - mean length of cycle - irregular cycle - age at menarche - age at pregnancy - pre-preg BMI - smoking - parity - education level A priori variables Age at menarche Age at preg Parity Pre-preg BMI Smoking (Y/N) 100 data complete data sets created by imputation	Recall of menstrual cycle length at some unspecified number of months in past Imputation of missing data based on predictive models for missing data. However, analysis with complete datasets only gave comparable results (but with smaller N (48-56% of N w imputed data) PFOS analyses not controlled for PFOA (and other PFCs) Other comments: Cross-sectional Large N for pooled analyses Reasonable statistical controls Uncertain error/bias due to recall of cycle length Uncertainty/bias in imputed analyses (non-imputed analyses w smaller N)
	<u> </u>	007	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		PFOS association w cycle length by mult logistic	
INJENDO cohort (?)		regression	
Enrolled 6/2002-5/2004			
During ante-natal visits		Stratification by country and pooled analysis (adj for	
≥ 18 yrs		country)	
Born in country in which enrolled			
,		PFOS as tertiles	
1,735 interviewed		Also as continuous (log-	
Exclusions:		transformed) varaible	
- oral contraceptives ≥ 2 mos prior to			
preg		OR for short and long	
- reported menstrual cycle < 16 days		cycles (separate analyses)	
(interpreted as error)			
		Outcome:	
N = 1,623		Menstrual cycle	
Greenland = 528			
Poland = 452		Major Findings:	
Ukraine = 643		(adj model)	
Related Studies:		PFOS not sig assoc w	
		irregular, short, or long	
		cycles	
		By categorical (H, M, L) or	
		continuous analysis	
		Similar results w imputed	
		datasets and full data sets- only	
		Only	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study:Maisonet et al. (2012)Maisonet M, Terrell ML, McGeehinMA, Christensen KY, Holmes A,Calafat AM, Marcus M.Maternal concentrations ofpolyfluoroalkyl compounds duringpregnancy and fetal and postnatalgrowth in British girls.Environ Health Perspect. 2012Oct;120(10):1432-7. doi:10.1289/ehp.1003096. Epub 2012 Jul10.Study Design:LongitudinalSample as sub-sample of nestedcohort selected for menarche onsetcase-control study- Cases = menarche < 11.5 yrs		Stat Method:Co-vairates/confounders consideredGestational age Maternal educationPreg BMI Maternal age at deliveryPrev live births Maternal preg smoking (Y/N)Maternal ethnicity Breast feeding to 4 wks (Y/N)Gestational age at blood sampleSample is subsample of previously selected sampleSample is subsample of onset of menarche. To correct potential sampling bias, current sample was weighted based on	
(n = 218) - Controls = random sample w menarche \ge 11.5 yrs (n = 230)		menarche onset parameter Linear regression of birth	
Maternal serum sample during preg (median = 15 wks)		wt, birth wt, gestational age, ponderal index (wt/length x 100) on maternal PFOS Backward elimination with	
Full N = 447		exclusion for p > 0.2 in model	
N for each analysis varied due to missing maternal data		Trends sig at $\alpha < 0.05$	

Reference and Study Design	Exposure Measures	Results	Comment
Birth wt and gestational age from med	•	Outcome:	
records		Birth wt (n = 422)	
Wt, height at 2 and 20 mos from		Diff(II = 422)	
routine health surveillance prgm		Major Findings:	
Maternal characteristics self-reported		(adj for maternal preg	
during preg		smoking, maternal pre-preg	
Breast feeding info from		BMI, prev live births, gest age)	
questionnaires at 4 wks post-delivery		PFOS sig neg assoc w	
Leasting		birth wt	
Location:		p-trend 0.0053	
Avon County, UK		Outcome:	
Population:		Birth length (N = 356)	
ALSPAC cohort		Major Findings	
Pregnant women w expected delivery		(adj for maternal preg smoking, maternal pre-preg	
4/1991-12/1992 \rightarrow 14,610 offspring \rightarrow		BMI, maternal educ, prev	
11,820 at 13 yrs old \rightarrow 5,756 F \rightarrow		live births, gestational age)	
3,682 w ≥ 2 assessments of pubertal status 8-13 yrs → sample of 447		PFOS sig neg assoc w	
status of 15 yrs \rightarrow sample of 447		birth length	
Data totalia		p-trend = 0.013	
Related Studies:		Outcome:	
		Gestational age (N = 444)	
		Major Findings:	
		PFOS not sig assoc w gest age	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Ponderal index (N = 360)	
		Major Findings:	
		PFOS not sig assoc w ponderal index	
		Outcome:	
		Wt at 20 mos (N = 320)	
		Major Findings: (adj for maternal age at delivery, maternal educ, prev live births, ht at 20 mos, birth wt)	
		PFOS sig pos assoc w wt at 20 mos p-trend < 0.0001	
		When stratified by tertile of PFOS <i>and</i> tertile of birth wt (n = 107)	
		PFOS sig pos assoc w wt at 20 mos only for highest tertile of birth wt (borderline sig for lowest tertile birth wt)	
		(adj for maternal educ, maternal age at delivery, prev live births, birth wt as continuous variable)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Melzer et al. (2010)	Solid-phase extraction, HPLC, turbo ion spray ionization,	Sample weighting by NHANES weighting factors	Small n for cases – especially M
Melzer D1, Rice N, Depledge MH, Henley WE, Galloway TS.	tandem MS with isotope-labeled internal stds	Multivariate logistic regression	Self-identification of thyroid diagnosis and current condition
Environ Health Perspect. 2010		- OR disease outcome by pop-	
May;118(5):686-92. doi: 10.1289/ehp.0901584. Epub 2010 Jan	PFOS LOD = 0.2 ng/ml	weighted quartile PFOS conc	PFOS analyses not controlled for PFOA
7. Association between serum	Population-Level Exposure:	Stratification of analysis by sex	Single serum sample – unknown temporal relation to "ever diagnosed" status
perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National	Geom mean M = 25.08 ng/ml	Confounders and co-variates considered	Other comments:
Health and Nutrition Examination Survey.	F = 19.14 ng/ml	Age	Good analytical methodology
Study Design:		Sex Race/ethnicity	Potential temporal disconnect between serum
Nested cohort		Education Smoking BMI	sample and reporting (especially "ever diagnosed w thyroid condition")
NHANES interview - ever been told had thyroid problem – did they still		alcohol	Definition of "current thyroid disease" category as taking thyroid med makes revere causation unlikely
have the problem?		Outcome:	(medication restores normal thyroid function and therefore thyroid dysfunction should not $\rightarrow \uparrow$ PFOS
Current thyroid disease \rightarrow taking thyroid med		Self-reported thyroid disease - ever	
To determine thyroid specificity, assoc examined between PFOS and other		Major Findings:	
NHANES disease categories (ischemic heart disease, diabetes, arthritis,		F - OR for thyroid disease (ever) not sig > 1.0 f or PFOS	
current asthma, COPD, bronchitis, emphysema)		M - OR for thyroid disease (ever) not sig > 1.0 for PFOS	
Location:			
U.S.			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome: Self-reported thyroid disease –	
NHANES 1999-2000, 2003-2004, 2005-2006		current	
1/3 random sample of ≥ 12 yrs old NHANES participants		Major Findings: F - OR for thyroid disease	
Participants < 20 yrs excluded due to		(current) not sig > 1.0 for PFOS	
no information on disease prevalence		M – OR for thyroid disease	
N-total = $3,966$ Cases (ever thyroid disease) F = 292 (adj % = 16.08%)		(current) not sig > 1.0 for OR for 4 th Q vs. Q 1 and Q2 (i.e., below median) sig > 1.0	
M = 69 (ad % = 3,06%)		(OR = 2.68 (1.03-6.98), p = 0.043)	
Cases (current thyroid disease) F = 164 (adj n = 9.89%) M = 46 (adj n = 1.18%)			
M = 46 (adj n = 1.18%)			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
 Nelson et al. (2010) Nelson JW1, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010 Feb;118(2):197-202. doi: 10.1289/ehp.0901165 Study Design: Cross-sectional Serum samples at NHANES interview Total cholesterol (TC), HDL, non-HDL, LDL, TC measured enzymatically HDL measured after precip of apoliprotein B non-HDL as TC-HDL LDL only measured in fasting subset of participants based on "Friedwald formula" Weight height BMI Waist Circumf insulin resistance by homeostatic model assessment (HOMA) 	By CDC-NCEH, isotope dilution HPLC-tandem MS Automated solid-phase extraction Population-Level Exposure: PFOS median conc = 21.0 ng/ml	Co-variates (A priori)Age Sex Race SESSaturated fat intake Exercise (past 30 d) Time in front of TV/monitor Alcohol (> 20 yrs old) Smoking (> 20 yrs old)Regression analyses for PFCs separatelyHOMA log transfPFOS as quartiles for total pop and for age/sex categoriesNHANES weighting factors not usedOutcome: Total cholesterol (TC) (20-80 yrs)PFOS sig pos assoc w TC (p- trend = 0.01) 0.27 µg/dL ↑ in TC/ng/ml ↑ in PFOS	PFOS analyses not controlled for other PFCs TC and non-HDL analyses are linked since non- HDL = 70-80% of TC Cross-sectional Potential for reverse causality (however, controlling for albumin did not change outcomes) Other comments: Cross-sectional Rel large N Large number co-variates in model Stratification by age

Reference and Study Design	Exposure Measures	Results	Comment
Reference and Study Design Location: US Population: NHANES cohort ≥ 12 yrs old Exclusions: -> 80 yrs - Pregnant - Breast feeding - Insulin medication - Dialysis - Cholesterol lowering med (for cholesterol analyses) N for PFOS analyses = 860 Related Studies:	Exposure Measures	Results Outcome: Non-HDL (20-80 yrs) Major Findings: PFOS sig pos assoc w non- HDL (p-trend = 0.02) 0.25 µg/dL ↑ in non-HDL/ng/ml per µg/L ↑ in PFOS Outcome: HDL (20-80 yrs) Major Findings: PFOS not sig assoc w HDL Outcome: LDL (20-80 yrs) Major Findings: Major Findings: PFOS not sig assoc w HDL Outcome: HDL (20-80 yrs)	Comment
N for PFOS analyses = 860		PFOS not sig assoc w HDL Outcome: LDL	
		Major Findings: PFOS not sig assoc w LDL Outcome: BMI	
		Major Findings: For M 12-19 yrs; 20-59 yrs, PFOS sig neg assoc w BMI (p- trend = 0.004)	

Reference and Study Design	Exposure Measures	Results	Comment
		For M 60-80 yrs	
		PFOS sig pos assoc w BMI (p- trend ?)	
		PFOS not sig assoc w BMI for F	
		Outcome:	
		НОМА	
		Major Findings:	
		PFOS not sig assoc w HOMA	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ode et al. (2014)	Isotopically labeled internal std	Conditional logistic reg	PFOS analyses not controlled for PFOA
Ode et al. (2014) Ode A, Källén K, Gustafsson P, Rylander L, Jönsson BA, Olofsson P, Ivarsson SA, Lindh CH, Rignell- Hydbom A. Fetal exposure to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS One. 2014 Apr 23;9(4):e95891. doi: 10.1371/journal.pone.0095891. eCollection 2014. Study Design: Case-control design Children born and living in Malmo 1978-2000 w clinical diagnosis of ADHD in study hospital	Isotopically labeled internal std LC/MS-MS LOD (all PFCs) = 0.2 ng/ml Results as aver of 2 samples on diff days CV for dup samples PFOS = 11% Population-Level Exposure: PFOS median conc Cases = 6.92 ng/ml Controls = 6.77 ng/ml	Conditional logistic reg OR calc based on: - unit incr in PFOS - ≥75 th percentile of PFOS conc of controls Co-variates (based on literature) - smoking (cotinine) - parity - gestational age at birth- Outcome: OR for ADHD Major Findings: OR for ADHD not sig <> 1.0 for Unit ↑ PFOS	PFOS analyses not controlled for PFOA Other comments: Case control design Clear diagnostic records and diagnostic criteria Mod large n for cases PFOS analyses not controlled for PFOA
ADHD cases linked to Swedish Nat'l Birth Reg for demographic, obstetric data		Or ≥ 75 th percentile control PFOS conc	
Banked cord serum collected from Malmo Maternal Unit Serum Bloodbank			
Controls matched on yr of birth and maternal country of birth			
Location:			
Malmo, Sweden			

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
N (study and control) = 206			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Okada et al. (2012)	Serum analyzed by column- switching LC-MS	Analysis of IgE and PFOS assoc	Small N for full cohort sample – esp for M-only and F-only
Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, Konishi K, Ito YM, Ito R, Nakata A, Iwasaki Y,	PFOS LOD = 0.5 ng/ml	PFOS, IgE log-transformed	Allergy/disease outcomes based on maternal self- identification
Saito K, Nakazawa H, Kishi R. Prenatal exposure to perfluorinated	Population-Level Exposure:	Polynomial regression	Other comments:
chemicals and relationship with allergies and infectious diseases in infants.	Mean maternal PFOS conc = 5.6 ng/ml (median = 5.2 ng/ml)	Co-variates/confounders considered: (vars in full model in bold)	Prospective cohort design
Environ Res. 2012 Jan;112:118-25. doi: 10.1016/j.envres.2011.10.003.	PFOS detect = 100%	Maternal age	Self-identification of allergy disease outcome
Epub 2011 Oct 24.	(NOTE: PFOS exposure ~30% lower than US F pop (NHANES	Maternal allergy history Infant gender	Limited power due to small N
Study Design:	4 th Rpt))	Birth season Home distance to highway	
Prospective cohort		Sampling period Parity	
Women self-admin questionnaire in 2 nd trimester:		Deep sea fish preg intake	
- Med history - education		Also stratification by infant gender	
- household income - smoking - alcohol		Analysis of infant allergies and infect diseases	
- caffeine - food intake freq		Binomial logistic regression	
From med records: - maternal age - maternal height		OR for risk of allergies/infectious diseases with PFOS levels	
- pre-preg wt - Preg complications - gestational age		Co-variates in full model:	
- parity - infant gender - birth wt		Maternal age Maternal educ Bro prog BM	
		Pre-preg BMI	

Reference and Study Design	Exposure Measures	Results	Comment
Self admin questionnaire at 18 mos post-natal: - breastfeeding - current infant wt, length - smoking (both parents) - ETS - pets - "living environment" - day care - vaccinations - infant med history allergies, infectious diseases Assessment of infant allergies based on maternal questionnaire responses at 18 mos Maternal blood sample after 2 nd trimester (post-delivery if maternal anemia) IgE from cord blood by enzyme-linked immunosorbant assay - mean cord IgE conc = 0.62 IU/ml (median = 0.21 IU/ml) Location: Sapporo, Hokkaido, Japan		Maternal/paternal allergy history (Y/N) Parity (prima/multiparous) Infant gender Breast feed ($< \ge 4 \mod s$) ETS (Y/N) Day care (Y/N) Maternal blood sampling period (pre-post birth) Outcome: IgE Major Findings: Full cohort IgE not sig assoc w log PFOS <u>M-only</u> IgE not sig assoc w log PFOS <u>F-only</u> IgE not sig assoc w log PFOS Outcome: Allergies/infectious diseases at 18 mos	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Major Findings:	
Birth cohort from Sapporo 7/2002- 10/2005		Full cohort	
1796 eligible \rightarrow 514 agreed to participate \rightarrow 10 excluded due to stillbirth, miscarriage, relocation		OR for allergies/diseases as function of PFOS not sig < > 1.0	
withdrawal \rightarrow 13 excluded due to infant death, or withdrawal \leq 18 mos \rightarrow		<u>M-only</u>	
N = 343 for PFOS; N = 231 for IgE		OR for allergies/diseases as function of PFOS not sig < > 1.0	
Related Studies:		<u>F-only</u>	
		OR for allergies/diseases as function of PFOS not sig < > 1.0	

Reference and Study Design Exposure Measures Results Comment Study: Exposure Assessment: Stat Method: Major Limitations: Okada et al. (2014) Blood samples 28-32 wks of gest Categorical analysis by quartile PFOS PFOS analyses not ad for other PFCs Matsuura H, Miyashita C, Kobayashi S, Itoh K, Ikeno T, Tamakoshi A, Kishi R. PFOS in plasma by ultra-HPLC- tripte quadrupole MS OR as quart 2-4 compared to "quart (ref) PFOS analyses not ad for other PFCs Diddiade Brig C diseases in early childhood. MDL = 0.3 ng/ml
Okada E, Sasaki S, Kashino I, Matsuura H, Miyashita C, Kobayashi S, Itoh K, Ikeno T, Tamakoshi A, Kishi R. PFOS in plasma by ultra-HPLC- triple quadrupole MS OR as quart 2-4 compared to 1ª quart (ref) Other comments: Pros pective design PFOS detect in 100% of samples Potential confounding vars - education* Prospective design 2014 Jan 29 PFOS median conc = 5.02 ng/ml (mean = 5.56 ng/ml) Detectial confounding vars - infant gender* Outcome data from self-admin questionnaires Prospective birth cohort PFOS median conc = 5.02 ng/ml (mean = 5.56 ng/ml) Detectial confounding vars - infant gender* Outcome data from self-admin questionnaires Prospective birth cohort Population-Level Exposure: - ETS* - day care* - gest age - etial and model Voltcome: - oay of timmest - solo asseline questionnaire - or 3 ^{of} timmest - sillibirth - for total congenital malformation - multiple births Outcome: Self-administered questonnaires - 14' trimest - 4, 12, 24 mos post-natal - Gar care + naft railergies developing 12-24 mos - eczema - wheezing Outcome:
Eczema

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Major Findings: (adj model)	
Hokkaido, Japan			
Population:		OR not sig < > 1.0	
Birth cohort from Hokkaido hospitals		(except 3 rd quart F sig < 1.0)	
Pop meeting all criteria = $6,335 \rightarrow 300/\text{yr} \ 2003-2008 + 295 \text{ in } 2009 \rightarrow 2,095$ Excluded late observed congenital malformation and blood samples prior to 26 wks gest $\rightarrow N = 2,063$			
Mean maternal age = 30.4 yrs			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Olsen et al. (1999)	Exposure Assessment:	Results are combined for both	Major Limitations:
	Subjects provided blood	locations.	There is no true control group and PFOS-related
Study Design:	samples as part of voluntary		effects in lowest exposure group could confound a
Cross-sectional, across two years	medical exam. Serum PFOS	Stat Method:	dose-response relationship in higher exposure
(1995, 1997)	was measured by LC/MS	Regression models; covariates	groups.
		and confounders considered	
Location:	Population-Level Exposure:	included age, body mass, current	Only males in the study populations.
Decatur, AL (USA); Antwerp, Belgium	Exposure levels are combined	alcohol consumption, and	
Denulations	for both locations.	cigarettes smoked/day	Different serum PFOS analytical methods in 1995
Population:		n velve (Denferreni ediveted)	and 1997 $r = 0.92$ for individual samples across
3M workers at two PFC manufacturing	Exposure levels in 1995	p-value (Bonferroni adjusted)	sampling periods
plants 1995 – total n = 178	Exposure ppm n %	based on comparison to low	No detection limit reported for either year
	level	exposure group	No detection limit reported for either year.
Decatur n = 90 Antwerp n = 88	1 0-<1 45 25		Change in total bilirubin was not significant in either
1997 - total = 149	2 1-<3 91 51	Outcome: Total bilirubin	year when results were stratified by plant location.
Decatur $n = 84$	3 3-<6 35 20	Outcome. Total bill ubill	year when results were stratilied by plant location.
Antwerp $n = 65$	4 ≥6 7 4	Major Findings:	Other comments:
	· · · · · · · · · · · · · · · · · · ·	For 1995	other comments.
Outcome Definition:	Exposure levels in 1997	\downarrow for exposure levels 2 and 3	The study was well conducted and used serum
Hematology and serum chemistry	Exposure ppm n %	(p<0.05)	concentration as an unambiguous measure of
The first of the of the first o	level	Overall ↓ trend was statistically	relative total exposure. However, the absence of a
Related studies:	1 0-<1 60 40	significant	true control group can lead to underestimating
Follow-up of one or both populations	2 1-<3 63 43	olgrinicalit	PFOS-exposure-related effects. Despite the two
in:	3 3-<6 21 14	For 1997	year of the study, there was significant turnover in
Olsen et al.(2003)	4 ≥6 5 3	↓ for exposure level 2 only	the worker population and the comparison across
Alexander et al. (2003)		(p<0.05)	the two years cannot be considered a longitudinal
Olsen et al.(2004)		Overall ↓trend was statistically	measure. The number of workers in each exposure
Alexander et al. (2007)		significant	category, especially the two highest, is relative
Grice et al. (2007)			small.
Olsen et al. (2012)			
		Outcome: Direct bilirubin	Suggestive, but inconsistent associations between PFOS exposure and decreased bilirubin; increased
		Major Findings:	cholesterol, LDL.
		1997 only	
		↓ for exposure level 2 only (p	
		<0.05)	
		Overall ↓ trend was statistically	
		significant	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome: Total Cholesterol	
		Major Findings: <u>1997 only</u> ↑ for exposure level 3 only (p <0.05) Overall ↑ trend was statistically significant	
		Outcome: LDL Major Findings:	
		<u>1997 only</u> ↑ for exposure level 3 only (p <0.05) Overall ↑ trend was statistically significant	
		Outcome: HDL	
		Major Findings Overall trend sig ↓ <u>1995 only</u>	
		Outcome: Triglycerides	
		Major Findings no sig trend	

Reference and Study Design	Exposure Measures	Results	Comment
	Exposure Assessment:	Statistical Method	Major Limitations
Olsen et al. (2003b)			
	Serum PFOS and PFOA from	Cross-Sectional Analysis	Limit of detection not reported
Study Design:	participants in voluntary PFC medical		
	surveillance.	Covariates considred	No detail about design of longitudinal study
Cross-sectional		Age	
	73-75% participation	BMI	No non-factory controls
Longitudinal	. (000(and sizing (mast) (100()	Alcohol	Lowest exposure category is till elevated
(1994/1995 and/or 1997 compared	+/- 20% precision (most +/- 10%)	Smoking	Other commenter
with 2000)	Analyzed for	Yrs employment	Other comments:
Longitudinal based on reported	Analyzed for:	Job title	Partial D ² for DEOC for and paints in multiple
Longitudinal based on repeated medical surveillance, but no details	Total organia fluorina (TOE)	Controlled for PFOA and	Partial R ² for PFOS for endpoints in multiple regression models were relatively small = <0.01-
medical surveillance, but no details	Total organic fluorine (TOF) (PFOS + PFOA only for longitudinal	TOF	0.27)
Longitudinal analyses for cholesterol	analyses)	TOP	0.27)
and triglycerides only	analyses)	Longitudinal Analysis	High exposure
and ingrycendes only	- Perfluorohexanesulfonate	<u>Longitudinal Analysis</u>	
Location:	- N-ethyl perfluorooctane-	As repeated measures	No non-factory controls – can reduce power to
	sulfonamidoacetate	no repeated measures	detect effect
Decatur, AL (USA)	- N-mthyl perfluorooctane-	Covariates conosidred	
Antwerp (Belgium)	sulfonamidoacetate	Yrs of follow-up	Most outcomes are cross-sectional
· · · · · · · · · · · · · · · · · · ·	- perfluorooctane-sulfonamidoacetate	Age	
	- perfluorooctane-sulfonamide	BMI	
	Detected at "1-3 order of magnitude	Smoking	
	below PFOS and PFOA" – not	Alcohol	
	reported.	Yr of entry	
		Location	
		Baseline yrs worked	
		Triglycerides (for hepatic	
		chem)	
		Controlled for PFOA and	
		TOF	

Reference and Study Design	Exposu	re Measur	es	Results	Comment
Population	Population-Leve	el Exposur	e:	Outcome:	
	(data presented f	or 2000 on	ly)	Cholesterol	
Cross-sectional analysis (2000)		~)		Major Findingo	
MF	Serum conc. (pp		Range	Major Findings: not sig assoc	
Antwerp 206 49	IVICAI	mean	Range	cross-sectional or long	
Decatur 215 48	Antwerp	moun		models	
	PFOS 0.80	0.44	0.04-		
No non-factory controls		-	6.24	Outcome:	
	PFOA 0.84	0.33	0.01-	HDL	
M F			7.04	Major Findings	
Antwerp	Decatur			Major Findigs: Not sig assoc	
production 73% 12%	PFOS 1.32	0.91	0.06-	(cross-sectional)	
Non-		4.40	10.06		
production 27% 88% Decatur	PFOA 1,78	1,13	0.04- 12.70	Outcome:	
production 75% 63%			12.70	Triglycerides	
Non-					
production 25% 37%	Quartiles of Seru	m ppm		Major Findings:	
	Quartil		Q3 Q4	Sig ↑ M only For 4 th quart	
Longitudinal Analysis	1			For 4 th quart	
	PFOS 0.21		.17 2.46	Not sig assoc for F in	
(Employees participating in 1994/5	PFOA 0.25		.20 2.43	cross-sectional	
and/or 1997 and 2000	TOF 0.43	1/14 1	.88 4.06	Or in longitudinal analysis	
4004/5				<i>c i</i>	
- 1994/5 and 2000, n = 64 -1997 and 2000, n = 69				Outcome:	
-1997 and 2000, $n = 69-1994/5$, 1997 and 2000, $n = 41$				Alkaline phosphatase	
(sex not specified)				Maion Finalin no.	
				Major Findings: Sig ↑ M and F	
Outcome Definition:					
				Outcome:	
Standard hematology and clinical				GGT	
chemistry.					
				Major Findings:	
Urinalysis - glucose, albumin and RBCs (Decatur only)				Sig ↑ <u>F 4th quart only</u>	
				M – <u>not sig assoc</u>	
	1				

Reference and Study Design	Exposure Measures	Results	Comment
Related studies		Outcome: AST	
Olsen et al. (1999) Alexander et al. (2003) Olsen et al.(2004)		Major Findings: Not sig assoc	
Alexander et al. (2007) Grice et al. (2007) Olsen et al. (2012)		Outcome: ALT	
		Major Findings: Sig ↑ - <u>M only</u>	
		Outcome: Total bilirubin	
		Major Findings: Sig ↓ M & F	
		Outcome: TSH	
		Major Findings: Not sig assoc	
		Outcome: T4	
		Major Findings: Not sig assoc	
		Outcome: Free T4	
		Major Findings: Not sig assoc	
		Outcome: T3	
		Major Findings: Sig ↑ - <u>M only – 4th quart</u>	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Olsen et al. (2004) Marshall JC, Burris JM, Mandel JH. Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility.	H, L, and "minimal" (film plant) exposure categories (as per Alexander et al. (2003) based on job title with PFOS exposure within title based on Olsen et al. 2003(b) measurements.	Comparison of all PFC plant employees (n = 652) to all film plant employees (n = 659) Comparison of all workers in	Exposure classification for PFC plant employees based on correspondence of job category to exposure levels (serum PFOS). However, correspondence was based on a sample of 186 = 29% of the number of respondants. Variability for some job categories was high including some with
Olsen GW, Burlew MM, J Occup Environ Med. 2004 Aug;46(8):837-46.	Population-Level Exposure: - H = (geom mean) 0.6-2.0	H exposure category for 10 yrs solely in PFC plant (n = 211), to film plant workers	high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)).
Study Design:	ppm - <u>L</u> = 0.4 ppm - <u>Minimal</u> = 0.1-0.2 ppm	for 10 yrs (n = 345). Observed number of cases	"Minimal" category (for film plant employees) mean 0.1-0.2 ppm is approx. 10 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth
3M workers in PFC facility.		for health condition compared to expected on	National Report on Human Exposure to Environmental Chemicals;
Use of "episodes of care" (one or more health claims defined by ICD code for related medical conditions (through company's health care insurance system) to identify		basis of age and sex. Risk ratio based on claimsPFC/claimsfilm	http://www.cdc.gov/exposurereport/pdf/fourthreport. pdf) Thus, use of "minimal" category as referent will bias against finding associations with medical conditions.
exposure related health effects.		Outcome:	Sig. co-exposure to PFOA.
Chemical plant (direct PFC exposure), and film plant (no direct PFC exposure) workers.		Major Findings: Total episodes of care	Other comments: The study was well designed and conducted.
Location:		PFC plant = 10,608 Film plant = 11,957	However, it suffers from using an indirect measure of disease – episodes of care. In addition, the use of episodes of care results in counting multiple
Decatur, AL		All Employees	episodes in one worker equally with individual episodes among multiple workers.
Population:		>2.0 or stat. sig. (Risk Ratios)	It is likely that risk ratios for causally related
All active and disability inactive (short and long-term disability to 18 mos.) workers in employment history database 1993-1998.			endpoints were underestimated due to above- background PFOS exposure in the Film Plant workers.

Reference and Study Design	Exposure Measures	Results	Comment
Reference and Study Design Related Studies: Olsen et al.(2003) Alexander et al. (2003) Alexander et al. (2007) Grice et al. (2007) Olsen et al. (2012)	Exposure Measures	Cancers and benign tumorsMalignant neoplasms of colon = 5.4 (not sig.)Malignant neoplasms of lower resp tract = 2.7 (not sig.)Malignant melanomas of skin = 12 (not sig.)Malignant melanomas of skin = 79 (not sig.)Malignant neoplasms of prostate = 79 (not sig.)GastrointestinalCholelithiasis/Acute cholecystitis (gallbladder inflammation) = 8.6 (sig.)Acute pancreatitis = 2.6 (not	Comment On the other hand, co-exposure to PFOA may have confounded risk ratios that may have been causally related to PFOA, but not PFOS. Independent Utility for Hazard Identification *
		cholecystitis (gallbladder inflammation) = 8.6 (sig .)	

Reference and Study Design	Exposure Measures	Results	Comment
		Cancers and benign tumors	
		Cancers and benign tumorsMalignant neoplasms of colon = 12 (not sig.)Malignant neoplasms of rectum = 11 (not sig.)Benign colonic polyps = 2.4 (sig)Malignant melanomas of skin = 10 (not sig.)Malignant melanomas of prostate = 8.2 (not sig.)GastrointestinalBiliary tract disorders = 2.6 (sig) Cholelithiasis/Acute cholecystitis = 25 (sig) Cholelithiasis/Chronic cholecystitis = 2.5 (not sig.)Acute pancreatitis = 5.5 (not sig) (Note: due to 6 episodes from 1 employee)Urologic Cystitis = 2.4 (sig) Urinary tract infection	
		(unspec.) = 2.1 (sig)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
PFOA.	* Authors do not provide independent data for PFOS increases or decrease	- ALT	
Location:	across the population except as stratified by PFOA changes	Sig, but very small change (mean =	
Cottage Grove, MN Decatur, AL	Increases were almost all for low baseline worker.	-0.05 mg/dL) in total bilirubin.	
Population:	Workers with highest baseline mostly experienced decrease due to high	Outcome:	
179 workers with baseline and end- of-project assessment, without lipid lowering medication	baselines and longer time between baseline and end-of-project. Consistent with elimination T1/2.)	Linear regression analyses *	
14 3M employees 165 contract workers			

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
Related Studies:		No sig changes except for ↓ ALT for full dataset (No sig change when stratified by low baseline PFOS and PFOA)	
		* Unclear from paper if regression analyses for PFOS controlled for PFOA	

	Exposure Assessment:	Stat Method:	Major Limitations:
Osuna et al. (2014)			wajor Limitations:
Fawal HA.Toxicol Sci. 2014 Nov;142(1):158-66. doi: 10.1093/toxsci/kfu163. Epub2014 Aug 14.Autoantibodies associated withprenatal and childhood exposure toenvironmental chemicals in Faroese	Online solid-phase extract, HPLC-MS Population-Level Exposure: Geom mean PFOS conc - cord blood = 3.1 ng/ml - serum 7 yrs = 27 ng/ml (NOTE: 7 yr serum conc ~ 4 x NHANES 12-19 yr old geom mean (NHANES 4 th Rpt))	 Assoc PFOS w auto- antibodies by linear regression Auto-antibody levels In- transformed PFOS conc In-transformed (to give % change in auto- antibodies per ∆ 2x change in PFOS Outcome: Auto-antibody levels Major Findings: PFOS not sig pos assoc w any auto-antibody levels – either prenatal or 7 yrs Prenatal PFOS neg assoc w actin-specific IgG 	PFOS LOD not provided PFOS analyses not adj for PFOA Relatively small N Other comments: Longitudinal design Analytically specific outcomes Rel small N
Faroe Is.			

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
Birth cohort 1986-7			
N = 37 (cord blood) N = 34 (serum 7 yrs) M = 16 F = 22			
Mean age at post-natal sampling = 6.6 yrs			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Power et al. (2013) Power MC1, Webster TF, Baccarelli AA, Weisskopf MG. Neuroepidemiology. 2013;40(2):125-32. doi: 10.1159/000342310. Epub 2012 Oct 24. Cross-sectional association between polyfluoroalkyl chemicals and cognitive limitation in the National Health and Nutrition Examination Survey. Study Design: Total N = 1,766 Primary outcomes Self-reported limitations (Y/N) in: - Memory - Periods of confusion 13% (one or both) Secondary outcomes (sens analyses) - Difficulties in daily activities due to senility (Y/N) n =17			
 performance on digit symbol substitution test n = 275 Location: 		 osmolality glumerular filtration rate fish consumption in past 30 d 	
US			

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Adjustment for co-variates used in	
NHANES cohort		NHANES weights rather than weights per se	
60-85 yrs old		PFOS conc log-transformed	
1999-2000; 2003-2004; 2005-2006;			
2007-2008		Outcome:	
Related Studies:		Difficulty remembering or periods of confusion	
		Major Findings:	
		OR for outcomes not sig < > 1.0 for doubling of PFOS	
		Not affected by adjustment for diabetes, metabolic syndrome factors, fish consumption, or artifact due to changes in serum vol or kidney function	
		Not sig affected by stratification by diabetes	
		OR for outcomes sig < 1.0 for doubling PFOS conc for diabetics w/out medication (n = 54)	
		Outcome:	
		Difficulties w daily life/senility	
		Major Findings:	
		OR for outcomes not sig < > 1.0 for doubling of PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Raymer et al. (2012)	Solid-phase extraction, negative elcectrospray	Semen and plasma variables kept un-logged	PFOS analyses not adj for PFOA
Raymer JH1, Michael LC,	ionization, HPLC-MS/MS		Other comments:
Studabaker WB, Olsen GW, Sloan		Logistic and linear modeling	
CS, Wilcosky T, Walmer DK.	Field blanks, field controls, lab		Mod large N
Reprod Toxicol. 2012 Jul;33(4):419-	method blanks, lab method	Full model w age, duration	_
27. doi:	control samples	abstinence, tobacco use (as	Good measurement precision and control for PFOS
10.1016/j.reprotox.2011.05.024.		mandatory co-variates)	and semen characteristics
Epub 2011 Jun 29.	Calibration check sample every		
Concentrations of perfluorooctane	10 samples	Forward selection model w age,	Large number of semen characteristics and
sulfonate (PFOS) and		duration of abstinence, tobacco use	hormone variables investigated
perfluorooctanoate (PFOA) and	30 plasma samples to	incl. if p < 0.5	Wall designed statistical analyses
their associations with human semen quality measurements.	interlaboratory QA analysis	OR for categorical outcomes	Well-designed statistical analyses
semen quality measurements.	CV for replicate extraction and	OR for categorical outcomes	Failure to control PFOS analyses for PFOA conc
Study Design:	analysis plasma samples for PFOS = 16%	Outcome:	Tailure to control 11 00 analyses for 11 0A conc
Cross-sectional		Semen vol	
2002-2005	CV for replicate extraction and		
	analysis semen samples for	Major Findings:	
In conjunction with IVF screen	PFOS = 21%	(adj models)	
Routine sperm analyses (e.g., viscosity, volume, pH)	PFOS LOD = 0.4 ng/ml (semen and plasma)	Semen vol not sig assoc w plasma or semen PFOS conc	
Tests of functional motility	Population-Level Exposure:	OR for abnormal vol not sig <>1.0	
Semen sample ≤ 7 d of last ejaculation, but after 48 hr	Mean plasma PFOS conc = 37.4 ng/ml	Outcome:	
abstinence	(median = 32.3 ng/ml)	Semen pH	
Delivery to lab \leq 1 hr post collection			

Spermatozoa conc by Neubauer hemacytometer (NOTE: PFOS conc ~ 2.7 x current NHANES for M (NHANES f	Reference and Study Design	Exposure Measures	Results	Comment
Outcome: Initial total motile sperm (x 10 ⁶ /ml)	Spermatozoa conc by Neubauer hemacytometer - Total testosterone Free testosterone - Follicle stimulation hormone (FSH) - luteinizing hormone (LH) - prolactin - estradiol - T3 - T4 - TSH Reprod health questionnaire: - reprod history - sexual activity - duration of abstinence prior to sample Location: Durham, NC Population: N = 252 men for PFOS analyses At Duke U. Fertility Center Related Studies:	(NOTE: PFOS conc ~ 2.7 x current NHANES for M	 Major Findings: Semen pH not sig assoc w plasma or semen PFOS conc Outcome: Sperm conc (x 10⁶/ml) Major Findings: Sperm conc not sig assoc w plasma or semen PFOS conc OR for abnormal sperm conc not sig <>1.0 Outcome: WBC conc (x 10⁵/ml) Major Findings: WBC conc not sig assoc w plasma or semen PFOS conc Outcome: WBC conc not sig assoc w plasma or semen PFOS conc Major Findings: WBC conc not sig assoc w plasma or semen PFOS conc Outcome: % motile sperm Major Findings: % motile sperm not sig assoc w plasma or semen PFOS conc Outcome: Outcome: % motile sperm not sig assoc w plasma or semen PFOS conc 	Comment

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		Initial total motile sperm not sig assoc w plasma or semen PFOS conc	
		Outcome:	
		% swim-up overnight sperm motility	
		Major Findings:	
		% swim-up overnight sperm motility not sig assoc w plasma or semen PFOS conc	
		Outcome:	
		Swim-up conc (x 10 ⁶ /ml)	
		Major Findings:	
		Swim-up conc not sig assoc w plasma or semen PFOS conc	
		Outcome:	
		% swim-up motility	
		Major Findings:	
		% swim-up motility not sig assoc w plasma or semen PFOS conc	
		Outcome:	
		Swim-up total motility (x 10 ⁶ /ml)	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		Swim-up total motility not sig assoc w plasma or semen PFOS conc	
		Outcome:	
		OR for abnormal liquification	
		Major Findings:	
		OR not sig <>1.0	
		Outcome:	
		OR for abnormal Viscosity	
		Major Findings:	
		OR not sig <>1.0	
		Outcome:	
		OR for abnormal motility	
		Major Findings:	
		OR not sig <>1.0	
		Outcome:	
		PFOS correlation w hormones	
		Major Findings	
		PFOS plasma conc sig correlated w T3 (r = 0.138; p = 0.030)	
		PFOS (semen or plasma) not sig correlated w any other hormones	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Robledo et al. (2015)	Pre-conception blood sample (when?)	PFOS In-transformed	Rel small N
Robledo CA1, Yeung E, Mendola	(Multiple linear regression	Other comments:
P, Sundaram R, Maisog J,	Analysis by CDC	Separately for each parent	
Sweeney AM, Barr DB, Louis GM.		Stratified by infant sex	Prospective study
Environ Health Perspect. 2015	Population-Level Exposure:		
Jan;123(1):88-94. doi:		Outcomes (birth size	Rel small N
10.1289/ehp.1308016. Epub 2014	PFOS geom mean conc (Suppl	characteristics) as continuous	
Aug 5.	info)	variables - Δ per 1 SD change in	Power reduced by stratification by infant sex
Preconception maternal and	F = 12.44 ng/ml	PFOS	Cood atot design
paternal exposure to persistent organic pollutants and birth size:	M = 24.6 ng/ml	<u>A-priori adj for:</u>	Good stat design
the LIFE study.		- maternal age	
the En E study.		- Δ maternal-paternal age	
Study Design:		- pre-preg BMI	
		- infant sex	
Longitudinal Investigation of		- serum lipids	
Fertility and the Environment		- serum cotinine	
(LIFE) cohort		- non-PFOS PFCs	
		- (other) partner's total serum PFC	
Couples planning preg w/in 6 mos		conc	
recruited 2005-2009			
Exclusion criteria:		Sens analyses excluding gestational diabetes or	
- either couple sterile		hypertension – no difference ,	
- contraception discontinued for >		therefore all pregnancies meeting	
2 mos		inclus criteria incl	
- menstrual cycle not between 21-			
42 d			
- F received injectable			
contraceptive w/in 12 mos			
- could not communicate in English			
or Spanish			
- >12 mos attempted preg			
- non-singleton birth		700	

Reference and Study Design	Exposure Measures	Results	Comment
- non-live birth		Outcome:	
- birth wt not reported			
- birth wt > 99 th perc		Birth size characteristics	
- head circum > 99 th perc			
		Major Findings:	
Parental reporting of birth size		DEOC mot all access whith size	
characteristics;		PFOS not sig assoc w birth size	
- sex - birth wt		characteristics for either maternal or paternal pre-preg serum conc	
- length		patemai pre-preg serum conc	
- head circum			
- Ponderal index			
Questionnaires to each parent			
separately			
- medical history			
- reprod history			
- alcohol			
- tobacco			
Parental BMI			
Data of conception from invest			
Date of conception from journal entries for intercourse and fertility			
monitor for peak LH (ovulation)			
mornior for peak En (ovulation)			
Daily preg journals – wt gain,			
gravid diseases			
9			
Location:			
MI, TX			
Population:			
N = 180-230			
(for various parental reported birth			
size characteristics)			
Related Studies:			
וזכומוכט שנוטובש.			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Shankar et al. (2011a)	Automated solid-phase extraction, isotope dilution	PFOS as continuous (log- transformed) and categorical	Analysis of PFOA adj of PFOS (but no vice-versa) did not change sig. Not clear if this indicates lack of
Shankar A, Xiao J, Ducatman A. Perfluoroalkyl chemicals and	HPLC-MS	(quartiles) variable	confounding of PFOS analyses by PFOA
chronic kidney disease in US adults.	PFOS LOD = 0.2 ng/ml	Multivariate linear reg for assoc PFOS w eGFR	Moderate sample size (~ 230) for chronic kidney disease subjects
Am J Epidemiol. 2011 Oct 15;174(8):893-900. doi:	PFOS Inter-assay CV = 13%	Also stratified by: - age	Other comments:
10.1093/aje/kwr171. Epub 2011	Population-Level Exposure:	- race/ethnicity	
Aug 26. PMID: 21873601 [PubMed -	PFOS median conc = 18.7	- gender - education	Analysis for PFOS assoc w eGFR stratified by chronic kidney disease status shows ↑ assoc for
indexed for MEDLINE]	ng/ml	- BMI	non-kidney disease status. Suggests that a priori kidney disease does not influence PFOS function.
		Categorical regression	
Study Design:		- OR for chronic kidney disease for each quart PFOS	Large overall N allows in-depth statistical investigation
Cross-sectional			
Est glomerular filtration rate		<u>Co-variates</u> Age	However, only mod N for chronic kidney disease
(eGFR) calc from serum creatinine		Sex	Good analytical confidence
conc, age, gender		Race/ethnicity Education	Strong prob of assoc PFOS w outcome, but risk
Chronic kidney disease defined as		Smoking	(OR) is only moderate
GFR < 60 mL/min/1.73 m ²		Alcohol SBP	
Prevalence of chronic kidney		DBP	
disease in sample ≈ 5%		Diabetes	
(depending on quart of PFOS) N ≈ 230		Total serum cholesterol % glycohemoglobin	
Serum total cholesterol (enzymatically)		(NHANES?) sample weights applied	

Reference and Study Design	Exposure Measures	Results	Comment
Serum glucose		Outcome:	
BP		mean change in eGFR/increment PFOS	
Location:		Major Findings:	
Population:		(full adj model)	
NHANES		Total sample	
1999-2000; 2003-2004; 2005- 2006; 2007-2008		PFOS sig neg assoc w eGFR for Q 3 and 4 (compared to Q1) p-trend = < 0.0001	
≥ 20 yrs old		stratified - age	
5,717 \rightarrow exclusions for CV disease, missing data on serum		(Q4 vs. Q1)	
creatinine, or covariates \rightarrow N = 4,587		PFOS sig neg assoc w eGFR < 60 yrs old Borderline neg sig for ≥ 60 yrs	
Prevalence of chronic kidney disease in sample ≈ 5%		Stratified – sex	
(depending on quart of PFOS) N ≈ 230		(Q4 vs. Q1)	
		PFOS sig neg assoc w eGFR for M and F	
F = 51.8%		Stratified – race/ethnicity	
Related Studies:		(Q4 vs. Q1)	
		PFOS sig neg assoc w eGFR for all categories	
		<u>Stratified – education</u> (Q4 vs. Q1)	
		PFOS sig neg assoc w eGFR for all categories	

Reference and Study Design	Exposure Measures	Results	Comment
		<u>Stratified – BMI</u> (Q4 vs. Q1)	
		PFOS sig neg assoc w eGFR for BMI < > 30	
		Outcome:	
		OR for chronic kidney disease by quart PFOS	
		Major Findings: (full adj model)	
		OR for chronic kidney disease sig > 1.0 for all quarts PFOS (Q2-4 vs. Q1) Max OR (Q4) = 1.82 p-trend = 0.019	
		inclusion of C-reactive protein in model to address inflammation – no sig change	
		reverse causation investigated by modeling eGFR w stratification for chronic kidney disease – assoc PFOS and eGFR stronger for non- chronic kidney disease	

Reference and Study DesignExposure MeasuresResultsCommentStudy:Exposure Assessment:Stat Method:Major Limitations:Shankar et al. (2011b)CDC analysesPFOS as continuous and categorical varPFOS analyses not adj for PFOAShankar A, Xiao J, Ducatman A. Perfluoroalkyl chemicals and elevated serum uric acid in US< LOD = LOD/ $\sqrt{2}$ Linear regression: Continuous – PFOS log (base-2)Other comments:	
Shankar A, Xiao J, Ducatman A. Perfluoroalkyl chemicals and< LOD = LOD/ $\sqrt{2}$ varOther comments:	
adults. Median PFOS conc = 17.2 mg/ml Transformed Large N 2011 Sep 30. Median PFOS conc = 17.2 mg/ml Large N 2011 Sep 30. Quartile) Large N Study Design: Cross-sectional NHANES Logistic regression: Quartile) Do R for hyperuricemia Exclusion: - missing data for Uric acid - acedethnicity - educ - missing data for Uric acid - missing data on included co-variates - sex acedethnicity - educ - missing data on included co-variates - serum total cholesterol measured enzymatically - NHANES sampling weights applied NHANES sampling weights applied Hypertenstion = BP-S ≥ 140 and/or BP-D ≥ 30 BP-S, BP-D Uric acid level Major Findings: Outcomes: - uric acid > 6.8 mg/dL - GS sig pos assoc w serum uric acid PFOS sig pos assoc w serum uric acid PFOS sig for trend, and sig for continuous model (log-transformed PFOS)	are consistent

Reference and Study Design	Exposure Measures	Results	Comment
Location:		<u>By sex</u>	
110		M – borderline sig pos assoc	
US		F – sig pos assoc by quartile and for	
Population:		trend. Borderline sig (dependent on model) for continuous model (log-	
		transformed PFOS)	
NHANES 1999-2000, 2003-2004,			
2005-2006		By BMI	
		BMI <30 kg/m ² - sig pos assoc by	
≥ 20 yrs		quart, for trend, and for continuous	
N 0.000		model (log-trans PFOS)	
N = 3,883 F = 51.7%		BMI >30 kg/m² – not sig assoc	
F = 51:776			
Related Studies:		Outcome:	
		OR for hyperuricemia	
		Major Findings:	
		OR sig > 1.0 for quarts. Borderline	
		sig for trend (dependent on model),	
		sig pos assoc for continuous model	
		(log-transformed PFOS)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Shrestha et al. (2015)	Ion-pairing extraction HPLC-MS	Multivariate linear regression	Rel small N
Shrestha S, Bloom MS, Yucel R, Seegal RF, Wu Q, Kannan K3, Rej	Isotopically labeled internal	<u>Co-variates</u> - age	Other comments:
R4, Fitzgerald EF Environ Int. 2015 Feb;75:206-14.	stds	- sex - educ	Cross sectional design
doi: 10.1016/j.envint.2014.11.018. Epub 2014 Dec 5.	LOQ = 0.5-1.0 ng/ml	- ∑serum PCBs	Small N
Perfluoroalkyl substances and thyroid function in older adults.	PFOS detected in 100% of samples	Outcome:	PFOS analyses adj for PFOA
Study Design:	Population-Level Exposure:	TSH	
Cross-sectional study	Geom mean PFOS conc =	Major Findings: (full adj model)	
M, F 55-74 yr old	31.60 ng/ml (Note this is 3.25 x NAHNES	PFOS not sig assoc w serum TSH	
Recruitment 2000-2002	value for > 20 yrs old(NHANES 4 th Rpt))	Outcome:	
Blood sample at recruitment		fT4	
≥ 25 yrs residency in Fort Edward, Hudson Falls, Glens Falls, NY		Major Findings: (full adj model)	
Cohort originally estab for study of GE PCBs		PFOS sig pos assoc w fT4 (p = 0.044 – borderline)	
Exclusion criteria: - residence in target towns ≤25 yrs - worked in PCB job ≥ 1 yr - stroke - head injury		NOTE: assoc ↓ w PFOA incl in model	
- Parkinson's - Alzheimer's			
 severe cognitive impairment TH hormone therapy accurate therapy 			
- sex hormone therapy			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
Thyroid function serum markers:			
- TSH		Τ4	
- fT4 (free T4)			
- T4		Major Findings:	
- T3		(full adj model)	
By immunoelectro-			
chemiluminometric assy		PFOS sig pos assoc w T4	
Mean inter-run C V = 2.5%		(p = 0.001)	
Location:		NOTE: assoc persists w PFOA incl in	
		model	
Warren, Saratoga, Washington		ineder	
counties, NY		Outcome:	
Population:		T3	
N = 87		Major Findings:	
Related Studies:		PFOS not sig assoc w T3	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study: Specht et al. (2012) Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toft G, Jönsson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15.	LC-MS/MS Radiolabeled internal stds PFOS LOD? 100% of samples > LOD Population-Level Exposure: Mean PFOS serum conc: Greenland = 51.9 ng/ml Poland = 18.6 Ukraine = 8.1 ng/ml	Analysis by generalized linear models (GLM) PFOS as tertiles Outcome vars on continuous scale Analyses stratified by country/region <u>Co-variates</u> - period sexual abstinence - age - BMI - caffeine - cotinine	Modest N for each location (Note analyses stratified by location) Greenlad serum samples ~ 1 yr before semen samples Other comments: Cross-sectional design Modest N High PFOS exposure in Greenland increases power to detect effect
Study Design: Recruitment at first ante-natal visit	(NOTE: Greenlan PFOS conc = $4.5 \times US M$; Poland = $1.6 \times US M$ Ukraine = $0.7 \times US M$ (NHANES 4 th Rpt))	 fever in past 3 mos self-reported genital infection (Y/N) testicular disorder (Y/N) spillage of semen sample 	Reasonable statistical controls
Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history		Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation	
Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other		Major Findings: (adj model)	
Location: Greenland, Poland (Warsaw), Ukraine (Kharkiv)		PFOS not sig assoc w chromatin/DNA fragmentation	

Reference and Study Design	Exposure Measures	Results	Comment
Population:	•	Outcome:	
M partners of preg F		TUNEL assay positive (terminal deoxynucleotidyl transferase driven dUTP nick end labeling) a measure	
Greenland $- N = 199$ Poland $- N = 197$ Ukraine $- N = 208$		of apoptosis Major Findings:	
Okraine - N = 200		Major Findings.	
Related Studies:		PFOS not sig assoc w TUNEL pos outcome	
		Outcome:	
		Apoptotic markers (DFI, Fas, Bcl)	
		Major Findings:	
		PFOS not sig assoc w apoptotic markers	
		(trend sig pos for Fas for Poland only, but tertiles not sig diff)	
		Outcome:	
		Sex hormone binding globin (SHBG)	
		Major Findings:	
		PFOS not sig assoc w SHBG	
		Outcome:	
		Testosterone	

Reference and Study Design	Exposure Measures	Results	Comment
		Major Findings:	
		PFOS not sig assoc w serum testosterone	
		Outcome:	
		Estradiol	
		Major Findings:	
		PFOS not sig assoc w serum estradiol	
		Outcome:	
		Gonadotrophin hormones	
		Major Findings:	
		PFOS not sig assoc w serum gonadotrophins	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:

Reference and Study Design	Exposure Measures	Results	Comment
preeclampsia determined at ante-			
natal visit based on following			
criteria determined at same visit:			
- BP-S \ge 140, or BP-D \ge 90 after 20 wks gest			
- urine proteinuria (dipstick ≥ 1+			
Location:			
Norway			
Population:			
Norwegian Mother and Child Study (MoBa)			
Cases - N = 466 (random			
selection)			
Controlo N - 510 (random			
Controls – N = 510 (random selection)			
Related Studies:			

Study: Exposure Assessment: Stat Method: Major Limitations: Starling et al. (2014b) HPLC-MS	Reference and Study Design	Exposure Measures	Results	Comment
Starling AP1, Engel SM, Whitworth PFOS as linear + branched - maternal age - ort-preg BMI Starling AP1, Engel SM, Whitworth CV = 11.3% PFOS as linear + branched - pre-preg BMI - otrating AP1, Engel SM, Whitworth Multiple SL, Haug LS, Eggesba M, Becher G, Sabardzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD, Longnecker MP. PFOS measured in 100% of samples - maternal educ - smoking status at mid-preg - waternal educ - smoking status at mid-preg Environ Int. 2014 Jan;62:104-12. Population-Level Exposure: Population-Level Exposure: - For HDL, plasma albumin conc - Smoking status at mid-preg - Broking C, Signed S, Signe	Study:	Exposure Assessment:	Stat Method:	Major Limitations:
PFOS Total cholesterol	Study:Starling et al. (2014b)Starling AP1, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, Haug LS, Eggesbø M, Becher G, Sabaredzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD, Longnecker MP. Environ Int. 2014 Jan;62:104-12. doi: 10.1016/j.envint.2013.10.004. Epub 2013 Nov 2. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study.Study Design: Cross-sectionalMoBa sub-cohort originally created for study of subfecundity (Whitworth et al. 2012b).Blood draw at 12-37 wks gest (99% at 14-26 wks, second trimest; 73% at 17-20 wks)Measurement of plasma lipids and	Exposure Assessment: HPLC-MS PFOS as linear + branched CV = 11.3% PFOS measured in 100% of samples Population-Level Exposure: PFOS median conc = 13.03 ng/ml (NOTE: PFOS conc = 1.7 x US	Stat Method: Co-variates - maternal age - pre-preg BMI - parity/inter-preg interval - duration breastfeeding most recent child - maternal educ - smoking status at mid-preg - gest wk at blood draw - daily oily fish consumption at mid-preg - For HDL, plasma albumin conc Wt gain as (self-reported) current – pre-preg wt Multiple linear regression of assoc PFOS w outcomes (weighted by inverse prob of inclusion in study) PFOS as quartiles or In-transf continuous var Lipids as continuous outcomes Triglycerides In-transformed (to normalize residuals) Multi-PFAS (7) model Outcome:	Major Limitations: Non-fasting plasma lipid measurements Other comments: Cross-sectional design Non-fasting lipids Large N Adequate stat adj Rel high PFOS exposed pop ↑ HDL not an adverse effect. Potential adverse effect for PFOS limited to equivocal assoc w total

Reference and Study Design	Exposure Measures	Results	Comment
Outcomes:		Major Findings:	
- total cholesterol			
- HDL cholesterol		Total cholesterol pos assoc w In-	
- LDL cholesterol		PFOS as continuous var and for \uparrow of	
- triglycerides		interquart range	
Maternal characteristics/lifestyle		(However, not sig assoc w any quart PFOS)	
info from questionnaire data		FF03)	
		Outcome:	
Location:			
		HDL cholesterol	
Norway			
		Major Findings:	
Population:			
		HDL cholesterol sign pos assoc w	
Norwegian Mother and Child Cohort		PFOS for 4 th quart (borderline for 3 rd	
study (MoBa)		quart) and for In-PFOS as	
Encladin MaDa 2002 2004		continuous var and for \uparrow of IQR	
Enrolled in MoBa 2003-2004		β for In-PFOS \downarrow ~50% when	
Delivered live birth		adjusted for 6 other PFA	
Provided mid-preg plasma sample		Outcome:	
Provided complete questionnaire		LDL cholesterol	
info on time-to-preg			
		Major Findings:	
N = 891			
Deleted Studies		LDL cholesterol not sig assoc w	
Related Studies:		PFOS for any quart, as continuous var, or for ↑ of IQR	
Whitworth et al. (2012b)			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Triglycerides	
		Major Findings:	
		triglycerides not sig assoc w PFOS for any quart, as continuous var, or for ↑ of IQR	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Steenland et al. (2009)	LC-MS	Ln-transformation for lipid vars	Cross-sectional design
Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009 Nov 15;170(10):1268-78. doi: 10.1093/aje/kwp279. Epub 2009 Oct 21. Study Design: Cross-sectional Consumers of water from any of 6 contaminated districts for \ge 1 yr before 12/2004 Blood sample (fasting not required) Lipid analysis: - Total cholesterol (TC) - LDL cholesterol (LDL-C	LC-MS Precision "generally" w/in 10% for multiple replicates Population-Level Exposure: Mean PFOS conc = 22.4 ng/ml	Co-variates Based on relation to 1 or more lipids (indep of PFOS) - age - gender - BMI - education - smoking - exercise - education Co-variates maintained in all models Fasting incl only for triglyceride models (did not sig affect other models) Linear regression: PFOS as continuous and categorical var (deciles) Also, logistic regression model for dichotomous hypercholesterolemia (cholesterol ≥ 240 mg/dL)	Cross-sectional design PFOS analyses not controlled for PFOA (PFOA and PFOS gave similar results for all lipid vars) Other comments: Large n Good analytical precision Good statistical analysis Specific analyses for influence of age, BMI Specific consideration of reverse causation. PFOS analyses w and w/out adj for PFOA gave similar results
 HDL cholesterol (HDL-C) Triglycerides Non-HDL cholesterol (non-HDL-C) TC-HDL-C 		 PFOS as quartiles also PFOS as continuous var PFOS analyses w and w/out adjustment for PFOA 	
Location:			
OH, WV			

Reference and Study DesignExposure MeasuresResultsCommentPopulation:Linear regressionLinear regressionAdults > 18 yrs old In C8 Health Project 2005-2006Outcome: TCOutcome: TC46,494 ≥ 18 yrs → exclusion forMajor Findings:	
In C8 Health Project 2005-2006 TC	
$46.494 \ge 18 \text{ yrs} \rightarrow \text{exclusion for}$ Maior Findings:	
cholesterol lowering meds → n = 46,294 PFOS sig pos assoc w TC for deciles 2-10 (dec 1 as ref) And trend for continuous var Stratification by gender gave similar results Models w and w/out BMI (under hypothesis that BMI is an intermed var for TC) gave similar results Model w PFOS as dep variable w cholesterol lowering med (Y/N) as indep var (under hypothesis of reverse causation – higher cholesterol → higher PFOS) Cholesterol lowering med (Y/N) not sig predictor of PFOS Outcome: HDL-C Major Findings: PFOS not sig assoc w HDL-C	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		LDL-C	
		Major Findings:	
		PFOS sig pos assoc w LDL-C (continuous var, categorical not shown)	
		Outcome:	
		Triglycerides	
		Major Findings:	
		PFOS sig pos assoc w triglycerides (continuous var, categorical not shown)	
		Outcome:	
		HDL-C/TC	
		Major Findings	
		PFOS sig pos assoc w HDL-C/TC (continuous var, categorical not shown)	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Non-HDL-C	
		Major Findings:	
		PFOS sig pos assoc w non-HDL-C (continuous var, categorical not shown)	
		Logistic Regression	
		Outcome:	
		Hypercholesterolemia	
		Major Findings:	
		OR for hypercholesterolemia sig > 1.0 for Q2-4 (Q1 as referent) P-trend <0.0001	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Steenland et al. (2010)	Std C8 methodology	Linear regression w uric acid as dep	
	(LC-MS)	var	Results are stronger for PFOA than PFOS. Also
Steenland K, Tinker S, Shankar A,			serum PFOA ~ 4x serum PFOS. Although PFOS
Ducatman A.	Precision (multiple replicates	Analysis by deciles (1 st decile as ref)	analyses controlled for PFOA in alternative
Environ Health Perspect. 2010	generally +/- 10%		analyses, possibility of incomplete adjustment.
Feb;118(2):229-33. doi:		<u>Co-variates</u> (a priori)	
10.1289/ehp.0900940.	LOD = 0.5 ng/ml	- age	Other comments:
Association of perfluorooctanoic	< 1% < LOD	- sex	
acid (PFOA) and perfluorooctane	< LOD = LOD/2	- BMI	Very large N
sulfonate (PFOS) with uric acid		- educ	
among adults with elevated	Population-Level Exposure:	- smoking	Adj for PFOA
community exposure to PFOA.	Madian 20.2 ng/ml	- alcohol	Sana analysis wavelusion of elevated creatining
	Median = 20.2 ng/ml	- creatinine (logged)	Sens analysis w exclusion of elevated creatinine (suggestive of kidney disease)
Study Design:		Model w and w/out PFOA	(suggestive of kidney disease)
Cross-sectional			
		Logistic regression for dichotomous	
Blood sample at enrollment		outcomes	
Fasting not required for blood		Hyperuricemia (uric acid > 6 mg/dL -	
samples		$F_{\rm i} > 6.8 \text{ mg/dL} - M$	
		,	
		Same co-variates as linear	
Location:		regression	
OH, WV			
		Outcome:	
		Uric acid	
Population:			
C8 study population		Major Findings:	
		(full adj model)	
Est participation (≥ 20 yrs old) =		Chat air nag ann airte dur DECO	
81%		Stat sig pos associated w PFOS	
≥ 18 yrs old		(sig pos trend w PFOA in model, but	
Median age ~ 40-49 yrs		max effect diminished ~ 50%)	
101501a11 aye ~ 40-43 yis			
N = 53,454			
L		1	1

Reference and Study Design	Exposure Measures	Results	Comment
Related Studies:		Outcome: hyperuricemia	
		Major Findings: OR sig > 1.0 for quartiles 2-4	
		(OR remains sig pos w PFOA in model)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Stein et al. (2009)	Solid-phase extraction, reverse-phase-HPLC	Logistic regression models	Cross-sectional
Stein CR, Savitz DA, Dougan M. Am J Epidemiol. 2009 Oct 1;170(7):837-46. doi:	LOD = 0.5 ng/ml	OR for outcomes relative to change in PFOS = IQR (9.0-17.7 ng/ml)	Self-reported outcomes
10.1093/aje/kwp212. Epub 2009 Aug 19.	< LOD = LOD/2	Also OR based on PFOS category	Outcome data \leq 5 yrs offset from exposure data (although sens analysis conducted for \leq 3 yr offset
Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate	Population-Level Exposure:	(quartiles)	w similar results)
and pregnancy outcome.	Mean PFOS conc = 15.0 ng/ml (Median = 13.6)	PFOS analyses adjusted for PFOA	Other comments:
Study Design:	90 th percentile = 23.2 ng/ml	Mandatory co-variates	Cross-sectional design
Cross-sectional	(NOTE: median PFOS conc ~	- maternal age - parity	Large N
Self-reported outcomes ≤ 5 yrs prior to enrollment	1.8 x F conc in most recent NHANES (4 th Rpt)). However,	- maternal educ - smoking	Reasonable stat control of co-variates
Self-reported preg outcomes:	90 th percentile ≈ NHANES F 90 th percentile	Outcome:	PFOS analyses adj for PFOA
- miscarriage - premature birth		Miscarriage	Self-reported outcomes
- low birth wt - preeclampsia		Major Findings:	Outcome-exposure offset may be sig (However, exposure misclassification would tend to
- reported birth defects		(adj models)	reduce observed assoc)
Location:		OR for miscarriage not sig <>1.0 for either Δ IQR, or individual quarts	
OH and WV		Outcome:	
Population:		Preeclampsia	
C8 study cohort pregnant women		Major Findings:	
Incl all: - singleton miscarriages		(adj model)	
- stillbirths - live births			

Reference and Study Design	Exposure Measures	Results	Comment
Exclusion: - non-white F		OR for preeclampsia sig > 1.0 (= 1.6) for > 90 th percentile PFOS exposure	
- missing covariate data - preg diabetes		Outcome:	
N = 5,282-4,512 (depending on spec outcome)		Premature birth (< 37 wks)	
		Major Findings: (adj model)	
Related Studies:		OR for premature birth sig > 1.0 for Δ IQR (OR = 1.3), and for Q3 (OR = 1.6), and Q4 (>90 th percentile) (OR = 1.8)	
		Outcome:	
		Birth defects	
		Major Findings: (adj model)	
		OR for birth defeces not sig <>1.0 for either \triangle IQR, or individual quarts	

Study: Exposure Assessment: Stat Method: Major Limitations: Stein et al. (2016) NHANES methodology < LOD as LOD/½ (<1%) Recommended NHANES sample wits incl in all stat analyses Major Limitations: Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 2016 Mar;79(2):348- 57. doi: 10.1038/pr.2015.213. Epub 2015 Oct 22. National Health and Allergy Geom mean = 15.0 ng/ml Vaccine models NHANES survey yr Vaccine models NHANES survey yr Other comments: Large N Study Design: Cross-sectional Rubella, mumps, measles serum IgG by ELISA Allergy status by questionnaire for prev. 12 mos For vaccine study – PFOS and Ab conc in-transformed Linear reg → % change for doubling PFOS, also % change by PFOS quartile Sec Ab assessment Ever diagnosed w asthma Current asthma (spec. diagnosis or attack in past yr) For lalergy study – - OR for Δ25-75%lie by quartile PFOS by logistic reg - linear reg for % A for total and spec IgE for doubling PFOS conc For ulargy study – - OR for Δ25-75%lie by quartile US – NHANES Major Findings: Major Findings:	Reference and Study Design	Exposure Measures	Results	Comment
Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey, Pediatr Res. 2016 Mar;79(2):348- 57. doi: 10.1038/pr.2015.213. Epub 2015 Oct 22. Population-Level Exposure: Vaccine geom mean = 20.8 ng/ml All models adj for (a-priori factors) Age Sex No data on whether children had been vaccinated - stratification to sero-positive is used as surrogate for vaccination Vactine geom mean = 20.8 ng/ml All models adj for (a-priori factors) Age Other comments: 21-19 y: National Health and Nutrition Examination Survey, Pediatr Res. 2016 Mar;79(2):348- 57. doi: 10.1038/pr.2015.213. Epub 2015 Oct 22. Allergy Geom mean = 15.0 ng/ml Vaccine models Vaccine models Cotinine Age/sex spec BMI % For vaccine study – PFOS and Ab conc In-transformed Linear reg – % change by PFOS quartile Sex Large N Rubella, mumps, measles serum IgG by ELISA For allergy study – - OR for A25-75kile by quartile PFOS and Ab conc In-transformed Linear reg – % change by PFOS quartile For allergy study – - OR for A25-75kile by quartile PFOS by logistic reg - linear reg for %∆ for total and spec IgE for doubling PFOS conc Total and Allergy-specific IgE Sensitization = allergy-specific IgE Sensitization = allergy-specific IgE Measles Ab levels				Major Limitations:
Measles Ab level not assoc with PFOS	 Stein et al. (2016) Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 2016 Mar;79(2):348- 57. doi: 10.1038/pr.2015.213. Epub 2015 Oct 22. Study Design: Cross-sectional Rubella, mumps, measles serum IgG by ELISA Allergy status by questionnaire for prev. 12 mos Ever diagnosed w asthma Current asthma (spec. diagnosis or attack in past yr) Total and Allergy-specific IgE Sensitization = allergy-specific IgE Location: 	NHANES methodology < LOD as LOD/√2 (<1%) Population-Level Exposure: Vaccine geom mean = 20.8 ng/ml Allergy	Recommended NHANES sample wts incl in all stat analyses All models adj for (a-priori factors) Age Sex Race Vaccine models NHANES survey yr Allergy models Cotinine Age/sex spec BMI % For vaccine study – PFOS and Ab conc In-transformed Linear reg \rightarrow % change for doubling PFOS, also % change by PFOS quartile For allergy study – - OR for Δ 25-75% tile by quartile PFOS by logistic reg - linear reg for % Δ for total and spec IgE for doubling PFOS conc Outcome: Measles Ab levels Major Findings: Measles Ab level not assoc with	Cross-sectional study No data on whether children had been vaccinated – stratification to sero-positive is used as surrogate for vaccination Other comments: Large N

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
NHANES 1999-2000; 2003-2004 for vaccine Abs		Mumps Ab	
		Major Findings:	
NHANES 2005-2006 for allergy study		Mumps Ab <u>sig neg assoc</u> w PFOS doubling PFOS → 7.4% ↓	
Children 12-19 yrs		(5.9% \downarrow for sero positive children only)	
N (vaccine) = 1,188 N (allergy) = 640		Outcome:	
Related Studies:		Rubella Ab	
		Major Findings:	
		Sig neg assoc 13.3% ↓ for doubling PFOS (but for sero positives only)	
		Outcome:	
		Asthma	
		Major Findings:	
		Not sig assoc w PFOS	
		Outcome:	
		Wheeze	
		Major Findings:	
		Not sig assoc w PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Allergy (reported)	
		Major Findings:	
		Not sig pos assoc w PFOS	
		Outcome:	
		Rhinitis	
		Mafor Findings:	
		Not sig assoc w PFOS	
		Outcome:	
		Allergic sensitization (by total and spec IgE)	
		Major Findings:	
		Sig pos assoc w mold allergen (sig neg assoc w "any", plants, cockroach, dust mites, rodents, foods	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Stein and Savitz (2011)	Solid-phase extraction, reverse phase HPLC-MS (?)	PFOS categorized in quartiles	Cross-sectional design
Stein CR, Savitz DA.		Co-variates considered	Self-reported outcomes
Serum perfluorinated compound concentration and attention	PFOS detected in 100% of samples	(bold in final model)	Unclear at what age responses were provided by 5-18 yr olds vs. parents
deficit/hyperactivity disorder in		- age	
children 5-18 years of age.	Population-Level Exposure:	- sex	
Environ Health Perspect. 2011		- race/ethnicity	Other comments:
Oct;119(10):1466-71. doi:	Mean (sd) PFOS conc = 22.9	- BMI	
10.1289/ehp.1003538. Epub 2011 Jun 10.	ng/ml (12.5 ng/ml)	- aver household income	Large N
Jun IO.	(NOTE; even though PFOS	Logistic regression	Reliable PFOS analytical measurements
Study Design:	exposure is noted by the	OR of ADHD for given quart PFOS	Reliable FF CC analytical measurements
	authors to be consistent w	3 1	Reasonable statistical control incl adjustment of
Cross-sectional/case control	NHANES exposure, w respect	PFOS model adjusted for other	PFOS analyses for other PFCs
	to current exposure, exposure	PFCs (PFOA, PFHxS, PFNA)	
ADHD determination based on self-	of 12-15 yr old segment of	a /	Cross-sectional design
reporting of physician diagnosis of	cohort is ~ 2x that of current	Outcome:	Calf reported autoema data (some by <19 yrs ald)
ADHD or ADD, plus self-reported ADHD med use	exposure in this NHANES age range (NHANES 4 th Rpt))	ADHD (phys diagnosis plus med)	Self-reported outcome data (some by ≤18 yrs old)
Cases = 5.1%		ADI D (phys diagnosis plus med)	
00000 - 0.170		Major Findings:	
Self-reported learning problems			
		OR for ADHD not sig <> 1.0 for any	
Location:		quart PFOS (Q1 as referent)	
OH, WV		Outcome:	
Population:		Learning problems	
C8 Study cohort (n = $69,030$)		Major Findings:	
Children 5-18 yrs old With PFC measurements		OP for loorning problems sig ± 1.0	
(n = 11,046)		OR for learning problems sig < 1.0 for Q2-3 PFOS, borderline sig for	
Non-Hispanic white		Q4	
(n = 10, 546)		(OR = 0.74 - 0.85)	

Reference and Study Design	Exposure Measures	Results	Comment
- Depression – based on Rx for		Outcome:	
anti-depression med; or			
in/outpatient for depression		Depression	
 <u>Academic achievement</u> – based 			
on score on standardized 9 th grade		Major Findings:	
achievement test		(adj model)	
Location:		Depression not sig <> 1.0 for	
		PFOS for either tertile (1 st tert as	
Aarhus, Denmark		reference)	
Population:		Outcome:	
Danish Fetal Origins 1988		Academic achievement	
(DaFO88) Cohort		Maior Findings	
N (offension)		Major Findings:	
N (offspring) =		(adj model)	
876 for ADHD, depression 822 for academic achievement		Acadamia achievement net eig	
ozz ibi academic achievement		Academic achievement not sig assoc w PFOS	
Related Studies:			
			<u> </u>

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Taylor et al. (2014)	NHANES-CDC analysis	PFOS as tertiles	PFOS analyses not adj for other PFCs
Taylor KW, Hoffman K, Thayer KA, Daniels JL. Environ Health Perspect. 2014	Population-Level Exposure: Median PFOS conc	Hazard ratio (HR) for normal menopause as function of age and serum PFOS by proportional	Other comments: Cross-sectional design
Feb;122(2):145-50. doi:	Pre-menopausal = 10.3 ng/ml		, , , , , , , , , , , , , , , , , , ,
10.1289/ehp.1306707. Epub 2013 Nov 26.	Menopausal = 14.03 ng/ml Hysterectomy = 17.5 ng/ml	NHANES sample weights not used but sample weight categories	Rel large N across categories
Polyfluoroalkyl chemicals and menopause among women 20-65		included in models	PFOS not adj for other PFCs
years of age (NHANES).		<u>Co-variates</u> - age	Assoc. of menopause w PFOS are modest
Study Design:		- race	Analyses for reverse causality suggest that modest assoc of menopause w PFOS may reflect reverse
Cross-sectional		- parity - educ	causality
NHANES questionnaire data on		- smoking	
age at menopause		Assoc between time since menopause and PFOS conc by gen	
Menopause = No menstrual period in last 12 mos		additive models (GAM) and linear regress	
(not due to med condition, preg, breastfeeding, irreg periods)		Outcome:	
Pre-menopause = regular periods, or preg, or breastfeeding		menopause	
Reverse causation (potential higher PFOS serum conc due to		Major Findings: (adj model)	
menopausal retention of blood) addressed by:		HR for menopause $sig > 1.0$ for 2^{nd} tert (1.22), but not for 3^{rd} tert	
 examining assoc PFOS conc w hysterectomy (i.e., artificial menopause → ↑ PFOS?) 			
 2. examining assoc bet time since menopause and serum PFOS conc 			

Reference and Study Design	Exposure Measures	Results	Comment
(i.e., \downarrow time since menopause $\rightarrow \downarrow$ PFOS serum conc?)		Outcome:	
Location:		hysterectomy	
US		Major Findings: (adj model)	
Population:		HR for hysterectomy sig >1.0 for	
NHANES		tert-2 (1.44) and tert-3 (2.56)	
1999-2000, 2003-2004, 2005-2006, 2007-2008, 2009-2010		Outcome:	
F ≥ 18-65 yrs old		Time since menopause	
Pre-menopause - N = 1,800		Major Findings:	
Menopause $-N = 502$ Hysterectomy $-N = 431$		Δ PFOS conc for 1 yr \uparrow in time since	
		menopause is pos, but not sig	
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
			-
Timmermann et al. (2014)	NHANES-CDC	Linear regression w PFOS as	Cross-sectional design
	Demoletien Level Francesson	continuous variable	Other commenter
Timmermann CA, Rossing LI, Grøntved A, Ried-Larsen M,	Population-Level Exposure:	Adiposity outcome vars In-transformed	Other comments:
Dalgård C, Andersen LB,	Median PFOS conc = 41.5	(for normality of residuals)	Cross-sectional design
Grandjean P, Nielsen F, Svendsen	ng/ml	(IOI HOITHailty OF residuals)	Cross-sectional design
KD, Scheike T, Jensen TK.	ng/m	<u>Co-variates</u>	Moderate N
Adiposity and glycemic control in	(NOTE: median PFOS conc is	- SeX	
children exposed to perfluorinated	6 x US 12-19 yrs old (NHANES	- age	Reasonable statistical control
compounds.	4 th Rpt))	- ethnicity	
J Clin Endocrinol Metab. 2014		- paternal income	Rel high exposure
Apr;99(4):E608-14. doi:		- fast food consumption	
10.1210/jc.2013-3460. Epub 2014		- height (waist circum endpoint)	PFOS analyses not adj for PFOA
Feb 25.		- BMI (glycemic control endpoints)	
Study Dociany		 skinfold thickness (glycemic control endpoints) 	
Study Design:		- waist circum ((glycemic control	
Nested-cross-sectonal		endpoints)	
Nested in Danish component of		Outcome:	
European Youth Heart Study			
		BMI	
Measurement of:			
- height		Major Findings:	
- wt		(adj model)	
 waist circum skinfold thickness 		PMI not sig asses w DEOS	
- Skilliola thickness		BMI not sig assoc w PFOS	
Aerobic fitness test – peal Watts rel		Outcome:	
to bw			
		Skinfold thickness	
Pubertal status			
		Major Findings:	
Overweight = age/sex adj BMI at 18		(adj model)	
yrs old > 25 kg/m ²			
		Skinfold thickness not sig assoc w PFOS	
		PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Questionnaire to child and parents:	•		
- birthweight		Outcome:	
- breastfeeding			
- ethnicity		Waist circum	
- dietary intake			
 daily TV watching 		Major Findings:	
- parental BMI		(adj model)	
- parental educ			
- income		Waist circum not sig assoc w PFOS	
Location:		Outcome:	
		Adiponectin	
Odense, Denmark			
		Major Findings:	
Population:		(adj model)	
Children 8-10 yrs old		Adiponectin not sig assoc w PFOS	
Attending public school			
		Outcome:	
Cluster sampling from 25 schools		Leptin	
N = 590		Major Findings:	
M = 279		(adj model)	
F = 311			
		Leptin not sig assoc w PFOS	
Related Studies:			
		Outcome:	
		Insulin	
		Major Findings:	
		(adj model)	
		Insulin not sig assoc w PFOS <u>for</u>	
		normal wt	
		Insulin sig pos assoc w PFOS <u>for</u>	
		overweight	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		ΗΟΜΑ-β	
		Major Findings: (adj model)	
		HOMA-β not sig assoc w PFOS <u>for</u> <u>normal wt</u> HOMA-β sig assoc w PFOS <u>for</u> <u>overweight</u>	
		Outcome:	
		HOMA-IR	
		Major Findings: (adj model)	
		HOMA-IR not sig assoc w PFOS <u>for</u> <u>normal wt</u> HOMA-IR sig assoc w PFOS <u>for</u> <u>overweight</u>	
		Outcome:	
		glucose	
		Major Findings: (adj model)	
		glucos not sig assoc w PFOS <u>for</u> normal wt or overweight	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		triglycerides	
		Major Findings: (adj model)	
		triglycerides not sig assoc w PFOS <u>for normal wt</u> triglycerides sig assoc w PFOS <u>for</u> <u>overweight</u>	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Toft et al. (2012)	PFOS serum conc	Combined and pop-stratified analyses	Cross-sectional
Toft G, Jönsson BA, Lindh CH, Giwercman A, Spano M, Heederik	PFOS by LC//MS/MS	Analyses w PFOS categorized as tertiles	Small n for individual countries
D, Lenters V, Vermeulen R, Rylander L, Pedersen HS, Ludwicki	PFOS LOD = 0.2 ng/ml	PFOS In-transformed	Low participation from cohort in Poland and Ukraine
JK, Zviezdai V, Bonde JP. Exposure to perfluorinated compounds and human semen	Population-Level Exposure: Total	<u>Co-variates:</u> (a priori)	Temporal relation bet blood sample and semen sample unknown
quality in Arctic and European populations.	- PFOS median = 18.4 ng/ml - P66 = 27.3 ng/ml	- Abstinence time - age	Other comments:
Hum Reprod. 2012 Aug;27(8):2532- 40. doi: 10.1093/humrep/des185.	Greenland	- spillage (Y/N) - smoking (Y/N)	Rel small n's for each individual pop. Given
Epub 2012 May 30.	- PFOS median = 44.7 ng/ml - P66 = 56.1 ng/ml	- ever urogenital infection - BMI	large differences in PFOS conc across pops, small individual n's could reduce power to
Study Design:	Poland	- country (combined analyses)	see differences.
Cross-sectional	- PFOS median = 18.5 ng/ml - P66 = 21.2 ng/ml	Adj of PFOS for other PFCs in sensitivity analysis	Pops differences in PFOS conc makes interpretation of combined analyses unclear
Abstinence from sexual activity for			
≥ 2 d	Ukraine - PFOS median = 7.6 ng/ml	Analyses of vol and count restricted to no spillage	Good statistical control
Analysis of semen samples w/in 1 hr of ejaculation for 83% of samples	- P66 = 8.5 ng/ml	Analyses of motility restricted to analysis w/in	Good sample QC
Analysis for conc, motility,	(NOTE: PFOS conc total, Greenland, and Poland larger	1 hr	Temporal blood/semen relationship unknown
morphology CV for conc, motility = 8.1, 11%	than current US M pop. (median = 11.8). Poland less	Also, analyses w generalized additive mode (GAM) to capture non-linear relationships	
Semen/sperm outcome measures In-transformed	than US M pop (NHANES 4 th Rpt)).	Outcome:	
Location:		Sperm conc	
Greenland, Poland (Warsaw), Ukraine (Kharkiv)		Major Findings: (adj model)	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Sperm conc not sig diff across PFOS	
INJENDO cohort		tertiles, combined or for any pop	
		Outcome:	
participation			
Greenland - 79%		Semen vol	
Poland - 29% Ukraine – 36%		Mojor Findingo	
Okialite – 30 %		Major Findings: (adj model)	
M ≥ 18 yrs old			
		Semen vol not sig diff across PFOS tertiles,	
N = 588 Greenland = 196		combined or for any single pop	
Poland = 189		Outcome:	
Ukraine = 203			
		Sperm total count	
Related Studies:		Major Findings:	
Kvist et al (2012)		(adj model)	
		Sperm count sig diff between 1 st and 2 nd tert	
		for Polan (but not 1 st and 3 rd tert) Not sig diff for combined or any other pop	
		Outcome:	
		Percent motile sperm	
		Major Findings:	
		(adj model)	
		% motile sperm not sig diff across PFOS	
		tertiles, combined or for any single pop	
		, , , , , , , , , , , , , , , , , , , ,	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Percent normal cells	
		Major Findings:	
		% normal cells sig diff between 1^{st} and 2^{nd} and 1^{st} and 3^{rd} terts for combined analysis only (not for any single pop) p-trend (combined) borderline sig (p = 0.06)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Uhl et al. (2013)	CDC - Solid-phase extraction, HPLC-MS	PFOS characterized by quartiles Q1 = \leq 2.95 ng/ml	Cross-sectional study design
Uhl SA, James-Todd T, Bell ML. Environ Health Perspect. 2013	Population-Level Exposure:	Q2 = > 8.56-13.59 ng/ml Q3 = >13.59-20.97 ng/ml	Self-reported osteoarthritis status
Apr;121(4):447-52. doi: 10.1289/ehp.1205673. Epub 2013	Mean PFOS conc = 21.23	Q4 = > 20.97 ng/ml	PFOS analyses not adj for PFOA
Feb 7. Association of Osteoarthritis with	ng/ml	<u>Co-variates considered</u> (selected for full model based on p <	Small n (365) for cases, esp stratified by sed $(F = 238, M = 127)$
Perfluorooctanoate and Perfluorooctane Sulfonate in		0.05 in model)	Other comments:
NHANES 2003-2008.		- age - sex	Cross-sectional design
Study Design:		- poverty status - race/ethnicity	Large N, but rel small N for cases, especially
Cross-sectional		- daily fat intake - daily calorie intake	stratified by sex
Osteoarthritis self-reported by questionnaire ("Had doctor/health		- BMI - history bone fractures (self-reported)	Good statistical control of analyses
professional ever told you"). If Y, type of arthritis (DK, or non-osteo,		- participation in sports/fitness/recreational physical	Good analytical precision
excluded		activities	Suggestive, but ambiguous findings of PFOS- osteoarthritis assoc
Missing data on ≥ 1 co-variawte → exclusion		- smoking - parity (F)	
Location:		Multivariate logistic regression for odds assoc osteoarthritis w PFOS	
US		CDC-recommended NHANES sampling weights applied	
Population:		Analyses for combined and separate M	
NHANES cohort 2003-2008		and F	
20-84 yrs old		760	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
N = 3,809			
Cases n = 365		OR for osteoarthritis for specified ↑ in	
- M = 127		PFOS	
- F = 238			
Related Studies:		Major Findings: (full adj model)	
Innes et al. (2011)		<u>M + F</u>	
		OR sig > 1.0 for Q3 (OR = 1.99) and Q4 (OR = 1.77) (Q1 as ref) OR not sig > 1.0 for continuous (unit incr) analysis	
		M	
		OR not sig > 1.0 for any PFOS quart or for unit ↑ in PFOS	
		E	
		OR not sig > 1.0 for any PFOS quart or for unit \uparrow in PFOS (borderline sig OR = Q3-1.92; Q4-1.73; unit \uparrow -1.22) (OR sig > 1.0 for Q3-4 and unit \uparrow in PFOS for <i>crude</i> analysis)	

Study: Exposure Assessment: Stat Method: Major Limitations: Vagi et al. (2014) Solid-phase extraction, HPLC- MS/MS Stat Method: Stat Method: Small sample size for cases (n = 52) and controls (n = 50) Vagi SJ, Azziz-Baumgartner E, Sjödin A, Calafat AM, Dumesic D, Gonzalez L, Kato K, Silva MJ, Ye X, Azziz R Solid-phase extraction, HPLC- MS/MS PFOS as tertiles Small sample size for cases (n = 52) and controls (n = 50) PMC Endoor Disord. 2014 Oct 28;14:86. doi: 10.1186/1472-6823- 14-86. - controls = 4.9 ng/ml - controls = 4.9 ng/ml - controls = 4.9 ng/ml - control s = 4.9 ng/ml - controls = 4.9 ng/ml - controls = 4.9 ng/ml - white vs. other race - control s = 4.9 ng/ml - controls = 4.9 ng/ml - white vs. other race - outrols = 4.9 ng/ml - control s = 4.9 ng/ml - control s = 4.9 ng/ml - outrols = 4.9 ng/ml - outrols = 4.9 ng/ml - control s ease = 8.2 ng/ml - control s = 4.9 ng/ml - outrols = 7.67% Outcome: regancholininated diphenyls, organcholininated diphenyls, organcholininated biphenyls, of urrent NHANES F (4 ^m Rpli) PCOS onc in cases (8.2 ng/ml) sig higher than in controls (n = 4.9), p = 0.01. Since PCOS is under hormonal control, there is potential for reverse causality if hormones mestruation which would bias toward higher PFOS conc. Study of polycystic ovary syndrome (PCOS)	Reference and Study Design	Exposure Measures	Results	Comment
Vagi SJ, Azziz-Baumgartner E, Sjólin A, Calafat AM, Durnesic D, Gonzalez L, Kato K, Sliva MJ, Ye X, Azziz R MS/MS Multivariate logistic regression of PCOS outcome controls (n = 50) POLL EDD/v2 Population-Level Exposure: Co-variates POCS is associated with reduced menstruation. Therefore cases may have higher body burdens of PFOS compared to those with regular menstruation (and greater elimination of PFOS). Therefore, there is a potential for reverse causation. Exploring the potential association etween broinated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a case- control study. (NOTE: case PFOS conc is consistent with latest NHANES F (4 th Rpt)) Outcome: Study Design: Case-control design Major Findings: (adj model) Since PCOS sis under hormonal control, there is potential for reverse causativ if hormones mediate PFOS storage/elimination. Also PCOS Study of polycystic ovary syndrome: (PCOS) OR for PCOS sig > 1.0 for Tert-3 (5.79) P = 0.005 OR for T2 (3.43) borderline sig P = 0.062 OR for T2 (3.43) borderline sig P = 0.062 PCOS necessarily corresponds to reduced menstruation which would bias toward higher PFOS conc.	Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	Vagi et al. (2014) Vagi SJ, Azziz-Baumgartner E, Sjödin A, Calafat AM, Dumesic D, Gonzalez L, Kato K, Silva MJ, Ye X, Azziz R BMC Endocr Disord. 2014 Oct 28;14:86. doi: 10.1186/1472-6823- 14-86. Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a case- control study. Study Design: Case-control design Study of polycystic ovary syndrome (PCOS) Self-provided information on: - age - race - ethnicity - BMI - virilization (M sex-related	Solid-phase extraction, HPLC- MS/MS < LOD = LOD/√2 Population-Level Exposure: Geom mean PFOS conc: - cases = 8.2 ng/ml - controls = 4.9 ng/ml (NOTE: case PFOS conc is consistent with latest NHANES F data. Control PFOS ~ 67%	PFOS as tertiles Multivariate logistic regression of PCOS outcome <u>Co-variates</u> - age - BMI - white vs. other race Outcome: PCOS Major Findings: (adj model) PFOS conc in cases (8.2 ng/ml) sig higher than in controls (n = 4.9), p = 0.01. OR for PCOS sig > 1.0 for Tert-3 (5.79) P = 0.005 OR for T2 (3.43) borderline sig	Small sample size for cases (n = 52) and controls (n = 50) POCS is associated with reduced menstruation. Therefore cases may have higher body burdens of PFOS compared to those with regular menstruation (and greater elimination of PFOS). Therefore, there is a potential for reverse causation. Other comments: Case-control design Small N Since PCOS is under hormonal control, there is potential for reverse causality if hormones mediate PFOS storage/elimination. Also PCOS necessarily corresponds to reduced menstruation which would bias toward higher

Reference and Study Design	Exposure Measures	Results	Comment
Exclusion criteria:			
- current preg			
- use of hormones (incl			
contraceptives) or "other medication" in prev 3 mos			
- diabetes			
- menopause			
menopuuse			
Case definition:			
- anovulation or oligo ovulation			
(cycle > 35 d)			
- hirsutism score > 6			
 lab evidence of hperandrogenism exclusion of related disorders 			
(thyroid, hyperprolactinemia, non-			
classic adrenal hyperplasia,			
androgen secreting tumors)			
5 5 ,			
Single spot urine and blood			
samples			
Location:			
CA (Los Angeles area)			
Population:			
F			
52 cases			
50 controls			
Recruited through specialty clinics			
and advertisements			
18-45 yrs old			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Vested et al. (2013)	Column-switching isotope dilution, LC-MS	PFOS as tertiles	Small sample size
Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen	PFOS LOD = 0.05 ng/ml	Multivariate regression analysis w PFOS as continuous var	Self-measurement of testicular volume
SL, Halldorsson TI, Becher G, Haug			PFOS analyses not controlled for PFOA
LS, Ernst EH, Toft G. Associations of in utero exposure to	CV for in-house QC samples for PFOS = 4.4%	Outcome vars In-transformed	(PFOA analysis adj for PFOS is sens analysis, but unclear if this is predictive for PFOS adj for
perfluorinated alkyl acids with		<u>Co-variates</u>	PFOA)
human semen quality and reproductive hormones in adult	PFOS Interlab comparison w/in 1 SD of consensus values	(a priori)	Other comments:
men.	T SD of consensus values	- history of reprod tract disease	Other comments.
Environ Health Perspect. 2013	Population-Level Exposure:	- BMI	Longitudinal design
Apr;121(4):453-8. doi: 10.1289/ehp.1205118. Epub 2013	PFOS median conc = 21.2	- smoking status - maternal smoking	Good analytical performance
Jan 23.	ng/ml	- SES at birth	
Study Design:	(NOTE: PFOS median conc ~	- abstinence time (for applicable outcomes)	Small sample size
Longitudinal	2x most recent adult M conc (NHANES 4 th Rpt))	- spillage (Y/N)	Lack of statistical control for PFOA confounding
		Outcome:	
Semen sample, Self-measured testicle vol		(as function of maternal PFOS at preg wk 30)	
Blood sample		50)	
Somen enclusis w/in 1 hr of		Sperm concentration	
Semen analysis w/in 1 hr of ejaculation for 86% 100% w/in 2 hr		Major Findings:	
- vol		Maternal PFOS not sig assoc w sperm	
- motility - concentration		conc	
PFOS analysis in maternal and sons' blood			

Reference and Study Design	Exposure Measures	Results	Comment
Serum sex hormone binding globin (SHBG		Outcome: (as function of maternal PFOS at preg wk 30)	
Reproductive hormones: - testosterone - estradiol		Total sperm count	
- LH - FSH		Major Findings:	
 inhibin B free androgen index (FAI) 		Maternal PFOS not sig assoc w sperm count	
Location:		Outcome: (as function of maternal PFOS at preg wk	
Denmark		30)	
Population:		Semen vol	
2008-2009 follow-up of sons of mothers in 1988-1989 cohort from		Major Findings:	
Aarhus, Denmark		Maternal PFOS not sig assoc w semen vol	
Semen sample, Self-measured testicle vol Blood sample		Outcome: (as function of maternal PFOS at preg wk 30)	
468 invited \rightarrow 176 consented \rightarrow 169 PFOS analysis		% progressive spermatozoa	
Additional 45 excluded from analysis of sperm count and semen vol due to spillage		Major Findings:	
Related Studies:		Maternal PFOS not sig assoc w % progressive spermatoza	
Toft et al. (2012); Raymer et al. (2012); Joensen et al. (2009)			

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome: (as function of maternal PFOS at preg wk 30)	
		Mean testicular vol	
		Major Findings:	
		Maternal PFOS not sig assoc w mean testicular vol	
		Outcome: (as function of maternal PFOS at preg wk 30)	
		Testosterone serum conc	
		Major Findings:	
		Maternal PFOS not sig assoc w testosterone serum conc	
		Outcome: (as function of maternal PFOS at preg wk 30)	
		Estradiol serum conc	
		Major Findings:	
		Maternal PFOS not sig assoc w estradiol serum conc	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome: (as function of maternal PFOS at preg wk 30)	
		LH	
		Major Findings:	
		Maternal PFOS not sig assoc w LH serum conc	
		Outcome: (as function of maternal PFOS at preg wk 30)	
		FSH	
		Major Findings:	
		Maternal PFOS not sig assoc w FSH serum conc In multivar regression w PFOS as continuus var, maternal PFOS borderlins assoc w FSH (p-trend = 0.06), however β is minimal and categorical analysis is not sig	
		Outcome: (as function of maternal PFOS at preg wk 30)	
		Inhibin B	
		Major Findings:	
		Maternal PFOS not sig assoc w inhibin B serum conc	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome: (as function of maternal PFOS at preg wk 30)	
		SHBG	
		Major Findings: Maternal PFOS not sig assoc w SHBG serum conc	
		Outcome: (as function of maternal PFOS at preg wk 30)	
		FAI	
		Major Findings: Maternal PFOS not sig assoc w FAI	
		serum conc	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Vestergaard et al. (2012)	LC-MS/MS	<u>Co-variates</u>	Moderate sample size
Vestergaard S1, Nielsen F, Andersson AM, Hjøllund NH,	w/in batch CV = < 3% between batch CV = < 5.2%	- age - BMI	PFOS analyses not controlled for PFOA
Grandjean P, Andersen HR, Jensen TK. Hum Reprod. 2012 Mar;27(3):873-	LOQ = 0.03 ng/ml	 smoking caffeine consumption cycle length 	Other comments: Prospective study design
80. doi: 10.1093/humrep/der450. Epub 2012 Jan 13. Association between perfluorinated	100% of samples detectable for PFOS	 last contraception method diseases related to fecundity (self-report) sperm conc (oligospermia Y/N) 	High PFOS exposure
compounds and time to pregnancy in a prospective cohort of Danish	Population-Level Exposure:	PFOS conc dichotomized at median	Good statistical control and sens analyses
couples attempting to conceive. Study Design:	Median PFOS conc - No pregnancy = 35.75 ng/ml - Preg = 36.29 ng/ml	OR for subfecundity by logistic regression	Precise analytical determination Not subject to reverse causation arising from
Prospective	(NOTE: Median PFOS conc. ~ 5 x US F pop, and > 90 th	Diff in TTP by high-low PFOS determined by fecundity ratio (FR - prob of preg/time) analyzed by discrete time-survival models	reduced serum PFOS due to previous pregnancies
Sample collection - 1992-1995	perecentile (NANES 4 th Rpt))	Also w log-transformed and continuous PFOS models	
Enrollment with cessation of contraception		Outcome:	
Followed for 6 menstrual cycles or until preg achieved		OR subfecundity for PFOS > median	
Questionnaire at enrollment: - Demographic		Major Findings: (adj model)	
- medical - occupational - reproductive		OR subfecundity for PFOS > median not sig <> 1.0	
- Lifestyle			
M – semen sample F – blood sample			

Reference and Study Design	Exposure Measures	Results	Comment
Outcome – time-to-preg (TTP) over ≤ 6 mesntrual cycles		Outcome:	
Menstrual cycle log books		Monthly FR for PFOS > median compared to < median	
Cycle-spec information on freq of sexual intercourse		Major Findings:	
Subfecundity = TTP > 6 menstrual cycles		(adj model) Monthyly FR for > PFOS median	
Location:		compared to < PFOS med not sig dif from 1.0	
Denmark			
Population:			
Women attempting preg for first time			
Couples w/out prev reproductive experience planning to break contraception			
430 couples enrolled \rightarrow N = 222 w blood samples			
20-35 yrs old			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Versterholm-Jensen et al. (2014)	Umbilical cord serum	PFOS In-transformed	Mod low exposure
Vesterholm Jensen D1, Christensen J, Virtanen HE,	On-line solid-phase extraction, LC-MS/MS	Ln-PFOS as tertiles and continuous vars	Other comments:
Skakkebæk NE, Main KM, Toppari J, Veje CW, Andersson AM,	LOQ = 0.03 ng/ml	Sens analysis for primapara	Prospective case-control design
Nielsen F, Grandjean P, Jensen TK. Reproduction. 2014 Mar	PFOS quantified in 100% of samples	Multiple logistic regress for OR cryptorchidism for continuous and tertiles	Mod large (for case-control) Ns
2;147(4):411-7. doi: 10.1530/REP- 13-0444. Print 2014.	Population-Level Exposure:	Co-variates: - bw	
No association between exposure to perfluorinated compounds and congenital cryptorchidism: a nested	Median total PFOS cord serum conc=	- gest age - parity	
case-control study among 215 boys from Denmark and Finland.	9.1 ng/ml Danish - controls =10.2 ng/ml	Danish and Finish cohorts separately	
Study Design:	Cases = 8.9 ng/ml Finnish - controls = 5.5 n/ml Cases = 4.8 ng/ml	Outcome: OR for cryptorchidism	
Nested case-control study	local	Major Findings:	
Preg women recruited 1997-2001 (Denmark) and 1997-1999		(adj model)	
(Finland). Additional <i>cases</i> recruited in Finland 1999-2002)		OR not sig <>1.0 for PFOS as continuous var or for any tertile. Trend not sig.	
Denmark - Children examined at birth and 3 mos		Sig.	
$\frac{\text{Finland}}{\text{every 10}^{\text{th}}}$ M w cryptorchidism and every 10 th M of cohort + 2			
controls/case matched on: - date of birth			
- gest age - parity - maternal diabetes			
- smoking			

Reference and Study Design	Exposure Measures	Results	Comment
Followed for 18 mos			
(timing of examination(s)?)			
Testicular position determined at			
birth and dichotomized on			
cryptorchidism			
Gest age from sonogram or last			
menstruation			
Location:			
Denmark, Finland			
Population:			
Danish-Finish birth cohort			
N cooco cruptorobidiom - 107			
N cases cryptorchidism = 107 N controls = 108			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Cord blood → PFOS analysis Parental lifestyle/demographic questionnaire Hospital neonate health records: - head circum - birth wt - birth ht - wks gestation - type of delivery 2-yr questionnaire: - duration of breastfeeding - < 1 yr egg consumption - <1 yr soy bean consumption - <1 yr shrimp consumption - <1 yr shrimp consumption - older siblings		Preg alcohol	

Reference and Study Design	Exposure Measures	Results	Comment
- home carpet		Outcome:	
- fungi on walls			
- incense use at home		Cord blood IgE	
- post-natal ETS			
		Major Findings:	
IgE in cord blood and serum at 2		(adj model)	
yrs			
		Cord blood IgE sig pos assoc w cord	
Location:		blood PFOS ($p = 0.017$)	
Taiwan		Stratified by gender, assoc is spec to M	
Population:		Outcome:	
Preg F in 3 rd trimester w prenatal		2-yr blood IgE	
exams recruited			
		Major Findings:	
Cases of AD defined by		(adj model)	
questionnaire data on children at 2			
yrs		2-yr old blood IgE not sig assoc w cord	
 presence of atopic dermatitis AD 		blood PFOS	
 recurrent rash for ≥ 6 mos 			
- location of rash		Outcome:	
- ever diagnosed AD by Dr.			
		OR for AD by PFOS cord blood quartile	
Exclusion criteria:			
- multiple gestation (twins etc)		Major Findings:	
- inability to answer questions (in		(adj model)	
Chinese)			
- relocate prior to delicery		OR for AD not sig <> 1.0 for any quart	
		PFOS	
N = 244		(trend is pos, and Q4 is sig in crude	
AD cases = 43		analysis only)	
Non-AD = 201			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Wang et al. (2013)	HPLC-MS	TSH In-transformed	Cross-sectional
Wang Y1, Starling AP, Haug LS, Eggesbo M, Becher G, Thomsen	PFOS LOQ = 0.05 ng/ml	Sub-fecund and fecund pops not sig diff for TSH and were combined	PFOS analyses not adj for PFOA
C, Travlos G, King D, Hoppin JA, Rogan WJ, Longnecker MP.	Intra-assay CV < 10% Inter-assay CV < 15%	Assoc TSH w PFOS by linear regression	Other comments:
Environ Health. 2013 Sep 8;12(1):76. doi: 10.1186/1476- 069X-12-76.	Population-Level Exposure:	Also, logistic regression for PFOS dichotomized at 95 th percentile	Reasonable N PFOSCross-sectional design (subject to
Association between perfluoroalkyl substances and thyroid stimulating	PFOS median conc = 12.8 ng/ml	<u>Co-variates examined</u>	reverse causation if (e.g.) TSH affects glomerular filtration rate \rightarrow high TSH \rightarrow low
hormone among pregnant women: a cross-sectional study.	(IQR = 10.1-16.5 ng/ml)	- age (<i>a priori</i>)	serum PFOS (therefore, low TSH assoc w rel ↑ PFOS)
Study Design:	(NOTE: PFOS median conc ~1.6 times US F median (NHANES 4 th Rpt))	 gestational age at blood draw (a priori) pre-preg BMI preg smoking 	Reasonable stat control
Cross-sectional		 parity time between prev birth and current preg 	
Norwegian Mother and Child Cohort Study (MoBa)		- duration of prev breastfeeding - total seafood intake (mid-preg)	
Recruited 2003-2004 Questionnaire preg wk 13-17		- plasma HDL - plasma albumin	
Blood sample preg wk 17-18		Vars incl in models if p < 0.1 in bivariate models w PFOS <i>and</i> TSH	
TSH by immunoassay		Outcome:	
Minimal detection limit = 0.01 μU/ml Intra-inter assay CV < 10%		тѕн	
Location:		Major Findings: (adj model)	
Norway		TSH sig pos assoc w PFOS (p = 0.03)	

Reference and Study Design	Exposure Measures	Results	Comment
Reference and Study DesignPopulation:Norwegian Mother and Child Cohort Study (MoBa) Recruited 2003-2004Radom selection among subfecund F (> 12 mos to preg) N = 400	Exposure Measures	Results 0.8% ↑ in TSH for ea ng/ml ↑ in serum PFOS When stratified by fecundity status, TSH sig assoc w PFOS only for fecund group (NOTE: PFOS was only PFC sig assoc w TSH in adj models)	Comment
Additional random selection (w/out prior condition) N = 550			
Exclusion for reported thyroid abnormality, missing co-variate data			
N (total) = 903			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Wang et al. (2014b) Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, Longnecker MP, Wang SL. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Environ Health Perspect. 2014 May;122(5):529-34. doi: 10.1289/ehp.1306925. Epub 2014 Feb 21.	HPLC-triple quadrupole MS LOQ? 100% PFOS sample > LOQ Intra-assay CV (all PFASs) = 0.83-7.94% Inter-assay CV (all PFASs) = 1.57-24.7% Population-Level Exposure: Maternal serum PFOS conc = 12.73 ng/ml	Linear regression of thyroid hormones (w and w/out In-transformation) <u>Co-variates considered</u> - maternal age (a priori) - maternal educ - prev live births - income - pre-preg BMI - fish consumption - neonate sex (for models of maternal PFOS and cord blood hormones) - method of delivery (for models of maternal PFOS and cord blood hormones)	PFOS analyses not adj for other PFCs Other factors potentially influencing thyroid hormones (e.g., iodine status) not controlled Other comments: Longitudinal study design Moderate size N Incomplete co-variate control (e.g., iodine status)
Study Design: Longitudinal birth cohort study	(NOTE: This is ~1.6 x US F PFOS median (NHANES 4 th Rpt))	Outcome: Maternal free-T4	
Blood samples during 3 rd trimest Umbilical cord blood at delivery Exclusion: - missing PFOS mes - Missing thyroid horm mes - thyroid disease - Free-T4 - Total T4 - Total T3 - TSH All by radioimmunoassay (commercial kits) Intra-assay CV = < 5% Inter-assay CV < 10%		Major Findings: (adj model) Maternal free-T4 not sig assoc w maternal serum PFOS Outcome: Maternal total-T4 Major Findings: (adj model) Maternal total-T4 not sig assoc w maternal serum PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Outcome:	
Central Taiwan		Maternal total-T3	
Population:		Major Findings: (adj model)	
Pregnant women recruited 12/2000- 11/2001		Maternal total-T3 not sig assoc w	
N = 285		maternal serum PFOS	
Related Studies:		Outcome:	
Related Studies:		тѕн	
		Major Findings: (adj model)	
		Maternal TSH not sig assoc w maternal serum PFOS	
		Outcome:	
		Cord blood free-T4	
		Major Findings: (adj model)	
		Cord blood free-T4 not sig assoc w maternal PFOS	
		Outcome:	
		Cord blood total-T4	
		Major Findings: (adj model)	
		Cord blood total-T4 not sig assoc w maternal PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Cord blood total-T3	
		Major Findings: (adj model)	
		Cord blood total T3 not sig assoc w maternal PFOS	
		Outcome:	
		Cord blood TSH	
		Major Findings: (adj model)	
		Cord blood TSH not sig assoc w maternal PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	-		
Washino et al. (2009)	LC-MS/MS	Co-variates investigated	PFOS analyses not adj for PFOA
		(in full model)	
Washino N, Saijo Y, Sasaki S, Kato	Spike recovery = 97.5- 99.3%		Although regression analysis controlled for
S, Ban S, Konishi K, Ito R, Nakata	CV = 3.0-6.3%	- maternal age	during vs. post-preg blood sampling for PFOS,
A, Iwasaki Y, Saito K, Nakazawa H,		- maternal age	not clear that model can completely adjust
Kishi R.	LOD = 0.5 ng/ml	- Preg BMI	since diff is large (during preg = 1.5 x post preg
Correlations between prenatal	PFOS detect in 100% of	- preg smoking	PFOS)
exposure to perfluorinated chemicals and reduced fetal	samples	- gestational age - gender	Other comments:
growth.	Population-Level Exposure:	- parity	Other comments.
Environ Health Perspect. 2009	Population-Level Exposure.	- blood sampling time (preg or post	Prospective cohort design
Apr;117(4):660-7. doi:	Mean maternal PFOS serum	preg)	r rospective conort design
10.1289/ehp.11681. Epub 2008	sampling during preg conc. =	- infant disease	Moderate sample size
Nov 4.	5.6 ng/ml	- birth wt	
	(med = 5.2 ng/ml)	- birth size	Good analytical performance
Study Design:	(- preg complications	
, ,	Mean maternal PFOS serum		Reasonable stat analysis (except failure to adj
Prospective cohort	conc	- delivery mode (for head cirum outcome)	PFOS analyses for PFOA)
	Sampling post-delivery = 3.8		
Self-admin questionnaire after 2 nd	ng/ml	PFOS conc log-transformed	Self-administered questionnaire, but during
trimmest			preg likely to reduce recall bias
- dietary	(NOTE: during-preg PFOS	Multiple regression model	
- smoking	conc ~73% of US F mean conc		
- alcohol	(NANES 4 th Rpt))	Outcome:	
- caffeine			
- income		Birth wt	
- educ		Meier Findinge.	
Blood sample after 2 nd trimester –		Major Findings: (adj model)	
72.4%			
Blood sample after delivery –		Birth wt sig neg assoc w PFOS	
27.6%		P = 0.046	
Location:		Not sig when stratified for M only	
		Sig when stratified for F only	
Sapporo, Hokkaido, Japan		P = 0.007	

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
7/2002-10/2005		Birth length	
F in wks 23-35 of preg during routne GYN checkup		Major Findings: (adj model)	
Native Japanese		PFOS not sig assoc w birth length	
1,796 eligible \rightarrow 514 participated \rightarrow 10 excluded for birth outcome, or volunatary withdrawal, preg-		Bordeline sig (p = 0.055) when stratified for F only	
induced hypertension, diabetes, fetal heart failure, twins		Outcome:	
N = 428		Chest circum	
Related Studies:		Major Findings:	
		PFOS not sig assoc w chest circum	
		Outcome:	
		Head circum	
		Major Findings:	
		PFOS not sig assoc w head circum	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Watkins et al. (2013)	(Note explicitly provided, but same as for other C8 study	Multiple imputation for missing co-variates	Cross-sectional design
Watkins DJ, Josson J, Elston B, Bartell SM, Shin HM, Vieira VM,	reports)	Multiple linear regression for assoc PFOS and eGFR	Multiple imputation used for missing variables: - 21% missing income
Savitz DA, Fletcher T, Wellenius GA.	Population-Level Exposure:	PFOS as continuous variable	- 0.8% missing BMI
Exposure to perfluoroalkyl acids and markers of kidney function	Median serum PFOS = 20.0 ng/ml	PFOS conc log-transformed	Potential for reverse causality of \downarrow GFR results in \uparrow retention of PFOS
among children and adolescents living near a chemical plant.	(NOTE: median PFOS conc ~ 2	Also as categorical analysis (quart PFOS)	Failure to adj PFOS analyses for PFOA
Environ Health Perspect. 2013 May;121(5):625-30. doi: 10.1289/ehp.1205838. Epub 2013	x current US levels (NHANES 4 th Rpt))	<u>Co-variates</u>	Other comments:
Mar 7.		- age - sex - race	Large N
Study Design:		- smoking - income	Missing/imputed co-variate data
Cross-sectional		- regular exercise - BMI	
Questionnaire on -enrollment: - Demographics		- total cholesterol	
 Personal health history Residential history 		Outcome:	
- lifestyle		Assoc eGFR w PFOS	
Blood sample on enrollment - fasting not required		Major Findings: (full adj model)	
Est glomerular filtration rate (eGFR) based on serum creatinine and		eGFR sig neg assoc w PFOS p < 0.0001	
height		Sig neg trend across quartiles PFOS	
Location:			
OH, WV		784	

Reference and Study Design	Exposure Measures	Results	Comment
Population:			
C8 Health Study cohort 8/2006-8/2006			
1 - < 18 yrs old at enrollment N = 9,783 \rightarrow exclusion for questionable data \rightarrow N = 9.660 F = 48% M = 52%			
Related Studies:			

Study: Exposure Assessment: Stat Method: Major Limitations: Webster et al. (2014) HPLC/MS/MS Covariates investigated - maternal age - ethnicity - educ Rel small N and small N for high TPOAb Downsort 100% > DL - maternal age - ethnicity - educ Other comments: Other comments: Epub 2014 Jul 12. Population-Level Exposure - ourrent stress level - stoching Other comments: Associations between perfluctorality bormones in early pregnancy: a population-based cohort study. Notif: PFOS conc -62% of US F (NHANES 4 th Rpt)) - for day of blood draw - wk of gest - gest age at delivery Stratification by TPOAb (as indicator of thyroid autoantibody hypothyroidism) Blood sample 12/2006-6/2008 Collected twice -15 and18 wks gest TSH Free-T4 Total-T4 Total-T4 TSH Nodes antibody (TPOAb) (marker of autoimmune hypothyroidism) Modes of all PFAs investigated but not reported due to dominance by PFOS (all performance s2) Est of iodine sufficiency by questionnaire uncertainty Thyroid perroxidase antibody (TPOAb) (marker of autoimmune hypothyroid perroxidase Ab immunoassay Nodes of all PFAs investigated but not reported due to dominance by PFOS Est of iodine sufficiency by questionnaire uncertainty Charmed tha this method is rel insensitive to bias from changing levels of serum-briding proteins Free-T4 Major Findings: (adj mode) Modesel of all PFA
Webster GM, Venners SA, Mattman, A, Martin JW. 100% > DL - maternal age - ethnicity - ethnicithoithoithoithoithoithoithoithoithoitho
during preg Free-T4 not sig assoc w PFOS W or w/out strat for high/low TPOAb

Reference and Study Design	Exposure Measures	Results	Comment
Location:		Outcome:	
Vancouver, Canada		тѕн	
Population:		Major Findings: (adj model)	
2007-2008			
152 women ≤15 wks preg		TSH sig assoc w PFOS only when interaction term (H/L) for TPOAb included – sig for high TPOAb only, n =	
Inclusion criteria:		14)	
 euthyroid (normal thyroid) 			
- non-smokers		Outcome:	
 singleton preg normal (non-hormonal) conception no thyroid affected med 		Total T4	
- lived in N. America past 3 consec		Major Findings:	
yrs - fluent in English		(adj model)	
- ≥ 19 yrs old		Total T4 not sig assoc w PFOS (w or w/out adj for TPOAb)	
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Wen et al. (2013) Wen LL, Lin LY, Su TC, Chen PC, Lin CY. J Clin Endocrinol Metab. 2013 Sep;98(9):E1456-64. doi: 10.1210/jc.2013-1282. Epub 2013 Jul 17. Association between serum perfluorinated chemicals and thyroid function in U.S. adults: the National Health and Nutrition Examination Survey 2007-2010. Study Design: Cross-sectional Total T3 Free T3 Total T4 Free T4 TSH Thyroglobulin Thyroid hormones by immunoenzymatic assay Sub-clinical hyperthyroidism = TSH < 0.24 mU/L Sub-clinical hypothyroidism = TSH > 5.43 mU/L Location: US	NHANES analytical methodology PFOS LOD = 0.2 ng/ml < LOD = LOD/√2 0.7% of PFOS samples Population-Level Exposure: PFOS geom mean conc = 14.2 ng/ml (95% CI = 13.59-14.86 ng/ml)	All thyroid measures log-transformed Except total T3 and total T4 PFOS log-transformed Analysis stratified by gender Multivariate linear regression of thyroid measures <u>Co-variates considered</u> - age - gender - race - alcohol - smoking - urinary iodine PFOS also modeled in multi-PFC analysis Also categorical analysis of PFOS in quartiles Analyses w and w/out NHANES sample weights Logistic regression for OR of sub-clinical hypo/hyperthyroidism	Cross-sectional design Small N by gender for sub-clinical hypothyroidism (and presumably for sub- clinical hyperthyroidism (?)) Potential for reverse causality Exclusion of clinical cases reduces power of analysis Other comments: Large N in total, but small n's for M, F hypothyroidism Good analytical chem Cross-sectional Potential for reverse causality

Reference and Study Design	Exposure Measures	Results	Comment
Population:		Outcome:	
NHANES 2007-2008, 2009-2010		Total T4	
≥ 20 yrs old		Major Findings:	
Not preg Not nursing		(adj model)	
PFC and thyroid measures		Total T4 not sig assoc w PFOS for M or F	
Exclusion: - Reported history thyroid disease		Outcome:	
 missing data on alcohol missing data on urine iodine 		Log free T4	
N = 1,181		Major Findings: (adj model)	
M = 672 F = 509		Log free T4 not sig assoc w PFOS for M	
Related Studies:		or F Outcome:	
		Total T3	
		Major Findings:	
		(adj model)	
		Total T3 not sig assoc w PFOS for M or F	
		Outcome:	
		Log free T3	
		Major Findings: (adj model)	
		Log free T4 not sig assoc w PFOS for M or F	

Reference and Study Design	Exposure Measures	Results	Comment
		Outcome:	
		Log TSH	
		Major Findings:	
		(adj model)	
		Log TSH not sig assoc w PFOS for M or F	
		Outcome:	
		Log thyroglobulin	
		Major Findings:	
		Log thyroglobulin not sig assoc w PFOS for M or F	
		Outcome:	
		Sub-clinical hypothyroidism	
		Major Findings: (adj model)	
		OR for assoc of sub-clinical hypothyroidism w unit \uparrow in PFOS sig pos for M and F (OR M = 1.98; OR F = 3.03) N = 23 (M = 15, F = 8)	
		Outcome:	
		Sub-clinical hyperthyroidism	
		Major Findings:	
		OR for assoc sub-clinical hyperthyroidism not sig <> 1.0 for M or F	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Whitworth et al. (2012a)	HPLC-MS	Linear regression	Cross-sectional design
Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, Thomsen C, Eggesbo M, Travlos G, Wilson R, Cupul-Uicab LA, Brantsaeter AL, Longnecker MP.	Population-Level Exposure: PFOS median conc = 19.3 ng/ml	<u>Co-variates considered</u> (included in adj model) - fish consumption (lean,oily) - interpregnancy interval	Small no. cases for small for gest age (n = 35) PFOS analyses not controlled for PFOA
Perfluorinated compounds in	(NOTE: median exposure ~2.5	- maternal age	Other comments:
relation to birth weight in the Norwegian Mother and Child Cohort Study.	x current US F exposure (NHANES 4 th Rpt))	- maternal albumin - pregnancy wt gain at 17 wks - gestational age at blood draw	Large N for birth wt z-scores
Am J Epidemiol. 2012 Jun 15;175(12):1209-16. doi:	LOD = 0.05 ng/ml 100% detect	- smoking - alcohol	Small number cases for pre-term birth
10.1093/aje/kwr459. Epub 2012 Apr 19.	w/in batch CV for PFOS = 4.5%	 maternal education maternal diabetes 	Broad statistical controls
Study Design:	between batch CV = 11.3%	- child's gender - income	
Nested cross-sectional		Weighted methods to address previous selection criteria (subfecundity)	
MoBa Pregnancies linked to Norway Birth Reg - birth wt		Regression analysis based on continuous PFOS conc, and on quartiles	
- gestational age Birth wt z-scores based on Norwegian births 1987-1998		Birth wt z-scores adj for : (a-priori) - maternal age	
Pre-term birth = < 37 wks		- preg BMI - parity	
Small for gestational age = < 10 th percentile – gender and gest age specific		Backwards elimination – retention in model w \ge 10% change	
		Also, logistic regression for OR for assoc PFOS w outcomes	

Reference and Study Design	Exposure Measures	Results	Comment
Large gest age = > 90 th percent –		- preterm birth	
gender, gest age specific		- small for gest age	
Food freq questionnaire at preg wk		- large for gest age	
22		Models included a-priori vars only	
- consumption 15 kinds fish			
Data on interpreg interval (mos. From prev birth to current		Outcome:	
conception)		Birth wt z-scores	
Location:		Major Findings:	
Nerwoy		(adj model)	
Norway		Birth wt z-scores not sig assoc w PFOS	
Population:		either by quarts or in continuous model	
Norwegian mother-child cohort study (MoBa)		(Crude regression sig neg assoc for quarts and continuous model)	
Study (Moba)			
Enrollment 2003-2004		Outcome:	
At ~ 17 wks gestation			
Based on sub-cohort from MoBa		OR for preterm birth	
subfecundity study		Major Findings:	
- random sample n = 550		(adj model)	
- cases n = 400			
Exclusions:		OR's not sig <> 1.0 for any quart PFOS However, Q4 borderline sig	
- missing preg BMI		P-trend stat sig for neg trend (ORs <	
- missing gestational age at birth		1.0) (p = 0.03)	
- twins			
 pre-term birth (excluded from analysis of birth wt z-score 			

Reference and Study Design	Exposure Measures	Results	Comment
Birth wt z-score - N = 866		Outcome:	
Pre-term birth, small for gest age,			
large for gest age – total N = 901		OR for small for gest age	
Preterm birth cases, N = 35			
Small for gest age, N = 60		Major Findings:	
Large for gest age, N = 125		(adj model)	
		ORs not sig <> 1.0 for any quart PFOS	
Related Studies:		(Q3 borderline sig)	
Related Studies:		P-trend not sig	
		Outcome:	
		OR for large for gest age	
		Major Findings:	
		(adj model)	
		ORs not sig <> 1.0 for any quart PFOS	
		p-trend not sig	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Whitworth et al. (2012b)	HPLC-MS	Logistic regression for OR subfecundity by quartile PFOS	PFOS analyses not controlled for PFOA
Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R,	PFOS LOQ = 0.05 ng/ml	Co-variates considered	Other comments:
Thomsen C, Eggesbo M, Travlos G, Wilson R, Longnecker MP	100% of samples detect for PFOS	- Maternal age (a priori)	Case-control design
Perfluorinated compounds and subfecundity in pregnant women	Within batch $CV = 4.5\%$	- Pre-preg BMI (a priori) - plasma albumin	Moderate N
Epidemiology. 2012 Mar;23(2):257- 63. doi:	Between batch CV = 11.3%	- yr of blood draw - smoking	Reasonable statistical control of analyses
10.1097/EDE.0b013e31823b5031.	Population-Level Exposure:	- alcohol - fish consumption	Stratification by parity may offer better control of associations resulting from reverse
Study Design:	PFOS median conc Cases = 14 ng/ml	- maternal education - selected maternal diseases	causation than in Danish study (parity as model var)
Case-control design	Controls = 13 ng/ml	 paternal age paternal education 	Failure to control for PFOA in PFOS analyses
PFOS assoc w subfecundity by parous/nulliparous status	(NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4 th Rpt))	 menstrual irregularities freq sexual intercourse 	
Questionnaire on enrollment: - demographic factors		Vars retained in model if deletion $\rightarrow \Delta$ OR > 10%	
- lifestyle factors - medical history		(No a prior var met inclusion criterion)	
 reprod history breastfeeding previous births 		Analyses stratified by parity (nulliparous/ parous)	
- Was current preg planned? - How many mos. of non- contraception intercourse before		Parous models adj for inter-preg interval	
preg? - if ≥ 3 mos, specific time		Outcome:	
Subfecundity = time to preg (TTP) > 12 mos		OR for subfecundity Stratified by parity (nullparous/parous)	
Time since prev preg - from Nor. Birth Reg		Major Findings: (adj model)	

Reference and Study Design	Exposure Measures	Results	Comment
		<u>Nullparous</u>	
Eligibility			
- live-born child		OR for subfecundity not sig <> 1.0	
- plasma sample at ~17 wks gest		Parous	
Location:		Falous	
Location.		OR for subfecundity sig > 1.0 for Q4 of	
Norway		PFOS (≥16.61 ng/ml) OR = 2.1	
,		(borderline sig for Q2, Q3 (OR = 1.5,	
Population:		1.5)	
Norwegian Mother and Child Cohort		Outcome not affected by adjustment for	
Study (MoBa)		duration of breastfeeding	
Enrollment 2003-2004			
Random selection among planned			
preg, subfecund			
N = 416			
Random selection – no restriction			
N = 484			
Related Studies:			
Vestergaard et al. (2012)			
_ , ,			
Fei et al. (2009)			

Appendix 7: Benchmark dose modeling results

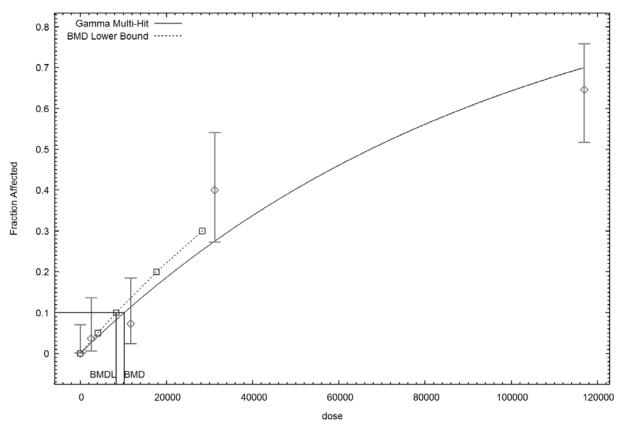
Butenhoff et al. (2012) Benchmark Dose Analysis

Hepatocellular Hypertrophy

BMR = 10%

4 5

Pages	Model	Beta/Power/Slope	Poly	Chi-square	AIC	BMD	BMDL
				<i>p</i> -value		(ng/mL)	(ng/mL)
2-3	Gamma	Restrict Power \geq 1	-	0.173	212.51	10203.40	8368.92
4-5	Gamma	No Power Restriction	-	0.147	213.86	8291.14	4550.43
6-7	Logistic	-	-	0.000	238.66	31419.00	26497.40
8-9	Log Logistic	Restrict Slope ≥ 1	-	0.274	212.48	8699.10	5699.63
10-11	Log Logistic	No Slope Restriction	-	0.274	212.48	8699.12	5225.39
12-13	Log Probit	No Slope Restriction	-	0.246	212.76	8370.95	5213.28
14-15	Log Probit	Restrict Slope ≥ 1	-	0.014	219.42	16623.90	13644.30
16-17	Multistage	Restrict Betas ≥ 0	1st	0.173	212.51	10203.40	8368.92
18-19	Multistage	Restrict Betas ≥ 0	2nd	0.173	212.51	10203.40	8368.92
20-21	Multistage	Restrict Betas ≥ 0	3rd	0.173	212.51	10203.40	8368.92
22-23	Multistage	No Beta Restriction	1st	0.173	212.51	10203.40	8368.92
24-25	Multistage	No Beta Restriction	2nd	0.287	212.56	7737.04	5485.69
26-27	Multistage	No Beta Restriction	3rd	0.353	212.32	10641.20	6596.30
28-29	Multistage - Cancer	-	1st	0.173	212.51	10203.40	8368.92
30-31	Multistage - Cancer	-	2nd	0.173	212.51	10203.40	8368.92
32-33	Multistage - Cancer	-	3rd	0.173	212.51	10203.40	8368.92
34-35	Probit	-	-	0.000	236.38	28960.60	24709.50
36-37	Weibull	Restrict Power ≥ 1	-	0.173	212.51	10203.40	8368.92
38-39	Weibull	No Power Restriction	-	0.163	213.68	8105.33	4571.23
40-41	Quantal-Linear	-	-	0.173	212.51	10203.40	8368.92


6

7

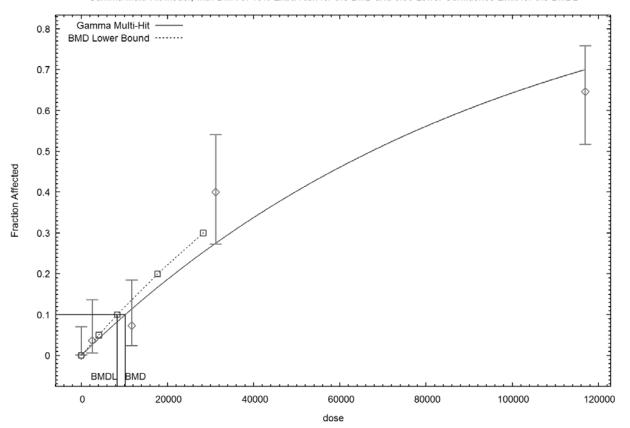
_____ Gamma Model. (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 15:06:57 2016 _____ BMDS_Model_Run The form of the probability function is: P[response]= background+(1-background)*CumGamma[slope*dose,power], where CumGamma(.) is the cummulative Gamma distribution function Dependent variable = Effect Independent variable = Dose Power parameter is restricted as power >=1 Total number of observations = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00746269Slope = 2.28367e-005 Power = 1.3 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Slope Slope 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA Slope 1.0326e-005 1.28026e-006 7.81674e-006 1.28353e-005 Power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -102.179 5 Fitted model -105.254 6.15087 0.1882 1 4 Reduced model -161.64 1 118.923 4 <.0001

A	IC: 2	12.509			
		Goo	dness of F	it	Scaled
Dose	EstProb.	Expected	Observed	Size	Residual
2554.0000 11724.0000 31225.0000 116950.0000	0.0003 0.0260 0.1140 0.2756 0.7011	1.432 6.271 15.159 45.571	2.000 4.000 22.000 42.000	55.000 55.000 55.000 65.000	0.481 -0.964 2.065
	8 d.f. =		value = 0.17	28	
Specified ef	fect =	0.1			
Risk Type	= E	xtra risk			
Confidence 1	evel =	0.95			
	BMD =	10203.4			
	BMDL =	8368.92			

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:06 05/12 2016

38


_____ Gamma Model. (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 15:08:09 2016 _____ BMDS_Model_Run The form of the probability function is: P[response]= background+(1-background)*CumGamma[slope*dose,power], where CumGamma(.) is the cummulative Gamma distribution function Dependent variable = Effect Independent variable = Dose Power parameter is not restricted Total number of observations = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00746269Slope = 2.28367e-005 Power = 1.3 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Slope Power Slope 1 0.91 Power 0.91 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA Slope 8.25002e-006 2.66765e-006 3.02152e-006 1.34785e-005 Power 0.865611 0.157436 0.557042 1.17418 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.1795 Fitted model -104.931 2 5.50426 3 0.1384 Reduced model -161.64 1 118.923 4 <.0001

А	IC:	213.862			
Dose	EstProb	Goo . Expected	dness of H Observed	Fit Size	Scaled Residual
2554.0000 11724.0000 31225.0000 116950.0000	0.1332 0.2894 0.6783	2.028	42.000	55.000 55.000 55.000 65.000	-1.321 1.808
Benchmark	Dose Compu	tation			
Specified ef	fect =	0.1			
Risk Type	=	Extra risk			
Confidence 1	evel =	0.95			
	BMD =	8291.14			

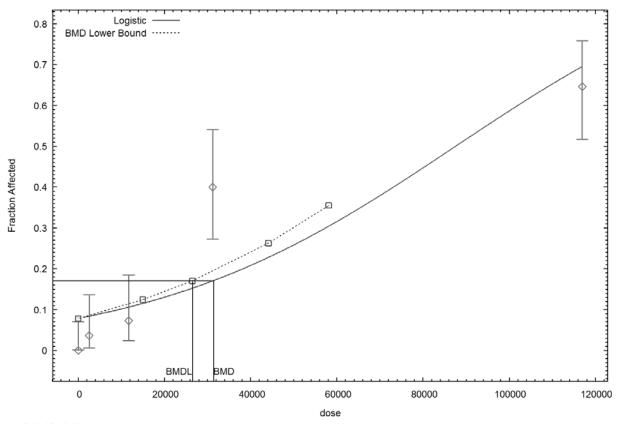
4550.43

BMDL =

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:06 05/12 2016

38

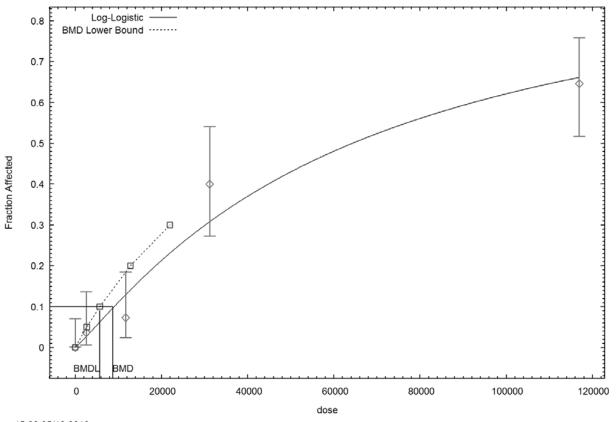

_____ Logistic Model. (Version: 2.14; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/log_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/log_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 15:10:08 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = 1/[1+EXP(-intercept-slope*dose)] Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 5Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values background = 0 Specified intercept = -3.23556 slope = 3.69044e-005Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -0.73 -0.73 1 slope Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Std. Err. Variable Estimate -2.94233 intercept -2.4643 0.243893 -1.98628 slope 2.80924e-005 3.28214e-006 2.16595e-005 3.45253e-005 Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 -117.328 30.2983 1.1943847e-006 Fitted model 2 3 1 118.923 4 Reduced model -161.64 < .0001 AIC: 238.656

Dose	EstProb.	Expected	Goodness Observed		Scaled Residual
2554.0000 11724.0000 31225.0000 116950.0000	0.0784 0.0837 0.1057 0.1698 0.6945	4.606 5.816 9.338 45.141	2.000 4.000 22.000 42.000	55.000 55.000 55.000 65.000	-1.268 -0.796 4.547
	Dose Computat		value = 0.00	00	
Risk Type Confidence l	= Ex evel =	0.95			
	BMD =	31419			

26497.4

BMDL =

Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

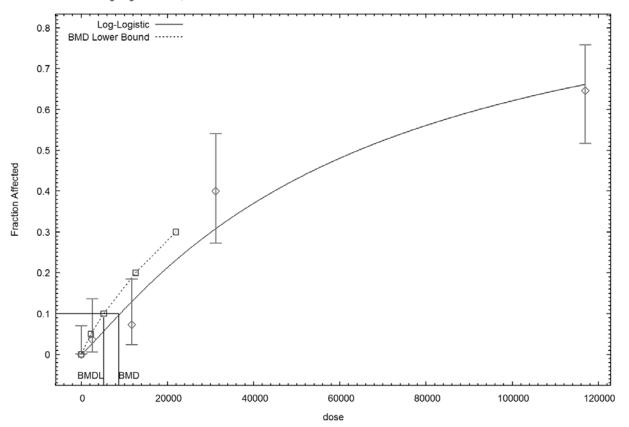


15:10 05/12 2016

_____ Logistic Model. (Version: 2.14; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 15:26:09 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))] Dependent variable = Effect Independent variable = Dose Slope parameter is restricted as slope >= 1 Total number of observations = 5Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial Parameter Values background = 0 intercept = -11.5141 slope = 1 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -1 slope -1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA intercept -12.3597 1.71835 -15.7276 -8.9918 slope 1.12033 0.161139 0.804503 1.43616 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -102.179 5 Fitted model -104.24 2 4.12288 3 0.2485 Reduced model -161.64 1 118.923 4 <.0001

	AIC:		212.481			
			Goo	odness of 1	Fit	Scaled
Dos	se Es	tProb.	Expected	Observed	Size	Residual
31225.00 116950.0	000 0 000 0 000 0 000 0	.3175 0.6713	0.010 1.506 7.390 17.461 43.633 = 3 P	2.000 4.000 22.000 42.000	55.000 55.000 65.000	1.315
Bench	nmark Dos	e Comput	ation			
Specifie	ed effect	=	0.1			
Risk Typ	pe	=	Extra risk			
Confider	nce level	=	0.95			
	BMD	=	8699.1			
	BMDL	=	5699.63			

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

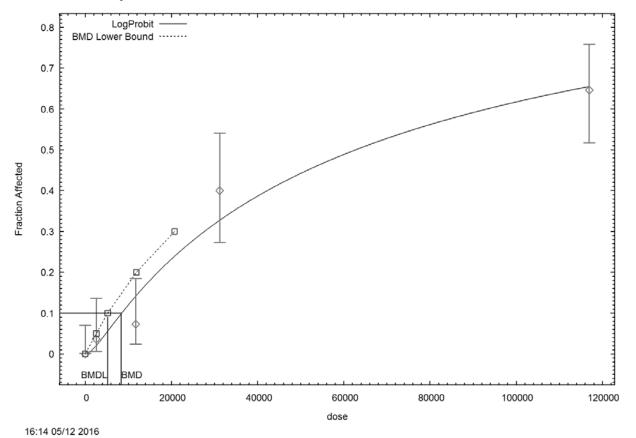


15:26 05/12 2016

_____ Logistic Model. (Version: 2.14; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 15:27:22 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))] Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial Parameter Values background = 0 -7.43678 intercept = 0.628536 slope = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -1 slope -1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA -8.99182 intercept -12.3597 1.71835 -15.7276 slope 1.12033 0.161139 0.804504 1.43616 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -102.179 Full model 5 Fitted model -104.24 2 4.12288 3 0.2485 Reduced model -161.64 1 118.923 4 <.0001

	AIC:	212.481			
		Goo	dness of F	7it	Scaled
Dose	EstProb	. Expected	Observed	Size	Residual
2554.0000 11724.0000 31225.0000	0.0274 0.1344 0.3175	0.010 1.506 7.390 17.461 43.633	2.000 4.000 22.000	55.000 55.000 55.000	0.408 -1.340 1.315
	89 d.f. k Dose Comput	= 3 P-	value = 0.27	737	
Specified e	ffect =	0.1			
Risk Type	=	Extra risk			
Confidence	level =	0.95			
	BMD =	8699.12			
	BMDL =	5225.39			

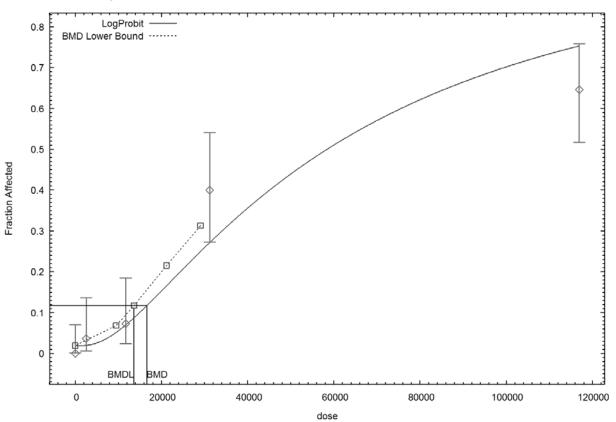
Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL



15:27 05/12 2016

_____ Probit Model. (Version: 3.3; Date: 2/28/2013) Input Data File: U:/PFOS/DFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:14:10 2016 _____ BMDS Model Run The form of the probability function is: P[response] = Background+ (1-Background) * CumNorm(Intercept+Slope*Log(Dose)), where CumNorm(.) is the cumulative normal distribution function Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 5 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial (and Specified) Parameter Values background = 0 -3.75187 intercept = 0.314285 slope = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -0.99 slope -0.99 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA intercept -7.06514 0.912463 -8.85354 -5.27675 slope 0.640308 0.0866154 0.470545 0.810071 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 Fitted model -104.381 2 4.40412 3 0.221 Reduced model -161.64 1 118.923 4 <.0001

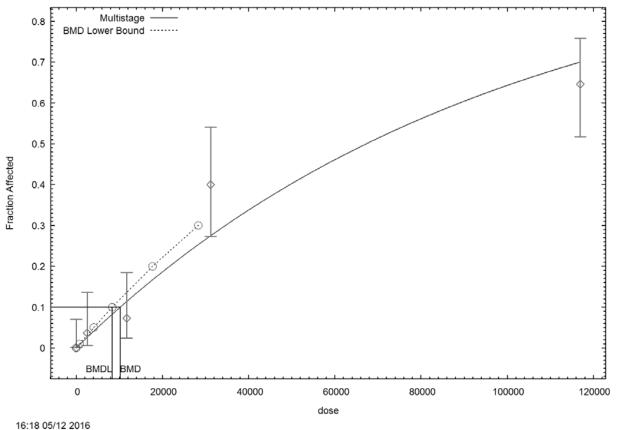
A	IC: 21	2.762			
Dose	EstProb.	Expected	Goodness Observed		Scaled Residual
2554.0000 11724.0000 31225.0000 116950.0000	0.0000 0.0206 0.1432 0.3305 0.6580 5 d.f. =	7.879 18.176 42.768	2.000 4.000 22.000 42.000	55.000 55.000 55.000 65.000	0.824 -1.493 1.096
Benchmark	Dose Computat	ion			
Specified ef:	fect =	0.1			
Risk Type	= Ex	tra risk			
Confidence l	evel =	0.95			
	BMD =	8370.95			
1	BMDL =	5213.28			


LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

 $\begin{array}{c} 1234567890112345678901234567890\\ 1111111111112222222222223\end{array}$

_____ Probit Model. (Version: 3.3; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:16:07 2016 _____ BMDS_Model_Run ~~~~~~~~~~~ The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)), where CumNorm(.) is the cumulative normal distribution function Dependent variable = Effect Independent variable = Dose Slope parameter is restricted as slope >= 1 Total number of observations = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial (and Specified) Parameter Values background = 0 -11.2785 intercept = slope = 1 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -slope have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) background intercept background 1 -0.33 -0.33 1 intercept Parameter Estimates 95.0% Wald Confidence Interval Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Variable background 0.0190665 0.0134251 -0.00724625 0.0453792 -11.0001 0.123171 -11.2416 -10.7587 intercept slope 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table

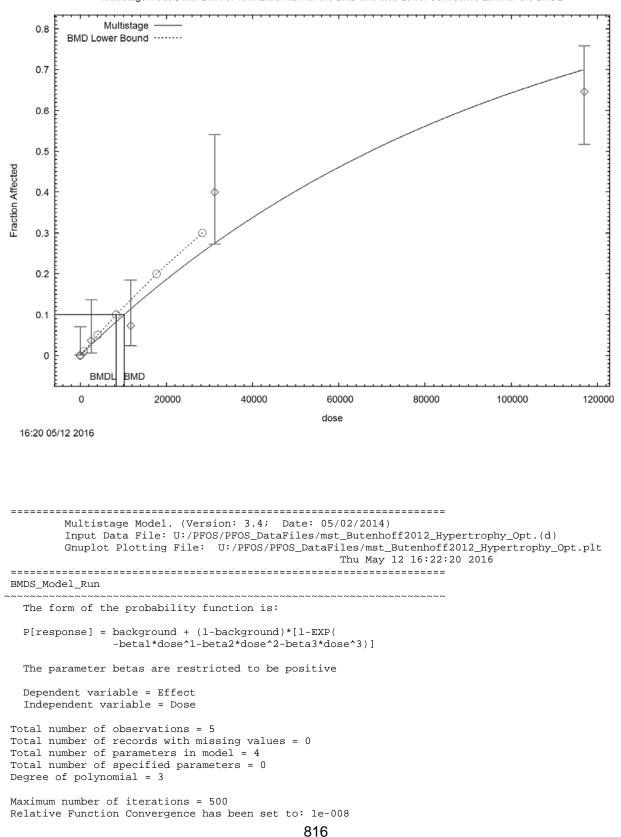
	Log(likeli -102.	,	Param's Dev 5	viance Test	d.f. P-v	value
Fitted model Reduced model	-107.		2	11.058 118.923		0.01142 <.0001
AIC:	219.	416				
		Good	dness of 1	Fit	Scaled	-
Dose Est	Prob.	Expected	Observed	Size	Residua	
25.0000 0. 2554.0000 0. 11724.0000 0.	.0199 .0696	1.092 3.826	2.000 4.000	55.000	-1.124 0.878 0.092	
31225.0000 0. 116950.0000 (L
Chi^2 = 10.63	d.f. = 3	P-1	value = 0.02	139		
Benchmark Dose	e Computatio	n				
Specified effect	=	0.1				
Risk Type	= Extr	a risk				
Confidence level	=	0.95				
BMD	= 16	623.9				
BMDL	= 13	644.3				

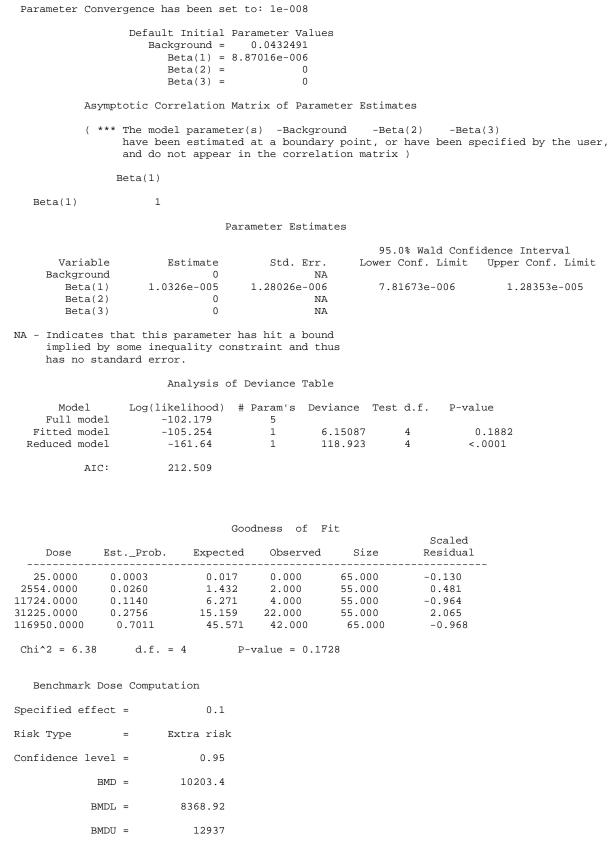

LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1 2 16:16 05/12 2016

```
_____
        Multistage Model. (Version: 3.4; Date: 05/02/2014)
        Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
        Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
                                               Thu May 12 16:18:30 2016
 _____
BMDS_Model_Run
   The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
               -betal*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = Effect
  Independent variable = Dose
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                   Background = 0.0432491
                     Beta(1) = 8.87016e-006
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
              Beta(1)
  Beta(1)
                   1
                             Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                     Estimate
                                    Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
    Background
                           0
                                          NA
                  1.0326e-005
                                                   7.81672e-006
                                                                    1.28353e-005
       Beta(1)
                                 1.28026e-006
NA - Indicates that this parameter has hit a bound
    implied by some inequality constraint and thus
    has no standard error.
                     Analysis of Deviance Table
      Model
                Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model
                    -102.179
                                   5
                    -105.254
  Fitted model
                                   1
                                           6.15087
                                                                0.1882
                                                      4
                     -161.64
                                   1
                                           118,923
                                                      4
                                                               < 0001
 Reduced model
         AIC:
                     212.509
```

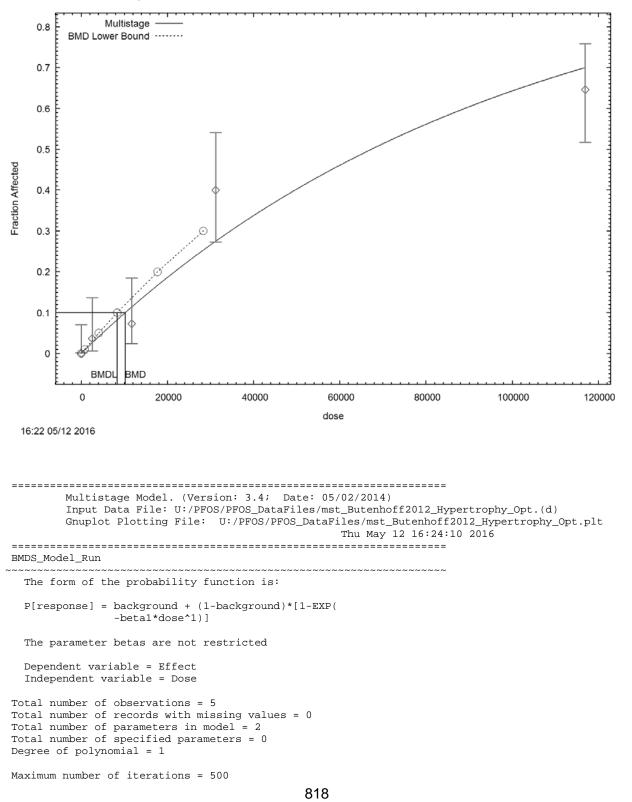
		Goodne	ess of Fit		Scaled
Dose	EstProb.	Expected	Observed	Size	
2554.0000 11724.0000 31225.0000	0.0260 0.1140 0.2756	0.017 1.432 6.271 15.159 45.571	2.000 4.000 22.000	55.000 55.000 55.000	0.481 -0.964 2.065
Chi^2 = 6.38	d.f. =	4 P-v	value = 0.172	28	
Benchmark	Dose Computa	tion			
Specified eff	fect =	0.1			
Risk Type	= E	xtra risk			
Confidence le	evel =	0.95			
	BMD =	10203.4			
I	BMDL =	8368.92			
I	BMDU =	12592			
Taken togethe interval for		12592) is	a 90 % t	two-sided co	onfidence


Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

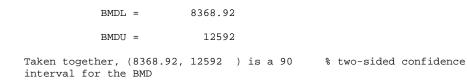

32

_____ Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:20:29 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2)] The parameter betas are restricted to be positive Dependent variable = Effect Independent variable = Dose Total number of observations = 5Total number of records with missing values = 0Total number of parameters in model = 3 Total number of specified parameters = 0Degree of polynomial = 2Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0432491 Beta(1) = 8.87016e-006Beta(2) =0 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(2) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(1) Beta(1) 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Variable Background 0 NA 1.28026e-006 Beta(1) 1.0326e-005 7.81673e-006 1.28353e-005 Beta(2) 0 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.1795 6.15087 Fitted model -105.254 1 4 0.1882 118.923 4 <.0001 Reduced model -161.64 1 AIC: 212.509

		Goo	dness of F	'it				
Dose	EstProb.	Expected	Observed	Size	Scaled Residual			
	0.0260 0.1140 0.2756	15.159	2.000 4.000 22.000	55.000 55.000 55.000	0.481 -0.964 2.065			
	Chi ² = 6.38 d.f. = 4 P-value = 0.1728 Benchmark Dose Computation							
Specified eff	fect =	0.1						
Risk Type	= E	Xtra risk						
Confidence le	evel =	0.95						
	BMD =	10203.4						
I	BMDL =	8368.92						
I	BMDU =	12937						
Taken togethe interval for	, , ,	12937) is	a 90 %	two-sided o	confidence			



Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL


Taken together, (8368.92, 12937) is a 90 % interval for the BMD


% two-sided confidence

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

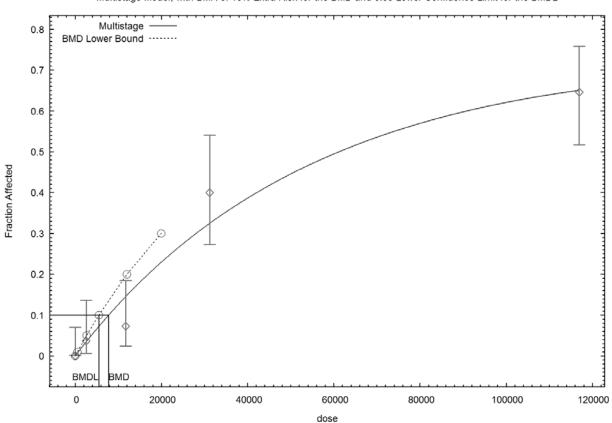
Relative Funct Parameter Conv				e-008		
	Backgro		ameter Value).0432491 7016e-006	ទ		
Asym	ptotic Correla	ation Matr	rix of Param	eter Estima	tes	
(**	* The model pa have been es and do not a	stimated a	at a boundar	y point, or	-	pecified by the user,
	Beta(1)					
Beta(1)	1					
		Paran	neter Estima	tes		
	1.0326e that this para some inequal:	0 -005 1 ameter has		Lower 7.8 d	0% Wald Confi Conf. Limit 1672e-006	dence Interval Upper Conf. Limit 1.28353e-005
has no sta	ndard error.					
	Anal	ysis of De	eviance Tabl	e		
Model Full model Fitted model Reduced model	-102.1 -105.1	179 254	5 1 6	iance Test .15087 18.923		ue .1882 0001
AIC:	212.1	909				
		Good	lness of F	it		
Dose E	—	Expected	Observed	Size	Scaled Residual	_
25.0000 2554.0000 11724.0000 31225.0000 116950.0000 Chi^2 = 6.38	0.0003 0.0260 0.1140 0.2756 0.7011	0.017 1.432 6.271 15.159 45.571	$\begin{array}{c} 0.000\\ 2.000\\ 4.000\\ 22.000\\ 42.000\end{array}$	65.000 55.000 55.000 55.000 65.000	-0.130 0.481 -0.964 2.065	
Benchmark Do	se Computation	n				
Specified effec	t =	0.1				
Risk Type	= Extra	a risk				
Confidence leve	1 =	0.95				
BM	D = 102	203.4				

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

Total number of parameters in model = 3

Total number Degree of pol		parameters	= 0			
Maximum number Relative Func Parameter Con	r of iteratic tion Converge	nce has bee		1e-008		
	Default I Backgr	nitial Para ound = a(1) = 1.86	meter Val	ues		
	Bet	a(2) = -8.0	4616e-011			
Asy	mptotic Corre	lation Matr	ix of Para	ameter Estima	ates	
(*		estimated a	t a bound			specified by the user,
	Beta(1)	Beta(2)				
Beta(1)	1	-0.92				
Beta(2)	-0.92	1				
		Param	eter Esti	mates		
				95	.0% Wald Con	fidence Interval
Variabl Backgroun		imate 0	Std. Er:	r. Lower NA	Conf. Limit	Upper Conf. Limit
Beta(1 Beta(2			.17421e-0 .13141e-0		72109e-006 03347e-010	2.01637e-005 1.94016e-011
	y some inequa andard error.	lity constr	aint and	thus		
	Ana	lysis of De	viance Tal	ble		
Model Full mode	-	.ihood) # F 2.179	aram's Do 5	eviance Tes	td.f. P-v	alue
Fitted mode Reduced mode		4.28	2 1	4.20197 118.923	3 4	0.2405 <.0001
AIC		.2.56	÷	110.925	-	
AIC	. 21	2.50				
		G = - 1				
			lness of		Scaled	
	EstProb. 				Residua	1
25.0000 2554.0000	0.0003 0.0347	0.023 1.909	0.000 2.000	65.000 55.000	-0.151 0.067	
31225.0000	0.1459 0.3259	8.024 17.926	22.000	55.000 55.000	-1.537 1.172	
116950.0000	0.6523	42.401	42.000	65.000	-0.104	
Chi^2 = 3.77	d.f. = 3	P-v	alue = 0.	2869		
Benchmark D	ose Computati	.on				
Specified effe	ct =	0.1				
Risk Type	= Ext	ra risk				
			(821		

```
Confidence level = 0.95

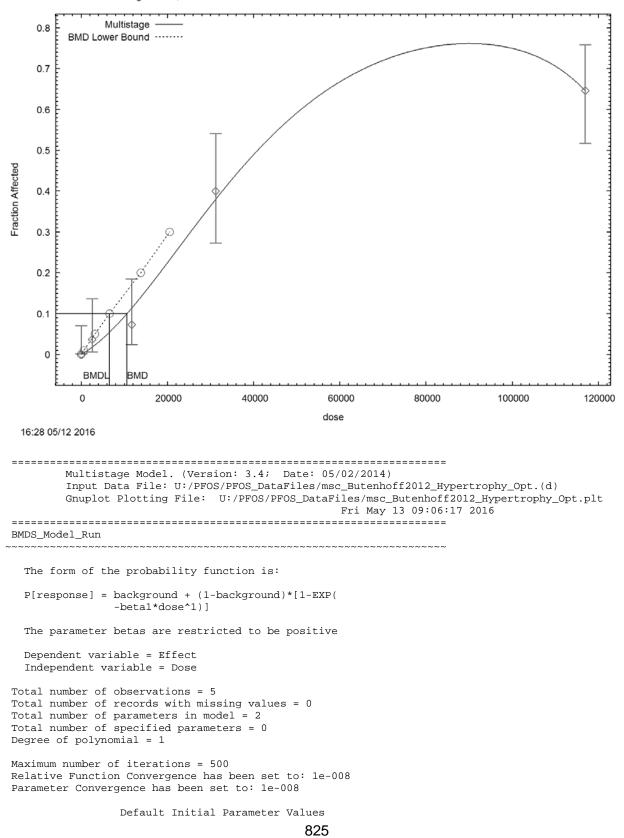

BMD = 7737.04

BMDL = 5485.69

BMDU = 11384.9

Taken together, (5485.69, 11384.9) is a 90 % two-sided confidence

interval for the BMD
```

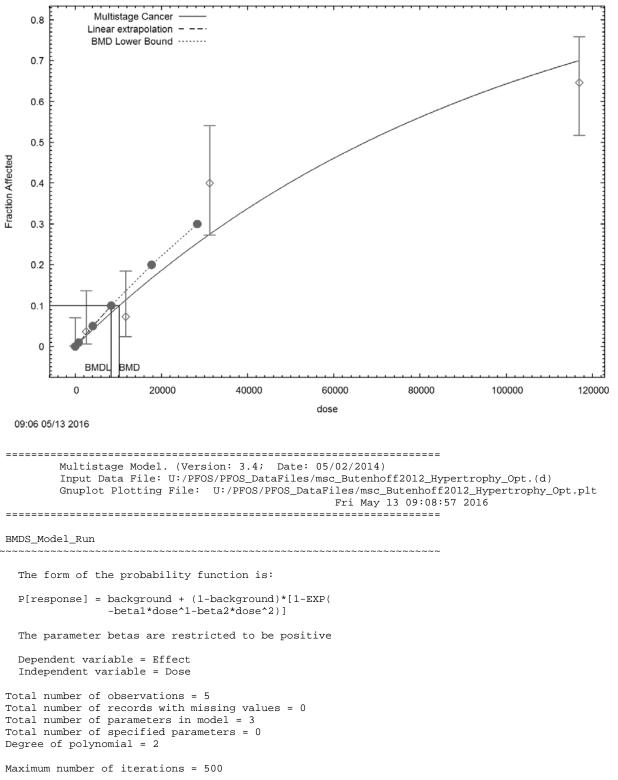


Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:26 05/12 2016

```
_____
        Multistage Model. (Version: 3.4; Date: 05/02/2014)
        Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
        Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
                                               Thu May 12 16:28:22 2016
 _____
BMDS Model Run
            The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
               -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are not restricted
  Dependent variable = Effect
  Independent variable = Dose
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                   Background = 0.0157298
                     Beta(1) = -2.38607e-006
                     Beta(2) = 7.60553e-010
                     Beta(3) = -5.6892e-015
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
              Beta(1)
                          Beta(2)
                                     Beta(3)
  Beta(1)
                   1
                            -0.85
                                         0.8
  Beta(2)
                -0.85
                               1
                                        -0.99
  Beta(3)
                0.8
                            -0.99
                                           1
                             Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                     Estimate
                                   Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
    Background
                          0
                                         NA
                  6.05017e-006
                                 4.84163e-006
                                                  -3.43925e-006
                                                                     1.55396e-005
       Beta(1)
       Beta(2)
                 3.95687e-010
                                 2.64238e-010
                                                  -1.22209e-010
                                                                     9.13584e-010
       Beta(3)
                 -3.17562e-015
                                 1.97114e-015
                                                  -7.03899e-015
                                                                     6.87746e-016
NA - Indicates that this parameter has hit a bound
    implied by some inequality constraint and thus
    has no standard error.
                     Analysis of Deviance Table
                Log(likelihood) # Param's Deviance Test d.f. P-value
      Model
    Full model
                    -102.179
                                    5
  Fitted model
                    -103.159
                                    3
                                           1,96035
                                                       2
                                                                 0.3752
 Reduced model
                     -161.64
                                   1
                                           118.923
                                                      4
                                                                <.0001
```

A	IC:	212.318			
		Goo	dness of F	it	
Dose	EstProb	. Expected	Observed	Size	Scaled Residual
2554.0000 11724.0000 31225.0000	0.0178 0.1133 0.3800	$\begin{array}{c} 0.010\\ 0.980\\ 6.229\\ 20.900\\ 42.023\end{array}$	2.000 4.000 22.000	55.000 55.000 55.000	1.040 -0.949 0.306
Benchmark	Dose Comput				
Specified ef Risk Type					
Confidence 1					
	BMD =	10641.2			
	BMDL =	6596.3			
	BMDU =	16808.1			
Taken togeth	er, (6596.3	, 16808.1) is	a 90 %	two-sided	confidence

interval for the BMD

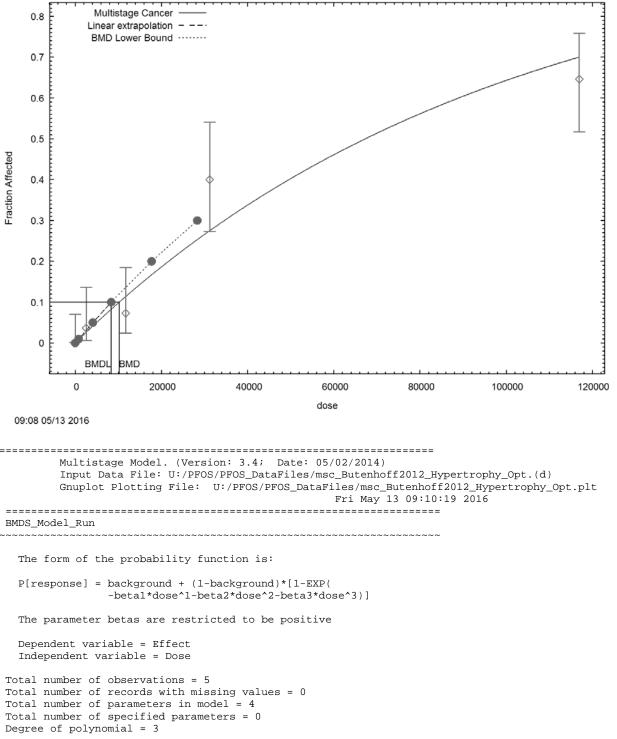

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

	Background = Beta(1) = 8.							
Asymptotic Correlation Matrix of Parameter Estimates								
(***	The model parameter have been estimated and do not appear i	at a boundar	y point, or		ecified by the user,			
E	Beta(1)							
Beta(1)	1							
	Par	ameter Estima	tes					
					dence Interval			
Variable Background Beta(1)	0	Std. Err. NA 1.28026e-006			Upper Conf. Limit 1.28353e-005			
	nat this parameter h some inequality cons	as hit a boun	d					
	Analysis of	Deviance Tabl	e					
Model	Log(likelihood) #		iance Test	d.f. P-val	ue			
Full model Fitted model	-105.254	5 1 6	.15087 18.923	4 0 4 <.	.1882			
Reduced model		1 1	18.923	4 <.	1000			
AIC:	212.509							
		odness of F		Scaled				
Dose Est	Prob. Expected			Residual	-			
	0003 0.017 0260 1.432	0.000 2.000		-0.130 0.481				
		4.000 22.000	55.000 55.000	-0.964 2.065				
		42.000	65.000	-0.968				
Chi^2 = 6.38	d.f. = 4 P	-value = 0.17	28					
Benchmark Dose	e Computation							
Specified effect	= 0.1							
Risk Type	= Extra risk							
Confidence level	= 0.95							
BMD	= 10203.4							
BMDL	= 8368.92							
BMDU	= 12592							
Taken together, (8368.92, 12592) i	sa90 %	two-sided co	onfidence				

```
interval for the BMD
Cancer Slope Factor = 1.1949e-005
```

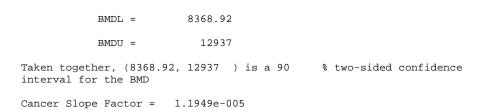
1 2 3

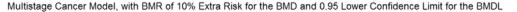
Multistage Cancer Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

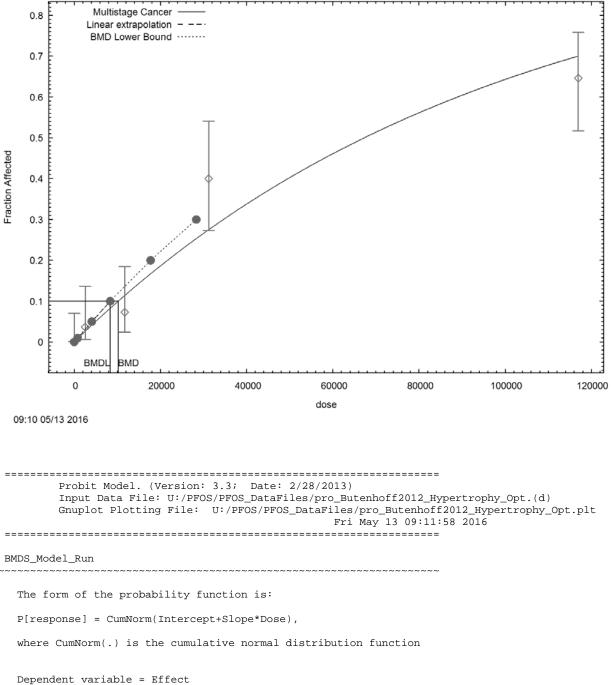


Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0432491 Beta(1) = 8.87016e-006Beta(2) =0 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(2) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(1) Beta(1) 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA 7.81673e-006 1.28353e-005 Beta(1) 1.0326e-005 1.28026e-006 Beta(2) 0 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -102.179 Full model 5 Fitted model -105.254 1 6.15087 0.1882 4 <.0001 118.923 Reduced model -161.64 1 4 212.509 AIC: Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ 25.00000.00030.0170.00065.000-0.1302554.00000.02601.4322.00055.0000.4811724.00000.11406.2714.00055.000-0.9641225.00000.275615.15922.00055.0002.06516950.00000.701145.57142.00065.000-0.968 2554.0000 0.0260 11724.0000 31225.0000 116950.0000 -0.968 $Chi^{2} = 6.38$ d.f. = 4 P-value = 0.1728 Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 BMD = 10203.4 BMDL = 8368.92

BMDU = 12937 Taken together, (8368.92, 12937) is a 90 % two-sided confidence interval for the BMD

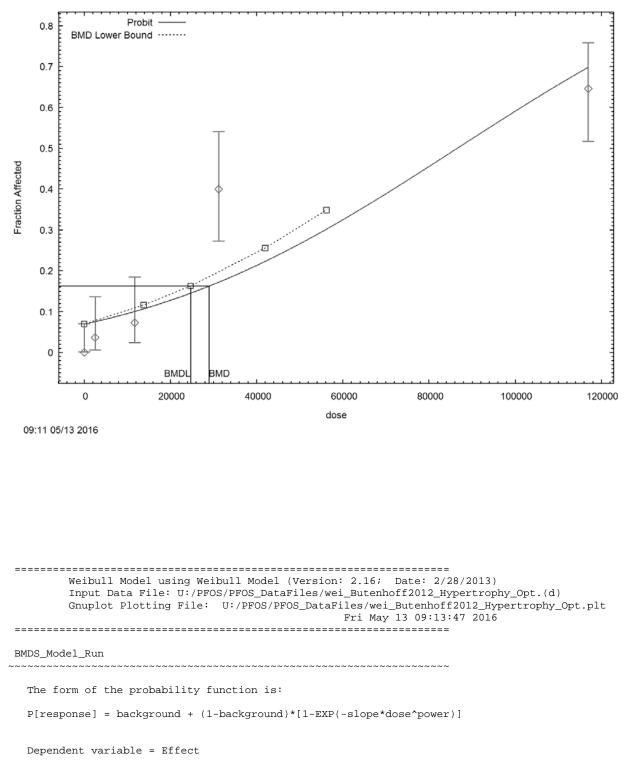

Cancer Slope Factor = 1.1949e-005


Multistage Cancer Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL



Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0432491 Beta(1) = 8.87016e-006Beta(2) = 0 Beta(3) =0 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(2) -Beta(3) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(1) Beta(1) 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA 1.0326e-005 1.28026e-006 7.81673e-006 1.28353e-005 Beta(1) Beta(2) 0 NA Beta(3) 0 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -102.179 5 Fitted model -105.254 1 6.15087 4 0.1882 Reduced model -161.64 1 118.923 4 <.0001 AIC: 212.509 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ $\begin{array}{cccccccc} 0.017 & 0.000 & 65.000 \\ 1.432 & 2.000 & 55.000 \\ 6.271 & 4.000 & 55.000 \\ 15.159 & 22.000 & 55.000 \\ 45.571 & 42.000 & 65.000 \end{array}$ 25.00000.0003554.00000.0260 -0.130 2554.0000 0.481 11724.0000 0.1140 -0.964 31225.00000.2756116950.00000.7011 2.065 -0.968 d.f. = 4 P-value = 0.1728 $Chi^{2} = 6.38$ Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 10203.4 BMD =

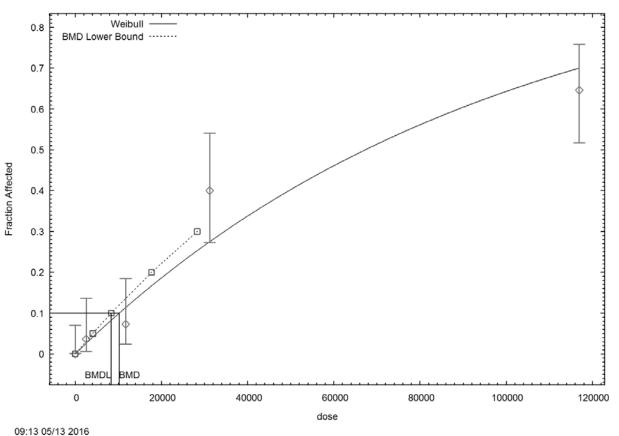
830



Independent variable = Dose

Slope parameter is not restricted Total number of observations = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values background = 0 Specified intercept = -1.93881 slope = 2.18876e-005 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope 1 -0.7 intercept slope -0.7 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -1.47696 -1.733 0.130632 -1.22093 intercept 1.70641e-005 1.89166e-006 1.33565e-005 2.07717e-005 slope Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -102.179 5 Fitted model -116.1922 28.0266 3 3.5857184e-006 Reduced model -161.64 1 118.923 4 <.0001 AIC: 236.384 Goodness of Fit Scaled Est._Prob. Expected Observed Dose Size Residual _____ 0.00065.0002.00055.0004.00055.00022.00055.00042.00065.000 0.0699 25.0000 4.543 -2.2102554.0000 0.0759 4.173 -1.1070.1008 11724.0000 5.545 -0.692 31225.0000 0.1725 9.490 4.464 116950.0000 0.6980 45.371 65.000 -0.911 P-value = 0.0000 $Chi^2 = 27.35$ d.f. = 3 Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk

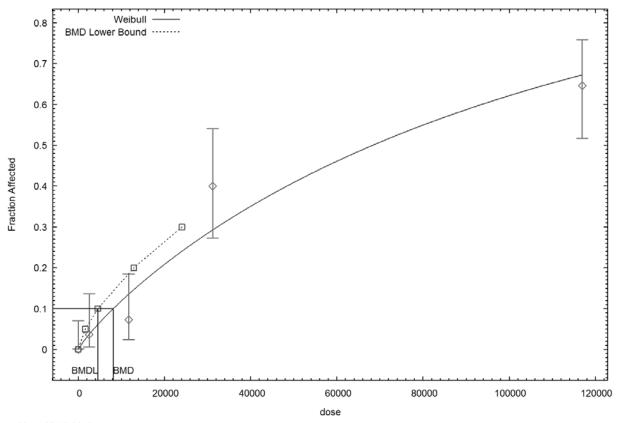
Confidence level = 0.95 BMD = 28960.6 BMDL = 24709.5


Probit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL


```
Independent variable = Dose
  Power parameter is restricted as power >= 1.000000
  Total number of observations = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                 Default Initial (and Specified) Parameter Values
                    Background = 0.00746269
                        Slope = 8.71439e-006
                        Power =
                                          1
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background
                                                     -Power
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                 Slope
    Slope
                    1
                               Parameter Estimates
                                                      95.0% Wald Confidence Interval
      Variable
                      Estimate
                                      Std. Err.
                                                  Lower Conf. Limit Upper Conf. Limit
    Background
                            0
                                           NA
                    1.0326e-005
                                   1.28026e-006
                                                      7.81673e-006 1.28353e-005
         Slope
         Power
                             1
                                            NA
NA - Indicates that this parameter has hit a bound
    implied by some inequality constraint and thus
    has no standard error.
                      Analysis of Deviance Table
                 Log(likelihood) # Param's Deviance Test d.f. P-value
      Model
    Full model
                     -102.179
                                      5
  Fitted model
                     -105.254
                                      1
                                             6.15087
                                                                    0.1882
                                                         4
                                      1
                                             118.923
 Reduced model
                      -161.64
                                                         4
                                                                   <.0001
          ATC:
                      212.509
                                Goodness of Fit
                                                             Scaled
    Dose
           Est._Prob. Expected
                                     Observed
                                                 Size
                                                            Residual
                                     _____
  25.0000 0.0003
                       0.017
                                                           -0.130
                                   0.000 65.000
 2554.0000
              0.0260
                            1.432
                                     2.000
                                                55.000
                                                             0.481
                                             55.000
11724.0000
                                                            -0.964
             0.1140
                            6.271
                                     4.000
                                                            2.065
31225.0000
            0.2756
                           15.159
                                     22.000
                                               55.000
116950.0000
              0.7011
                           45.571
                                    42.000
                                                65.000
                                                             -0.968
                d.f. = 4 P-value = 0.1728
Chi^{2} = 6.38
  Benchmark Dose Computation
Specified effect =
                            0.1
```

Risk Type	=	Extra risk
Confidence level	=	0.95
BMD	=	10203.4
BMDL	=	8368.92

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL


10

_____ Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.plt Fri May 13 09:14:45 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-slope*dose^power)] Dependent variable = Effect Independent variable = Dose Power parameter is not restricted Total number of observations = 5Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00746269 Slope = 0.000498189 Power = 0.653284 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Slope Power Slope 1 -1 -1 Power 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. Background 0 NA Slope 3.61268e-005 4.82997e-005 -5.85389e-005 0.000130793 Power 0.886429 0.1213 0.648686 1.12417 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 Fitted model -104.841 2 5.32319 3 0.1496 Reduced model -161.64 1 118.923 4 <.0001

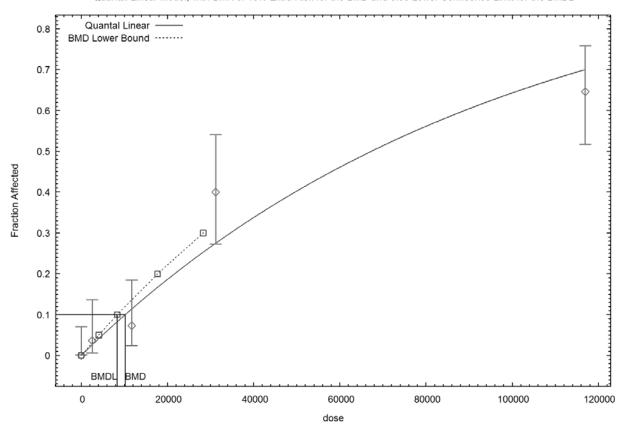
A	IC: 2	13.681			
Goodness of Fit Dose EstProb. Expected Observed Size					Scaled
Dose	EstProb.	Expected	Observed	Size	Residual
2554.0000 11724.0000 31225.0000 116950.0000 Chi^2 = 5.1	0.0006 0.0371 0.1360 0.2941 0.6746 3 d.f. =	2.043 7.478 16.174 43.848 3 P-1	22.000 42.000	55.000 55.000 55.000 65.000	1.724
benefinder bose completeton					
Specified ef	fect =	0.1			
Risk Type	= E:	xtra risk			
Confidence l	evel =	0.95			
	BMD =	8105.33			

4571.23

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:14 05/13 2016

BMDL =


_____ Quantal Linear Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/qln_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/qln_Butenhoff2012_Hypertrophy_Opt.plt Fri May 13 09:16:10 2016 _____ BMDS_Model_Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-slope*dose)] Dependent variable = Effect Independent variable = Dose Total number of observations = 5 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00746269 Slope = 8.71439e-006Power = Specified 1 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Slope Slope 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA Slope 1.0326e-005 1.28026e-006 7.81673e-006 1.28353e-005 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.1795 Fitted model 6.15087 -105.254 1 4 0.1882 118.923 4 <.0001 Reduced model -161.64 1 AIC: 212.509

		Good	lness of F	it	Scaled	
Dose	EstProb.	Expected	Observed	Size	Residual	
2554.0000 11724.0000 31225.0000	0.0260 0.1140 0.2756		2.000 4.000 22.000	55.000 55.000 55.000	0.481 -0.964 2.065	
	Chi^2 = 6.38 d.f. = 4 P-value = 0.1728 Benchmark Dose Computation					
Specified eff	lect =	0.1				
Risk Type	= E	Extra risk				
Confidence le	evel =	0.95				
	BMD =	10203.4				

8368.92

BMDL =

Quantal Linear Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:16 05/13 2016

Dong *et al.* (2009) Benchmark Dose Analysis - Relative Liver Weight BMR = 10% Relative Deviation

Pages	Model	Variance	Beta/Power/Slope	Distribution	Poly	Chi- square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
2-5	Exponential (Model 4) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	< 0.0001	-90.65	10,534.5	10,159.5
6-9	Exponential (Models 2&3) ^a	Not Constant	Restrict Power ≥ 1	Normal	-	< 0.0001	-95.17	15,553.5	15,217.0
10-13	Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	_	< 0.0001	- 323.09	10,557.7	9,399.3
14-17	Exponential (Model 4)	Not Constant	Restrict Power ≥ 1	Lognormal	-	< 0.0001	- 323.09	10,557.7	9,399.3
-	Hill ^b	-	-	-	-	-	-	-	-
18-19	Linear ^a	Constant (Rho=0)	-	-	1st	< 0.0001	-92.66	10,535.0	10,160.0
20-21	Linear ^a	Not Constant	-	-	1st	< 0.0001	-94.18	10,585.3	10,175.0
22-24	Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	-96.06	12,122.8	10,904.9
25-27	Polynomial	Constant (Rho=0)	-	-	3rd	0.84	- 165.53	6,086.2	5,584.3
28-30	Polynomial ^a	Not Constant	-	_	2nd	< 0.0001	-95.53	13,461.1	11,093.4
31-33	Polynomial	Not Constant	-	-	3rd	0.84	- 163.56	6,085.3	5,586.7
34-36	Power ^a	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	-90.89	11,158.7	10,176.7
37-39	Power ^a	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	-94.18	10,585.3	10,175.0
40-42	Power ^a	Constant (Rho=0)	No Power Restriction	-	-	< 0.0001	-90.89	11,158.7	9,085.9
43-45	Power ^a	Not Constant	No Power Restriction	_	-	< 0.0001	- 106.45	6,209.8	5,121.9

a. *P*-values are less than 0.1. Scaled residuals for one or more doses/serum concentrations were > |2|.

b. Model failed because of unequal variance in response.

1

234567890123

```
Exponential Model. (Version: 1.10; Date: 01/12/2015)
       Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d)
       Gnuplot Plotting File:
                                            Tue Jan 17 10:02:20 2017
BMDS Model Run
The form of the response function by Model:
  Model 2: Y[dose] = a * exp{sign * b * dose}
               Y[dose] = a * exp\{sign * (b * dose)^d\}
    Model 3:
   Model 5:T[dose] = a + exp{sign + (b + dose) d}Model 4:Y[dose] = a + [c-(c-1) + exp{-b + dose]Model 5:Y[dose] = a + [c-(c-1) + exp{-(b + dose)^d}]
  Note: Y[dose] is the median response for exposure = dose;
       sign = +1 for increasing trend in data;
       sign = -1 for decreasing trend.
    Model 2 is nested within Models 3 and 4.
    Model 3 is nested within Model 5.
    Model 4 is nested within Model 5.
 Dependent variable = Mean
 Independent variable = Dose
 Data are assumed to be distributed: normally
 Variance Model: exp(lnalpha +rho *ln(Y[dose]))
 rho is set to 0.
 A constant variance model is fit.
 Total number of dose groups = 6
 Total number of records with missing values = 0
 Maximum number of iterations = 500
 Relative Function Convergence has been set to: 1e-008
 Parameter Convergence has been set to: 1e-008
 MLE solution provided: Exact
                           Initial Parameter Values
                                                                   Model 5
                 Model 2
   Variable
                                   Model 3
                                                    Model 4
                  -3.93121
   _____
                                    _____
                                                     _____
                                                     -3.93121
                                   -3.93121
                                                                      -3.93121
   lnalpha
                                                 0 *
4.9115
1.09401e-006
11.6767
                                                                          0 *
    rho
                    0 *
                                    0 *
                                 5.39611
                  5.39611
                                                                       4.9115
        а
        b
               6.3622e-006
                                 6.3622e-006
                                                                   1.09401e-006
                    0 *
                                 0 *
        С
                                                                   11.6767
                       1 *
                                                         1 *
        d
                                         1
                                                                            1
   * Indicates that this parameter has been specified
                         Parameter Estimates by Model
                  Model 2
   Variable
                                    Model 3
                                                   Model 4
                                                                     Model 5
   _____
                                                     _____
                   _____
                                     _____
                                                                      _____
   lnalpha
                   -2.5553
                                    -2.5553
                                                    -2.64421
                                                                      -2.64818
                    0 *
                                     0 *
                                                 5.27813
                                                     0 *
                                                                      0 *
     rho
               5.43715
                                                                   5.29708
                                 5.43715
        a
b
             6.21968e-006
                               6.21968e-006
                                                8.74416e-010
                                                                  6.24887e-010
                                                 10857
                                                                     18764.2
                   --
        С
                     ___
                                        1
        d
                                                                       1.02264
                                                        --
  -- Indicates that this parameter does not appear in model
```

* Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	3.20663e-152	0.0141804	0.0129742	0.0129227
rho	NA	NA	NA	NA
a	0.0429546	0.0429546	0.044434	0.0587216
b	9.57868e-008	9.57868e-008	1.41099e-008	1.43594e-008
c	NA	NA	175167	440750
d	NA	NA	NA	0.0470605

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

	Obs Mean	Obs Std Dev
	5.17	0.12
	5.21	0.17
	5.78	0.13
10	6.67	0.11
10	8.17	0.21
10	11.47	0.12
	10	5.17 5.21 5.78 10 6.67 10 8.17

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	48	5.439	0.2787	-3.05
	674	5.46	0.2787	-2.837
	7132	5.684	0.2787	1.092
2.1	64e+004	6.22	0.2787	5.101
6.5	43e+004	8.168	0.2787	0.02644
1.2	07e+005	11.52	0.2787	-0.528
3	48	5.439	0.2787	-3.05
	674	5.46	0.2787	-2.837
	7132	5.684	0.2787	1.092
2.1	64e+004	6.22	0.2787	5.101
6.5	43e+004	8.168	0.2787	0.02644
1.2	07e+005	11.52	0.2787	-0.528
4	48	5.281	0.2666	-1.311
	674	5.312	0.2666	-1.209
	7132	5.635	0.2666	1.715
2.1	64e+004	6.362	0.2666	3.651
6.5	43e+004	8.556	0.2666	-4.58
1.2	07e+005	11.32	0.2666	1.735
5	48	5.299	0.266	-1.534
	674	5.327	0.266	-1.392
	7132	5.632	0.266	1.757
2.1	64e+004	6.34	0.266	3.926
6.5	43e+004	8.53	0.266	-4.275
1.2	07e+005	11.34	0.266	1.519

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	87.93617	7	-161.8723
A2	91.36709	12	-158.7342
A3	87.93617	7	-161.8723
R	-77.86119	2	159.7224
2	46.65895	3	-87.31791
3	46.65895	3	-87.31791
4	49.32627	4	-90.65254
5	49.44547	5	-88.89094

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs. 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2) Test 6a: Does Model 4 fit the data? (A3 vs 4)

Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	338.5	10	< 0.0001
Test 2	6.862	5	0.2311
Test 3	6.862	5	0.2311
Test 4	82.55	4	< 0.0001
Test 5a	82.55	4	< 0.0001
Test 5b	-7.441e-011	0	N/A
Test 6a	77.22	3	< 0.0001
Test 6b	5.335	1	0.02091
Test 7a	76.98	2	< 0.0001
Test 7b	5.573	2	0.06164
Test 7c	0.2384	1	0.6254

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled

variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model 4.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	15324	14941
3	15324	14941
4	10534.5	10159.5
5	11159	10176.5

Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 10:10:43 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: Y[dose] = a * exp{sign * b * dose} $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 4: Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Exact Initial Parameter Values Model 2 Variable Model 3 Model 4 Model 5 _____ _____ _____ _____ lnalpha -3.94818 -3.94818 -3.94818 -3.94818 0.00416179 0.00416179 0.00416179 0.00416179 rho 5.39611 5.39611 4.9115 4.9115 а 1.09401e-006 b 6.3622e-006 6.3622e-006 1.09401e-006 0 * 0 * 11.6767 С 11.6767 1 * d 1 * 1 * Indicates that this parameter has been specified Parameter Estimates by Model Variable Model 2 Model 4 Model 5 Model 3 _____ ____ _____ 2.63812 2.63812 -5.65148 -5.65237 lnalpha -2.78895 -2.78895 1.53982 rho 1.54029 a b 5.47838 5.47838 5.2844 5.28439 6.12788e-006 6.12788e-006 1.04996e-009 1.64997e-009 --С --8999.06 5727.1 1 d _ _ _ _

-- Indicates that this parameter does not appear in model

123456789012345

1

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	1.48266	1.60768	1.61535
rho	NA	0.763955	0.834182	0.838265
a	NA	0.0471546	0.0377385	0.0377831
b	NA	8.06043e-008	4.29893e-008	1.13047e-007
C	NA	NA	368392	392284
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N		Obs Mean	Obs Std Dev
48	10		5.17	0.12
674	10		5.21	0.17
7132	10		5.78	0.13
2.164e+	004	10	6.67	0.11
6.543e+	004	10	8.17	0.21
1.207e+	005	10	11.47	0.12

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	48	5.48	0.3489	-2.81
	674	5.501	0.347	-2.652
	7132	5.723	0.3284	0.5478
2.1	64e+004	6.255	0.2901	4.522
6.5	43e+004	8.18	0.1995	-0.1638
1.2	07e+005	11.48	0.1245	-0.1535
3	48	5.48	0.3489	-2.81
	674	5.501	0.347	-2.652
	7132	5.723	0.3284	0.5478
2.1	64e+004	6.255	0.2901	4.522
6.5	43e+004	8.18	0.1995	-0.1638
1.2	07e+005	11.48	0.1245	-0.1535
4	48	5.287	0.2136	-1.729
	674	5.318	0.2146	-1.592
	7132	5.64	0.2245	1.965
2.1	64e+004	6.365	0.2464	3.919
6.5	43e+004	8.551	0.3093	-3.892
1.2	07e+005	11.31	0.3836	1.332
5	48	5.287	0.2136	-1.729
	674	5.318	0.2146	-1.592
	7132	5.64	0.2245	1.965
2.1	64e+004	6.365	0.2464	3.919
6.5	43e+004	8.551	0.3093	-3.892
1.2	07e+005	11.31	0.3836	1.332

Other models for which likelihoods are calculated:

Model	A1:	Yij = Var{e(ij)} =		Mu(i) + e(ij) Sigma^2
Model	A2:	Yij = Var{e(ij)} =		Mu(i) + e(ij) Sigma(i)^2
Model	A3:	5		Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model	R:	Yij =	=	Mu + e(i)

Var{e(ij)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	87.93617	7	-161.8723
A2	91.36709	12	-158.7342
A3	87.9594	8	-159.9188
R	-77.86119	2	159.7224
2	51.58325	4	-95.16651
3	51.58325	4	-95.16651
4	51.09213	5	-92.18426
5	51.09196	5	-92.18393

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test -2*log(Likelihood Ratio)		D. F.	p-value
 Test 1	338.5	10	< 0.0001
Test 2	6.862	5	0.2311
Test 3	6.815	4	0.146
Test 4	72.75	4	< 0.0001
Test 5a	72.75	4	< 0.0001
Test 5b	-7.503e-012	0	N/A
Test 6a	73.73	3	< 0.0001
Test 6b	-0.9822	1	N/A
Test 7a	73.73	3	< 0.0001
Test 7b	-0.9826	1	N/A
Test 7c	-0.0003348	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	15553.5	15217
3	15553.5	15217
4	10584.8	10174.4
5	10584.4	10174.1

_____ Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 10:13:49 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Calculated Median Independent variable = Dose Data are assumed to be distributed: lognormally Variance Model: Log-scale variance = exp(lnalpha) rho is set to 0. A constant log-scale variance model is fit. Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Approximate Initial Parameter Values Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ lnalpha -7.65737 -7.65737 -7.65737 -7.65737 0 * 0 * 0 * 0 * rho 5.3943 4.91018 5.3943 a 4.91018 3.6257e-006 4.67167 6.3642e-006 6.3642e-006 b 3.6257e-006 0 * 0 * 4.67167 С 1 * 1 * d 1 * Indicates that this parameter has been specified Parameter Estimates by Model Variable Model 2 Model 3 Model 4 Model 5

lnalpha	-6.17123	-6.17123	-6.51819	-6.51816
rho	0 *	0 *	0 *	0 *
a	5.3943	5.3943	5.27911	5.2783
b	6.3642e-006	6.3642e-006	3.68053e-008	8.96714e-008
С			258.398	106.958
d		1		1

-- Indicates that this parameter does not appear in model

* Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
С	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Calo	c'd Median	Calc'd GSD	
		-			-
48	10		5.169	1.023	
674	10		5.207	1.033	
7132	10		5.779	1.023	
2.164e+	004	10	6.669	1.017	
6.543e+	004	10	8.167	1.026	
1.207e+	005	10	11.47	1.011	

Estimated Values of Interest

Model Dose	Est Median	Est GSD	Scaled Residual
2 48 674	5.396 5.417	1.047 1.047	-0.6868 -0.6352
7132	5.645	1.047	0.4041
2.164e+004	6.191	1.047	1.445
6.543e+004	8.18	1.047	-0.03923
1.207e+004	11.63	1.047	-0.4755
3 48	5.396	1.047	-0.6868
674	5.417	1.047	-0.6352
7132	5.645	1.047	0.4041
2.164e+004	6.191	1.047	1.445
6.543e+004	8.18	1.047	-0.03923
1.207e+005	11.63	1.047	-0.4755
4 48	5.282	1.039	-0.3436
674	5.313	1.039	-0.3213
7132	5.636	1.039	0.4345
2.164e+004	6.361	1.039	0.938
6.543e+004	8.547	1.039	-1.156
1.207e+005	11.3	1.039	0.5132
5 48	5.281	1.039	-0.3411
674	5.312	1.039	-0.3191
7132	5.636	1.039	0.4342
2.164e+004	6.362	1.039	0.9332
6.543e+004	8.55	1.039	-1.164
1.207e+005	11.3	1.039	0.5232

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma(i)^2

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
```

Model R: Yij = Mu + e(i) Var{e(ij)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
Al	199.7212	7	-385.4425
A2	206.2318	12	-388.4635
A3	199.7212	7	-385.4425
R	45.58656	2	-87.17312
2	155.1368	3	-304.2737
3	155.1368	3	-304.2737
4	165.5457	4	-323.0914
5	165.5449	4	-323.0898

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	321.3	10	< 0.0001
Test 2	13.02	5	0.02318
Test 3	13.02	5	0.02318
Test 4	89.17	4	< 0.0001
Test 5a	89.17	4	< 0.0001
Test 5b	-1.097e-011	0	N/A
Test ба	68.35	3	< 0.0001
Test 6b	20.82	1	< 0.0001
Test 7a	68.35	3	< 0.0001
Test 7b	20.82	1	< 0.0001
Test 7c	-0.00162	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	14976	14468.8
3	14976	14468.8
4	10557.7	9399.27
5	10529.7	9398.94

_____ Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 10:16:21 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 4: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Calculated Median Independent variable = Dose Data are assumed to be distributed: lognormally Variance Model: Log-scale variance = exp(lnalpha) rho is set to 0. A constant log-scale variance model is fit. Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Approximate Initial Parameter Values Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ lnalpha -7.65737 -7.65737 -7.65737 -7.65737 0 * 0 * 0 * 0 * rho 5.3943 4.91018 5.3943 а 4.91018 3.6257e-006 4.67167 6.3642e-006 6.3642e-006 3.6257e-006 b 0 * 0 * 4.67167 С 1 * 1 * d 1 * Indicates that this parameter has been specified Parameter Estimates by Model Variable Model 2 Model 3 Model 4 Model 5

lnalpha	-6.17123	-6.17123	-6.51819	-6.51816
rho	0 *	0 *	0 *	0 *
a	5.3943	5.3943	5.27911	5.2783
b	6.3642e-006	6.3642e-006	3.68053e-008	8.96714e-008
С			258.398	106.958
d		1		1

-- Indicates that this parameter does not appear in model

* Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
С	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Calc'd Median		Calc'd GSD	
		-			-
48	10	5.169		1.023	
674	10	5.207		1.033	
7132	10	5.779		1.023	
2.164e+	004	10	6.669	1.017	
6.543e+	004	10	8.167	1.026	
1.207e+005 10		10	11.47	1.011	

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	48	5.396	1.047	-0.6868
	674	5.417	1.047	-0.6352
	7132	5.645	1.047	0.4041
	64e+004	6.191	1.047	1.445
6.5	43e+004	8.18	1.047	-0.03923
1.2	07e+005	11.63	1.047	-0.4755
3	48	5.396	1.047	-0.6868
	674	5.417	1.047	-0.6352
	7132	5.645	1.047	0.4041
2.1	64e+004	6.191	1.047	1.445
6.5	43e+004	8.18	1.047	-0.03923
1.2	07e+005	11.63	1.047	-0.4755
4	48	5.282	1.039	-0.3436
	674	5.313	1.039	-0.3213
	7132	5.636	1.039	0.4345
2.1	64e+004	6.361	1.039	0.938
6.5	43e+004	8.547	1.039	-1.156
1.2	07e+005	11.3	1.039	0.5132
5	48	5.281	1.039	-0.3411
	674	5.312	1.039	-0.3191
	7132	5.636	1.039	0.4342
2.1	64e+004	6.362	1.039	0.9332
6.5	43e+004	8.55	1.039	-1.164
1.2	07e+005	11.3	1.039	0.5232

Other models for which likelihoods are calculated:

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
```

Model R: Yij = Mu + e(i) Var{e(ij)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	199.7212	7	-385.4425
A2	206.2318	12	-388.4635
A3	199.7212	7	-385.4425
R	45.58656	2	-87.17312
2	155.1368	3	-304.2737
3	155.1368	3	-304.2737
4	165.5457	4	-323.0914
5	165.5449	4	-323.0898

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs 3) Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	321.3	10	< 0.0001
Test 2	13.02	5	0.02318
Test 3	13.02	5	0.02318
Test 4	89.17	4	< 0.0001
Test 5a	89.17	4	< 0.0001
Test 5b	-1.097e-011	0	N/A
Test ба	68.35	3	< 0.0001
Test 6b	20.82	1	< 0.0001
Test 7a	68.35	3	< 0.0001
Test 7b	20.82	1	< 0.0001
Test 7c	-0.00162	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	14976	14468.8
3	14976	14468.8
4	10557.7	9399.27
5	10529.7	9398.94

Ing Gnu	ynomial Model. out Data File: plot Plotting	U:/PFOS/PFOS_ File: U:/PF(_DataFiles/lin_ DS/PFOS_DataFi	_DongEtAl2009_ _es/lin_DongEt Tue Jan 17 10:	Al2009_Liver_Opt.plt 23:32 2017
BMDS Model 3	Run	~~~~~~~~~~~	~~~~~~~~~~~~	~~~~~~~~~~~~	~~~
The form	of the response	e function is	:		
Y[dose] =	beta_0 + beta	_1*dose + bet	a_2*dose^2 + .		
Independe rho is se Signs of	variable = Mea nt variable = I t to 0 the polynomial t variance mode	Dose coefficients	are not restr	icted	
Total num Maximum n Relative	per of dose gro per of records umber of iterat Function Conver Convergence ha	with missing tions = 500 gence has be	en set to: 1e-	008	
	be	Initial Param alpha = rho = eta_0 = eta_1 = 5.010	0.0218 0 Spec 5.27814	ified	
А	symptotic Corre	elation Matri	x of Parameter	Estimates	
	*** The model have been	parameter(s) estimated at	-rho	int, or have k	peen specified by the us
	alpha	beta_0	beta_1		
alpha	1	1.1e-008	3.5e-009		
beta_0	1.1e-008	1	-0.63		
beta_1	3.5e-009	-0.63	1		
		Parame	ter Estimates		
bet	oha 0.0 a_0 5)71057 .27814	Std. Err. 0.0129732 0.044431 82158e-007		106 5.36523
Table o	f Data and Est:	imated Values	of Interest		
	N Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48 10 674 10	5.17 5.21	5.28 5.31	0.12 0.17	0.267 0.267	-1.31 -1.21 1.71

Model Descriptions for likelihoods calculated Model A1: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma^2 Yij = Mu(i) + e(ij) Model A2: Var{e(ij)} = Sigma(i)^2 Model A3: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$ Model A3 uses any fixed variance parameters that were specified by the user Model R: Yi = Mu + e(i)Var{e(i)} = Sigma^2 Likelihoods of Interest Model Log(likelihood) # Param's AIC -161.872349 Α1 87.936175 7 91.367090 12 -158.734179 Α2 7 A3 87.936175 -161.872349 fitted 49.328205 3 -92.656411 -77.861187 2 159.722374 R Explanation of Tests Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest Test -2*log(Likelihood Ratio) Test df p-value Test 1 338.457 10 <.0001 Test 2 6.86183 5 0.2311 Test 3 6.86183 5 0.2311 Test 4 77.2159 4 <.0001 The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 10535 BMDL = 10160

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:26:36 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.82585 rho = 0 $beta_0 = 5.27814$ $beta_1 = 5.01008e-005$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta 1 -0.99 0.0077 lalpha 1 -0.012 rho -0.99 1 -0.0081 0.013 beta_0 0.0077 -0.0081 1 -0.52-0.52 -0.0120.013 1 beta 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -8.79859 -2.50118 -5.64988 lalpha 1.60651 1.53899 0.833581 -0.0948016 3.17278 rho 0.0376651 5.21059 beta O 5.28442 5.35824 4.80583e-005 4.9922e-005 9.50874e-007 5.17857e-005 beta 1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. ____ ___ _____ _____ _____ _____ _____ 0.12 0.17 0.13 105.17105.21105.78 0.12 0.17 48 5.29 0.214 -1.735.64 674 0.215 -1.59 5.78 7132 0.225 1.97 6.36 6.67 8.17 0.11 0.246 0.21 0.309 0.12 0.383 3.92 -3.89 2.164e+004 10 6.543e+004 10 8.55 1.207e+005 10 0.12 11.5 11.3 1.33 Model Descriptions for likelihoods calculated

```
Model A1:
                Yij = Mu(i) + e(ij)
           Var{e(ij)} = Sigma^2
                 Yij = Mu(i) + e(ij)
Model A2:
          Var{e(ij)} = Sigma(i)^2
Model A3:
                  Yij = Mu(i) + e(ij)
          Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
     Model A3 uses any fixed variance parameters that
    were specified by the user
                  Yi = Mu + e(i)
Model R:
            Var{e(i)} = Sigma^2
                       Likelihoods of Interest
                       Log(likelihood)
            Model
                                         # Param's
                                                       AIC
                                          7
             Α1
                          87.936175
                                                    -161.872349
             A2
                          91.367090
                                              12
                                                    -158.734179
             A3
                          87.959403
                                               8
                                                    -159.918806
                          51.092424
                                                     -94.184848
         fitted
                                               4
                         -77.861187
                                               2
                                                     159.722374
              R
                   Explanation of Tests
Test 1: Do responses and/or variances differ among Dose levels?
          (A2 vs. R)
Test 2: Are Variances Homogeneous? (A1 vs A2)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)
 (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)
                     Tests of Interest
        -2*log(Likelihood Ratio) Test df
  Test
                                                    p-value
   Test 1
                       338.457
                                       10
                                                    <.0001
                       6.86183
                                                    0.2311
   Test 2
                                        5
   Test 3
                       6.81537
                                        4
                                                    0.146
   Test 4
                        73.734
                                        4
                                                    <.0001
The p-value for Test 1 is less than .05. There appears to be a
difference between response and/or variances among the dose levels
It seems appropriate to model the data
The p-value for Test 2 is greater than .1. Consider running a
homogeneous model
The p-value for Test 3 is greater than .1. The modeled variance appears
to be appropriate here
The p-value for Test 4 is less than .1. You may want to try a different
model
             Benchmark Dose Computation
Specified effect =
                             0.1
              =
Risk Type
                     Relative deviation
Confidence level =
                            0.95
                          10585.3
             BMD =
            BMDL =
                          10175
```

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:32:45 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0218 rho = 0 Specified beta_0 = 5.33405 $beta_1 = 4.32907e-005$ $beta_2 = 5.85061e-011$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha beta_0 beta 1 beta 2 1 -4.9e-008 -1.3e-008 1.7e-008 alpha -5e-008 beta_0 1 -0.61 0.48 beta_1 -2.3e-008 -0.61 1 -0.97 beta_2 2e-008 0.48 -0.97 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit alpha 0.0649369 0.0118558 0.0417 0.0881739 5.4292 beta_0 5.33405 0.0485464 5.2389

Table of Data and Estimated Values of Interest

4.32907e-005

5.85061e-011

beta_1

beta_2

862

3.74896e-005

1.02843e-011

4.90919e-005

1.06728e-010

2.95983e-006

2.46034e-011

Dose	Ν	Ok	os Mean	Est Me	an	Obs Std	Dev	Est Std	Dev	Scaled R	es.
48	10	5	.17	5.34		0.12		0.255		-2.06	
674	10	5	.21	5.36		0.17		0.255		-1.9	
7132	10	5	.78	5.65		0.13		0.255		1.67	
2.164e+0	04	10	6.67		6.3		0.11	().255		4.61
6.543e+0	04	10	8.17		8.42		0.21	().255		-3.06
1.207e+0	05	10	11.5		11.4		0.12	().255		0.746

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	52.030162	4	-96.060325
R	-77.861187	2	159.722374

Explanation of Tests

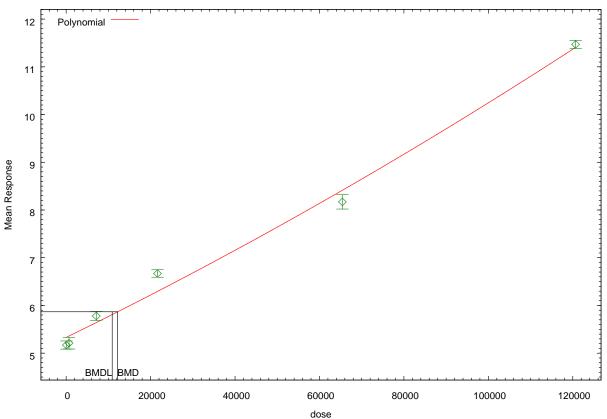
Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	71.812	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here


The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	12122.8
BMDL =	10904.9

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

23

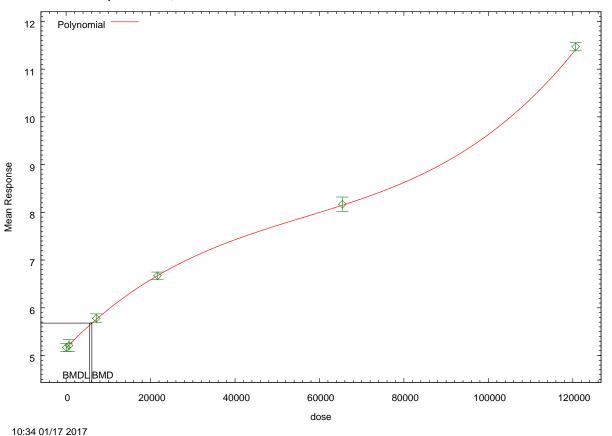
10:32 01/17 2017

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:34:56 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0218 rho = 0 Specified beta_0 = 5.16309 $beta_1 = 9.14981e-005$ $beta_2 = -1.13601e-009$ $beta_3 = 6.71994e-015$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 beta_2 beta_3 -1.4e-006 -2.6e-007 -1.8e-006 -2.4e-006 alpha 1 beta_0 4.8e-010 1 -0.64 0.53 -0.48 beta_1 -6.7e-011 -0.64 1 -0.97 0.93 -1.2e-011 0.53 -0.97 1 -0.99 beta 2 -7.8e-012 -0.48 0.93 -0.99 beta_3 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. 0.0267951 alpha 0.0197337 0.00360286 0.0126722 5.10335 5.16309 0.030477 5.22282 beta_0 4.42392e-006 9.14981e-005 8.28274e-005 0.000100169 beta_1 beta_2 -1.13601e-009 1.02789e-010 -1.33747e-009 -9.34542e-010 5.73204e-016 6.71994e-015 5.59649e-015 7.8434e-015 beta 3

-0.205 0.0295 -0.00361

Tak	ole of Da	ata and Estim	ated Values	of Intere	st		
Dose	N 	Obs Mean	Est Mean		Dev Est St 		Scaled Res.
2.164e+0 6.543e+0	10 10 004 10 004 10	0 6.67 0 8.17	5.17 5.22 5.76 6.68 8.15	0.17 0.13 7	0.1 0.1 0.21	.4 .4 0.14 0.14	-0.20 0.029
1.207e+0	005 1	0 11.5	11.5	5	0.12	0.14	-0.0036
	A1:	ions for like Yij = Mu(i) + e(ij)	culated			
Model A	42:	e(ij)} = Sigm Yij = Mu(i e(ij)} = Sigm) + e(ij)				
	A3: Var{e del A3 u	Yij = Mu(i e(ij)} = Sigm ses any fixed fied by the u) + e(ij) a^2 variance pa	arameters	that		
Model		Yi = Mu + {e(i)} = Sigm					
		Likel	ihoods of Ir	nterest			
	Mode A1 A2 A3 fitted R	87 91 87 87	ikelihood) .936175 .367090 .936175 .762867 .861187	7 12 7	-161.872 -158.734 -161.872 -165.525	179 349 734	
		Explanati	on of Tests				
Test 2: Test 3: Test 4:	(A2 v Are V Are v Does	sponses and/o s. R) ariances Homo ariances adeq the Model for ho=0 the resu	geneous? (Al uately model the Mean Fi	vs A2) led? (A2 v lt? (A3 vs	s. A3) . fitted)		ame.)
		Tests o	f Interest				
Test	-2*10	og(Likelihood	Ratio) Tes	st df	p-value		
Test Test Test Test	2 3	338.4 6.861 6.861 0.3466	83 83	10 5 5 2	<.0001 0.2311 0.2311 0.8409		
differer	nce betw	Test 1 is le een response riate to mode	and/or varia				
m]	1 e	Toat 2 is an		1 7 1			

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here


The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $% \left({{{\left[{{{\left[{{{\left[{{{\left[{{{c}}} \right]}}} \right]_{\rm{cl}}}}} \right]_{\rm{cl}}}} \right]_{\rm{cl}}} \right]_{\rm{cl}}} \right)$

Benchmark Dose Computation

Specified effect	=	0.1
Risk Type	=	Relative deviation
Confidence level	=	0.95
BMD	=	6086.17
BMDL	=	5584.28

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

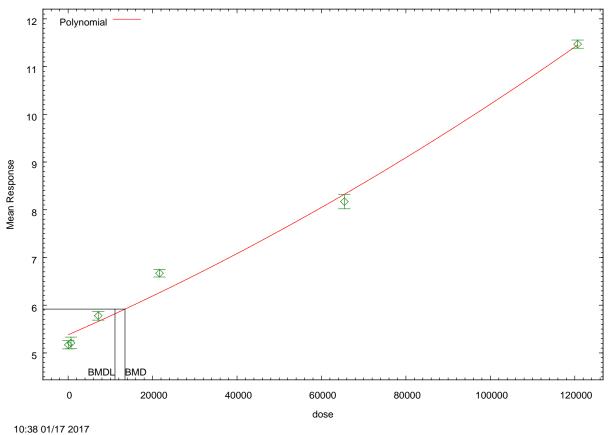
Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

27

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:38:56 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.82585 rho = 0 5.33405 beta_0 = $beta_1 = 4.32907e-005$ $beta_2 = 5.85061e-011$ Asymptotic Correlation Matrix of Parameter Estimates rho beta_0 lalpha beta_1 beta_2 lalpha 1 -1 0.51 -0.7 0.7 rho -1 1 -0.51 0.7 -0.7 0.51 -0.51 -0.76 beta_0 1 0.68 0.7 -0.76 1 -0.7 -0.99 beta_1 beta 2 0.7 -0.7 0.68 -0.99 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha 0.551001 2.23604 -3.83156 4.93356 -3.99971 -1.72751.15931 0.544715 rho 0.0655846 beta_0 5.38067 5.25213 5.50922 3.11433e-005 beta_1 3.86764e-005 3.8435e-006 4.62095e-005 9.6248e-011 2.99501e-011 3.75468e-011 1.54949e-010 beta_2

Table of Data and Estimated Values of Interest

123456789012345


Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

48 10	h	5 17	5 38	0 1 2	0 308		-2.18
674 10)	5 21	5.50	0.12	0.308 0.307		-2.03
	,)	5.21	5.11	0.13	0.307		1.27
7152 10	, 10	5.70	5.00	0.15	0.295 1 11	0 27	4.7
5430+004	10	8 17	8 32		ייי 1 21 נ	יס. בי ס. בי	-2.2
2070+005	10	11 5	11 4		0.295).11).21 ().12	0 16	0.40
.2070.005	10	11.5				0.10	0.10
Model Desc	riptior	is for likel	ihoods calcu	lated			
		Yij = Mu(i) j)} = Sigma					
		Yij = Mu(i) .j)} = Sigma					
	-	-					
		Yij = Mu(i) .j)} = exp(l	+ e(1]) alpha + rho*	ln(Mu(i)))		
Model	A3 uses	any fixed	variance par				
were s	specifie	ed by the us	er				
Model R:		Yi = Mu +	. ,				
	Var{e(i)} = Sigma	^2				
		Likeli	hoods of Int	erest			
	Model	I og (li	kelihood)	# Doxom	- ATC		
	Al		936175		-161.87234	49	
	A2		367090	12	-158.7341	79	
	A3		959403	8	-159.91880)6	
fi	ltted	52.	767002	5	-95.5340)4	
	R	-77.	861187	2	-95.53400 159.7223	74	
		Explanatio	n of Tests				
(A2 vs.	R)			ong Dose leve	els?	
		-	eneous? (Al				
			ately modele the Mean Fit				
					. IIIIed) 5 2 will be 1	the same.)	
		Tests of	Interest				
Test	-2*log(Likelihood	Ratio) Test	df	p-value		
Test 1		338.45	7 10)	<.0001		
Test 2		6.8618			0.2311		
Test 3		6.8153			0.146		
Test 4		70.384		3	<.0001		
difference	betweer		nd/or variar		opears to be g the dose le		
The p-value homogeneous		est 2 is gre	ater than .1	. Consi	ler running a	a	
The p-value	e for Te	st 3 is are	ater than 1	. The m	odeled varia	ice appear	5
to be appr		-				appear	-

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{Test}}} \right]}_{\rm{Test}}} \right]$

Benchmar	k Dose Computation
Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	13461.1
BMDL =	11093.4

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

12345678901123456789

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:40:56 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.82585 rho = 0 5.16309 beta_0 = $beta_1 = 9.14981e-005$ $beta_2 = -1.13601e-009$ $beta_3 = 6.71994e-015$ Asymptotic Correlation Matrix of Parameter Estimates lalpha beta_0 beta_1 beta_2 rho beta_3 lalpha 1 -0.99 0.014 -0.013 0.0081 -0.0056 rho -0.99 1 -0.014 0.013 -0.008 0.0054 beta_0 0.014 -0.014 1 -0.64 0.53 -0.47 beta_1 -0.013 0.013 -0.64 1 -0.97 0.93 0.0081 beta_2 -0.008 0.53 -0.97 1 -0.99 beta_3 -0.0056 0.0054 -0.47 0.93 -0.99 1 Parameter Estimates OF ON Wald Comfide

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-4.19139	1.36174	-6.86035	-1.52243
rho	0.138596	0.704933	-1.24305	1.52024
beta_0	5.16301	0.0299484	5.10431	5.2217
beta_1	9.15089e-005	4.39336e-006	8.2898e-005	0.00010012
beta_2	-1.13617e-009	1.02431e-010	-1.33693e-009	-9.35408e-010
beta_3	6.72059e-015	5.72518e-016	5.59848e-015	7.84271e-015

Tak	Table of Data and Estimated Values of Interest										
Dose	N	I 03	os Mean	Est Me	ean	Obs Std	Dev	Est Std	Dev	Scaled	Res.
48	10	ļ	5.17	5.17		0.12		0.138		0.059	97
674	10	Į	5.21	5.22		0.17		0.138		-0.32	25
7132	10	Į	5.78	5.76		0.13		0.139		0.44	19
2.164e+0	04	10	6.67		6.68		0.11		0.14		-0.207
6.543e+0	04	10	8.17		8.17		0.21	(0.142		0.0269
1.207e+0	05	10	11.5		11.5		0.12	(0.146	- (0.00274

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij)Model A1: Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma(i)^2

Yij = Mu(i) + e(ij)Model A3: Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	87.782326	6	-163.564652
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

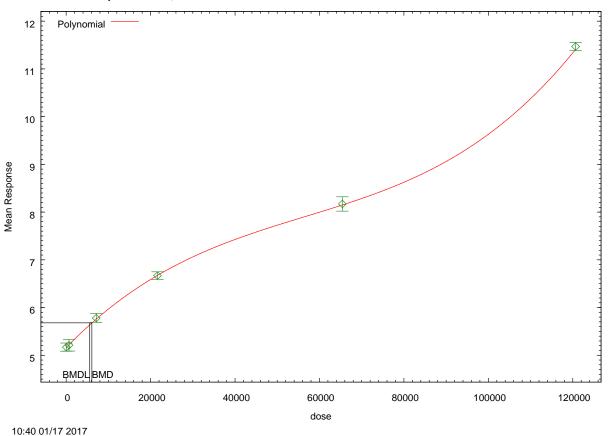
Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1 Test 2	338.457 6.86183	10 5	<.0001 0.2311
Test 2 Test 3	6.81537	5 4	0.2311
Test 4	0.354155	2	0.8377

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. Consider running a homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears


to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $% \left({{{\left[{{{\left[{{{\left[{{{\left[{{{c}}} \right]}}} \right]_{\rm{cl}}}}} \right]}_{\rm{cl}}}} \right]_{\rm{cl}}} \right]_{\rm{cl}}} \right)$

Benchmark Dose Computation

Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	6085.31
BMDL =	5586.74

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:46:09 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1 A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0218 Specified rho = 0 control = 5.17 slope = 9.52033e-005 power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha control slope power -3.6e-008 alpha 1 1.2e-008 -1.3e-008 -3.6e-008 -0.67 0.66 control 1 1.2e-008 -0.67 1 slope -1 power -1.3e-008 0.66 -1 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. alpha 0.0707776 0.0129222 0.0454506 0.0961046 control 5.29707 0.0587205 5.18198 5.41216 3.84483e-005 2.11856e-005 -3.07477e-006 7.99713e-005 slope 1.02262 0.0470562 0.930389 1.11485 power

Table of Data and Estimated Values of Interest

Dose	N	I 0]	bs Mean	Est Me	an	Obs Std	Dev	Est Std	Dev	Scaled H	Res.
48	10		5.17	5.3		0.12		0.266		-1.53	3
674	10		5.21	5.33		0.17		0.266		-1.39	9
7132	10		5.78	5.63		0.13		0.266		1.76	5
2.164e+0	004	10	6.67		6.34		0.11		0.266		3.93
6.543e+0	004	10	8.17		8.53		0.21		0.266		-4.27
1.207e+0	05	10	11.5		11.3		0.12		0.266		1.52

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	49.446384	4	-90.892769
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	76.9796	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 11158.7 BMDL = 10176.7

Power 12 Φ 11 10 Mean Response 9 Φ 8 7 Φ 6 5 BMDL BMD 0 20000 40000 60000 80000 100000 120000 dose 10:46 01/17 2017

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20 21

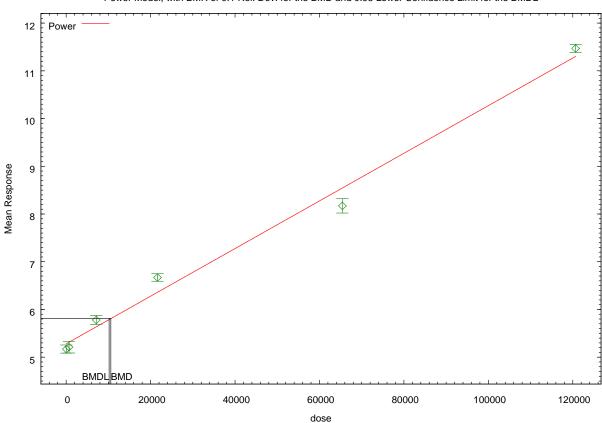
_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:48:17 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is restricted to be greater than or equal to 1 The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.82585 rho = 0 control = 5.17 slope = 9.52033e-005 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) lalpha rho control slope -0.0058 lalpha 1 -0.99 0.00019 0.0021 rho -0.99 1 -0.00081 -0.0058 0.0021 -0.53 control 1 slope 0.00019 -0.00081 -0.53 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -5.64988 lalpha 1,60643 -8.79842 -2.50135rho 1.53899 0.833514 -0.0946689 3.17265 control 5.28442 0.0377331 5.21046 5.35837 4.80524e-005 4.9922e-005 9.53887e-007 5.17916e-005 slope power 1 NA NA - Indicates that this parameter has hit a bound

implied by some inequality constraint and thus has no standard error.

3.92 -3.89 1.33

								d Dev	Scaled Res.
48 10 674 10		7	5.29 5.32		0.12 0.17		0.21 0.21		-1.73 -1.59
7132 10	5.7	8	5.64		0.13		0.22	5	1.97
.164e+004 .543e+004	10	6.67		6.36		0.11		0.246	3.9
.207e+004	10	11.5		8.55		0.21		0.309	-3.8 1.3
Model Desc	riptions f	or likeli	hoods	calcul	ated				
Model A1:	Yij Var{e(ij)})					
Model A2:	Yij Var{e(ij)}		-)					
Model A3:	Yij	= Mu(i) ·	+ e(ij)					
Model 2	Var{e(ij)} A3 uses an pecified b	y fixed va	arianc						
Model R:		= Mu + e = Sigma^:							
		Likelih	oods o	f Inte	erest				
	Model	Log(like			Param	's	AIC 161.872	240	
	A1 A2	87.93 91.3							
	A3	87.9			8	- :	158.734 159.918	806	
fi	tted R	51.0 -77.8			4 2		-94.184 159.722	848 374	
	Ex	planation	of Te	sts					
Test 1: Do		-			ffer a	nong l	Dose le	vels?	
(2	A2 vs. R)						2000 10		
Test 2: An Test 3: An							3)		
Test 4: Do									
	en rho=0 t							the sa	ume.)
		Tests of 3	Intere	st					
Test ·	-2*log(Lik	elihood Ra	atio)	Test	df	p	-value		
Test 1		338.457		10			0001		
Test 2 Test 3		6.86183 6.81537		5 4			2311 .146		
ICDL J		0.0103/		4		U	. 140		

The p-value for Test 2 is greater than .1. Consider running a homogeneous model


The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right]$

Benchmark Dose Computation

Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 10585.3

 $\mathsf{BMDL} = 10175$

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

23 10:48 01/17 2017

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:49:49 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values 0.0218 alpha = rho = 0 Specified control = 5.17slope = 9.52033e-005 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rhohave been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha control slope power alpha 1 5e-007 -2.3e-007 2.3e-007 control 5e-007 1 -0.67 0.66 slope -2.3e-007 -0.67 1 -1 power 2.3e-007 0.66 -1 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. alpha 0.0707775 0.0129221 0.0454506 0.0961045 5.29707 0.0587209 5.18198 5.41216 control 3.84483e-005 2.11859e-005 -3.07534e-006 7.99718e-005 slope power 1.02262 0.0470569 0.930387 1.11485

Table of Data and Estimated Values of Interest

Dose	N	Ok	os Mean	Est Me	ean	Obs Std	Dev	Est Sto	l Dev	Scaled 1	Res.
48	10	5	5.17	5.3		0.12		0.266	5	-1.5	3
674	10	5	5.21	5.33		0.17		0.266	5	-1.3	9
7132	10	5	5.78	5.63		0.13		0.266	5	1.7	б
2.164e+0	004	10	6.67		6.34		0.11		0.266		3.93
6.543e+0	004	10	8.17		8.53		0.21		0.266		-4.27
1.207e+0	05	10	11.5		11.3		0.12		0.266		1.52

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) $Var{e(i)} = Sigma^2$

Likelihoods of Interest

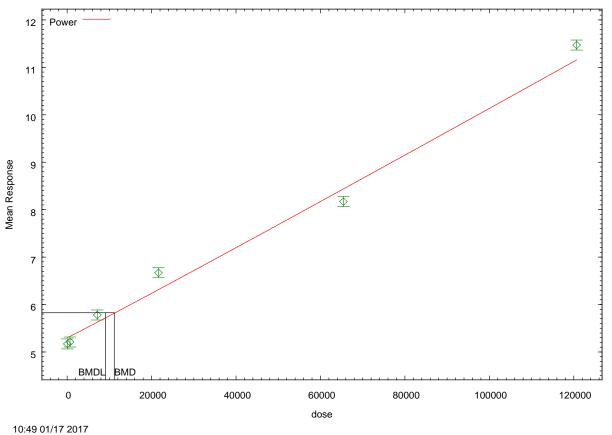
Model	Log(likelihood)	# Param's	AIC
Al	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	49.446384	4	-90.892769
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	76.9796	3	<.0001


The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 11158.7 BMDL = 9085.95

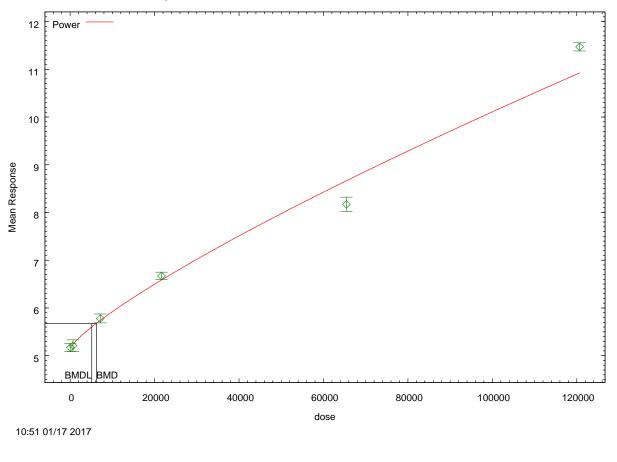
Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20

21

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:51:09 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.82585 rho = 0 control = 5.17 slope = 9.52033e-005 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates control lalpha rho slope power lalpha 1 -0.99 0.21 -0.47 0.48 rho -0.99 1 -0.22 0.47 -0.49 0.21 -0.22 -0.65 control 1 0.63 -0.470.47 -0.65 1 slope -1 power 0.48 -0.49 0.63 -1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -11.5554 1.49838 -14.4921 -8.61861 4.50298 0.780027 2.97416 6.03181 rho 0.0331157 control 5.15831 5.0934 5.22321 slope 0.00042575 0.000166971 9.84923e-005 0.000753007 0.81289 0.0349903 0.74431 0.88147 power

Table of Data and Estimated Values of Interest


Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

48 10	5.1	7 5	.17	0.12		0.125	0.0452
674 10	5.2	, J I 5	24	0.12		0.125 0.129	-0 812
7132 10	5.7	2 5	74	0.13		0 158	0.889
1640+004	10	6 67	6 58	0.15	0 11	0.158 0.215 0.399 0.672	1.3
543e+004	10	8 17	8 66		0 21	0.399	-3.85
207e+005	10	11 5	10 9		0.12	0.555	2.63
	10	11.5	10.9		0.12	0.072	2.05
Model Desc	riptions fo	or likeliho	ods calcu	lated			
Model A1:	Yij Var{e(ij)}		e(ij)				
Model A2:		= Mu(i) + = Sigma(i)					
Model A3:	Yij	= Mu(i) +	e(ij)				
		= exp(lalp					
	A3 uses any pecified by	y fixed var	lance par	ameters	that		
were bi	pectrica b	y che uber					
Model R:)				
	Var{e(i)}	= Sigma^2					
		Likelihoo	ds of Int	erest			
		Log(likel					
	A1 A2	87.936		10	-10	51.872349	
	AZ A3	91.367	402	12	-15	58.734179	
f i i	tted	07.909 E0 000	E20	0 5	-10)9.910000)6 447077	
LI	R	87.959 58.223 -77.861	187	2	-10	59.722374	
	Exp	planation o	f Tests				
	o response: A2 vs. R)	s and/or va	riances d	iffer ar	nong Do	ose levels?	
Test 2: A							
Test 3: An		-	-	,	,		
Test 4: Do (Note: Whe						lll be the sam	me.)
	r	Tests of In	terest				
Test	-2*log(Like	elihood Rat	io) Test	df	p-v	value	
Test 1		338.457	10		<.00	001	
Test 2		6.86183	5		0.23	311	
Test 3		6.81537	4		0.1	46	
Test 4		59.4717	3		<.00	001	
The p-value difference } It seems app	between rea	sponse and/	or varian			s to be a dose levels	
The p-value homogeneous		2 is greate	er than .1	. Const	ider rı	nning a	
The p-value to be appro		-	r than .1	. The r	nodeled	l variance app	pears

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{\left[{{{\rm{Test}}} \right]_{\rm{Test}}} \right]$

Ве	nchmark Do:	se Computation
Specified effect	=	0.1
Risk Type	= Relat	tive deviation
Confidence level	=	0.95
BMD	= 6209.76	
BMDL	= 5121.93	

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

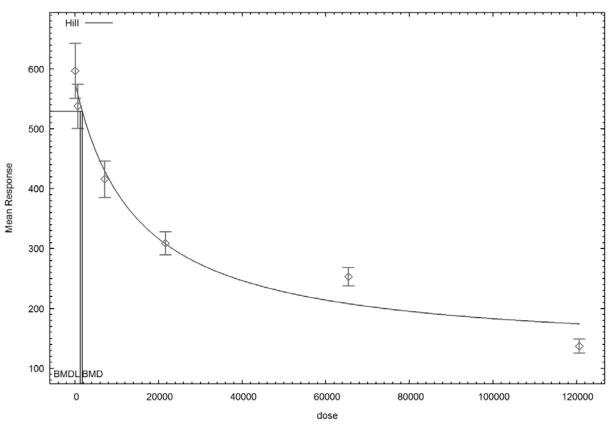
Dong *et al.* (2009) Benchmark Dose Analysis - Plaque Forming Cell Response **BMR = 1 SD**

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
	Exponential ^a	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
	Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
2-4	Hill	Constant (Rho=0)	Restrict n > 1	-	-	< 0.0001	531.04	1722.11	1251.23
5-7	Hill	Constant (Rho=0)	No Restriction	-	-	0.0066	519.29	27.27	3.17
8-10	Linear	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
11-13	Linear	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
14-16	Polynomial	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
17-19	Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	572.70	9628.70	7761.42
20-22	Polynomial	Constant (Rho=0)	-	-	3rd	0.0006	524.01	2440.00	2028.48
23-25	Polynomial	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
26-28	Polynomial	Not Constant	-	-	2nd	< 0.0001	547.78	19843.10	15292.70
29-31	Polynomial	Not Constant	-	-	3rd	0.0037	498.09	3650.90	2884.27
32-34	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	594.31	25147.60	21038.90
35-37	Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	566.19	39674.70	32215.50
38-40	Power	Constant (Rho=0)	No Power Restriction	-	-	0.0196	517.12	4.20	0.11
41-43	Power	Not Constant	No Power Restriction	-	-	< 0.0001	507.30	59.08	3.08

c. Scaled residuals for one or more doses/serum concentrations for each of the four exponential models were > |2|. The fit was inadequate for benchmark does modeling, and the model failed to calculate BMD and BMDL.

```
_____
        Hill Model. (Version: 2.17; Date: 01/28/2013)
        Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.(d)
        Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.plt
                                              Mon May 16 14:28:20 2016
_____
BMDS Model Run
  The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  rho is set to 0
  Power parameter restricted to be greater than 1
  A constant variance model is fit
  Total number of dose groups = 6
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                      alpha =
                               1679.17
                                   0
                                           Specified
                        rho =
                   intercept =
                                     597
                          v =
                                    -460
                                0.782901
                          n =
                                 13774.9
                          k =
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -rho
                                           -n
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                alpha
                        intercept
    alpha
                   1
                         2.9e-008
                                    -6e-008
                                               4.5e-008
             2.9e-008
                                      -0.27
intercept
                               1
                                                  -0.54
             -6e - 008
                          -0.27
                                                  -0.54
                                         1
       v
                                       -0.54
       k
             4.5e-008
                          -0.54
                                                     1
                             Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                                   Std. Err.
                                               Lower Conf. Limit Upper Conf. Limit
                    Estimate
       alpha
                     2247.04
                                   410.251
                                                       1442.96
                                                                        3051.11
     intercept
                     576.607
                                     11.8091
                                                       553.462
                                                                        599.753
            v
                     -451.743
                                     20.7845
                                                       -492.48
                                                                       -411.006
            n
                          1
                                        NA
                     14689.4
                                     2943.87
                                                      8919.51
            k
                                                                        20459.3
NA - Indicates that this parameter has hit a bound
```

implied by some inequality constraint and thus has no standard error.


Dose	N 		Mean	Est Me		Obs Sto					Scale	
40 674	10	53	8	575		6- 5:	± 2	4	17.4		-1	. 40
7132	10	41	б	429		43	3	4	17.4		-0.	865
.164e+0	004	10	309		308		2	7		47.4		0.0979
.207e+()04)05	10	$\frac{253}{137}$		208 174		2. 10	1 6		47.4		.46 .25 865 0.0979 3.02 -2.46
Model I	Descrip	tions f	or like	lihoods	calcu	lated						
Model A	Al: Var	Yij {e(ij)}	= Mu(i = Sigma) + e(ij a^2	j)							
Model A			= Mu(i = Sigma) + e(ij a(i)^2	j)							
Model A	¥3:	Yij	= Mu(i) + e(ij	j)							
	del A3	uses an	= Sigma y fixed y the u	varianc	e par	ameter	s that	t				
Model			= Mu + = Sigma									
	Va	.r{e(1)}	= Sigm	a 2								
			Likel	ihoods c	of Int	erest						
			-	ikelihoc	od)	# Para	n's	AI	C			
		.1 .2		.620772 .681934		1:	2	497 7	2628	68		
	A	.3	-249	.620772			7	513.2	2415	44		
	fitte	d	-261	.521002 .197537			1	531.0	420	04		
		R	-336	.197537			2	676.3	3950	75		
			-	on of Te								
	(A2	vs. R)		r varian			_	Dose	lev	els?		
				geneous?				7 2 1				
			-	uately m the Mea								
				lts of T						the s	ame.)	
			Tests o	f Intere	est							
Test	-2*	log(Lik	elihood	Ratio)	Test	df	1	p-valu	le			
Test			199.0		10			.0001				
Test Test			25.87 25.87		5 5			.0001				
Test			23.80		3			.0001				
The p-va				ss than								
differer	ice bet	ween re	sponse (anu/or v	arian	ccb ann	Jiig Ci	uc uor		CVCID		

The p-value for Test 3 is less than .1. You may want to consider a different variance model

Benchmark Dose Computation

Specified effect	=	1
Risk Type	=	Estimated standard deviations from the control mean
Confidence level	=	0.95
BMD	=	1722.11
BMDL	=	1251.23

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

22 14:28 05/16 2016

23

_____ Hill Model. (Version: 2.17; Date: 01/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:30:39 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = intercept + v*dose^n/(k^n + dose^n) Dependent variable = Mean Independent variable = Dose rho is set to 0 Power parameter is not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values 1679.17 alpha = rho = 0 Specified intercept = 597 v = -460 0.782901 n = 13774.9 k = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha k intercept v n 1 -0.032 0.042 0.04 -0.042 alpha intercept -0.032 1 -0.77 -0.9 0.78 0.042 -0.77 1 0.95 -1 v 0.04 -0.9 0.95 1 -0.96 n k -0.042 0.78 -1 -0.96 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Lower Conf. Limit Upper Conf. Limit Variable Estimate alpha 1789.53 327.523 1147.6 2431.47 649.477 40.7811 569.548 729.407 intercept -1819.52 2132.62 -5999.39 2360.34 v

0.0939867

-2.3881e+007

0.563329

2.86248e+007

0.119732

1.33946e+007

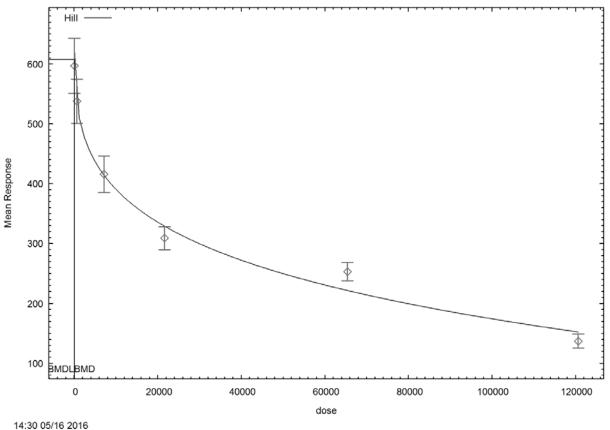
0.328658

2.3719e+006

n

k

Dose		Obs Mean			ev Est Std Dev	
48	10	597	599	64	42.3	-0.133
674	10	538	533	52	42.3	0.363
7132	10	416	414	43	42.3	0.114
.164e+00	4 10	309	329	9	2742.32142.3	-1.5
		137		2	21 42.3 16 42.3	
		107	100	-	10 1210	
Model De	scripti	ons for like	elihoods calo	culated		
Model Al		Yij = Mu(: e(ij)} = Sign				
Model A2		Yij = Mu(:				
	Var{e	e(ij)} = Sign	ma(i)^2			
Model A3	Var{e	e(ij)} = Sign	ma^2			
		es any fixed ied by the u	d variance pa user	arameters th	nat	
Model R		Yi = Mu · e(i)} = Sign				
		Like	lihoods of Ir	nterest		
	Mode		likelihood)	# Param's	AIC	
	A1		9.620772		513.241544	
	A2 A3		5.681934 9.620772	12	497.363868 513.241544	
	fitted		4.644604	5	497.363868 513.241544 519.289207 676.395075	
	R		6.197537	2	676.395075	
		Explanat	ion of Tests			
Test 1:	Do res (A2 vs		or variances	differ amor	ng Dose levels?	
Test 3:	Are va	riances ade	ogeneous? (Al quately model	Led? (A2 vs.		
Test 4: (Note:			r the Mean Fi ults of Test		fitted) 2 will be the s	ame.)
		Tests (of Interest			
Test	-2*lc	g(Likelihoo	d Ratio) Tea	st df	p-value	
Test 1		199.0		LO	<.0001	
Test 2		25.8		5	<.0001	
Test 3		25.8		5	<.0001	
Test 4	:	10.04	+ / /	2 0.	.006579	
				_1	pears to be a	


The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

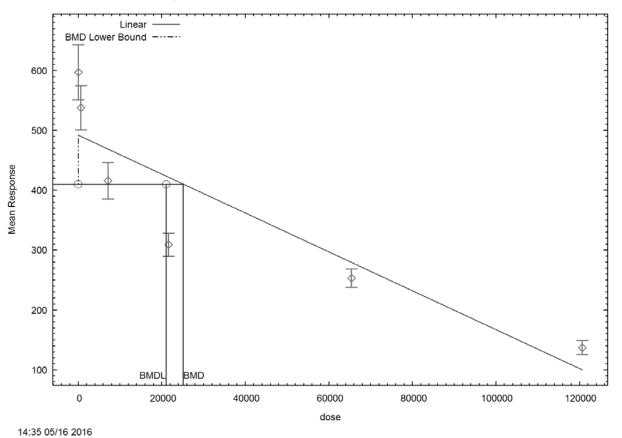
Benchmark Dose Computation

Specified effect =	1
Risk Type =	Estimated standard deviations from the control mean
Confidence level =	0.95
BMD =	27.2712
BMDL =	3.16641

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

21 14:30 05/16

- 22
- 23


_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:35:11 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to O Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 rho = 0 Specified beta_0 = 491.678 $beta_1 = -0.00324724$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 alpha 1 2e-007 2e-008 beta_0 2e-007 1 -0.63 beta_1 1.9e-008 -0.63 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 6668.43 1217.48 9054.66 4282.21 alpha 491.678 13.6112 465 518.355 beta_0 -0.00324724 0.000239609 -0.00371687 -0.00277762 beta 1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. ____ _ _ _ _____ _____ _____ _____ _____ 10 10 10 10 54 52 43 52 48 597 492 489 469 81.7 4.08 674 538 81.7 1.88 416 7132 81.7 -2.03 309 81.7 81.7 81.7 81.7 -4.35 27 21 2.164e+004 10 421 6.543e+004 10 253 279 -1.02 -16 1.207e+005 10 137 99.8 1.44

Model Descriptions for likelihoods calculated

```
Model A1: Yij = Mu(i) + e(ij)
          Var{e(ij)} = Sigma^2
Model A2:
            Yij = Mu(i) + e(ij)
         Var{e(ij)} = Sigma(i)^2
Model A3:
                Yij = Mu(i) + e(ij)
         Var{e(ij)} = Sigma^2
    Model A3 uses any fixed variance parameters that
    were specified by the user
Model R:
             Yi = Mu + e(i)
           Var{e(i)} = Sigma^2
                     Likelihoods of Interest
           Model
                     Log(likelihood)
                                       # Param's
                                                   AIC
                                       7
                                                  513.241544
            Α1
                      -249.620772
                      -236.681934
                                            12
                                                  497.363868
            Α2
                                            7
            A3
                      -249.620772
                                                  513.241544
        fitted
                      -294.154191
                                            3
                                                  594.308383
                      -336.197537
                                            2
                                                  676.395075
            R
                 Explanation of Tests
Test 1: Do responses and/or variances differ among Dose levels?
         (A2 vs. R)
Test 2: Are Variances Homogeneous? (A1 vs A2)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)
 (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)
                    Tests of Interest
  Test -2*log(Likelihood Ratio) Test df
                                                p-value
  Test 1
                     199.031
                                     10
                                                <.0001
  Test 2
                     25.8777
                                     5
                                                <.0001
  Test 3
                     25.8777
                                      5
                                                <.0001
  Test 4
                     89.0668
                                      4
                                                <.0001
The p-value for Test 1 is less than .05. There appears to be a
difference between response and/or variances among the dose levels
It seems appropriate to model the data
The p-value for Test 2 is less than .1. Consider running a
non-homogeneous variance model
The p-value for Test 3 is less than .1. You may want to consider a
different variance model
The p-value for Test 4 is less than .1. You may want to try a different
model
           Benchmark Dose Computation
Specified effect =
                             1
Risk Type
           = Estimated standard deviations from the control mean
                        0.95
Confidence level =
            BMD =
                       25147.7
```

BMDL = 21038.9

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

3456

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:37:47 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 491.678 beta_0 = $beta_1 = -0.00324724$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 lalpha 1 -1 0.25 -0.27 -1 1 -0.250.27 rho 0.25 -0.25 beta_0 1 -0.96 -0.27 0.27 -0.96 1 beta 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -10.8803 2.36936 -15.5241 -6.23639 rho 3.29819 0.406286 2.50188 4.09449 459.997 15.5146 429.589 490.405 beta_0 -0.00269154 0.0001381 -0.00296221 -0.00242087 beta_1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ _____ _____

10

674 10

597

538

460

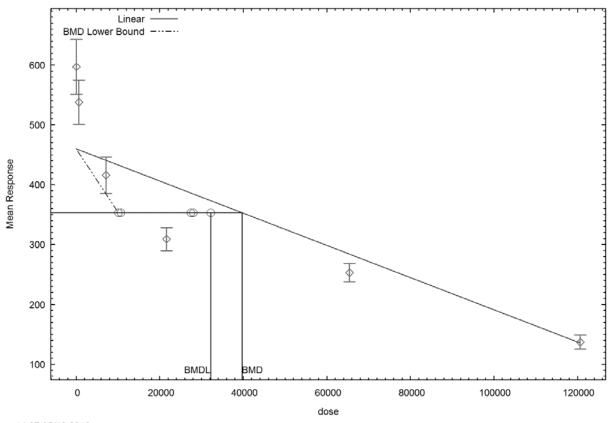
458

48

107

106

4.06


2.38

64

7132 10 2.164e+004 10 6.543e+004 10 1.207e+005 10) 309) 253	441 402 284 135	2	99.5 27 21 16	- 85.4 48.2 14.2	0.788 -3.43 -2.03 0.4
Model Descripti	ions for likelih	oods calcula	ted			
	Yij = Mu(i) + e(ij)} = Sigma^2					
	Yij = Mu(i) + e(ij)} = Sigma(i					
Var{e Model A3 us	Yij = Mu(i) + e(ij)} = exp(lal ses any fixed va fied by the user	pha + rho*ln riance param		at		
Model R: Var{	Yi = Mu + e([e(i)] = Sigma^2					
	Likeliho	ods of Inter	est			
Mode Al A2 A3 fitted R	-249.62 -236.68 -237.45 -279.09	20772 1934 3463 4501	8 4	AIC 513.24154 497.36386 490.90692 566.18900 676.39507	58 25 01	
	Explanation	of Tests				
(A2 vs Test 2: Are Va Test 3: Are va Test 4: Does t	sponses and/or v s. R) ariances Homoger ariances adequat the Model for th no=0 the results	neous? (Al vs ely modeled? ne Mean Fit?	A2) (A2 vs. (A3 vs. 1	A3) fitted)		
	Tests of I	nterest				
Test -2*lo	og(Likelihood Ra	tio) Test d	f	p-value		
Test 1 Test 2 Test 3 Test 4	199.031 25.8777 1.54306 83.2821	5	•	<.0001 <.0001 0.819 <.0001		
The p-value for difference betwe It seems appropr	een response and	l/or variance				
The p-value for model appears to			non-homog	geneous vai	riance	
The p-value for to be appropria		er than .1.	The mode	eled varian	nce appear	S
The p-value for model	Test 4 is less	than .1. Yo	u may war	nt to try a	a differen	t
Ber	nchmark Dose Com	putation				

Specified effect	=	1						
Risk Type	=	Estimated	standard	deviations	from	the	control	mean
Confidence level	=	0.95						
BMD	=	39674.7	7					
BMDL	=	32215.	5					

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

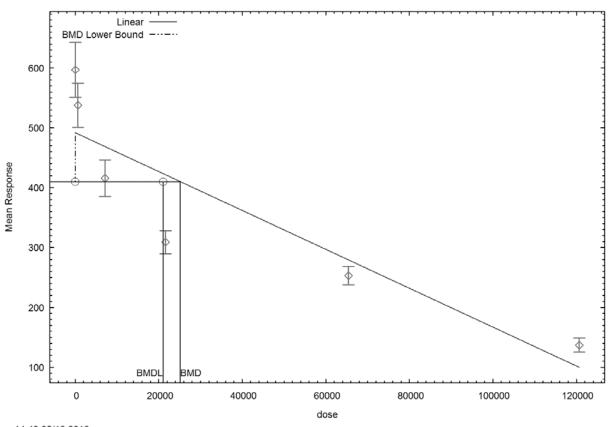
-----Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:42:08 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 Specified rho = 0 beta_0 = 491.678 $beta_1 = -0.00324724$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 alpha 1 2e-007 2e-008 beta_0 2e-007 1 -0.63 1.9e-008 -0.63 beta_1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 4282.21 alpha 6668.43 1217.48 9054.66 491.678 13.6112 518.355 beta_0 465 -0.00324724 0.000239609 -0.00371687 -0.00277762 beta_1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ _____ _____ 10 48 597 492 64 81.7 4.08

674 10

538

489

52


81.7

1.88

7132 10 2.164e+004 10 6.543e+004 10 1.207e+005 10	416 46 309 253 137	9 421 279 99.8	43 27 21 16	81.7 81.7 81.7 81.7	-2.03 -4.35 -1.02 1.44
Model Descriptions	for likelihood	s calculated	1		
Model Al: Y Var{e(ij	ij = Mu(i) + e()} = Sigma^2	ij)			
	ij = Mu(i) + e()} = Sigma(i)^2				
)} = Sigma^2 any fixed varia	-	ers that		
	Yi = Mu + e(i))} = Sigma^2				
	Likelihoods	of Interest	5		
Model Al A2 A3 fitted R	Log(likelih -249.62077 -236.68193 -249.62077 -294.15419 -336.19753	4 2 1	7 51 12 49 7 51 3 59	AIC 3.241544 7.363868 3.241544 4.308383 6.395075	
:	Explanation of	Tests			
Test 1: Do respon (A2 vs. R Test 2: Are Varia Test 3: Are varia Test 4: Does the 1 (Note: When rho=0) nces Homogeneou nces adequately Model for the M	s? (Al vs A2 modeled? (A ean Fit? (A3	2) A2 vs. A3) 3 vs. fitt	ed))
	Tests of Inte	rest			
Test -2*log(L	ikelihood Ratio) Test df	p-v	alue	
Test 1	199.031	10	<.00		
Test 2 Test 3	25.8777 25.8777	5 5	<.00 <.00		
Test 4	89.0668	4	<.00		
The p-value for Tes difference between : It seems appropriat	response and/or	variances a			
The p-value for Tes non-homogeneous var		n .l. Consi	ider runni:	ng a	
The p-value for Tes different variance		n .l. You n	nay want t	o consider a	
The p-value for Tes model	t 4 is less tha	n .1. You n	nay want t	o try a differ	ent
Benchm	ark Dose Comput	ation			

Specified effect	=	1						
Risk Type	=	Estimated	standard	deviations	from	the	control	mean
Confidence level	=	0.95						
BMD	=	25147.7	7					
DVDI		01000	<u>,</u>					
BMDL	=	21038.9	1					

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:42 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:44:10 2016

```
BMDS Model Run
```

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit

Total number of dose groups = 6 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initia	al	Parameter Va	lues
alpha	=	1	
rho	=	0	Specified
beta_0	=	524.96	
beta_1	=	-0.00730166	
beta_2	=	3.48318e-008	

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

beta_2	beta_1	beta_0	alpha	
-5.2e-010	-1.7e-008	-1.4e-008	1	alpha
0.48	-0.61	1	-2e-008	beta_0
-0.97	1	-0.61	-3.9e-009	beta_1
1	-0.97	0.48	-7e-010	beta_2

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	4499.22	821.443	2889.22	6109.21
beta_0	524.96	12.7785	499.915	550.005
beta_1	-0.00730166	0.000779093	-0.00882866	-0.00577467
beta_2	3.48318e-008	6.47615e-009	2.21388e-008	4.75249e-008

Table of Data and Estimated Values of Interest

Dose	1	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	525	64	67.1	3.41
674	10		538	520	52	67.1	0.846
7132	10		416	475	43	67.1	-2.77
2.164e+0	004	10	309	383	27	67.1	-3.5
6.543e+0	004	10	253	196	21	67.1	2.67
1.207e+0	005	10	137	151	16	67.1	-0.663

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij)Model A1: Var{e(ij)} = Sigma^2

Yij = Mu(i) + e(ij)Model A2: $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma^2 Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i)Var{e(i)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-282.349691	4	572.699381
R	-336.197537	2	676.395075

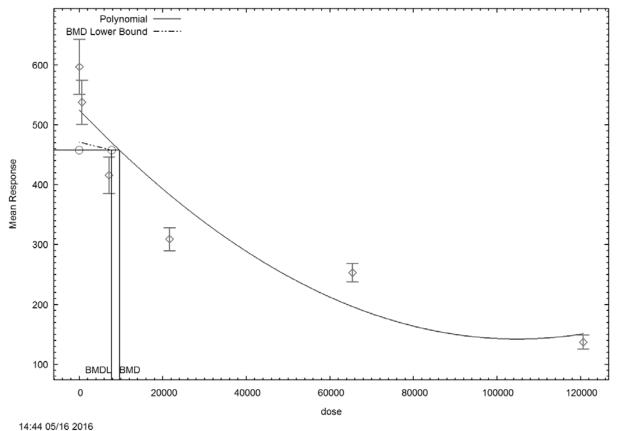
Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	65.4578	3	<.0001


The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 9628.7 BMDL = 7761.42

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20 14:44 05/16

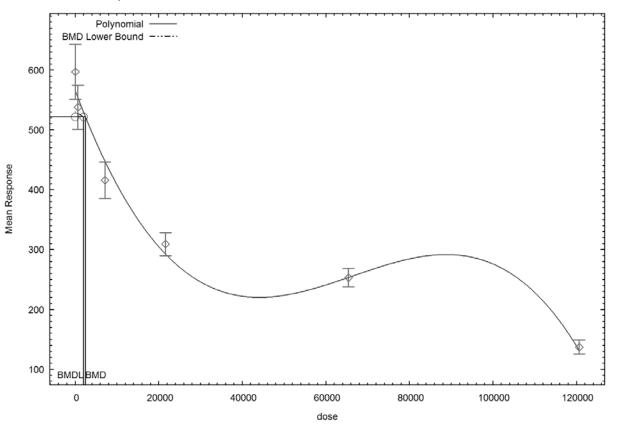
21

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 14:47:00 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 rho = 0 Specified 565.695 beta_0 = $beta_1 = -0.0187881$ $beta_2 = 3.1945e-007$ $beta_3 = -1.60117e-012$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 beta_2 beta_3 -5.3e-007 -4.2e-008 -9.7e-008 alpha 1 1.9e-007 beta_0 -5.3e-007 0.53 1 -0.64 -0.48 -0.97 beta_1 1.9e-007 -0.64 1 0.93 beta_2 -4.6e-008 0.53 -0.97 1 -0.99 -0.99 beta_3 -9.4e-008 -0.48 0.93 1

Parameter Estimates

		95.0% Wald Confidence Interval			
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
1932.86	352.89	1241.21	2624.52		
565.695	9.53824	547	584.389		
-0.0187881	0.00138454	-0.0215017	-0.0160745		
3.1945e-007	3.21695e-008	2.56399e-007	3.82501e-007		
-1.60117e-012	1.79393e-013	-1.95278e-012	-1.24957e-012		
	1932.86 565.695 -0.0187881 3.1945e-007	1932.86 352.89 565.695 9.53824 -0.0187881 0.00138454 3.1945e-007 3.21695e-008	EstimateStd. Err.Lower Conf. Limit1932.86352.891241.21565.6959.53824547-0.01878810.00138454-0.02150173.1945e-0073.21695e-0082.56399e-007		

Table	of Dat	ta and Estima	tod Values	of Intoro	-+			
Dose	N	Obs Mean		Obs Std I	Dev E			aled Res.
6.543e+004	0 10 10	597 538 416 309 253 137	255	43			44 44 44	2.32 -1.09 -2.26 1.19 -0.177 0.0219
Model Des	criptio	ons for likel	ihoods calc	ulated				
Model A1:		Yij = Mu(i) (ij)} = Sigma						
Model A2:		Yij = Mu(i) (ij)} = Sigma						
Model	Var{e A3 use	Yij = Mu(i) (ij)} = Sigma es any fixed ied by the us	^2 variance pa	rameters t	that			
Model R:		Yi = Mu + e(i)} = Sigma						
		Likeli	hoods of In	lterest				
f	Mode A1 A2 A3 itted R	-249. -236. -249. -257.	kelihood) 620772 681934 620772 002766 197537	7 12 7	51: 49 51:	AIC 3.241544 7.363868 3.241544 4.005532 5.395075		
		Explanatic	on of Tests					
Test 2: Test 3: Test 4:	(A2 vs Are Va Are va Does th	ponses and/or . R) riances Homog riances adequ ne Model for p=0 the resul	eneous? (Al ately model the Mean Fi	vs A2) ed? (A2 vs t? (A3 vs	s. A3) . fitte	ed))
		Tests of	Interest					
Test	-2*log	g(Likelihood	Ratio) Tes	t df	p-va	alue		
Test 1 Test 2 Test 3 Test 4		199.03 25.877 25.877 14.76	7	0 5 5 2 0	<.00 <.00 <.00 .00062	01 01		
difference	betwee	Test 1 is les en response a iate to model	nd/or varia				els	
-		Test 2 is les variance mode		Consider	runnii	ng a		


The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right]$

Benchmark Dose Computation

Specified effect	=	1	
Risk Type	=	Estimated standard deviations from	the control mean
Confidence level	=	0.95	
BMD	=	2440	
BMDL	=	2028.48	

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:47 05/16 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:14:33 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 491.678 beta_0 = $beta_1 = -0.00324724$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 lalpha 1 -1 0.25 -0.27 -1 1 -0.250.27 rho -0.25 beta_0 0.25 1 -0.96 -0.27 0.27 -0.96 1 beta 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -10.8803 2.36936 -15.5241 -6.23639 rho 3.29819 0.406286 2.50188 4.09449 459.997 15.5146 429.589 490.405 beta_0 -0.00269154 0.0001381 -0.00296221 -0.00242087 beta_1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ _____ _____

10

674 10

597

538

460

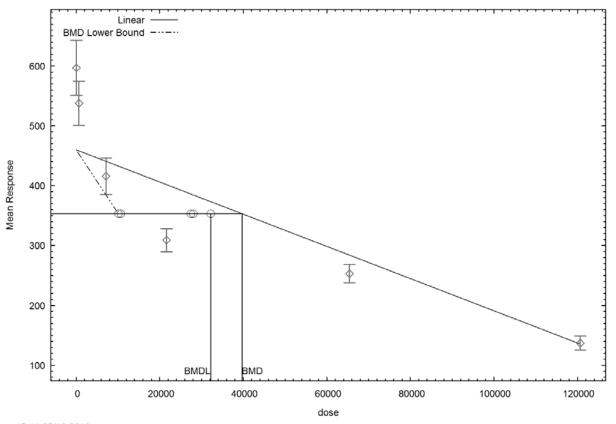
458

48

107

106

4.06


2.38

64

7132 10 2.164e+004 10 6.543e+004 10 1.207e+005 10	309 253	441 402 284 135	43	99.5 27 21 16	85.4 48.2 14.2	-0.788 -3.43 -2.03 0.4		
Model Descripti	ons for likelik	noods calcula	ited					
Model A1: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2								
	Yij = Mu(i) + (ij)} = Sigma(i							
<pre>Model A3: Yij = Mu(i) + e(ij) Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) Model A3 uses any fixed variance parameters that were specified by the user</pre>								
Model R: Var{	Yi = Mu + e(e(i)} = Sigma^2							
	Likeliho	oods of Inter	rest					
Mode Al A2 A3 fitted R	-249.62 -236.68 -237.45	20772 31934 53463 94501	8	AIC 513.2415 497.3638 490.9069 566.1890 676.3950	68 25 01			
	Explanation	of Tests						
Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)								
Tests of Interest								
Test -2*lo	g(Likelihood Ra	atio) Test d	lf	p-value				
Test 1 Test 2 Test 3 Test 4	199.031 25.8777 1.54306 83.2821	5		<.0001 <.0001 0.819 <.0001				
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data								
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate								
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here								
The p-value for Test 4 is less than .1. You may want to try a different model								
Ben	chmark Dose Con	putation						

Specified effect	=	1						
Risk Type	=	Estimated	standard	deviations	from	the	control	mean
Confidence level	=	0.95						
BMD	=	39674.7	7					
BMDL	=	32215.	5					

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:15:56 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 beta_0 = 524.96 $beta_1 = -0.00730166$ $beta_2 = 3.48318e-008$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 lalpha 1 -1 0.23 -0.35 0.37 rho -1 1 -0.23 0.35 -0.36 beta_0 0.23 -0.23 1 -0.81 0.69 -0.35 beta_1 0.35 -0.81 1 -0.98 0.37 -0.98 beta_2 -0.36 0.69 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -9.16857 -13.8781 -4.45904 2.40287 2.94198 3.74718 0.410824 2.13678 rho beta_0 498.965 16.7818 466.073 531.856 beta_1 -0.00514312 0.000580806 -0.00628148 -0.00400477 2.56463e-008 beta_2 1.78211e-008 3.99255e-009 9.99583e-009

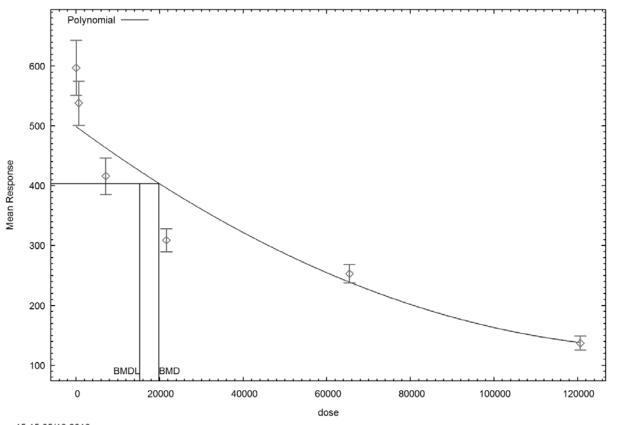
Table of Data and Estimated Values of Interest

Obs Mean

Dose

Ν

911


Est Mean Obs Std Dev Est Std Dev Scaled Res.

4.0	10	507	4.0.0	`	C A		0.5	2 07
	10 10	597	499 496		64 52		95	3.27 1.43
		538					1.1	
7132		416	463				5.2	-1.75
2.164e+00			9	396			67.7	-4.
6.543e+00		25	3	239		21	32.1	1
1.207e+00	5 10	13	7	138		16	14.3	-0.1
Model De	scriptio	ons for li	kelihoods	s calcula	ted			
Model A1		Yij = Mu ij)} = Si		j)				
Model A2	, i	Yij = Mu	-	i)				
MOUCI AZ		ij)} = Si		- 」/				
Model A3		Yij = Mu ij)} = ex	(i) + e(i p(lalpha		(Mu(i)))			
	l A3 use	es any fix ed by the	ed variar					
Model R		Yi = Mu						
MOUEL		e(i)} = Si						
		Lik	elihoods	of Inter	est			
	Model	-	(likeliho					
	A1		49.620772		7	513.24		
	A2		36.681934		12	497.36 490.90	3868	
	A3	-2	37.453463	3	8	490.90	6925	
	fitted	-2	68.888044	ł	5	547.77 676.39	6088	
	R	-3	36.197537	7	2	676.39	95075	
		Explana	tion of T	lests				
Test 1:	Do resp (A2 vs.	onses and R)	/or varia	ances dif	fer amon	g Dose l	evels?	
Test 2:		iances Ho	mogeneous	s? (Al vs	A2)			
Test 3:	Are var	iances ad	equately	modeled?	(A2 vs.	A3)		
		ne Model f =0 the re					be the same	e.)
		Tests	of Inter	rest				
Test	-2*log	(Likeliho	od Ratio)	Test d	f	p-value	2	
Test 1			.031	10		<.0001		
Test 2		25.	8777	5		<.0001		
Test 3			4306	4		0.819		
Test 4			8692	3		<.0001		
differenc	e betwee	Cest 1 is en respons ate to mo	e and/or	variance				
The p-val	ue for I	Cest 2 is	less than		non-homo	geneous	variance	
nodel app	ears to	be approp	riate					
	ue for T propriat		greater t	han .1.	The mod	eled var	iance appe	ears

Benchmark	Dose Computation	
Specified effect =	1	
Risk Type =	Estimated standard deviations	from the control mean
Confidence level =	0.95	
BMD =	19843.1	
BMDL =	15292.7	

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20 15:15 05/16 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:21:26 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 565.695 beta_0 = -0.0187881 beta_1 = $beta_2 = 3.1945e-007$ $beta_3 = -1.60117e-012$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 beta_3 lalpha 1 -1 0.063 -0.11 0.11 -0.1-1 1 -0.06 -0.11 0.1 0.1 rho beta_0 0.063 -0.06 1 -0.78 0.68 -0.63 beta_1 -0.11 0.1 -0.78 1 -0.98 0.95

Parameter Estimates

-0.11

0.1

			95.0% Wald Confider					
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit				
lalpha	-5.44423	1.99353	-9.35147	-1.53699				
rho	2.15673	0.341106	1.48818	2.82529				
beta_0	559.962	12.3896	535.678	584.245				
beta_1	-0.0176032	0.00127633	-0.0201047	-0.0151016				
beta_2	2.92455e-007	2.69672e-008	2.396e-007	3.4531e-007				
beta_3	-1.45517e-012	1.43294e-013	-1.73602e-012	-1.17432e-012				

0.68

-0.63

-0.98

0.95

1

-0.99

-0.99

1

beta_2

beta_3

0.11

-0.1

Ta	Table of Data and Estimated Values of Interest											
Dose	1	4 C)bs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.					
48	10		597	559	64	60.3	1.99					
674	10		538	548	52	59.1	-0.548					
7132	10		416	449	43	47.6	-2.18					
2.164e+	004	10	309	301	27	31	0.791					
6.543e+	004	10	253	253	21	25.6	0.0503					
1.207e+	005	10	137	137	16	13.3	-0.0955					

Model Descriptions for likelihoods calculated

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Mode	<pre>Log(likelihood)</pre>	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-243.046806	б	498.093612
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

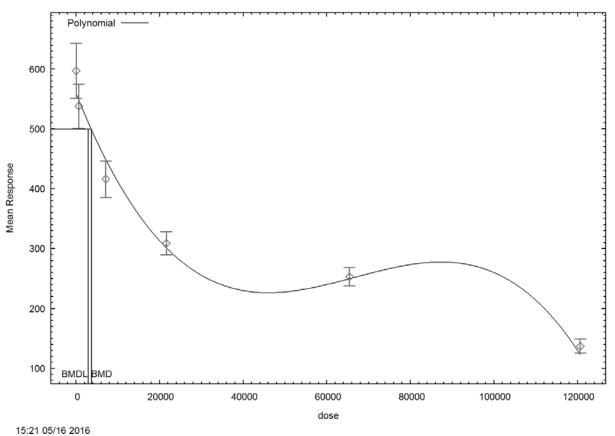
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	11.1867	2	0.003723

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears

to be appropriate here


The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{\left[{{{\rm{Test}}} \right]_{\rm{Test}}} \right]$

Benchmark Dose Computation

Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 3650.9 BMDL = 2884.27

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

24

12345678901234567890123 11111111122223

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:23:45 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1 A constant variance model is fit Total number of dose groups = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values 1679.17 alpha = rho = 0 Specified 597 control = -10810.9 slope = -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha control slope alpha 1 6.6e-007 -5.5e-007 control 6.6e-007 1 -0.63 slope -5.5e-007 -0.63 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. 1217.48 4282.21 9054.65 6668.43 alpha control 491.678 13.6111 465 518.355 slope -0.00324724 0.000239609 -0.00371687 -0.00277762 power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Tal	Table of Data and Estimated Values of Interest										
Dose	N	1 Obs 1	Mean	Est Mean	Obs Std Dev	v Est Std 1	Dev Scaled Res.				
48	10	59	7	492	64	81.7	4.08				
674	10	53	8	489	52	81.7	1.88				
7132	10	41	6	469	43	81.7	-2.03				
2.164e+	004	10	309	421	. 4	27	81.7 -4.35				
6.543e+	004	10	253	279) 2	21	81.7 -1.02				
1.207e+	005	10	137	99.8		16	81.7 1.44				

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-294.154191	3	594.308383
R	-336.197537	2	676.395075

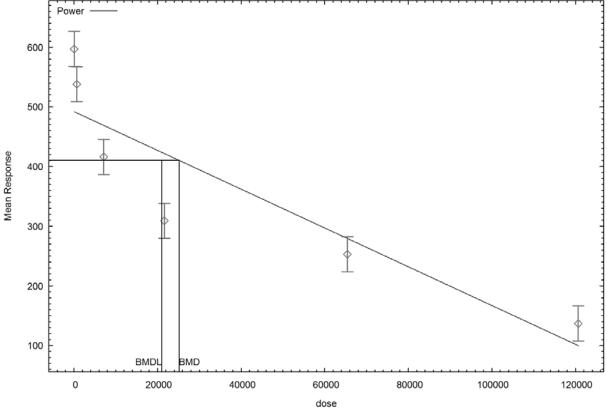
Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	89.0668	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data


The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a

different variance model The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation

Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 EMD = 25147.6 BMDL = 21038.9

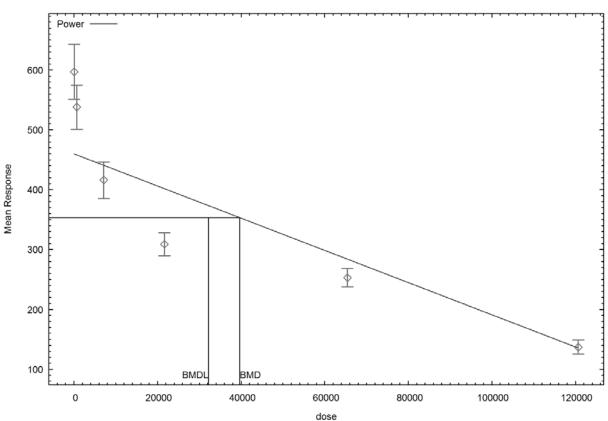
BMDL = 21038.9
Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL
Power —

21 15:23 05/16 2016

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:25:13 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is restricted to be greater than or equal to 1 The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 control = 597 -10810.9slope = power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) lalpha rho control slope lalpha 1 -1 0.45 -0.52 rho -1 1 -0.480.54 -0.97 control 0.45 -0.48 1 -0.97 slope -0.52 0.54 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Lower Conf. Limit Upper Conf. Limit Variable Estimate lalpha -10.8803 2.72652 -16.2241 -5.53638 rho 3.29819 0.473361 2.37042 4.22596 491.505 control 459.997 16.0757 428.489 0.000143549 -0.00297289 -0.00241019 slope -0.00269154 power 1 NA NA - Indicates that this parameter has hit a bound

implied by some inequality constraint and thus has no standard error.

-3.43 -2.03 0.4


Dose	N 	Obs Mean	Est Mean		td Dev	Est Std		Scaled Res.
48 1	0	597	460		64	107		4.06
674 1 7132 1	0	538 416	458	!	52	106 99.5		2.38
7132 1 164e+004	0 10		441 40		43 27	99.5		-0.788 -3.4
2.164e+004 5.543e+004			28		21		85.4 48.2	-2.0
.207e+005	10	137	13	35	16		14.2	0.
Model Des	criptio	ons for like	lihoods cal	culated				
Model A1:		Yij = Mu(i (ij)} = Sigma						
Model A2:		Yij = Mu(i	-					
		(ij)} = Sigma						
Model A3:		Yij = Mu(i (ij)} = exp()		10*]n/Mu	(i)))			
	A3 use	es any fixed led by the u	variance p					
Model R:		Yi = Mu + e(i)} = Sigma						
		Likel	ihoods of I	Interest				
		Log(1						
	A1 A2		.620772 .681934			513.24154 497.36380		
	A3		.453463		8	490.90692	25	
f	itted R		.094501 .197537		4 2	490.90692 566.18900 676.3950	01 75	
		Explanati	on of Tests	3				
	_	onses and/o	r variances	differ	among	Dose leve	els?	
Test 2: Test 3: Test 4:	Are vai Does th	riances Homogriances adequine Model for be Model for be the result	uately mode the Mean F	eled? (A Tit? (A3	2 vs. A vs. fi	tted)	-he sa	me)
(1000 1			f Interest		1000 2			
Test	-2*log	g(Likelihood	Ratio) Te	est df	F	-value		
Test 1		199.0	31	10	<.	0001		
Test 2		25.87		5		0001		
Test 3 Test 4		1.543 83.28		4 4		.819 0001		

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

Benchmark Dose Computation

Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 39674.7

BMDL = 32215.5

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

23 15:25 05/16 2016

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:26:35 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit Total number of dose groups = 6Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1679.17 rho = 0 Specified control = 597 -4.9279 slope = -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha control slope power 1 -2.9e-008 2.4e-008 2.2e-008 alpha control -2.9e-008 1 -0.96 -0.94 slope 2.4e-008 -0.96 1 1 2.2e-008 -0.94 1 1 power Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit alpha 1781.78 325.307 1144.19 2419.37 34.7472 745.33

Table of Data and Estimated Values of Interest

677.226

-29.6574

0.245967

control

slope

power

923

13.7892

0.0353409

609.123

0.1767

-2.63106

0.315234

-56.6837

Dose	1	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
	-						
48	10		597	600	64	42.2	-0.253
674	10		538	530	52	42.2	0.597
7132	10		416	414	43	42.2	0.13
2.164e+0	004	10	309	332	27	42.2	-1.7
6.543e+0	004	10	253	224	21	42.2	2.2
1.207e+0	05	10	137	150	16	42.2	-0.97

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-254.561041	4	517.122081
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	9.88054	3	0.01961

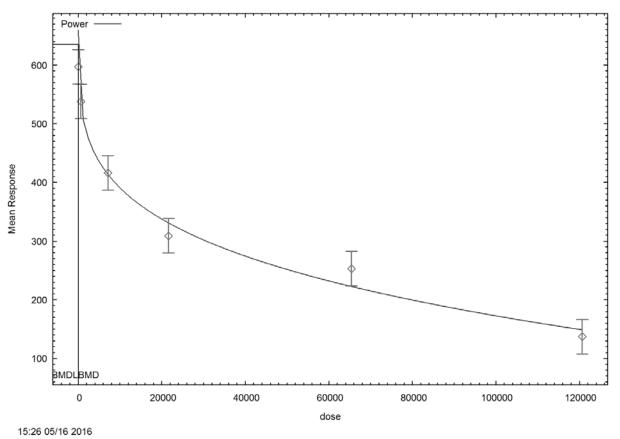
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

Benchmark Dose Computation

1

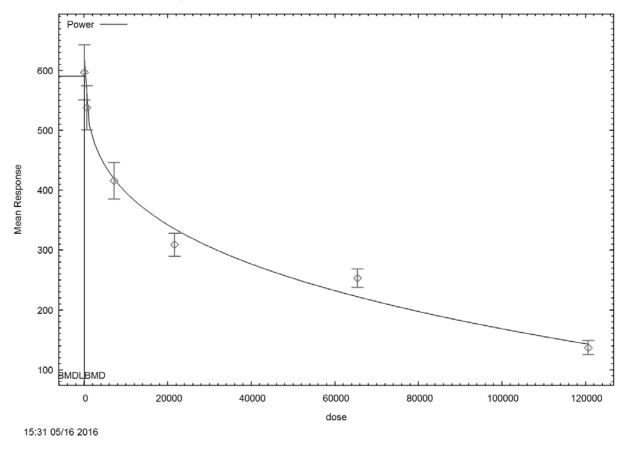

Specified effect =

Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95

BMD = 4.19984

BMDL = 0.1126

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL


19

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:31:14 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.42605 rho = 0 control = 597 -4.9279 slope = power = -9999 Asymptotic Correlation Matrix of Parameter Estimates lalpha rho control slope power lalpha 1 -1 0.35 -0.38 -0.38 rho -1 1 -0.35 0.38 0.38 control 0.35 -0.35 1 -0.96 -0.94 0.38 slope -0.38 -0.96 1 1 -0.38 0.38 1 -0.94 1 power Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -1.21246 -6.02986 2.4579 3.60495 1.46111 0.421182 2.28661 0.635608 rho 652.901 36.7731 580.827 724.975 control -20.1667 10.8362 -41.4052 1.07175 slope 0.355346 power 0.275756 0.0406081 0.196165 Table of Data and Estimated Values of Interest Est Mean Obs Std Dev Est Std Dev Scaled Res. Dose Ν Obs Mean

48	10	597	594		64	58	0.15
674	10	538	531		52	53.4	0.392
7132		416			43	45	
	004 10 004 10			337		7 38.	
				224			4 3.2 7 -1.
.2070+	005 10	137		145	Ţ	6 20.	-1.
Model	Descripti	ons for lik	elihoods	calculat	ed		
Model	A1:	Yij = Mu(i) + e(i	j)			
		(ij)} = Sig					
Model		Yij = Mu((ij)} = Sig		j)			
Model		Yij = Mu((ij)} = exp			Mu (i)))		
	del A3 us	ied by the	d varian			t	
Model		Yi = Mu					
	Var{	e(i)} = Sig	ma^2				
		Like	lihoods	of Intere	st		
	Mode Al		likeliho 9.620772	od) # P	aram's 7	AIC 513.241544	
	A2		6.681934				
	A3		7.453463		8	497.363868 490.906925	
	fitted	-24	8.649393		5	507.298786 676.395075	
	R	-33	6.197537		2	676.395075	
		Explanat	ion of T	ests			
Test 1	: Do res (A2 vs		or varia	nces diff	er among	Dose levels?	
Test 2	: Are Va	riances Hom	ogeneous	? (Al vs	A2)		
		riances ade					
		he Model fo o=0 the res		,		itted) will be the	same.)
		Tests	of Inter	est			
Test	-2*lo	g(Likelihoo	d Ratio)	Test df		p-value	
Test	1	199.		10	<	.0001	
Test		25.8	777	5		.0001	
Test		1.54		4		0.819	
Test	4	22.3	919	3	<	.0001	
differe	nce betwe		and/or	variances		ars to be a he dose level	.s
					on-homoa	eneous variar	ice
		be appropr					
The p-v		Test 3 is g te here	reater t	han .1.	The mode	led variance	appears

Benchmark Dose Computation										
Specified effect	=	1								
Risk Type	=	Estimated	standard	deviations	from	the	control	mean		
Confidence level	=	0.95								
BMD	= 5	59.0797								
BMDL	= 3	3.07716								

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

17 18

1

2

Dong *et al.* (2009) Benchmark Dose Analysis - Plaque Forming Cell Response BMR = 1 SD

3

Dropped Highest Dose

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi- square <i>p</i> - value	AIC	BMD (ng/mL)	BMDL (ng/mL)
-	Exponential	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
2-4	Hill	Constant (Rho=0)	Restrict n > 1	-	-	0.2008	435.07	1040.97	717.23
5-7	Hill	Not Constant	Restrict n > 1	-	-	0.3049	421.5	1574.6	NA ^b
8-10	Hill	Constant (Rho=0)	No Restriction	-	-	0.1995	435.51	375.08	11.85
11-13	Hill	Not Constant	No Restriction	-	-	0.1273	423.5	1346.94	NA ^b
14-16	Linear	Constant (Rho=0)	-	-	1st	< 0.0001	496.28	18119.90	14610.50
17-19	Linear	Not Constant	-	-	1st	< 0.0001	484.49	31885.20	23977.00
20-22	Polynomial	Constant (Rho=0)	-	-	2nd	0.0004	447.46	3110.14	2550.69
23-25	Polynomial	Constant (Rho=0)	-	-	3rd	0.0336	438.38	1534.12	1189.84
26-28	Polynomial	Not Constant	-	-	2nd	0.0016	432.06	4821.99	3667.36
29-31	Polynomial	Not Constant	-	-	3rd	0.0979	423.89	2239.22	1630.89
32-34	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	496.28	18119.90	14610.50
35-37	Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	484.49	31885.20	23977.00
38-40	Power	Constant (Rho=0)	No Power Restriction	-	-	0.0606	437.47	0.28	0.28
41-43	Power	Not Constant	No Power Restriction	-	-	0.0093	428.52	0.24	0.24

1		
2 3 4	a.	Scaled residuals for one or more doses/serum concentrations for each of the four exponential models were $> 2 $. The fit was inadequate for benchmark does modeling, and the model failed to calculate BMD and BMDL.
4 5		the model failed to calculate BMD and BMDL.
6 7	b.	BMDL computation failed.
8		

```
_____
        Hill Model. (Version: 2.17; Date: 01/28/2013)
        Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
        Gnuplot Plotting File:
U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt
                                              Wed May 18 10:29:57 2016
_____
BMDS Model Run
The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  rho is set to 0
  Power parameter restricted to be greater than 1
  A constant variance model is fit
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                       alpha = 1963.8
                        rho =
                                       0
                                           Specified
                   intercept =
                                      597
                          v =
                                     -344
                                  1.19729
                          n =
                                  6655.59
                          k =
         Asymptotic Correlation Matrix of Parameter Estimates
         ( *** The model parameter(s) -rho
                                           -n
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix \ensuremath{)}
               alpha
                       intercept
                                                      k
                                          v
                   1
                        4.8e-007
                                   -4.3e-007
                                              -1.9e-007
    alpha
            4.8e-007
intercept
                               1
                                       -0.29
                                                  -0.49
            -4.3e-007
                           -0.29
                                          1
                                                  -0.55
       v
            -1.9e-007
                           -0.49
                                       -0.55
                                                      1
       k
                             Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                    Estimate
                                   Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
        alpha
                     1884.65
                                    376.929
                                                       1145.88
                                                                         2623.42
                                                                         607.649
     intercept
                      585.482
                                     11.3098
                                                       563.315
            v
                     -372.931
                                     21.1027
                                                      -414.291
                                                                        -331.57
                          1
            n
                                         NA
                      7901.36
                                     1828.04
                                                      4318.47
                                                                        11484.2
            k
NA - Indicates that this parameter has hit a bound
```

Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	Ν	0 1)bs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	583	64	43.4	1
674	10		538	556	52	43.4	-1.32
7132	10		416	409	43	43.4	0.542
2.164e+0	004	10	309	312	27	43.4	-0.241
6.543e+0	004	10	253	253	21	43.4	0.0192

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-213.537400	4	435.074800
R	-271.115271	2	546.230542

Explanation of Tests

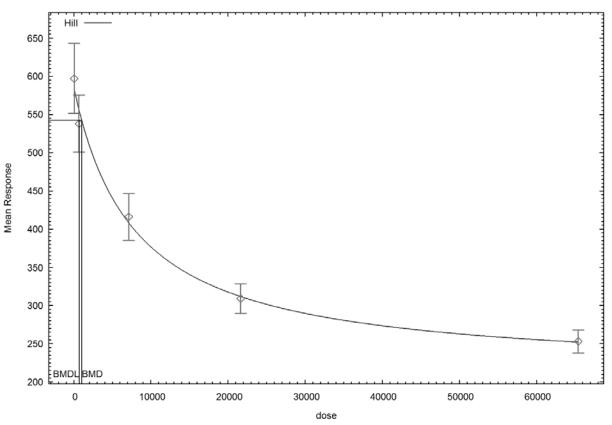
Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	3.21099	2	0.2008

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model


The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $% \left(\frac{1}{2} \right) = 0$

Benchmark Dose Computation

1
Estimated standard deviations from the control mean
0.95
1040.97
717.233

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:29 05/18 2016

```
_____
        Hill Model. (Version: 2.17; Date: 01/28/2013)
        Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
        Gnuplot Plotting File:
U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt
                                            Wed Apr 12 10:36:51 2017
_____
BMDS Model Run
The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  Power parameter restricted to be greater than 1
  The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                    lalpha =
                              7.58264
                      rho =
                                    0
                  intercept =
                                    597
                                  -344
                         v =
                                1.19729
                         n =
                                6655.59
                         k =
         Asymptotic Correlation Matrix of Parameter Estimates
         ( *** The model parameter(s) -n
              have been estimated at a boundary point, or have been specified by the user,
              and do not appear in the correlation matrix )
                                 intercept
              lalpha
                            rho
                                                    v
                                                               k
   lalpha
                 1
                            -1
                                      0.12
                                                -0.16
                                                          -0.026
                                     -0.12
                                                0.16
     rho
                 -1
                             1
                                                          0.026
intercept
                         -0.12
                                                -0.75
               0.12
                                        1
                                                           -0.57
       v
               -0.16
                          0.16
                                     -0.75
                                                  1
                                                          -0.026
       k
              -0.026
                         0.026
                                     -0.57
                                               -0.026
                                                              1
                            Parameter Estimates
                                                95.0% Wald Confidence Interval
      Variable
                    Estimate
                                 Std. Err.
                                            Lower Conf. Limit Upper Conf. Limit
       lalpha
                    -8.55461
                                   3.81915
                                                     -16.04
                                                                     -1.06921
                                                    1.38569
        rho
                     2.6328
                                   0.63629
                                                                      3.8799
                     584.81
                                   14.7565
                                                    555.888
                                                                     613.732
     intercept
                    -373.886
                                   16.2724
                                                    -405.779
                                                                     -341.993
         v
           n
                        1
                                       NA
                                  1358.83
                    8086.21
                                                    5422.95
                                                                     10749.5
           k
```

impl	lied by	hat this para some inequal: dard error.					
Tabl	le of Da	ta and Estima	ated Values	of Intere	est		
Dose	N 	Obs Mean	Est Mean			Est Std Dev	Scaled Res.
674	10 10	597 538	583 556	64 52		60.6 57	-1
7132	10	416 309	410 313	43		38.1 26.7	0.532
2.164e+00)4 10)4 10	309	313	}	27	26.7	-0.43 0.149
						2011	0.115
	1:	ons for like Yij = Mu(i)) + e(ij)	ulated			
Model A2	,	<pre>(ij)} = Sigma Yij = Mu(i)</pre>					
	Var{e	(ij)} = Sigma	a(i)^2				
	Var{e el A3 us	Yij = Mu(i) (ij)} = exp() es any fixed ied by the us	lalpha + rho variance pa				
Model H		Yi = Mu + e(i)} = Sigma					
		Likeli	ihoods of Ir	iterest			
	Mode	l Log(li	ikelihood)	# Param	s	AIC	
	A1		.931903	6		435.863807	
	A2 A3		.482849 .579781	10		428.965699	
	fitted		.767530	5		423.159562 421.535060	
	R		.115271			546.230542	
		Explanatio	on of Tests				
Test 1:	Do res (A2 vs	ponses and/oi . R)	r variances	differ an	nong	Dose levels?	
Test 3:	Are va Does t	riances Homog riances adequ he Model for o=0 the resul	ately model the Mean Fi	ed? (A2 v t? (A3 va	s. fi		me.)
		Tests of	Interest				
Test	-2*lo	g(Likelihood	Ratio) Tes	st df	р	-value	
Test 1	1	133.20	55	8	<.	0001	
Test 2		14.898	31	4	0.00	4917	
Test 3		0.19386		3		9786	
Test 4	±	2.375	05	2	Ο.	3049	

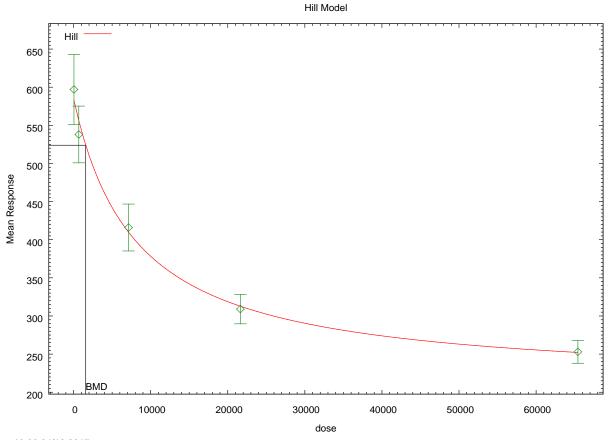
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data

Benchmark Dose Computation


Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1574.57

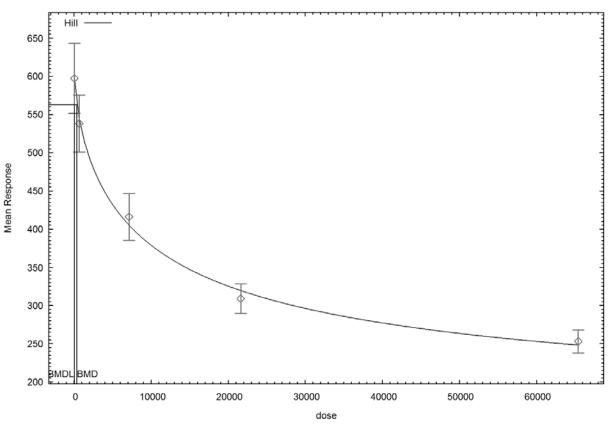
BMDL computation failed.

10:36 04/12 2017

_____ Hill Model. (Version: 2.17; Date: 01/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:33:16 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = intercept + v*dose^n/(k^n + dose^n) Dependent variable = Mean Independent variable = Dose rho is set to 0 Power parameter is not restricted A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1963.8 rho = Specified 0 597 intercept = v = -344 n = 1.19729 6655.59 k = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rhohave been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha k intercept v n alpha 1 1.4e-007 -1.4e-007 -9.3e-008 8.1e-008 intercept 1.4e-007 1 -0.79 -0.83 0.41 -1.4e-007 -0.79 1 0.95 -0.87 v n -9.3e-008 -0.83 0.95 1 -0.76 -0.76 8.1e-008 0.41 -0.87 k 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Variable Std. Err. Lower Conf. Limit Upper Conf. Limit alpha 1826.58 365.317 1110.58 2542.59 605.321 23.5272 559,208 651.433 intercept -456.561 102.566 -657.586 -255.536 v 0.685578 0.217284 0.259709 n 1.11145

	k	1028	7.6	5558.45		-606.802		21181.9
Table	of Dat	a and Estima	ted Values	of Interest				
Dose	N 	Obs Mean	Est Mean	Obs Std De	v Est Sto 	l Dev	Scaled Res.	
48 1	0	597	594	64	42.7		0.216	
674 1		538	544	52	42 7		-0.464	
7132 1	0	416	406	43	42.7		0.773	
2.164e+004	10	309	32		27	42.7	-0.82	
6.543e+004	10	253	24	9	21	42.7	0.296	
Model Des	criptio	ns for likel	ihoods cal	culated				
Model A1:		Yij = Mu(i) ij)} = Sigma						
Model A2:		Yij = Mu(i) ij)} = Sigma						
Model	Var{e(A3 use	Yij = Mu(i) ij)} = Sigma s any fixed ed by the us	.^2 variance pa	arameters th	at			
Model R:		Yi = Mu + (i)} = Sigma						
		Likeli	hoods of I	nterest				
	Model	Log(li	kelihood)	# Param's	AIC			
	A1		931903		435.8638			
	A2		482849		428.9656			
f	A3 itted		931903 755056		435.8638 435.5101			
L	R			2				
		Explanatic	n of Tests					
	-		variances	differ amon	g Dose lev	rels?		
Test 2: Test 3: Test 4:	Are var Does th	iances Homog iances adequ e Model for	ately mode the Mean F	l vs A2) led? (A2 vs. it? (A3 vs. 3 and Test	fitted)	the sa	me)	
(11000 11			Interest	5 4114 1000	20			
Test	-2*log	(Likelihood	Ratio) Te	st df	p-value			
m 1		100.00	-	0	- 0001			
Test 1 Test 2		133.26 14.898			<.0001			
Test 3		14.898			004917 004917			
Test 4		1.6463			0.1995			
difference	betwee		nd/or varia	. There app ances among	ears to be			

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model


The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $% \left(\frac{1}{2} \right) = 0$

Benchmark Dose Computation

1
Estimated standard deviations from the control mean
0.95
375.075
11.8505

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:33 05/18 2016

```
_____
       Hill Model. (Version: 2.17; Date: 01/28/2013)
       Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
       Gnuplot Plotting File:
U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt
                                           Wed Apr 12 10:45:06 2017
_____
BMDS Model Run
The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  Power parameter is not restricted
  The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))
  Total number of dose groups = 5
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                    lalpha =
                              7.58264
                      rho =
                                    0
                  intercept =
                                   597
                        v =
                                   -344
                                1.19729
                        n =
                                6655.59
                        k =
         Asymptotic Correlation Matrix of Parameter Estimates
              lalpha
                           rho
                                 intercept
                                                  v
                                                           n
                                                                        k
   lalpha
                 1
                            -1
                                    0.27
                                                -0.3
                                                          -0.27
                                                                     0.093
     rho
                 -1
                            1
                                    -0.28
                                                0.31
                                                          0.27
                                                                    -0.092
intercept
               0.27
                         -0.28
                                      1
                                               -0.86
                                                          -0.76
                                                                    -0.073
               -0.3
                         0.31
                                    -0.86
                                                          0.96
       v
                                                  1
                                                                    -0.37
                         0.27
              -0.27
                                               0.96
                                    -0.76
                                                            1
                                                                     -0.37
       n
                                               -0.37
                                                          -0.37
       k
              0.093
                        -0.092
                                   -0.073
                                                                       1
                           Parameter Estimates
```

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	-8.31302	3.98605	-16.1255	-0.500505	
rho	2.59235	0.664136	1.29066	3.89403	
intercept	588.576	23.2807	542.946	634.205	
v	-385.905	59.9108	-503.328	-268.482	
n	0.927451	0.314852	0.310353	1.54455	
k	8185.26	1607.79	5034.06	11336.5	

Table of Data and Estimated Values of Intere	st
--	----

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		-					
48	10		597	585	64	60.5	0.61
674	10		538	554	52	56.3	-0.893
7132	10		416	408	43	37.9	0.673
2.164e+0	004	10	309	314	27	27	-0.596
6.543e+0	004	10	253	252	21	20.3	0.206

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that

were specified by the user

Model R: Yi = Mu + e(i) Var{e(i)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	б	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-205.742257	6	423.484514
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

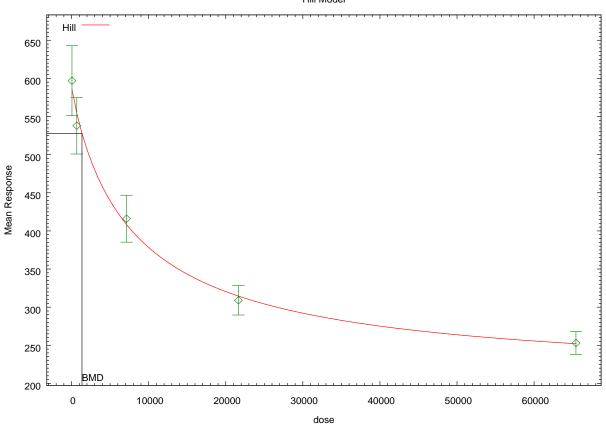
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	2.32495	1	0.1273

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data


Benchmark Dose Computation

Specified e	effect	=	1
-------------	--------	---	---

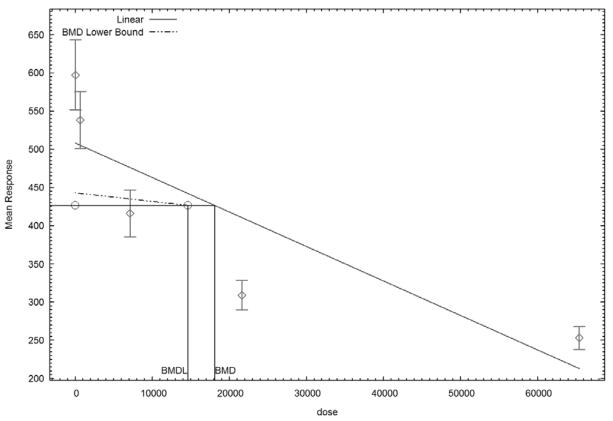
Risk Type = Estimated standard deviations from the control mean

Confidence	level	=	0.95
	BMD	=	1346.94

BMDL computation failed.

Hill Model

10:45 04/12 2017


_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:38:41 2016 _____ BMDS Model Run The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 Specified rho = 0 508.174 beta_0 = $beta_1 = -0.00450779$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ beta_0 alpha beta 1 1 6.4e-008 -7.1e-008 alpha beta_0 6.4e-008 1 -0.61 -7.1e-008 beta_1 -0.61 1 Parameter Estimates Std. Err. Lower Conf. Limit Upper Conf. Limit 1334.34 4056 44 95.0% Wald Confidence Interval Variable Estimate 4056.44 9286.95 6671.7 alpha 479.527 536.821 -0.00543235 -0.00358322 508.174 14.616 beta_0 beta_1 -0.00450779 0.000471724 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. ___ _____ _____ _____

48 10 674 10 7132 10 2.164e+004 10 6.543e+004 10		508 505 476 411 213	64 52 43 27 21	81.7 81.7 81.7 81.7 81.7 81.7	3.45 1.27 -2.32 -3.93 1.54
Model Descriptio	ons for likelih	noods calculate	ed		
Model Al: Var{e	Yij = Mu(i) + (ij)} = Sigma^2				
Model A2: Var{e	Yij = Mu(i) + (ij)} = Sigma(i				
Model A3 us	Yij = Mu(i) + (ij)} = Sigma^2 es any fixed va ied by the user	riance parame	ters that		
Model R: Var{	Yi = Mu + e(e(i)} = Sigma^2				
	Likeliho	ods of Intere	st		
Mode Al A2 A3 fitted R	-211.93 -204.48 -211.93	31903 32849 31903 40728	10 4 6 4 3 4	AIC 35.863807 28.965699 35.863807 96.281455 46.230542	
	Explanation	of Tests			
Test 1: Do resp (A2 vs Test 2: Are Va: Test 3: Are va: Test 4: Does th (Note: When rho	. R) riances Homogen riances adequat he Model for th	neous? (Al vs) cely modeled? ne Mean Fit? ()	A2) (A2 vs. A3 A3 vs. fit) ted)	.)
	Tests of I	Interest			
Test -2*log	g(Likelihood Ra	atio) Test df	p-	value	
Test 1 Test 2 Test 3 Test 4	133.265 14.8981 14.8981 66.4176	8 4 4 3	0.004 0.004		
The p-value for ' difference betwee It seems appropri	en response and	l/or variances			
The p-value for non-homogeneous		than .1. Con	sider runn	ing a	
The p-value for different varian		than .1. You	may want	to consider a	
The p-value for ' model	Test 4 is less	than .1. You	may want	to try a differ	ent

model

Benchmar	Dose Computation
Specified effect =	1
Risk Type =	Estimated standard deviations from the control mean
Confidence level =	0.95
BMD =	18119.9
BMDL =	14610.5

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:38 05/18 2016

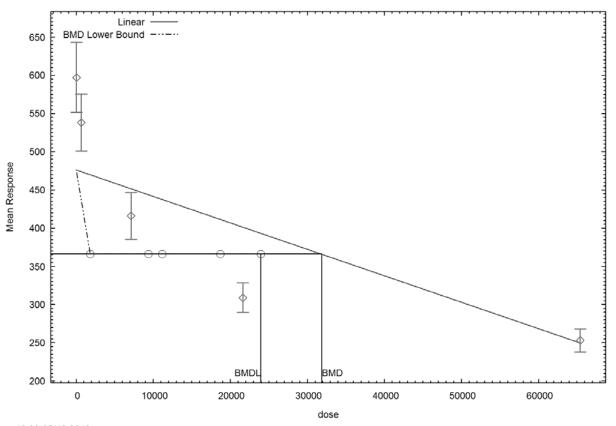
16

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:39:54 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.58264 rho = 0 508.174 beta_0 = $beta_1 = -0.00450779$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 lalpha 1 -1 0.4 -0.45 rho -1 1 -0.4 0.45 beta_0 0.4 -0.4 1 -0.94 -0.45 -0.94 1 beta_1 0.45 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Variable Estimate Lower Conf. Limit Upper Conf. Limit lalpha -21.5468 5.95672 -33.2218 -9.87189 6.96718 5.02009 0.993433 3.07299 rho 476.405 18.7928 439.572 513.239 beta_0 -0.00409507 -0.00346267 0.000322659 -0.00283027 beta_1 Table of Data and Estimated Values of Interest Obs Std Dev Est Std Dev Scaled Res. Dose Ν Obs Mean Est Mean ____ ___ _____ _____ _____ _____ _____

1234567890123456789012345678901233456789012345

48

10 597


110

3.46

674 10 7132 10 2.164e+004 10 6.543e+004 10		474 452 401 250	52 43 27 21		
Model Descriptio	ons for likelih	noods calcula	ted		
Model Al: Var{e	Yij = Mu(i) + (ij)} = Sigma^2				
Model A2: Var{e	Yij = Mu(i) + (ij)} = Sigma(i				
Model A3 us	Yij = Mu(i) + (ij)} = exp(la) es any fixed va ied by the user	lpha + rho*ln ariance param			
Model R: Var{	Yi = Mu + e(e(i)} = Sigma^2				
	Likeliho	oods of Inter	est		
Mode A1 A2 A3 fitted R	-211.93 -204.48 -204.55	31903 32849 79781 46601	6 10 7 4	AIC 435.863807 428.965699 423.159562 484.493202 546.230542	
	Explanation	of Tests			
Test 1: Do res (A2 vs Test 2: Are Va Test 3: Are va Test 4: Does t (Note: When rh	. R) riances Homoger riances adequat he Model for th	neous? (Al vs cely modeled? ne Mean Fit?	A2) (A2 vs. A (A3 vs. fi	3) tted)	ame.)
	Tests of 1	Interest			
Test 1	g(Likelihood Ra	8	<.	0001	
Test 2 Test 3 Test 4	14.8981 0.193864 67.3336	3	0.	4917 9786 0001	
The p-value for difference betwee It seems appropr	en response and	l/or variance			
The p-value for ' model appears to			non-homoge	neous variance	2
The p-value for ' to be appropria		ter than .1.	The model	ed variance ap	ppears
The p-value for ' model	Test 4 is less	than .1. Yo	u may want	to try a diff	Terent
Ben	chmark Dose Con	nputation			

Specified effect	=	1						
Risk Type	=	Estimated	standard	deviations	from	the	control	mean
Confidence level	=	0.95						
BMD	=	31885.2	2					
BMDL	=	23977	7					

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13 10:39 05/18 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/DFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:42:05 2016 _____ BMDS Model Run The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 Specified rho = 0 562.079 beta_0 = $beta_1 = -0.0163526$ $beta_2 = 1.78072e-007$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 beta_2 alpha 1 3.7e-008 -5.1e-009 1.5e-009 1.4e-007 beta_0 1 -0.65 0.55 beta_1 -3.6e-008 -0.65 1 -0.98 beta_2 1.8e-008 0.55 -0.98 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 1467.96 alpha 2414.38 482.877 3360.81

beta_0

beta_1

beta_2

562.079

-0.0163526

1.78072e-007

541.498

-0.0188868

1.40902e-007

582.66

-0.0138184

2.15243e-007

10.5008

0.001293

1.89647e-008

Table of Data and Estimated Values of Interest		Table o	of Data	and	Estimated	Values	of	Interest
--	--	---------	---------	-----	-----------	--------	----	----------

Dose	N	Obs	s Mean	Est Mean	Obs Std Dev	Est Std D	ev Scaled Res.
48	10	ſ	597	561	64	49.1	2.3
674	10	Ţ.	538	551	52	49.1	-0.846
7132	10	4	116	455	43	49.1	-2.48
2.164e+0	04	10	309	29	2 27	4	9.1 1.12
6.543e+0	04	10	253	25	4 21	4	9.1 -0.0928

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

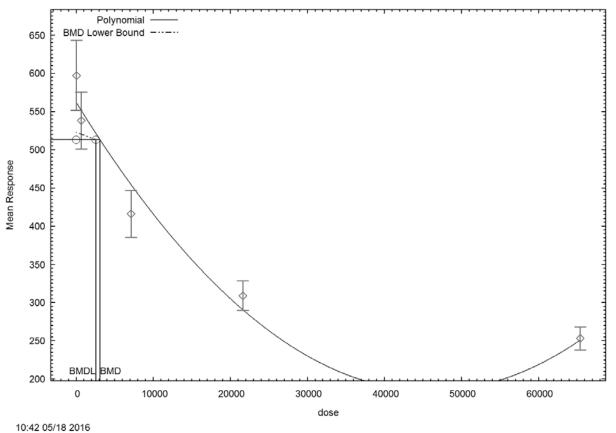
Model	Log(likelihood)	# Param's	AIC
Al	-211.931903	б	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	б	435.863807
fitted	-219.729990	4	447.459980
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	15.5962	2	0.0004105


The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

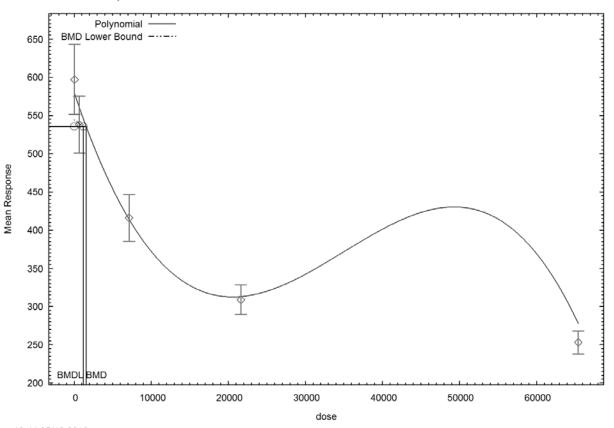
Benchmark	Dose Computation
Specified effect =	1
Risk Type =	Estimated standard deviations from the control mean
Confidence level =	0.95
BMD =	3110.14
BMDL =	2550.69

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

19 ^{10:}

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/DFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:44:55 2016 _____ BMDS Model Run The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1 rho = Specified 0 579.511 beta_0 = $beta_1 = -0.0302335$ $beta_2 = 1.03508e-006$ $beta_3 = -9.92359e-012$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rhohave been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_2 beta 1 beta 3 alpha 1 -1.1e-006 -2e-008 3.8e-009 5.9e-009 beta_0 -1.1e-006 1 -0.61 0.5 -0.47 beta_1 -9.6e-009 -0.61 1 -0.98 0.96 beta_2 -1.7e-009 0.5 -0.98 1 -1 -2e-009 -0.47 0.96 -1 beta 3 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Variable Std. Err. Lower Conf. Limit Upper Conf. Limit 2692.63 1934.37 386.873 1176.12 alpha 579.511 10.6224 558,691 600.33 beta_0 0.00410718 -0.0302335 -0.0382834 -0.0221835 beta_1 5.57057e-007 1.03508e-006 2.43895e-007 1.51311e-006 beta_2

	beta_3	-9.92359e	-012 2.8	81729e-012	-1.54454e-0	011 -4.40181e-012
Tak	ole of Da	ta and Estima	ated Values	of Interest		
Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	578	64	44	1.36
674	10	538	560	52	44	-1.55
7132	10	416	413	43	44	0.22
2.164e+0 6.543e+0		309 253	309 253			
0.545010	10 10	200	2.5.	5 2	т тт	0.000795
Model I	Descripti	ons for like	lihoods calo	culated		
Model A		Yij = Mu(i (ij)} = Sigma				
Model A		Yij = Mu(i (ij)} = Sigma				
	Var{e	Yij = Mu(i (ij)} = Sigma es any fixed	a^2	arameters tha	t	
wei	re specif	ied by the us	ser			
Model		Yi = Mu + e(i)} = Sigma				
		Likel	ihoods of In	nterest		
	Mode	5.	ikelihood)		AIC	
	A1		.931903	6	435.863807	
	A2 A3		.482849 .931903	10 6	428.965699 435.863807	
	fitted		.188543	5	438.377085	
	R		.115271	2	546.230542	
		Explanatio	on of Tests			
Test 1:		ponses and/or . R)	r variances	differ among	Dose levels?	
		riances Homog				
				led? (A2 vs.		
				it? (A3 vs. f	utted) will be the sa	
(Note:	WHEN TH	io=0 the resu	its of lest	s allo lest z	WIII DE UNE Sa	ame.)
		Tests o	f Interest			
Test	-2*lo	g(Likelihood	Ratio) Te:	st df	p-value	
Test	1	133.2	55	8 <	.0001	
Test		14.89			04917	
Test		14.89			04917	
Test	4	4.513	28	1 0.	03363	
differer	nce betwe		and/or varia	. There appe ances among t	ars to be a he dose levels	


The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect	=	1
Risk Type	=	Estimated standard deviations from the control mean
Confidence level	=	0.95
BMD	=	1534.12
BMDL	=	1189.84

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

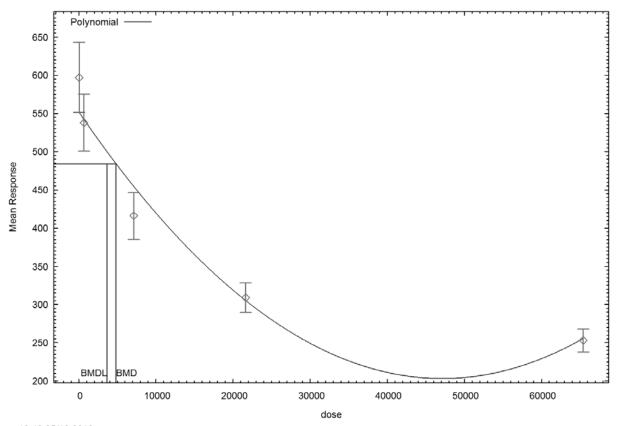
23 10:44 05/18 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:46:53 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.58264 rho = 0 beta_0 = 562.079 $beta_1 = -0.0163526$ $beta_2 = 1.78072e-007$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 lalpha -1 0.18 -0.23 0.23 1 1 -0.18 -1 0.23 -0.23 rho 0.18 -0.18 1 -0.85 0.77 beta_0 beta_1 -0.23 0.23 -0.85 1 -0.99 beta_2 0.23 -0.23 0.77 -0.99 1 Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-11.3364	3.98747	-19.1517	-3.52108
rho	3.13195	0.664244	1.83006	4.43385
beta_0	551.921	13.5682	525.328	578.515
beta_1	-0.0148449	0.00108815	-0.0169776	-0.0127121
beta_2	1.57106e-007	1.42079e-008	1.29259e-007	1.84952e-007

Table of Data and Estimated Values of Interest

597 538 416 0 309 0 253 ions for likeli Yij = Mu(i) e(ij)} = Sigma^ Yij = Mu(i) e(ij)} = Sigma(Yij = Mu(i)	+ e(ij) 2 + e(ij)		27	67.8 66 50	26.7 20	2.14 -0.191 -2.4 0.5 -0.028
Yij = Mu(i) e(ij)} = Sigma^ Yij = Mu(i) e(ij)} = Sigma(Yij = Mu(i)	+ e(ij) 2 + e(ij)	ulated				
Yij = Mu(i) e(ij)} = Sigma^ Yij = Mu(i) e(ij)} = Sigma(Yij = Mu(i)	+ e(ij) 2 + e(ij)	ulated				
e(ij)} = Sigma^ Yij = Mu(i) e(ij)} = Sigma(Yij = Mu(i)	2 + e(ij)					
e(ij)) = Sigma(Yij = Mu(i)						
ses any fixed v	lpha + rho ariance pa					
Likelih	oods of In	terest				
-211.9	31903	б		435.86380		
		10		428.96569	2	
		5		432.064210	б	
Explanation	of Tests					
	variances	differ a	nong	Dose leve	ls?	
ariances Homoge						
					he same	.)
Tests of	Interest					
og(Likelihood R	atio) Tes	t df	p	-value		
133.265		8	<.	0001		
een response an	d/or varia					
		A non-he	omoge	neous var:	iance	
	ses any fixed v fied by the use Yi = Mu + e {e(i)} = Sigma^ Likelih el Log(lik -211.9 -204.4 -204.5 -211.0 -271.1 Explanation sponses and/or s. R) ariances Homoge ariances adequa the Model for t ho=0 the result Tests of og(Likelihood R 133.265 14.8981 0.193864 12.9047 Test 1 is less een response an riate to model Test 2 is less o be appropriat	<pre>ses any fixed variance pa fied by the user Yi = Mu + e(i) {e(i)} = Sigma^2 Likelihoods of In el Log(likelihood) -211.931903 -204.482849 -204.579781 -211.032108 -271.115271 Explanation of Tests sponses and/or variances s. R) ariances Homogeneous? (Al ariances adequately model the Model for the Mean Fi ho=0 the results of Test Tests of Interest og(Likelihood Ratio) Tes 133.265 14.8981 0.193864 12.9047 Test 1 is less than .05. een response and/or varia riate to model the data Test 2 is less than .1. o be appropriate Test 3 is greater than .</pre>	<pre>ses any fixed variance parameters fied by the user Yi = Mu + e(i) {e(i)} = Sigma^2 Likelihoods of Interest el Log(likelihood) # Param -211.931903 6 -204.482849 10 -204.579781 7 -211.032108 5 -271.115271 2 Explanation of Tests sponses and/or variances differ and s. R) ariances Homogeneous? (Al vs A2) ariances adequately modeled? (A2 or the Model for the Mean Fit? (A3 or ho=0 the results of Test 3 and Test Tests of Interest og(Likelihood Ratio) Test df 133.265 8 14.8981 4 0.193864 3 12.9047 2 Test 1 is less than .05. There are een response and/or variances amount riate to model the data Test 2 is less than .1. A non-ho o be appropriate Test 3 is greater than .1. The rest Test 3 is greater than .1. The rest 3 is greater than .1. The rest Test 3 is greater than .1. The rest 3 is greater tha</pre>	<pre>fied by the user Yi = Mu + e(i) {e(i)} = Sigma^2 Likelihoods of Interest el Log(likelihood) # Param's -211.931903 6 -204.482849 10 -204.579781 7 -211.032108 5 -271.115271 2 Explanation of Tests sponses and/or variances differ among s. R) ariances Homogeneous? (Al vs A2) ariances adequately modeled? (A2 vs. A the Model for the Mean Fit? (A3 vs. fi ho=0 the results of Test 3 and Test 2 Tests of Interest og(Likelihood Ratio) Test df p 133.265 8 <. 14.8981 4 0.000 0.193864 3 0. 12.9047 2 0.000 Test 1 is less than .05. There appea een response and/or variances among the riate to model the data Test 2 is less than .1. A non-homoge o be appropriate Test 3 is greater than .1. The model</pre>	<pre>ses any fixed variance parameters that fied by the user Yi = Mu + e(i) {e(i)} = Sigma^2 Likelihoods of Interest el Log(likelihood) # Param's AIC -211.931903 6 435.86380 -204.482849 10 428.96569 -204.579781 7 423.15956 -211.032108 5 432.06421 -271.115271 2 546.23054 Explanation of Tests sponses and/or variances differ among Dose level s. R) ariances Homogeneous? (Al vs A2) ariances adequately modeled? (A2 vs. A3) the Model for the Mean Fit? (A3 vs. fitted) ho=0 the results of Test 3 and Test 2 will be the Tests of Interest og(Likelihood Ratio) Test df p-value 133.265 8 <.0001 14.8981 4 0.004917 0.193864 3 0.9786 12.9047 2 0.001577 Test 1 is less than .05. There appears to be a eeen response and/or variances among the dose ler riate to model the data Test 2 is less than .1. A non-homogeneous vario o be appropriate</pre>	<pre>ses any fixed variance parameters that fied by the user Yi = Mu + e(i) {e(i)} = Sigma^2 Likelihoods of Interest el Log(likelihood) # Param's AIC -211.931903 6 435.863807 -204.482849 10 428.965699 -204.579781 7 423.159562 -211.032108 5 432.064216 -271.115271 2 546.230542 Explanation of Tests sponses and/or variances differ among Dose levels? s. R) ariances Homogeneous? (Al vs A2) ariances adequately modeled? (A2 vs. A3) the Model for the Mean Fit? (A3 vs. fitted) ho=0 the results of Test 3 and Test 2 will be the same Tests of Interest og(Likelihood Ratio) Test df p-value 133.265 8 <.0001 14.8981 4 0.004917 0.193864 3 0.9786 12.9047 2 0.001577 Test 1 is less than .05. There appears to be a een response and/or variances among the dose levels riate to model the data Test 2 is less than .1. A non-homogeneous variance o be appropriate Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 3 is greater than .1. The modeled variance appenent Test 4 test 3 is greater than .1. The modeled variance appenent Test 4 test 3 test 3 test 4 te</pre>


to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right]_{\rm{T}}} \right]$

Benchmark	Dose Computation
Specified effect =	1
Risk Type =	Estimated standard deviations from the control mean
Confidence level =	0.95
BMD =	4821.99
BMDL =	3667.36

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20 10:46 05/18 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:48:17 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.58264 rho = 0 579.511 beta_0 = $beta_1 = -0.0302335$ $beta_2 = 1.03508e-006$ $beta_3 = -9.92359e-012$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 beta_3 lalpha 1 -1 0.024 -0.036 0.035 -0.035 rho -1 1 -0.025 0.036 -0.036 0.036 0.024 -0.025 -0.73 0.63 beta_0 1 -0.6 -0.036 -0.73 0.97 beta_1 0.036 1 -0.98 -1 beta_2 0.035 -0.036 0.63 -0.98 1 beta_3 -0.035 0.036 -0.6 0.97 -1 1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-9.00682	3.73684	-16.3309	-1.68274
rho	2.70942	0.622381	1.48958	3.92927
beta_0	578.205	14.3857	550.01	606.401
beta_1	-0.0294538	0.00425681	-0.037797	-0.0211106
beta_2	9.89721e-007	2.34882e-007	5.2936e-007	1.45008e-006
beta_3	-9.40773e-012	2.64749e-012	-1.45967e-011	-4.21875e-012

Ta	ble of	Data and Est	imated Values	of Interest		
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	577	64	60.9	1.05
674	10	538	559	52	58.3	-1.13
7132	10	416	415	43	39	0.0754
2.164e+	004	10 30	9 309) 27	26.1	0.00417
6.543e+	004	10 25	3 253	3 21	19.9	0.000791

Model Descriptions for likelihoods calculated

Model A2: Yij = Mu(i) + e(ij)Var $\{e(ij)\}$ = Sigma(i)²

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

f

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
itted	-205.949166	6	423.898333
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

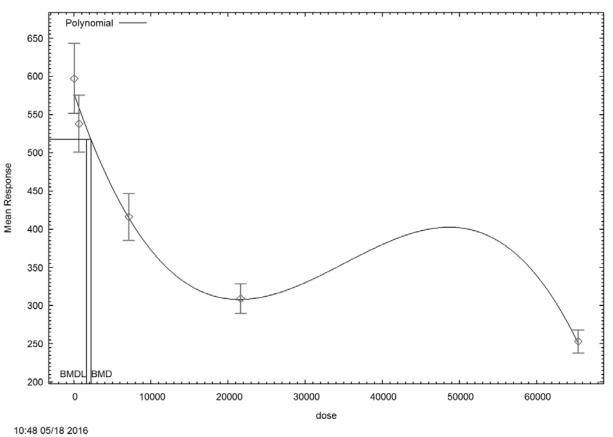
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	2.73877	1	0.09794

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears

to be appropriate here


The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{\left[{{{\rm{Test}}} \right]_{\rm{Test}}} \right]$

Benchmark Dose Computation

Specified effect	=	1	
Risk Type	=	Estimated standard deviations from the control m	iean
Confidence level	=	0.95	
BMD	=	2239.22	
BMDL	=	1630.89	

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:02:37 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1 A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1963.8 rho = Specified 0 597 control = -41724.5 slope = power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha control slope alpha 1 -1.2e-008 6.2e-009 -1.2e-008 control 1 -0.61 slope 6.2e-009 -0.61 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. 6671.69 1334.34 4056.44 9286.95 alpha control 508.174 14.616 479.527 536.821 -0.00543235 -0.00358322 0.000471724 slope -0.00450779 power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

.93 .54

Ta	ble of	Data and Est	imated Values	of Interest		
Dose	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	508	64	81.7	3.45
674	10	538	505	52	81.7	1.27
7132	10	416	476	43	81.7	-2.32
2.164e+	004	10 30	9 41	1 27	81.7	-3.
6.543e+	004	10 25	3 21	3 21	81.7	1.

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma²

Model A2: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Mode	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-245.140728	3	496.281455
R	-271.115271	2	546.230542

Explanation of Tests

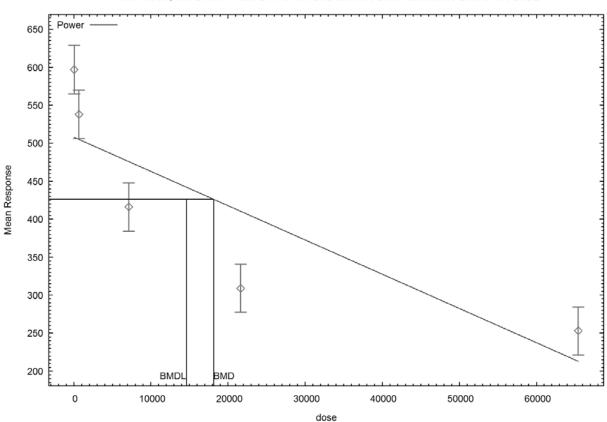
Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	66.4176	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model


The p-value for Test 3 is less than .1. You may want to consider a

different variance model
The p-value for Test 4 is less than .1. You may want to try a different
model
Benchmark Dose Computation
Specified effect = 1
Risk Type = Estimated standard deviations from the control mean

0.95

BMD = 18119.9 BMDL = 14610.5

Confidence level =

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

21 13:02 05/18 2016

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:04:15 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is restricted to be greater than or equal to 1 The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)Total number of dose groups = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values 7.58264 lalpha = rho = 0 control = 597 -41724.5 slope = -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ lalpha control rho slope lalpha 1 -1 0.57 -0.64 rho -1 1 -0.58 0.66 control 0.57 -0.58 1 -0.94 slope -0.64 0.66 -0.94 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -35.3683 2.69097 lalpha -21.5468 7.0519 -7.72537 rho 5.02009 1.18835 7.3492 513.607 control 476.405 18.9808 439.204 0.00032474 -0.00409915 -0.00282619 -0.00346267 slope 1 power NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus

has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	Ob	os Mean	Est Mean	Obs Std Dev	Est Std	Dev Scaled Res.
48	10		597	476	64	110	3.46
674	10		538	474	52	109	1.85
7132	10		416	452	43	96.6	-1.17
2.164e+0	004	10	309	401	. 27		71.9 -4.07
6.543e+0	004	10	253	250	21		21.9 0.455

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma(i)^2

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user
```

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Mode	<pre>Log(likelihood)</pre>	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-238.246601	4	484.493202
R	-271.115271	2	546.230542

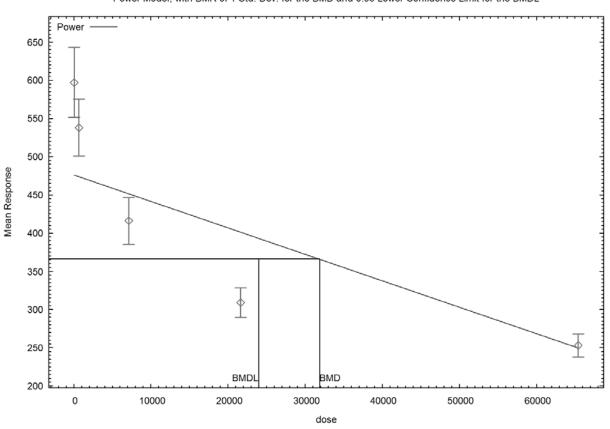
Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	67.3336	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data


The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

Benchmark Dose Computation

Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 31885.2

BMDL = 23977

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:04 05/18 2016

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:06:15 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to O The power is not restricted A constant variance model is fit Total number of dose groups = 5Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 1963.8 rho = Specified 0 597 control = -4.09032 slope = power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha control slope power alpha 1 2e-007 -2.1e-007 -2.1e-007 2e-007 -0.97 -0.98 control 1 slope -2.1e-007 -0.98 1 1 -2.1e-007 -0.97 1 1 power Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit alpha 1977.12 395.423 1202.1 2752.13 598.623 control 724.488 64.2179 850.353 -56.9526 36.6253 -128.73714.8316 slope 0.192873 0.0475148 0.0997454 0.286 power

Table	of	Data	and	Estimated	Values	of	Interest
Table	OL	Dala	anu	ESCIMALEU	varues	OL	THLETESL

Dose	Ν	C	bs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	604	64	44.5	-0.521
674	10		538	524	52	44.5	0.963
7132	10		416	409	43	44.5	0.483
2.164e+0	004	10	309	334	27	44.5	-1.77
6.543e+0	004	10	253	241	21	44.5	0.85

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) Var{e(i)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	-211.931903	б	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	б	435.863807
fitted	-214.734861	4	437.469721
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	5.60591	2	0.06063

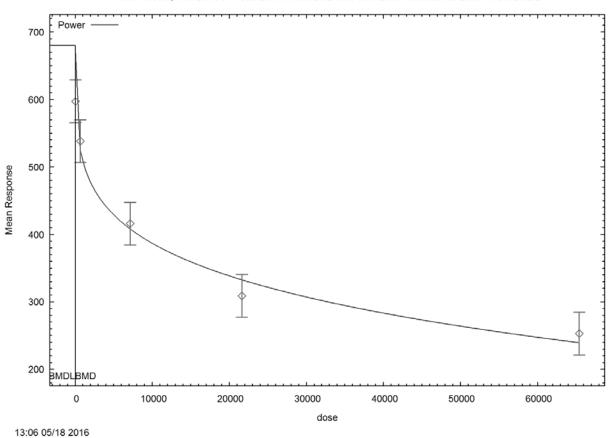
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

Benchmark Dose Computation

1


Specified effect =

Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95

BMD = 0.277109

BMDL = 0.277103

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:07:45 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)Total number of dose groups = 5 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = 7.58264 rho = 0 control = 597 -4.09032 slope = -9999 power = Asymptotic Correlation Matrix of Parameter Estimates lalpha rho control slope power lalpha -1 -0.21 0.24 0.25 1 -1 1 0.21 -0.24 -0.25 rho control -0.21 0.21 1 -0.99 -0.98 slope 0.24 -0.24 -0.99 1 1

-0.25

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-6.81322	4.19657	-15.0383	1.4119
rho	2.36545	0.699237	0.994968	3.73593
control	808.056	118.681	575.445	1040.67
slope	-111.871	78.5631	-265.852	42.1097
power	0.145296	0.044859	0.0573738	0.233218

-0.98

1

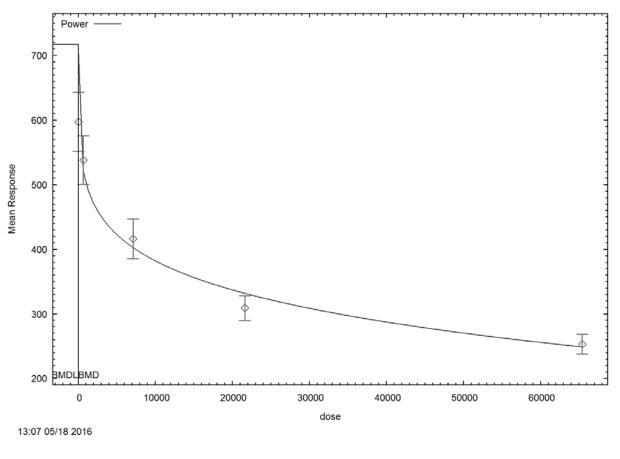
1

Table of Data and Estimated Values of Interest

0.25

power

	10	597	612		ł	65.5	-0.711
	10	538	520	52		54	1.06
7132		416	402		}	39.9	
.164e+00				31	27		
5.543e+00	4 10	253	2	48	21	22.5	0.7
Model De	scripti	ons for like	elihoods ca	lculated			
Model A1	:	Yij = Mu(:	L) + e(ij)				
	Var{e	(ij)} = Sign	na^2				
Model A2		Yij = Mu(: (ij)} = Sign					
Model A3		Yij = Mu(:	-	h = +] = (M- / -			
	l A3 us	(ij)} = exp es any fixed ied by the u	l variance :				
Model R	-	Yi = Mu - e(i)} = Sign					
		Like	lihoods of	Interest			
	Mode Al	5.	Likelihood) L.931903			AIC 35.863807	
	A1 A2		1.482849			28.965699	
	A3		1.579781			23.159562	
	fitted		0.258337			28.516675	
	R		1.115271			46.230542	
		Explanat:	lon of Test	s			
	(A2 vs	. ,			among Do	ose levels?	
		riances Homo					
		riances ade					
		he Model for o=0 the resu				ill be the s	ame.)
			of Interest				
Test	-2*lo	g(Likelihood	l Ratio) T	est df	p-	value	
Test 1		133.2	265	8	<.00	001	
Test 2		14.89	981	4	0.0049	917	
Test 3		0.1938	364	3	0.9	786	
Test 4		9.35	711	2	0.0093	292	
differenc	e betwe	Test 1 is le en response iate to mode	and/or var	iances amo		s to be a dose levels	
	ue for						


to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{\left[{{{\rm{Test}}} \right]_{\rm{Test}}} \right]$

Benchmark Dose Computation

Specified effect	=	1						
Risk Type	=	Estimated	standard	deviations	from	the	control	mean
Confidence level	=	0.95						
BMD	=	0.242147						
BMDL	=	0.242142						

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

1 2

3

Dong *et al.* (2012a) Benchmark Dose Analysis - Relative Liver Weight BMR = 10% Relative Deviation

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi- square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
2-5	Exponential (Model 5) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	0.070	-91.8	9,973.7	8,182.2
6-9	Exponential (Model 5) ^a	Not Constant	Restrict Power ≥ 1	Normal	-	0.010	-92.4	10,011.4	8,357.7
10-13	Exponential (Model 5) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	0.005	- 249.8	9,958.04	8,365.6
14-17	Exponential (Model 5) ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	0.005	- 249.8	9,958.0	8,365.6
18-20	Hill ^a	Constant (Rho=0)	Restrict n > 1	-	-	0.070	-91.8	10,116.5	8,252.3
21-23	Hill ^a	Constant (Rho=0)	No Restriction	-	-	0.070	-91.8	10,116.5	8,252.3
24-26	Linear ^a	Constant (Rho=0)	-	-	1st	0.0003	-79.7	7,727.3	7,476.6
27-29	Linear ^a	Not Constant	-	-	1st	0.0002	-83.8	7,622.3	7,343.8
30-32	Polynomial ^a	Constant (Rho=0)	-	-	2nd	0.003	-85.1	6,801.1	6,305.2
33-35	Polynomial ^a	Constant (Rho=0)	-	-	3rd	0.05	-91.2	8,909.6	7,501.2
36-38	Polynomial	Not Constant	-	-	2nd	0.0003	-84.9	6,962.7	6,413.1
39-41	Polynomial	Not Constant	-	-	3rd	0.007	-91.7	9,012.4	7,673.2
42-44	Power ^a	Constant (Rho=0)	Restrict Power ≥ 1	-	-	0.0003	-79.7	7,727.3	7,476.6
45-47	Power ^a	Not Constant	Restrict Power ≥ 1	-	-	0.0002	-83.8	7,622.3	7,343.8
48-50	Power ^a	Constant (Rho=0)	No Power Restriction	-	-	0.0005	-80.8	6,520.7	5,487.8
51-53 4	Power ^a	Not Constant	No Power Restriction	-	-	< 0.0001	-82.1	7,182.1	5,968.9

a. *P*-values are less than 0.1. Scaled residuals for one or more doses/serum concentrations
were > |2|.

Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 11:19:42 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: Y[dose] = a * exp{sign * b * dose} $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: Model 4: Y[dose] = a * [c-(c-1) * exp{-b * dose}] Model 5: Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}] $Y[dose] = a * [c-(c-1) * exp{-b * dose]]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) rho is set to 0. A constant variance model is fit. Total number of dose groups = 7 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Exact Initial Parameter Values Model 5 Model 4 Variable Model 2 Model 3 _____ _____ _____ _____ _____ -3.59227 0 * 4.6265 lnalpha -3.59227 -3.59227 -3.59227 0 * rho 0 * 0 * 5.08312 8.08852e-006 5.08312 8.08852e-006 a b 4.6265 4.22254e-006 4.22254e-006 5.23506 0 * 0 * 5.23506 С 1 * d 1 * 1 1 * Indicates that this parameter has been specified Parameter Estimates by Model Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ -1.7284 -3.21065 -1.7284-3.42385 lnalpha 0 * 4.8761 0 * 4.9757 0 * 0 * rho 5.1952 5.1952 а 7.62753e-006 7.62753e-006 2.29212e-006 9.35168e-006 b 7.46727 3.16215 --С -d _ _ 1 1.28574 ---- Indicates that this parameter does not appear in model * Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5

or has l	0.0 1.8239 es that this nit a bound	NA NA s parameter w	ome inequality		0.00711097 NA 0.0483308 1.74015e-006 0.316667 0.0917806 ause of the model form) us has no standard error.
8210	6	5.39	0.15		
2.453e+0		6.48	0.14		
5.974e+0 1.142e+0		9.03 12.11	0.27 0.25		
1.112010	000	12.11	0.25		
	Es	stimated Valu	es of Interest		
Model	Dose	Est Mean	Est Std	Scaled Residual	-
2	40	5.197	0.4214	-1.9	
	580	5.218	0.4214	-0.5129	
	4350	5.37	0.4214	-1.63	
	8210	5.531	0.4214	-0.8193	
	.453e+004	6.264	0.4214	1.255	
	.974e+004	8.194	0.4214	4.859	
3	.142e+005 40	12.41 5.197	$0.4214 \\ 0.4214$	-1.76 -1.9	
3	580	5.218	0.4214	-0.5129	
	4350	5.37	0.4214	-1.63	
	8210	5.531	0.4214	-0.8193	
2	.453e+004	6.264	0.4214	1.255	
	.974e+004	8.194	0.4214	4.859	
1	.142e+005	12.41	0.4214	-1.76	
4	40	4.879	0.2008	-0.1096	
	580	4.918	0.2008	2.586	
	4350	5.189	0.2008	-1.207	
0	8210	5.464	0.2008	-0.9024	
	.453e+004 .974e+004	6.6	0.2008	-1.467	
	.142e+004	8.912 12.14	0.2008 0.2008	1.444 -0.3439	
5	40	4.976	0.1805	-1.44	
5	580	4.989	0.1805	1.916	
	4350	5.15	0.1805	-0.8083	
	8210	5.365	0.1805	0.3372	
2	.453e+004	6.48	0.1805	0.0005407	
	.974e+004	9.03	0.1805	-0.006322	
	.142e+005	12.11	0.1805	0.001331	
Other mode	els for whic	ch likelihood	s are calculate	ed:	
Model A		ij = Mu(i) +)} = Sigma^2	e(ij)		
Model A2		ij = Mu(i) +)} = Sigma(i)			
Model A		lj = Mu(i) +)} = exp(lalp	e(ij) ha + log(mean(:	i)) * rho)	
Model H		ij = Mu + e(i)} = Sigma^2)		

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	54.4377	8	-92.8754
A2	58.52754	14	-89.05508
A3	54.4377	8	-92.8754
R	-60.00776	2	124.0155
2	15.29648	3	-24.59296
3	15.29648	3	-24.59296
4	46.42371	4	-84.84743
5	50.90095	5	-91.80189

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
 Test 1	237.1	12	< 0.0001
Test 2	8.18	6	0.2252
Test 3	8.18	6	0.2252
Test 4	78.28	5	< 0.0001
Test 5a	78.28	5	< 0.0001
Test 5b	-3.151e-012	0	N/A
Test ба	16.03	4	0.002982
Test 6b	62.25	1	< 0.0001
Test 7a	7.074	3	0.06959
Test 7b	71.21	2	< 0.0001
Test 7c	8.954	1	0.002768

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

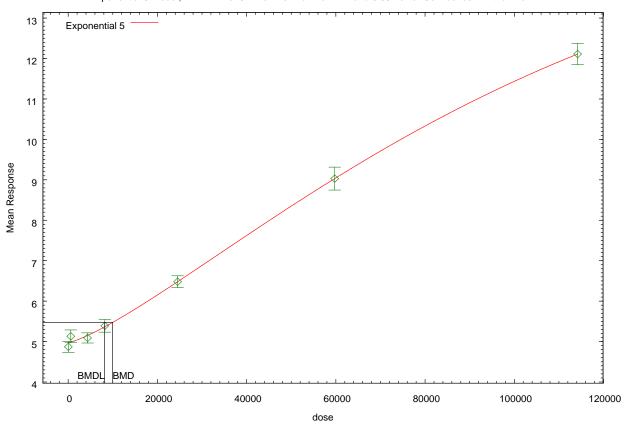
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

BMD	BMDL
12495.6	12015
12495.6	12015
6798.63	6271.16
9973.65	8182.24
	12495.6 12495.6 6798.63

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 11:43:36 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: Y[dose] = a * exp{sign * b * dose} $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 4: Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Mean Independent variable = Dose Data are assumed to be distributed: normally Variance Model: exp(lnalpha +rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Exact Initial Parameter Values Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ -6.72298 1.6671 -6./22-1.6671 4.6265 lnalpha -6.72298 -6.72298 -6.72298 1.6671 1.6671 5.08312 rho a b 5.08312 4.6265 4.22254e-006 8.08852e-006 8.08852e-006 4.22254e-006 0 * 5.23506 0 * 5.23506 С 1 * d 1 * 1 * Indicates that this parameter has been specified Parameter Estimates by Model Variable Model 2 Model 4 Model 5 Model 3 _____ _____ _____ _____ _____ -5.08657 0.979158 -11.8586 -11.8586 -5.41677 lnalpha rho 4.98185 4.98185 1.03221 4.98597 a 4.98597 4.88892 4.97669 9.33653e-006 9.33653e-006 1.82863e-006 9.41578e-006 b 8.89019 3.15055 С ---d _ _ 1 1.28918 ---- Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	0.00354128	1.13475	1.42142	1.26221

	rho a b c d	0. 4.283	.580071 0341907 53e-007 NA NA	0.580071 0.0341907 4.28353e-007 NA NA	0.75079 0.0407136 9.82051e-007 3.82353 NA	0.664593 0.0414736 1.81161e-006 0.325062 0.0883494
NA -	or has l	nit a bound		ome inequality		ause of the model form) as has no standard error.
	Dose	N	Obs Mean	Obs Std Dev		
	40	6	4.87	0.13		
	580	6	5.13	0.15		
	4350	б	5.09	0.12		
	8210	6	5.39	0.15		
	2.453e+0	004 6	6.48	0.14		
	5.974e+0	004 6	9.03	0.27		
	1.142e+0	005 6	12.11	0.25		
		E	stimated Valu	es of Interest		
	Model	Dose	Est Mean	Est Std	Scaled Residual	_
	2	40	4.988	0.1457	-1.981	
	_	580	5.013	0.1475	1.942	
		4350	5.193	0.161	-1.561	
		8210	5.383	0.1762	0.09465	
	2	.453e+004	6.269	0.2575	2.005	
	5	.974e+004	8.709	0.5839	1.345	
	1	.142e+005	14.48	2.072	-2.802	
	3	40	4.988	0.1457	-1.981	
		580	5.013	0.1475	1.942	
		4350	5.193	0.161	-1.561	
		8210	5.383	0.1762	0.09465	
		.453e+004	6.269	0.2575	2.005	
		.974e+004	8.709	0.5839	1.345	
		.142e+005	14.48	2.072	-2.802	
	4	40	4.892	0.171	-0.3114	
		580	4.93	0.1717	2.857	
		4350	5.195	0.1761	-1.454	
		8210	5.464	0.1805	-1	
		.453e+004	6.581	0.1977	-1.251	
		.974e+004	8.881	0.229	1.595	
	5	.142e+005	12.16	0.2671	-0.4435 -1.72	
	5	40	4.977	0.1526		
		580 4350	4.99 5.149	0.1528 0.1553	2.251 -0.9352	
		8210	5.364	0.1586	0.3997	
	2	.453e+004	6.478	0.1748	0.02275	
		.974e+004	9.032	0.2075	-0.02375	
		.142e+005	12.11	0.2414	0.005477	
(s are calculate		
	Model A		ij = Mu(i) +)} = Sigma^2	e(ij)		
	Model A2		ij = Mu(i) +)} = Sigma(i)			

Model A3:

Model R:

Likelihoods of Interest

Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)

Yij = Mu + e(i) Var{e(ij)} = Sigma^2

Model	Log(likelihood)	DF	AIC
Al	54.4377	8	-92.8754
A2	58.52754	14	-89.05508
A3	57.84574	9	-97.69149
R	-60.00776	2	124.0155
2	30.41492	4	-52.82985
3	30.41492	4	-52.82985
4	47.35266	5	-84.70531
5	52.20468	б	-92.40935

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value	
 Test 1	237.1	12	< 0.0001	
Test 2	8.18	6	0.2252	
Test 3	1.364	5	0.9283	
Test 4	54.86	5	< 0.0001	
Test 5a	54.86	5	< 0.0001	
Test 5b	-9.607e-012	0	N/A	
Test 6a	20.99	4	0.0003187	
Test 6b	33.88	1	< 0.0001	
Test 7a	11.28	3	0.01029	
Test 7b	43.58	2	< 0.0001	
Test 7c	9.704	1	0.001839	

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

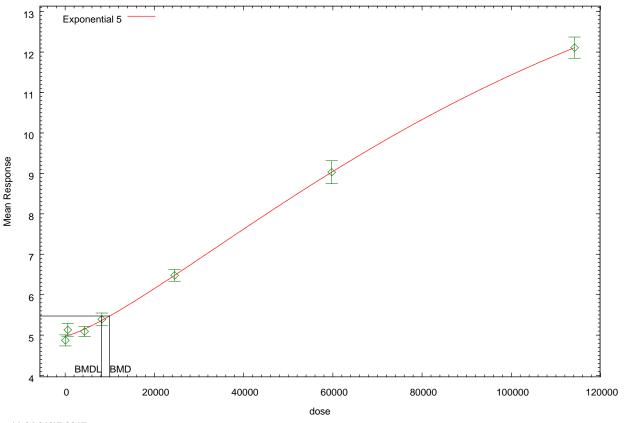
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	10208.3	9456.7
3	10208.3	9456.7
4	6975.14	6394.07
5	10011.4	8357.73

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

32 11:04 01/17 2017

_____ Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 11:46:15 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose]]$ $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Calculated Median Independent variable = Dose Data are assumed to be distributed: lognormally Variance Model: Log-scale variance = exp(lnalpha) rho is set to 0. A constant log-scale variance model is fit. Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Approximate Initial Parameter Values Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ -7.42-0 * 4.62485 ----006 lnalpha -7.49202 -7.49202 -7.49202 4.62485 006 0 * 5.08129 8.08938e-006 rho 0 * 0 * 5.08129 а b 8.08938e-006 4.22243e-006 5.23581 0 * 0 * 5.23581 С 1 * 1 * d 1 1 * Indicates that this parameter has been specified Parameter Estimates by Model Model 4 Model 5 Variable Model 2 Model 3 _____ _____ _____ _____ _____ -5.83943 -5.83943 lnalpha -6.9712 -7.18662 0 * 4.89774 0 * 0 * 5.08129 0 * rho a 5.08129 4.97271 8.08938e-006 b 8.08938e-006 1.24805e-006 9.33737e-006 12.2098 3.16586 --С --1 ___ d _ _ 1.2848 -- Indicates that this parameter does not appear in model * Indicates that this parameter has been specified Std. Err. Estimates by Model Variable Model 2 Model 4 Model 5 Model 3

lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
C	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Calc'd Median		Calc'd GSD
40	6	4.868		1.027
580	б	5.128		1.03
4350	б	5.089		1.024
8210	б	5.388		1.028
2.453e+	-004	6	6.478	1.022
5.974e+	-004	6	9.026	1.03
1.142e+	-005	6 12.11		1.021

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
3	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
4	40	4.9	1.031	-0.07653
	580	4.937	1.031	0.4522
	4350	5.195	1.031	-0.2528
	8210	5.457	1.031	-0.1651
2.4	53e+004	6.553	1.031	-0.1773
5.9	74e+004	8.842	1.031	0.4362
1.1	42e+005	12.19	1.031	-0.1967
5	40	4.973	1.028	-0.2499
	580	4.986	1.028	0.3382
	4350	5.147	1.028	-0.1391
	8210	5.363	1.028	0.05993
	53e+004	6.478	1.028	0.001557
	74e+004	9.027	1.028	-0.003654
1.1	42e+005	12.11	1.028	0.001288

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma^2
Model A2:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma(i)^2
Model A3:	5	= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	= Mu + e(i) = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	136.3324	8	-256.6649
A2	137.0945	14	-246.1891
A3	136.3324	8	-256.6649
R	26.37242	2	-48.74485
2	101.6281	3	-197.2563
3	101.6281	3	-197.2563
4	125.3952	4	-242.7904
5	129.9191	5	-249.8381

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	221.4	12	< 0.0001
Test 2	1.524	б	0.9579
Test 3	1.524	6	0.9579
Test 4	69.41	5	< 0.0001
Test 5a	69.41	5	< 0.0001
Test 5b	-4.547e-013	0	N/A
Test ба	21.87	4	0.0002123
Test 6b	47.53	1	< 0.0001
Test 7a	12.83	3	0.005027
Test 7b	56.58	2	< 0.0001
Test 7c	9.048	1	0.00263

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

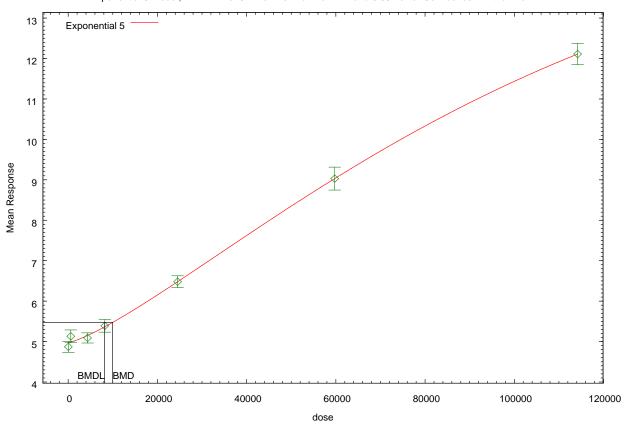
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	11782.1	11289.9
3	11782.1	11289.9
4	7179.8	6586.55
5	9958.04	8365.56

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: Tue Jan 17 11:50:03 2017 _____ BMDS Model Run The form of the response function by Model: Model 2: $Y[dose] = a * exp\{sign * b * dose\}$ $Y[dose] = a * exp\{sign * (b * dose)^d\}$ Model 3: Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose]]$ $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$ Model 5: Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend. Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5. Dependent variable = Calculated Median Independent variable = Dose Data are assumed to be distributed: lognormally Variance Model: Log-scale variance = exp(lnalpha) rho is set to 0. A constant log-scale variance model is fit. Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 MLE solution provided: Approximate Initial Parameter Values Variable Model 2 Model 3 Model 4 Model 5 _____ _____ _____ _____ _____ -'.---0 * 4.62485 lnalpha -7.49202 -7.49202 -7.49202 4.62485 006 0 * 5.08129 8.08938e-006 rho 0 * 0 * 5.08129 а b 8.08938e-006 4.22243e-006 5.23581 0 * 0 * 5.23581 С 1 * 1 * d 1 1 * Indicates that this parameter has been specified Parameter Estimates by Model Model 4 Model 5 Variable Model 2 Model 3 _____ _____ _____ _____ _____ -5.83943 -5.83943 lnalpha -6.9712 -7.18662 0 * 4.89774 0 * 0 * 5.08129 0 * rho a 5.08129 4.97271 8.08938e-006 b 8.08938e-006 1.24805e-006 9.33737e-006 12.2098 3.16586 --С --1 ___ d _ _ 1.2848 -- Indicates that this parameter does not appear in model * Indicates that this parameter has been specified Std. Err. Estimates by Model Variable Model 2 Model 4 Model 5 Model 3

lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
C	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Calc'd Median		Calc'd GSD
40	6	4.868		1.027
580	б	5.128		1.03
4350	б	5.089		1.024
8210	б	5.388		1.028
2.453e+	-004	6	6.478	1.022
5.974e+	-004	6	9.026	1.03
1.142e+	-005	6 12.11		1.021

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
3	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
4	40	4.9	1.031	-0.07653
	580	4.937	1.031	0.4522
	4350	5.195	1.031	-0.2528
	8210	5.457	1.031	-0.1651
2.4	53e+004	6.553	1.031	-0.1773
5.9	74e+004	8.842	1.031	0.4362
1.1	42e+005	12.19	1.031	-0.1967
5	40	4.973	1.028	-0.2499
	580	4.986	1.028	0.3382
	4350	5.147	1.028	-0.1391
	8210	5.363	1.028	0.05993
2.4	53e+004	6.478	1.028	0.001557
5.9	74e+004	9.027	1.028	-0.003654
1.1	42e+005	12.11	1.028	0.001288

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma^2
Model A2:	Yij = Var{e(ij)} =	= Mu(i) + e(ij) = Sigma(i)^2
Model A3:	5	= Mu(i) + e(ij) = exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	= Mu + e(i) = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	136.3324	8	-256.6649
A2	137.0945	14	-246.1891
A3	136.3324	8	-256.6649
R	26.37242	2	-48.74485
2	101.6281	3	-197.2563
3	101.6281	3	-197.2563
4	125.3952	4	-242.7904
5	129.9191	5	-249.8381

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)
Test 5a: Does Model 3 fit the data? (A3 vs 3)

Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs 4) Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs 5) Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
 Test 1	221.4	12	< 0.0001
Test 2	1.524	6	0.9579
Test 3	1.524	6	0.9579
Test 4	69.41	5	< 0.0001
Test 5a	69.41	5	< 0.0001
Test 5b	-4.547e-013	0	N/A
Test ба	21.87	4	0.0002123
Test 6b	47.53	1	< 0.0001
Test 7a	12.83	3	0.005027
Test 7b	56.58	2	< 0.0001
Test 7c	9.048	1	0.00263

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

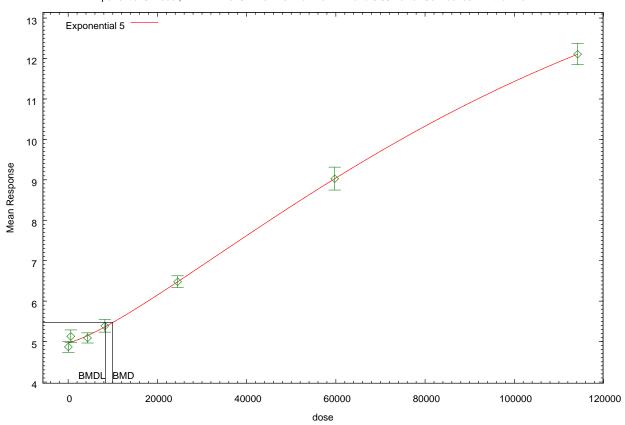
The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:


Specified Effect = 0.100000

Risk Type = Relative deviation

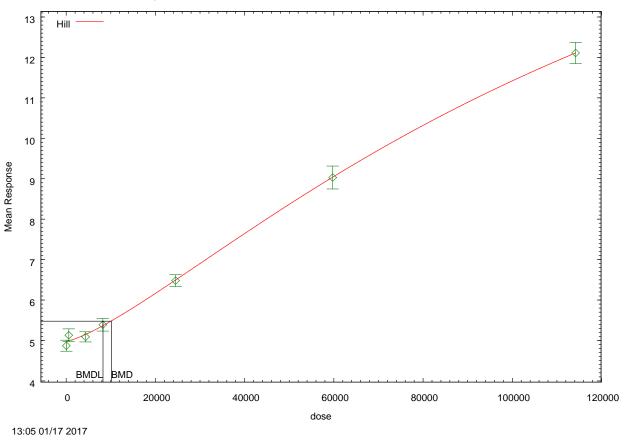
Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	11782.1	11289.9
3	11782.1	11289.9
4	7179.8	6586.55
5	9958.04	8365.56

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

Hil Inp Gnu	plot Plotting	sion: 2.17; U:/PFOS/PFO File: U:/P	Date: 01/28 S_DataFiles/I FOS/PFOS_Data	/2013) hil_DongEtAl20 aFiles/hil_Don	12_Liver_Opt.(gEtAl2012_Live: 13:05:22 2017	
BMDS Model F		~~~~~~	~~~~~~~~~~~	.~~~~~~~~~~~~	~~~~~	
The form o	of the respons	e function i	is:			
Y[dose] =	intercept + v	*dose^n/(k^r	n + dose^n)			
Independer rho is set Power para A constant Total numb	ameter restric variance mod per of dose gr	Dose ted to be gu el is fit oups = 7				
Maximum nu Relative F	per of records amber of itera Function Conve Convergence h	tions = 500 rgence has b	peen set to:			
		alpha = (rho = rcept = v = n =		pecified		
As	symptotic Corr	elation Matı	rix of Parame	ter Estimates		
(estimated a	at a boundary	point, or hav ion matrix)	ve been specifi	ed by the user.
	alpha	intercept	v	n	k	
alpha	1	4.9e-008	6.3e-007	-4.4e-007	6.4e-007	
intercept	4.9e-008	1	-0.49	0.6	-0.47	
v	6.3e-007	-0.49	1	-0.95	1	
n	-4.4e-007	0.6	-0.95	1	-0.96	
k	6.4e-007	-0.47	1	-0.96	1	
		Parar	neter Estimat	es		
Variak alg interce	bha 0.0 ept 4 v 1	timate 325915 .97932 6.2191 .32434	Std. Err. 0.00711204 0.0487351 3.10398 0.108677	Lower Conf 0.01 2 10	Vald Confidence . Limit Uppe .86521 .8838 .1355 11133	e Interval er Conf. Limit 0.0465308 5.07484 22.3028 1.53734


Dose	N	Obs Mean	Est Mean	Obs Std	Dev	Est Std Dev	Scaled Res.
	6	4.87	4.98	0.13		0.181	
	6 6	5.13					1.89
		5.09 5.39	5.15 5.36	0.12 0.15		0.181 0.181	-0.754 0.41
2.453e+00		6 6.48		.9	0.14		
.974e+00)4	6 9.03	9.0	3	0.27	0.181	
.142e+00)5	6 12.1	12.	1	0.25	0.181	-0.00
Model De	escript	ions for like	elihoods cal	culated			
Model Al		Yij = Mu(: e(ij)} = Sign					
Model A2		Yij = Mu(: e(ij)} = Sign					
Model A3		5 ,					
		e(ij)} = Sigr					
		ses any fixed fied by the u	-	arameters	that		
Model H		$Yi = Mu - {e(i)} = Sign$					
		Like	lihoods of I	nterest			
		-	likelihood)			AIC	
	A1		4.437700	8		-92.875399	
	A2 A3		8.527542	14 8		-89.055084 -92.875399	
	fitted		4.437700).897783	8 5		-92.875399 -91.795566	
	R		0.007759	2		124.015518	
		Explanat:	ion of Tests				
Test 1:		sponses and/ors. R)	or variances	differ a	mong	Dose levels?	
Test 2:		ariances Homo	ogeneous? (A	1 vs A2)			
		ariances ade					
		the Model for ho=0 the resu				tted) will be the sa	ame.)
		Tests o	of Interest				
Test	-2*1	.og(Likelihood	d Ratio) Te	st df	р	-value	
Test 1		237.0		12		0001	
	4	8.179		6		2252 2252	
Test 2 Test 3	2	8.179	268	6			

The p-value for Test 2 is greater than .1. A homogeneous variance

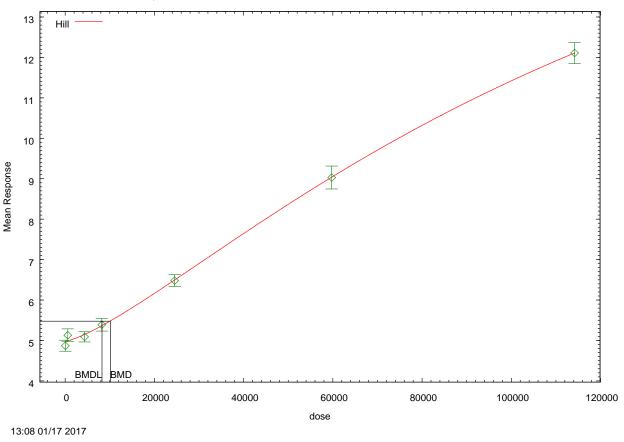
model appears to be appropriate here
The p-value for Test 3 is greater than .1. The modeled variance appears
to be appropriate here
The p-value for Test 4 is less than .1. You may want to try a different
model
Benchmark Dose Computation
Specified effect = 0.1
Risk Type = Relative deviation
Confidence level = 0.95
BMD = 10116.5

8252.33

Hill Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

BMDL =

Hill Model. (Version: 2.17; Date: 01/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:08:00 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = intercept + v*dose^n/(k^n + dose^n) Dependent variable = Mean Independent variable = Dose rho is set to O Power parameter is not restricted A constant variance model is fit Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified intercept = 4.87 v = 7.24 n = 18 67196.2 k = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) k alpha intercept v n 1.4e-007 -2.2e-007 1.9e-007 -2.3e-007 1 alpha intercept 1.4e-007 1 -0.49 0.6 -0.47 -2.2e-007 -0.49 1 -0.95 1 v 1.9e-007 0.6 -0.95 1 -0.96 n -2.3e-007 -0.47 1 -0.96 k 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Std. Err. Lower Conf. Limit Upper Conf. Limit Estimate 0.0186521 alpha 0.0325915 0.00711205 0.0465309 4.97932 0.0487349 4.8838 5.07484 intercept 22.3027 v 16.2191 3.10394 10.1355 1.53734 n 1.32434 0.108676 1.11134 k 137137 36179.8 66226.3 208048


Dose	Ν					Est Std Dev	Scaled Res.
	6	4.87	4.98	0.13		0.181 0.181	
	6 6	5.13 5.09	4.99 5.15	0.15		0.181	1.89 -0.754
		5.39		0.12			
.453e+00	4	6 6.48	6.4	9	0.14	0.181	
.974e+00	4	6 9.03	9.0	3	0.27	0.181	
.142e+00	5	6 12.1	12.	1	0.25	0.181	-0.00
Model De	script	ions for like	elihoods cal	culated			
Model A1		Yij = Mu(: e(ij)} = Sign					
Model A2		Yij = Mu(: e(ij)} = Sigr					
Model A3	:	Yij = Mu(:	i) + e(ij)				
		e(ij)} = Sign					
		ses any fixed fied by the u	-	arameters	that		
Model R		Yi = Mu - {e(i)} = Sign					
		Like	lihoods of I	nterest			
		-	likelihood)			AIC	
	A1		4.437700	8		-92.875399	
	A2 A3		3.527542 4.437700	14 8		-89.055084 -92.875399	
	fitted		0.897783	5		-91.795566	
	R	-60	0.007759	2		124.015518	
		Explanat	ion of Tests				
	(A2 v				mong	Dose levels?	
		ariances Homo	-			2 \	
		ariances adeo the Model for					
						will be the s	ame.)
		Tests o	of Interest				
Test	-2*1	og(Likelihood	d Ratio) Te	st df	р	-value	
Test 1		237.0		12		0001	
		8.179		6 6		2252 2252	
Test 2 Test 3		8.179					

The p-value for Test 2 is greater than .1. A homogeneous variance

model appears to be appropriate here
The p-value for Test 3 is greater than .1. The modeled variance appears
to be appropriate here
The p-value for Test 4 is less than .1. You may want to try a different
model
Benchmark Dose Computation
Specified effect = 0.1
Risk Type = Relative deviation
Confidence level = 0.95
BMD = 10116.5

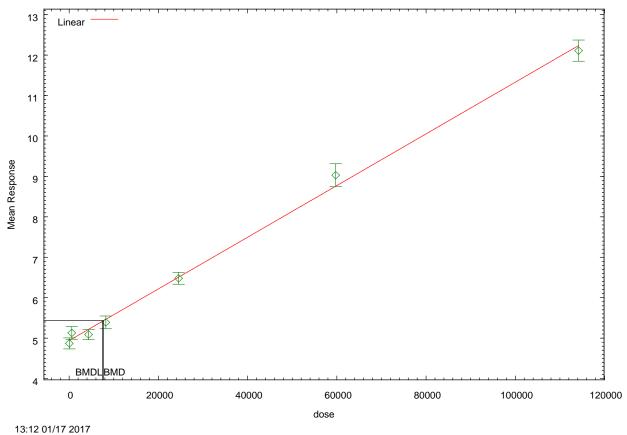
8252.33

Hill Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

24

BMDL =

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:12:27 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified rno = 0 beta_0 = 4.93898 $beta_1 = 6.39157e-005$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 1.8e-009 -4.6e-009 alpha 1 1.8e-009 1 -0.61 beta_0 beta 1 -4.6e-009 -0.61 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Variable Estimate Lower Conf. Limit Upper Conf. Limit alpha 0.0477827 0.010427 0.0273461 0.0682193 beta_0 4.93898 0.0424934 4.8557 5.02227 8.5485e-007 6.55912e-005 beta_1 6.39157e-005 6.22402e-005 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. ____ ___ _____ _____ _____ _____ _____


580 6 5 4350 6 5	9.03	0. 0. 0.	13 15 12 15 0.14 0.27 0.25	0.219	-0.802 1.73 -1.42 -0.826 -0.301 3.06 -1.43
Model Descriptions	for likelihoods	calculated	l		
Model A1: Y Var{e(ij	ij = Mu(i) + e(i)} = Sigma^2	j)			
Model A2: Y Var{e(ij	<pre>Tij = Mu(i) + e(i) = Sigma(i)^2</pre>	j)			
Var{e(ij	ij = Mu(i) + e(i)} = Sigma^2 any fixed varian by the user		rs that		
	Yi = Mu + e(i))} = Sigma^2				
	Likelihoods	of Interest			
Model Al A2 A3 fitted R	Log(likeliho 54.437700 58.527542 54.437700 42.862930 -60.007759		14 -8 8 -9 3 -7	AIC 2.875399 9.055084 2.875399 9.725860 4.015518	
	Explanation of T	ests			
Test 1: Do respon (A2 vs. R Test 2: Are Varia Test 3: Are varia Test 4: Does the (Note: When rho=0) nces Homogeneous nces adequately Model for the Me	? (Al vs A2 modeled? (A an Fit? (A3 Test 3 and) 2 vs. A3) vs. fitt	ed)	e.)
Test -2*log(I	ikelihood Ratio)	Test df	p-v	alue	
Test 1 Test 2 Test 3 Test 4 The p-value for Tes				52 52 61 to be a	
difference between It seems appropriat			mong the	uuse ieveis	
The p-value for Tes model appears to be			homogeneo	us variance	

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right]_{\rm{T}}} \right]$

Bend	chmark	Dose	Computation
Specified effect	=		0.1
Risk Type	=	Relat	tive deviation
Confidence level	=		0.95
BMD	=	7'	727.34
BMDL	=	74	476.55

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

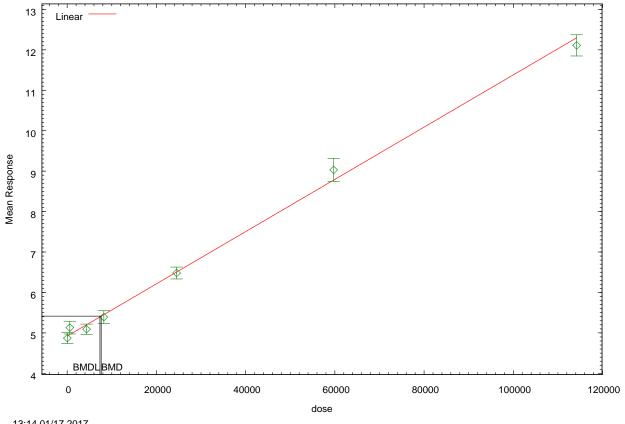
Linear Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

12345678901123456789

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:14:41 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.40995 rho = 0 4.93898 beta_0 = $beta_1 = 6.39157e-005$ Asymptotic Correlation Matrix of Parameter Estimates beta_0 lalpha rho beta_1 lalpha -0.99 0.11 -0.191 rho -0.99 1 -0.11 0.19 beta_0 0.11 -0.11 1 -0.5 beta_1 -0.19 0.19 -0.5 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -6.34952 1.33386 -8.96383 -3.73521 1.69143 0.703445 3.07016 0.312705 rho 4.92152 beta O 0.0340717 4.85474 4,9883 1.1362e-006 6.23405e-005 6.67944e-005 6.45675e-005 beta_1 Table of Data and Estimated Values of Interest Est Mean Obs Std Dev Est Std Dev Scaled Res. Dose Ν Obs Mean _ _ _ _____ _____ _____ 40 б 4.87 4.92 0.13 0.161 -0.823 5.13 4.96 0.15 0.162 6 580 2.59

2.34

-1.29


5.09 б 4350 5.2 0.12 0.169 -1.63 8210 б 5.39 5.45 0.15 0.175 -0.86 0.14 -0.305 б 6.48 6.51 0.204 2.453e+004 5.974e+004 б 9.03 8.78 0.27 0.262 0.349 1.142e+005 6 12.1 12.3 0.25 Model Descriptions for likelihoods calculated Yij = Mu(i) + e(ij)Model A1: Var{e(ij)} = Sigma^2 Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$ Model A3: Yij = Mu(i) + e(ij)Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) Model A3 uses any fixed variance parameters that were specified by the user Yi = Mu + e(i)Model R: Var{e(i)} = Sigma^2 Likelihoods of Interest Model Log(likelihood) # Param's AIC A1 54.437700 8 -92.875399 A2 58.527542 14 -89.055084 57.845743 9 -97.691487 A3 fitted 45.894594 4 -83.789189 R -60.007759 2 124.015518 Explanation of Tests Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest -2*log(Likelihood Ratio) Test df Test p-value 237.071 Test 1 12 <.0001 0.2252 8.17968 Test 2 6 Test 3 1.3636 5 0.9283 Test 4 23.9023 5 0.0002267 The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data The p-value for Test 2 is greater than .1. Consider running a homogeneous model The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	7622.29
BMDL =	7343.76

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Linear Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

17 ^{13:14 01/17 2017}

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:16:42 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 7 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified beta_0 = 4.87527 $beta_1 = 7.21979e-005$ $beta_2 = -7.55541e-011$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ beta_2 alpha beta_0 beta 1 1 1.2e-008 -5.7e-008 1.8e-007 alpha beta_0 3.8e-009 1 -0.62 0.5 beta_1 5.5e-010 -0.62 1 -0.97 beta_2 -6.2e-011 0.5 -0.97 1 Parameter Estimates 95.0% Wald Confidence Interval

		95.0% Wald CON	LIGENCE INCELVAL
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
0.0400871	0.00874773	0.0229419	0.0572324
4.87527	0.0449266	4.78721	4.96332
7.21979e-005	3.02005e-006	6.62787e-005	7.81171e-005
-7.55541e-011	2.66082e-011	-1.27705e-010	-2.34029e-011
	0.0400871 4.87527 7.21979e-005	0.0400871 0.00874773 4.87527 0.0449266 7.21979e-005 3.02005e-006	EstimateStd. Err.Lower Conf. Limit0.04008710.008747730.02294194.875270.04492664.787217.21979e-0053.02005e-0066.62787e-005

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.88	0.13	0.2	-0.0998
580	б	5.13	4.92	0.15	0.2	2.6
4350	б	5.09	5.19	0.12	0.2	-1.2
8210	б	5.39	5.46	0.15	0.2	-0.892
2.453e+0	04	6 6.48	6.6	0.14	0.	2 -1.48
5.974e+0	04	6 9.03	8.92	0.27	0.	2 1.36
1.142e+0	05	6 12.1	12.1	0.25	0.	2 -0.298

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)Var $\{e(ij)\}$ = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
Al	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	46.550697	4	-85.101394
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (Al vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

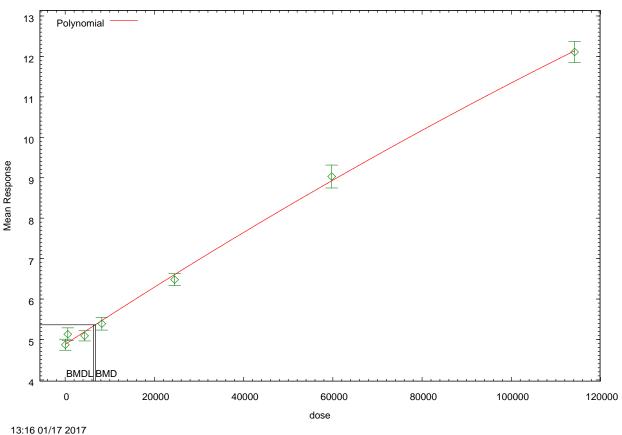
Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	б	0.2252
Test 3	8.17968	б	0.2252
Test 4	15.774	4	0.003338

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears


to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{\left[{{{\rm{Test}}} \right]_{\rm{Test}}} \right]$

Benchmark Dose Computation

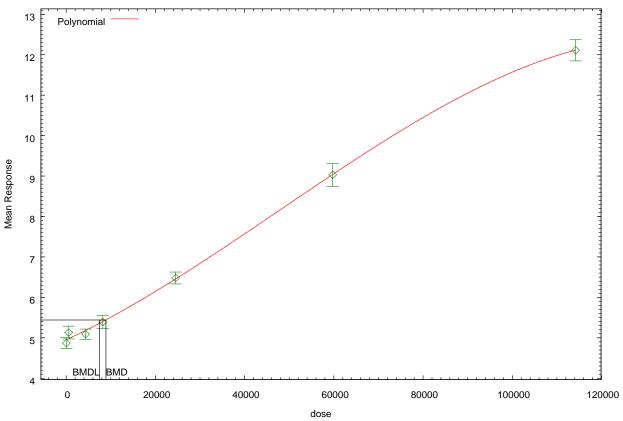
Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 6801.05 BMDL = 6305.17

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:18:23 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 7 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified 4.94609 beta_0 = $beta_1 = 5.14209e-005$ $beta_2 = 4.89896e-010$ $beta_3 = -3.42281e-015$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 beta_2 beta_3 -8.2e-008 -6.4e-007 alpha 1 -1.8e-007 -4.8e-007 beta_0 -1.1e-008 0.55 1 -0.66 -0.5 -0.97 beta_1 -6.2e-011 -0.66 1 0.93 beta_2 -6.5e-012 0.55 -0.97 1 -0.99 0.93 -0.99 beta_3 -4e-012 -0.5 1

Parameter Estimates


			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0330514	0.00721241	0.0189153	0.0471874
beta_0	4.94609	0.047172	4.85364	5.03855
beta_1	5.14209e-005	7.47016e-006	3.67796e-005	6.60621e-005
beta_2	4.89896e-010	1.90645e-010	1.16239e-010	8.63554e-010
beta_3	-3.42281e-015	1.14472e-015	-5.66642e-015	-1.17921e-015

Dose	N 	Obs Mean	Est Mean			Est Std Dev	Scaled Res.
	6 6	4.87 5.13	4.95 4.98	0.13		0.182 0.182	-1.05 2.07
4350	6	5.09	5.18	0.12		0.182	-1.2
8210	б	5.39				0.182	
.453e+0	04	6 6.48	6.4		0.14	0.182	
		6 9.03		4		0.182	
.142e+0	05	6 12.1	12.	1	0.25	0.182	0.009
Model D	escript	tions for like	elihoods cal	culated			
Model A		Yij = Mu() {e(ij)} = Sign					
Model A		Yij = Mu(
M. J. J		<pre>[e(ij)} = Sign Wide Mark</pre>					
Model A		Yij = Mu() e(ij)} = Sign					
	el A3 i	ises any fixed lified by the	d variance p	arameters	that		
Model		Yi = Mu c{e(i)} = Sign					
		Like	lihoods of I	nterest			
	Мос	lel Log(likelihood)	# Param	's	AIC	
	A1		4.437700	8		-92.875399	
			8.527542	14		-89.055084	
	fitted		4.437700).603523	8 5		-92.875399 -91.207047	
			0.007759	2		124.015518	
		Explanat	ion of Tests				
Test 1:		esponses and/ vs. R)	or variances	differ an	nong	Dose levels?	
Test 3: Test 4:	Are v Does	Variances Home variances ade the Model fo	quately mode the Mean F	led? (A2 v it? (A3 v	s. fi		\
(NOLE:	when i		of Interest	s and rea	51 2	WIII DE UNE Sa	alle.)
Test	-2*]	log(Likelihoo	d Ratio) Te	st df	р	-value	
Test	1	237.	171	12	_	0001	
Test		8.17		12 6		2252	
Test		8.17		6		2252	
		7.66		3		5339	

The p-value for Test 2 is greater than .1. A homogeneous variance

model appears to be appropriate here The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 8909.64 BMDL = 7501.21

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:18 01/17 2017

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:19:48 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.40995 rho = 0 beta_0 = 4.87527 $beta_1 = 7.21979e-005$ $beta_2 = -7.55541e-011$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 lalpha 1 -0.99 -0.22 0.38 -0.38 rho -0.99 1 0.23 -0.38 0.38 beta_0 -0.22 0.23 1 -0.62 0.51 0.38 -0.62 beta_1 -0.38 1 -0.96 -0.38 0.51 -0.96 beta_2 0.38 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -5.03945 1.40762 -7.79833 -2.28057 0.743283 2.40863 0.95182 -0.504987 rho beta_0 4.88771 0.0407528 4.80784 4.96758 7.73199e-005 beta_1 7.06258e-005 3.41542e-006 6.39317e-005 beta_2 -6.13465e-011 3.16066e-011 -1.23294e-010 6.013e-013

Table of Data and Estimated Values of Interest

Obs Mean

Dose

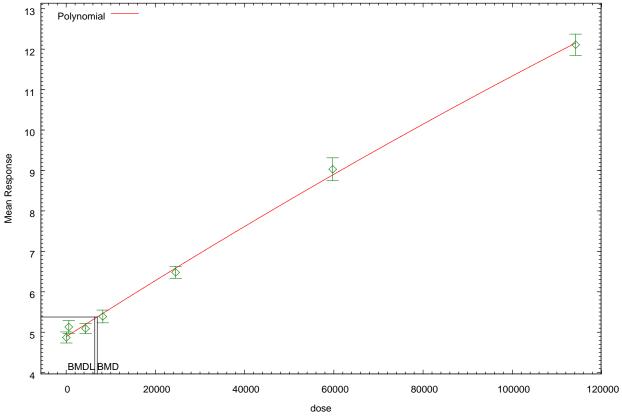
Ν

1011

Est Mean Obs Std Dev Est Std Dev Scaled Res.

10	4 05	4 00	0.10	0 1 5 1	0.004
40 6 580 6	4.87 5.13	4.89 4.93	0.13 0.15	0.171 0.172	-0.294 2.87
4350 6	5.09	5.19	0.12	0.176	-1.44
8210 6	5.39	5.46	0.15		-0.996
2.453e+004	6 6.48	6.58	0.14	0.197	-1.
5.974e+004	6 9.03	8.89			
1.142e+005	6 12.1	12.2	0.25	0.264	-0.3
Model Descript	tions for likel	lihoods calcu	lated		
	Yij = Mu(i) {e(ij)} = Sigma				
	Yij = Mu(i)				
	$\{e(ij)\} = Mu(i)$ $\{e(ij)\} = Sigma$				
Model A3:	Yij = Mu(i)				
	<pre>{e(ij)} = exp(]</pre>				
	uses any fixed lfied by the us		ameters that		
	Yi = Mu + c{e(i)} = Sigma				
	Likeli	hoods of Inte	erest		
	-	kelihood)		AIC	
A		.437700		-92.875399	
A		.527542		-89.055084	
A3 fitted		.845743 .437173		-97.691487 -84.874346	
		.007759		L24.015518	
	Explanatio	on of Tests			
	esponses and/or vs. R)	r variances d	iffer among I	Dose levels?	
Test 2: Are V	Variances Homog			2 \	
	the Model for	-			
	cho=0 the resul				ne.)
	Tests of	Interest			
Test -2*1	log(Likelihood	Ratio) Test	df p	-value	
Test 1	237.07			0001	
Test 2	8.1796			2252	
Test 3 Test 4	1.363 20.815			9283 3442	
The p-value for difference betw	r Test 1 is les veen response a	ss than .05. and/or variand	There appear	rs to be a	
It seems approp	priate to model	the data			

The p-value for Test 4 is less than .1. You may want to try a different


to be appropriate here

model

Benchmark Dose Computation

Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	6962.68
BMDL =	6413.07

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

21 ^{14:19 01/17 2017}

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:21:44 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.40995 rho = 0 beta_0 = 4.94609 $beta_1 = 5.14209e-005$ $beta_2 = 4.89896e-010$ $beta_3 = -3.42281e-015$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 beta_3 lalpha 1 -0.99 -0.04 0.079 -0.086 0.087 -0.99 0.042 -0.082 0.089 -0.09 1 rho beta_0 -0.04 0.042 1 -0.65 0.54 -0.48 beta_1 0.079 -0.082 -0.65 1 -0.96 0.91 beta_2 -0.086 0.089 0.54 -0.96 1 -0.99 beta_3 0.087 -0.09 -0.48 0.91 -0.99 1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.35428	1.26864	-7.84076	-2.86779
rho	1.00823	0.668212	-0.301441	2.3179
beta_0	4.94885	0.0406379	4.8692	5.0285
beta_1	5.0575e-005	6.99304e-006	3.68689e-005	6.42811e-005
beta_2	5.13283e-010	1.8598e-010	1.48769e-010	8.77796e-010
beta_3	-3.56533e-015	1.14578e-015	-5.81102e-015	-1.31964e-015

Tab	ole of	Data and Est	imated Values	of Interest		
Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.95	0.13	0.154	-1.29
580	6	5.13	4.98	0.15	0.154	2.41
4350	6	5.09	5.18	0.12	0.158	-1.37
8210	6	5.39	5.4	0.15	0.161	-0.102
2.453e+0	04	6 6.4	8 6.45	5 0.14	0.176	0.478
5.974e+0	04	6 9.0	3 9.04	4 0.27	0.209	-0.14
1.142e+0	05	6 12.	1 12.1	1 0.25	0.242	0.0178

Model Descriptions for likelihoods calculated

Model Al: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma(i)^2

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user
```

```
Model R: Yi = Mu + e(i)
Var\{e(i)\} = Sigma<sup>2</sup>
```

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	51.834274	б	-91.668547
R	-60.007759	2	124.015518

Explanation of Tests

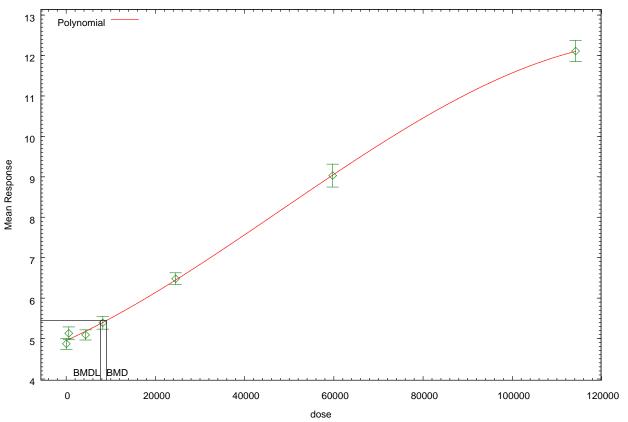
Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	12.0229	3	0.007305

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. Consider running a homogeneous model


The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

Benchmark	Dose	Computation
-----------	------	-------------

Specified effect =	0.1
Risk Type =	Relative deviation
Confidence level =	0.95
BMD =	9012.43
BMDL =	7673.2

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

25 14:21 01/17 2017

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:24:15 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1 A constant variance model is fit Total number of dose groups = 7 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified control = 4.87 slope = 0.00146704 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha control slope alpha 1 6.2e-008 2.9e-008 control 6.2e-008 1 -0.61 slope 2.9e-008 -0.61 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. 0.0477827 0.0273461 0.0682193 0.010427 alpha control 4.93898 0.0424934 4.8557 5.02227 6.55912e-005 slope 6.39157e-005 8.5485e-007 6.22402e-005 power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.94	0.13	0.219	-0.802
580	6	5.13	4.98	0.15	0.219	1.73
4350	6	5.09	5.22	0.12	0.219	-1.42
8210	6	5.39	5.46	0.15	0.219	-0.826
2.453e+0	004	6 6.48	6.51	0.14	0.219	-0.301
5.974e+0	004	6 9.03	8.76	0.27	0.219	3.06
1.142e+0	005	6 12.1	12.2	0.25	0.219	-1.43

Model Descriptions for likelihoods calculated

Table of Data and Estimated Values of Interest

Model Al: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2

Model A2: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma(i)^2

Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i)Var $\{e(i)\}$ = Sigma²

Likelihoods of Interest

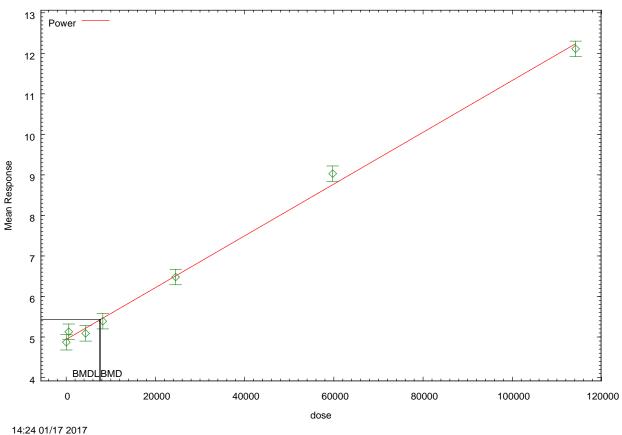
Mode	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	42.862930	3	-79.725860
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (Al vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	б	0.2252
Test 3	8.17968	б	0.2252
Test 4	23.1495	5	0.0003161


The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

Benchmark Dose Computation

Specified effect	=	0.1
Risk Type	=	Relative deviation
Confidence level	=	0.95
BMD	=	7727.34
BMDL	=	7476.55

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:26:06 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is restricted to be greater than or equal to 1 The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.40995 rho = 0 control = 4.87 slope = 0.00146704 power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) lalpha rho control slope lalpha 1 -0.99 0.083 -0.16 -0.99 rho 1 -0.089 0.16 0.083 -0.089 control 1 -0.5 slope -0.16 0.16 -0.5 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. lalpha -6.34952 1.3258 -8.94804 -3.75099 rho 1.69143 0.698986 0.321445 3.06142 4.98824 control 4.92152 0.0340441 4.85479 6.23469e-005 6.6788e-005 slope 6.45675e-005 1.13294e-006 power 1 NA NA - Indicates that this parameter has hit a bound

implied by some inequality constraint and thus has no standard error.

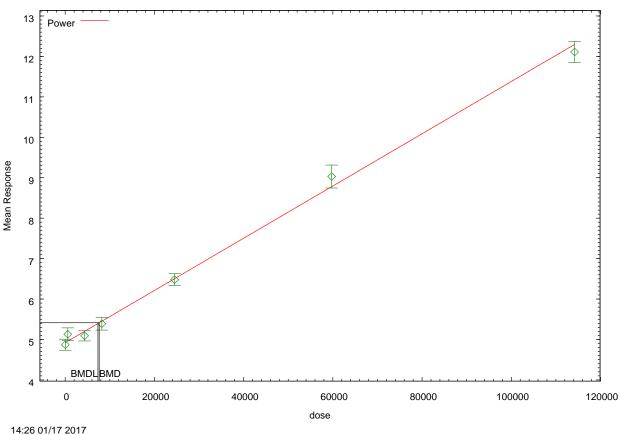
Res.

-0.305 2.34 -1.29

Dose	N	Obs Mean	Est Mean	Obs Std	Dev	Est Std Dev	Scaled Re
	6	4.87	4.92	0.13		0.161 0.162	-0.823
580	б	5.13	4.96	0.15		0.162	2.59
4350 8210	6	5.09 5.39	5.2	0.12		0.169 0.175	-1.63
8210 2 452a - 00	6	5.39	5.45	0.15	0 14	0.175	-0.86 -0
2.453e+00 5 974e+00)4 6)4 6	9.48	8.78	18	0.14	0.204 0.262	- (
1.142e+00)5 6	12.1	12.3	3	0.25	0.349	-
Model De	escripti	ons for like	lihoods calo	culated			
Model A1		Yij = Mu(i (ij)} = Sigm					
Model A2		Yij = Mu(i					
	Var{e	(ij)} = Sigm	a(i)^2				
Model A3		Yij = Mu(i	-	+7 /26 / '			
	el A3 us	(ij)} = exp(es any fixed ied by the u	variance pa				
Model R		Yi = Mu + e(i)} = Sigm					
		Likel	ihoods of In	nterest			
		l Log(l	ikelihood)	# Param	's	AIC	
	A1	54	.437700	8		-92.875399	
	A1 A2	54 58	.527542	14		-89.055084	
	A1 A2 A3	54 58 57	.527542 .845743	14		-89.055084	
	A1 A2	54 58 57 45	.527542	14 9 4	-		
	A1 A2 A3 fitted	54 58 57 45 -60	.527542 .845743 .894594	14 9 4	-	-89.055084 -97.691487 -83.789189	
Test 1:	Al A2 A3 fitted R Do res	54 58 57 45 -60 Explanati ponses and/o	.527542 .845743 .894594 .007759 on of Tests	14 9 4 2	-	-89.055084 -97.691487 -83.789189 124.015518	
	Al A2 A3 fitted R Do res (A2 vs	54 58 57 45 -60 Explanati ponses and/o . R)	.527542 .845743 .894594 .007759 on of Tests r variances	14 9 4 2 differ an	-	-89.055084 -97.691487 -83.789189 124.015518	
Test 2:	Al A2 A3 fitted R Do res (A2 vs Are Va	54 58 57 45 -60 Explanati ponses and/o	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A:	14 9 4 2 differ am 1 vs A2)	, , , , , , , , , , , , , , , , , , ,	-89.055084 -97.691487 -83.789189 124.015518 Dose levels?	
Test 2: Test 3: Test 4:	Al A2 A3 fitted R Do res (A2 vs Are Va Are va Does t	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances adeq he Model for	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A: uately mode: the Mean F:	14 9 4 2 differ a 1 vs A2) led? (A2 - it? (A3 v	mong I vs. A: s. fit	-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3)	ame.)
Test 2: Test 3: Test 4:	Al A2 A3 fitted R Do res (A2 vs Are Va Are va Does t	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances Homo riances adeq he Model for .o=0 the resu	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A: uately mode: the Mean F:	14 9 4 2 differ a 1 vs A2) led? (A2 - it? (A3 v	mong I vs. A: s. fit	-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3) tted)	ame.)
Test 2: Test 3: Test 4:	A1 A2 A3 fitted R Do res (A2 vs Are Va Are Va Does t When rh	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances Homo riances adeq he Model for .o=0 the resu	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A: uately model the Mean F: lts of Test f Interest	14 9 4 2 differ a 1 vs A2) led? (A2 it? (A3 v 3 and Te	mong I vs. A: s. fit st 2 v	-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3) tted)	ame.)
Test 2: Test 3: Test 4: (Note:	Al A2 A3 fitted R Do res (A2 vs Are va Does t When rh	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances Adeq he Model for co=0 the resu Tests o	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A: uately model the Mean F: lts of Test f Interest Ratio) Tes	14 9 4 2 differ a 1 vs A2) led? (A2 it? (A3 v 3 and Te	mong I vs. A: s. fit st 2 v	-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3) tted) will be the sa	ame.)
Test 2: Test 3: Test 4: (Note: Test	Al A2 A3 fitted R Do res (A2 vs Are va Does t When rh -2*lo	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances Homo riances Adeq he Model for to=0 the resu Tests o g(Likelihood	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A: uately mode: the Mean F: lts of Test f Interest Ratio) Tes 71	14 9 4 2 differ au 1 vs A2) led? (A2 v 3 and Te st df	mong I vs. A s. fit st 2 v p- <.(-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3) tted) will be the sa -value	ame.)
Test 2: Test 3: Test 4: (Note: Test Test 1	Al A2 A3 fitted R Do res (A2 vs Are va Does t When rh -2*lc	54 58 57 45 -60 Explanati ponses and/o . R) riances Homo riances Homo riances Adeq he Model for to=0 the resu Tests o g(Likelihood 237.0	.527542 .845743 .894594 .007759 on of Tests r variances geneous? (A uately model the Mean F: lts of Test f Interest Ratio) Tes 71 : 68 36	14 9 4 2 1 vs A2) 1ed? (A2 it? (A3 v 3 and Te st df 12 6 5	mong I vs. A s. fit st 2 v P <.(0.2	-89.055084 -97.691487 -83.789189 124.015518 Dose levels? 3) tted) will be the sa -value 0001 2252 9283	ame.)

The p-value for Test 2 is greater than .1. Consider running a

homogeneous model


The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $% \left[{{\left[{{{\rm{Test}}} \right]}_{\rm{Test}}} \right]$

Benchmark Dose Computation

Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 7622.29

BMDL = 7343.76

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:27:48 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit Total number of dose groups = 7 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.0330429 rho = 0 Specified control = 4.87 slope = 0.00146704 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha control slope power 1 -9.1e-008 3.3e-008 -3.2e-008 alpha control -9.1e-008 1 -0.66 0.65 slope 3.3e-008 -0.66 1 -1 -3.2e-008 0.65 -1 1 power Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit alpha 0.0443943 0.00968763 0.0254069 0.0633817 4.98369 control 4.87726 0.0543039 4.77083 0.000120968 4.19328e-005 3.87813e-005 0.000203155 slope

Table of Data and Estimated Values of Interest

0.945261

power

0.886996

1.00353

0.0297276

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.88	0.13	0.211	-0.13
580	6	5.13	4.93	0.15	0.211	2.36
4350	6	5.09	5.21	0.12	0.211	-1.39
8210	6	5.39	5.48	0.15	0.211	-1.09
2.453e+0	04	6 6.4	8 6.5	8 0.14	0.211	-1.21
5.974e+0	04	6 9.0	3 8.84	4 0.27	0.211	2.26
1.142e+0	05	6 12.	1 12.2	2 0.25	0.211	-0.807

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij)Model A1: Var{e(ij)} = Sigma^2

Yij = Mu(i) + e(ij)Model A2: $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma^2 Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i)Var{e(i)} = Sigma^2

Likelihoods of Interest

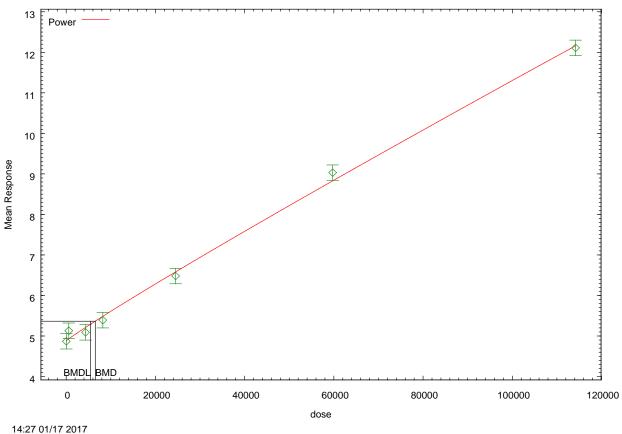
Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	44.407529	4	-80.815058
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest


Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	б	0.2252
Test 3	8.17968	б	0.2252
Test 4	20.0603	4	0.0004859

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears

```
to be appropriate here
The p-value for Test 4 is less than .1. You may want to try a different
model
Benchmark Dose Computation
Specified effect = 0.1
Risk Type = Relative deviation
Confidence level = 0.95
BMD = 6520.71
BMDL = 5487.84
```


Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

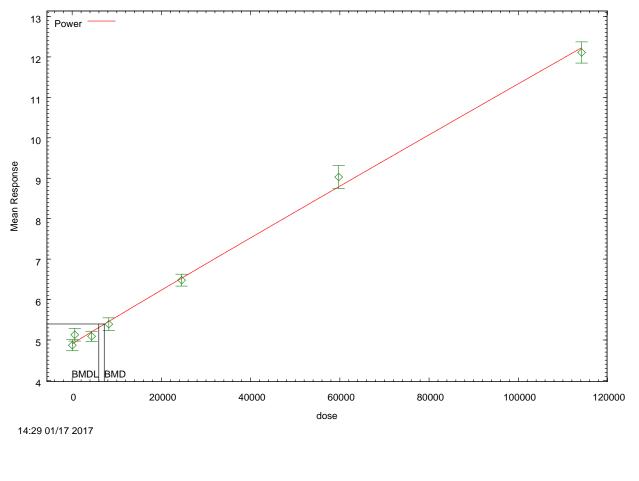
21¹

12345678901234567890 111111112

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:29:51 2017 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 7Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -3.40995 rho = 0 4.87 control = slope = 0.00146704 power = -9999 Asymptotic Correlation Matrix of Parameter Estimates lalpha rho control slope power -0.99 -0.32 0.52 lalpha 1 -0.53 -0.99 1 0.32 -0.53 0.53 rho 0.32 control -0.32 1 -0.67 0.66 slope 0.52 -0.53 -0.67 1 -1 -0.53 0.53 0.66 -1 power 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -5.87143 1.55454 -8.91828 -2.82459 rho 1.43172 0.822781 -0.180905 3.04434 0.0460417 4.99514 control 4.9049 4.81466 8.29349e-005 0.000152765 slope 3.56283e-005 1.31047e-005 0.978124 0.0374242 0.904774 1.05147 power

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.


40 6 580 6	4.87 5.13	4.91 4.95	0.13 0.15		166 167	-0.561 2.69
4350 6	5.09	5.21	0.12		173	-1.63
8210 6 2.453e+004 6	5.39 5 6.48	5.46 6.54		0.14	179 0.204	-1.01 -0.0
5.974e+004 6	5 9.03	8.8		0.14	0.252	-0.0
5.974e+004 6 1.142e+005 6	5 12.1	12.2		0.25	0.319	
Model Descript:	ons for likel	ihoods calcu	lated			
Model A1:						
Var{e	e(ij)} = Sigma	1^2				
Model A2: Var{e	Yij = Mu(i) e(ij)} = Sigma					
Model A3 us	Yij = Mu(i) e(ij)} = exp(l ses any fixed fied by the us	alpha + rho; variance par				
	Yi = Mu + [e(i)} = Sigma					
	Likeli	hoods of Int	lerest			
Mode	el Log(li	kelihood)	# Param'	s AI	C	
A1		437700	8			
A2 A3		527542 845743	14 9			
fitted		056811	5	-82.1		
R	-60.	007759	2	124.0	15518	
	Explanatio	on of Tests				
Test 1: Do res (A2 vs	5. R)			ong Dose	levels?	
Test 2: Are Va Test 3: Are va Test 4: Does t (Note: When rh	ariances adequ the Model for	ately modele the Mean Fit	ed? (A2 v 2? (A3 ve	. fitted)	be the sam	e.)
,	Tests of	Interest				,
Test -2*lo	og(Likelihood	Ratio) Test	t df	p-valu	e	
Test 1	237.07			<.0001		
Test 2 Test 3	8.1796 1.363		5	0.2252 0.9283		
Test 4	23.577		1	0.9283 <.0001		
The p-value for difference betwee It seems appropri	Test 1 is les een response a	s than .05. and/or variar		ppears to		
The p-value for	Test 2 is are	ator than 1	Consi	der runni	ng a	

to be appropriate here The p-value for Test 4 is less than .1. You may want to try a different

model

Benchmark Dose Computation Specified effect = 0.1 Risk Type = Relative deviation Confidence level = 0.95 BMD = 7182.14 BMDL = 5968.86

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

20

- 21
- 22

Wang *et al.* (2011c) Benchmark Dose Analysis - Offspring Total T4 (at PND7) BMR = 1 SD

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
-	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential ^a	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Hill ^a	Constant (Rho=0)	Restrict n > 1	-	-	-	-	-	-
-	Hill ^a	Constant (Rho=0)	No Restriction	-	-	-	-	-	-
2-4	Linear	Constant (Rho=0)	-	-	1st	< 0.0001	149.22	5273.85	4103.69
5-7	Linear	Not Constant	-	-	1st	< 0.0001	118.60	8782.32	6467.23
8-10	Polynomial ^b	Constant (Rho=0)	-	-	2nd	NA	29.34	110.16	90.76
-	Polynomial ^c	Constant (Rho=0)	-	-	3rd	-	-	-	-
11-13	Polynomial ^b	Not Constant	-	-	2nd	NA	27.26	70.42	50.74
-	Polynomial ^c	Not Constant	-	-	3rd	-	-	-	-
14-16	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	149.23	5273.85	4103.69
17-19	Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	118.60	8782.33	6467.23
20-22	Power ^b	Constant (Rho=0)	No Power Restriction	-	-	NA	29.34	0.00	0.00
23-25	Power ^b	Not Constant	No Power Restriction	-	-	NA	27.26	0.00	0.00

- a. Model fails because of optimization issue.
 - b. Too few *df* to run chi-square test for fit.
 - c. The number of parameters estimated by the model is greater than the number of observations.

) | |

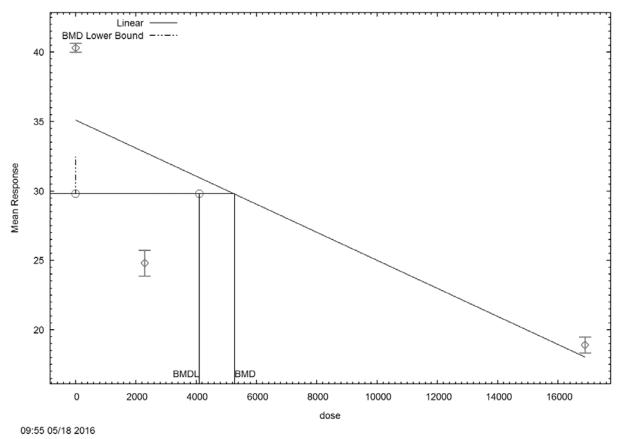
-----Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.plt Wed May 18 09:55:33 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.772667 Specified 0 rho = 0 beta_0 = 34.1325 rho = $beta_1 = -0.000958452$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) alpha beta_0 beta_1 alpha 1 -4.7e-008 1.2e-008 beta_0 -4.7e-008 1 -0.66 1.2e-008 beta_1 -0.66 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Variable Estimate Lower Conf. Limit Upper Conf. Limit alpha 28.2258 6.94872 14.6066 41.8451 35.1127 1.23098 32.7001 37.5254 beta_0 -0.00100739 0.000119967 -0.00124252 -0.000772255 beta_1 Table of Data and Estimated Values of Interest Dose Ν Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ _____ _____ 35.1 5 12 40.3 0.5 5.31 3.39

123456789012345

2290 9

1.2

5.31


-4.52

32.8

24.8

Confidence level =	0.95
BMD =	5273.85
BMDL =	4103.69

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.plt Wed May 18 09:56:52 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -0.257908 rho = 0 beta_0 = 34.1325 $beta_1 = -0.000958452$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 lalpha 1 -1 0.15 -0.15 -1 1 -0.15rho 0.15 -0.15 0.15 1 -0.99 beta_0 -0.15 0.15 -0.99 1 beta 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha -22.4908 3.16525 -28.6946 -16.287 rho 7.56038 0.960311 5.6782 9.44255 33.468 1.60457 30.3231 36.6129 beta_0 -0.000862901 9.63096e-005 -0.00105166 -0.000674138 beta_1 Table of Data and Estimated Values of Interest Ν Dose Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ _____ _____

12

9

40.3

24.8

33.5

31.5

5

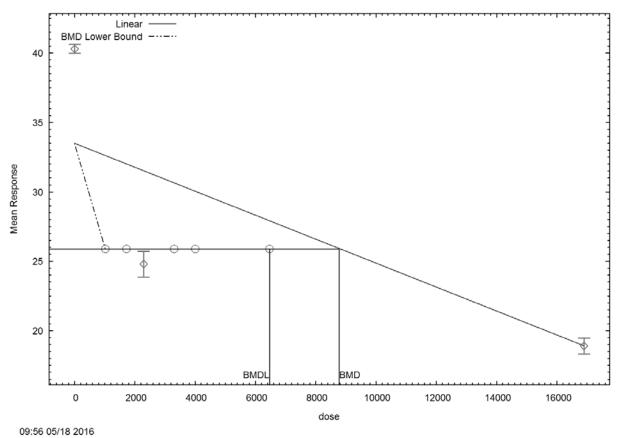
2290

7.57

6.02

3.13

-3.33


0.5

1.2

1.69e+004 12	18.9	18.9	0.9	0.871	0.0596
Model Description	ns for likelihoo	ods calculate	d		
Model A1: Var{e(Yij = Mu(i) + e ij)} = Sigma^2	e(ij)			
	Yij = Mu(i) + e ij)} = Sigma(i)'				
Model A3 use	Yij = Mu(i) + e ij)} = exp(lalph s any fixed vari ed by the user	na + rho*ln(M			
Model R: Var{e	Yi = Mu + e(i) (i)} = Sigma^2	1			
	Likelihood	ls of Interes	t		
Model Al A2 A3 fitted R	Log(likel: -10.6719 -6.9846 -8.6324 -55.3008 -90.4769	908 541 113 810	6 2! 5 2' 4 118	AIC 9.343815 5.969283 7.264826 3.601620 4.953175	
	Explanation of	Tests			
Test 1: Do resp (A2 vs. Test 2: Are Var Test 3: Are var Test 4: Does th (Note: When rho	R) iances Homogeneo iances adequate e Model for the	ous? (Al vs A y modeled? (Mean Fit? (A	2) A2 vs. A3) 3 vs. fitte	ed))
	Tests of Int	erest			
Test -2*log	(Likelihood Rati	.o) Test df	p-va	alue	
Test 1 Test 2 Test 3 Test 4	166.984 7.37453 3.29554 93.3368	4 2 1 1	<.000 0.0250 0.0694 <.000)4 17	
The p-value for T difference betwee It seems appropri	n response and/o	or variances			
The p-value for T model appears to 2		nan .1. A no	n-homogeneo	ous variance	
The p-value for T different varianc		nan .1. You	may want to	o consider a	
The p-value for T model	est 4 is less th	nan .1. You	may want to	o try a differe	ent
Benc	hmark Dose Compu	itation			
Specified effect	= 1				
Risk Type	= Estimated	standard dev	iations fro	om the control	mean

Confidence level	=	0.95
BMD	=	8782.32
BMDL	=	6467.23

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

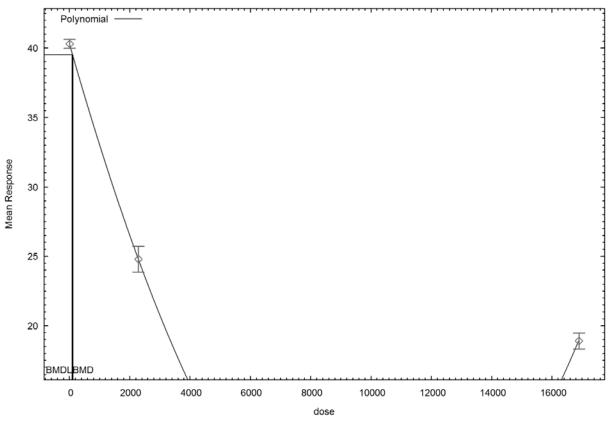
_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.plt Wed May 18 09:58:43 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit Total number of dose groups = 3 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.772667 rho = 0 Specified beta_0 = 40.3382 $beta_1 = -0.00764996$ $beta_2 = 3.77599e-007$ Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ beta_2 alpha beta_0 beta 1 1 5.7e-008 -2.6e-007 2.3e-008 alpha beta_0 -2.6e-008 1 -0.65 0.6 beta_1 1.7e-009 -0.65 1 -0.99 beta_2 2e-009 0.6 -0.99 1 Parameter Estimates OF ON Wald Comfide

		95.0% Wald Confidence Interval				
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit			
0.702424	0.172925	0.363498	1.04135			
40.3382	0.242543	39.8629	40.8136			
-0.00764996	0.000185693	-0.00801391	-0.00728601			
3.77599e-007	1.05008e-008	3.57018e-007	3.9818e-007			
	0.702424 40.3382 -0.00764996	0.702424 0.172925 40.3382 0.242543 -0.00764996 0.000185693	EstimateStd. Err.Lower Conf. Limit0.7024240.1729250.36349840.33820.24254339.8629-0.007649960.000185693-0.00801391			

Table of Data and Estimated Values of Interest

Dose	N 	Obs Mean				Est Std Dev	Scaled Res.
5 2290 1.69e+004	12 9 12	40.3 24.8 18.9	40.3 24.8 18.9	0.5 1.2	0.9	0.838 0.838 0.838	1.05e-007 7.82e-008 -8.84e-008
Degrees c	of freed	lom for Test	A3 vs fitte	d <= 0			
Model De	escripti	ons for like	lihoods cal	culated			
	_	Yij = Mu(i					
nouce ni		e(ij)} = Sigm					
Model A2		Yij = Mu(i e(ij)} = Sigm					
	Var{e	Yij = Mu(i e(ij)} = Sigm	a^2				
Mode were	el A3 us e specif	es any fixed fied by the u	variance p ser	arameters	that		
Model R		Yi = Mu + e(i)} = Sigm					
		Likel	ihoods of I	nterest			
	Mode Al	el Log(1 -10	ikelihood)	# Param 4	's	AIC 29.343815	
	A2		.671908 .984641	6		25.969283	
	A3	-10	.671908 .671908	4		29.343815 29.343815	
	fitted R		.476587			29.343815 184.953175	
		Explanati	on of Tests				
Test 1:	Do res (A2 vs	ponses and/o . R)	r variances	differ a	mong	Dose levels?	
		riances Homo riances adeq				2 \	
Test 4:	Does t	he Model for	the Mean F	it? (A3 v	s. fi		same.)
,			f Interest				,
Test	-2*lc	g(Likelihood	Ratio) Te	st df	p	-value	
Test 1		166.9	84	4	<.	0001	
Test 2		7.374		2		2504	
Test 3 Test 4		7.374 2.4869e-0		2 0	0.0	2504 NA	
differenc	e betwe	Test 1 is le en response riate to mode	and/or vari			rs to be a e dose levels	3
-		Test 2 is le variance mod		Conside	r run	ning a	
The p-val different			ss than .1.	You may	want	to consider	a

NA - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square


test for fit is not valid

Benchmark Dose Computation

Specified effect =	1
Risk Type =	Estimated standard deviations from the control mean
Confidence level =	0.95
BMD =	110.156
BMDL =	90.7604

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

21 09:58 05/18 2016

_____ Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.plt Wed May 18 10:01:43 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... Dependent variable = Mean Independent variable = Dose Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -0.257908 rho = 0 beta_0 = 40.3382 $beta_1 = -0.00764996$ $beta_2 = 3.77599e-007$ Asymptotic Correlation Matrix of Parameter Estimates lalpha rho beta_0 beta_1 beta_2 lalpha 1 -1 -0.0016 -0.044 0.054 rho -1 1 0.002 0.041 -0.05 beta_0 -0.0016 0.002 1 -0.48 0.43 -0.48 beta_1 -0.044 0.041 1 -0.99 0.054 -0.05 0.43 -0.99 beta_2 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Variable Std. Err. Lower Conf. Limit Upper Conf. Limit lalpha 5.67563 2.91533 -0.0383121 11.3896 -0.140192 -1.870730.882943 -3.60126 rho beta_0 40.3397 0.155728 40.0345 40.6449 -0.00798121 3.59757e-007 beta_1 -0.00766159 0.000163078 -0.00734196 9.49108e-009 3.96962e-007 beta_2 3.7836e-007

Table of Data and Estimated Values of Interest

Obs Mean

Dose

Ν

1039

Est Mean Obs Std Dev Est Std Dev Scaled Res.

		40.3	0.5		-0.00903
2290 9 1.69e+004 12	24.8 18.9	24.8 18.9	1.2 0.9	0.848 1.09	0.0749 -0.0703
Warning: Likeliho	ood for fitte	d model lar	rger than the	e Likelihood fo	or model A3.
Model Description	ns for likeli	hoods calcu	lated		
Model A1: Var{e(i	Yij = Mu(i) .j)} = Sigma^				
	Yij = Mu(i) j)} = Sigma(
		lpha + rho* ariance par			
Model R: Var{e(Yi = Mu + e i)} = Sigma^				
	Likelih	oods of Int	erest		
Model	5.	,		AIC	
A1 A2		71908 84641	4 6	29.343815 25.969283	
A3		32413	5	27.264826	
fitted R		32413 76587	5 2	27.264826 184.953175	
	50.1	10501	2	101.9991.99	
	Explanation	of Tests			
Test 1: Do respo (A2 vs.		variances d	liffer among	Dose levels?	
Test 2: Are Vari				2.)	
Test 3: Are vari Test 4: Does the					
(Note: When rho=					me.)
	Tests of	Interest			
Test -2*log(Likelihood R	atio) Test	df p	-value	
Test 1	166.984			0001	
Test 2 Test 3	7.37453 3.29554)2504)6947	
Test 4	-1.0413e-011			NA	
The p-value for Te difference between It seems appropria	n response an	d/or variar			
The p-value for Te model appears to b			A non-homoge	eneous variance	
The p-value for Te different variance		than .1.	You may want	to consider a	
NA - Degrees of fr	eedom for Te	st 4 are le	ess than or e	equal to 0. Th	e Chi-Square

 $\rm NA$ - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square test for fit is not valid

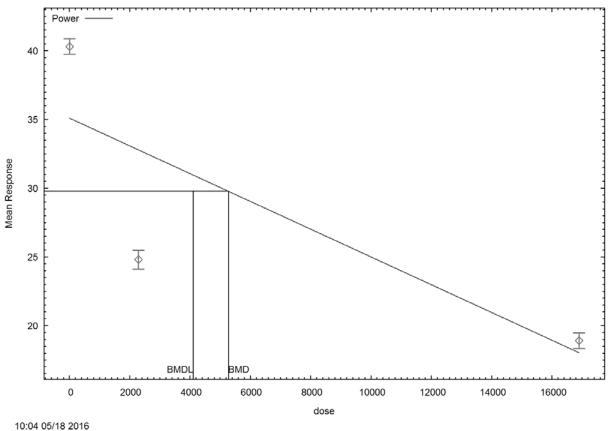
Benchmark	Dose Computation	
Specified effect =	1	
Risk Type =	Estimated standard devia	tions from the control mean
Confidence level =	0.95	
BMD =	70.4203	
BMDL =	50.7412	

BMDL computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

19

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt Wed May 18 10:04:04 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1 A constant variance model is fit Total number of dose groups = 3 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.772667 rho = 0 Specified control = 40.3 slope = -0.00126627-9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha control slope 1 -4.1e-009 -1.7e-009 alpha control -4.1e-009 1 -0.66 slope -1.7e-009 -0.66 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. 41.8451 28.2258 6.94872 14.6066 alpha control 35.1127 1.23098 32.7001 37.5254 -0.00124252 -0.000772255 -0.00100739 0.000119967 slope power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.


Table of Dat	ta and Estima	ated Values	of Interest		
Dose N				Est Std Dev	
5 12 2290 9 1.69e+004 12	40.3 24.8 18.9	35.1 32.8 18.1	0.5	5.31 5.31	3.39 -4.52
Model Descriptio	ons for like	lihoods calo	culated		
Model Al: Var{e	Yij = Mu(i (ij)} = Sigma				
	Yij = Mu(i (ij)} = Sigma				
Model A3 use	(ij)} = Sigma	a^2 variance pa	arameters that		
Model R: Var{e	Yi = Mu + e(i)} = Sigma				
	Likel:	ihoods of Ir	iterest		
Mode Al A2 A3 fitted R	-6 -10 -71	ikelihood) .671908 .984641 .671908 .613919 .476587	# Param's 4 6 4 3 2	AIC 29.343815 25.969283 29.343815 149.227838 184.953175	
	Explanatio	on of Tests			
Test 1: Do resp (A2 vs Test 2: Are Van Test 3: Are van Test 4: Does th	. R) riances Homog riances adequ he Model for	geneous? (Al uately model the Mean Fi	. vs A2) .ed? (A2 vs. A .t? (A3 vs. fi	3) tted)	
(Note: When rho		Its of Test Interest	3 and Test 2	will be the sa	ame.)
Test -2*log	g(Likelihood		st df p	-value	
Test 1 Test 2 Test 3 Test 4	166.98 7.374 7.374 121.88	53 53	2 0.0 2 0.0	0001 2504 2504 0001	
The p-value for T difference betwee It seems appropri	en response a	and/or varia			
The p-value for T non-homogeneous v			Consider run	ning a	
The p-value for T different variand		ss than .1.	You may want	to consider a	a
The p-value for T	Test 4 is lea	ss than .1.	You may want	to try a dif	ferent

model Benchmark Dose Computation Specified effect = Risk Type = Estimated standard deviations from the control mean 0.95 Confidence level = BMD = 5273.85

BMDL = 4103.69

1

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

18

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt Wed May 18 10:08:33 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is restricted to be greater than or equal to 1 The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -0.257908 rho = 0 control = 40.3 slope = -0.00126627 power = -9999 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) lalpha rho control slope lalpha 1 -1 0.59 -0.61 1 rho -1 -0.63 0.65 0.59 control -0.63 1 -0.99 -0.99 slope -0.61 0.65 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Lower Conf. Limit Upper Conf. Limit Variable Estimate lalpha -22.4908 3.97916 -30.2898 -14.6918 rho 7.56038 1.24884 5.11271 10.0081 36.6846 control 33.468 1.64111 30.2515 -0.000862901 9.85577e-005 -0.00105607 -0.000669732 slope power 1 NA NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus

has no standard error.

Dose	N 	Obs Mean	Est Mean			Std Dev	
2290		40.3 24.8 18.9	31.5				3.13 -3.33 0.05
Model D	escript	ions for like	lihoods cald	culated			
Model A		Yij = Mu(i e(ij)} = Sigm					
Model A		Yij = Mu(i e(ij)} = Sigm					
Mod	Var{ el A3 u	Yij = Mu(i e(ij)} = exp(ses any fixed fied by the u	lalpha + rho variance pa				
Model 1		Yi = Mu + {e(i)} = Sigm					
		Likel	ihoods of Ir	nterest			
	Mode A1 A2 A3 fitted R	-6 -8 -55	ikelihood) .671908 .984641 .632413 .300810 .476587	4 6	5 A1 29.3 25.9 27.2 118.6 184.9	343815 969283	
			on of Tests				

(A2 vs. R)

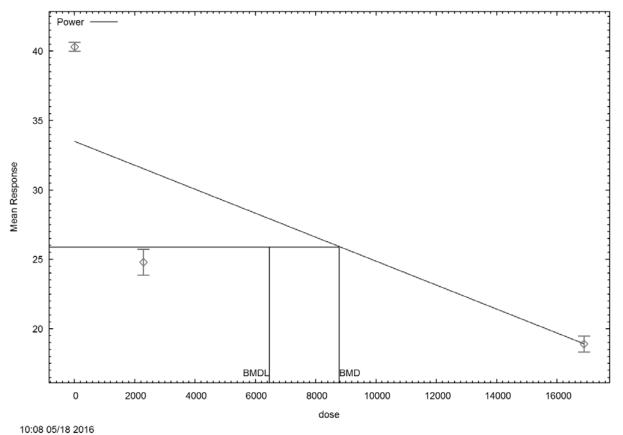
Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	3.29554	1	0.06947
Test 4	93.3368	1	<.0001


The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is less than .1. You may want to consider a different variance model

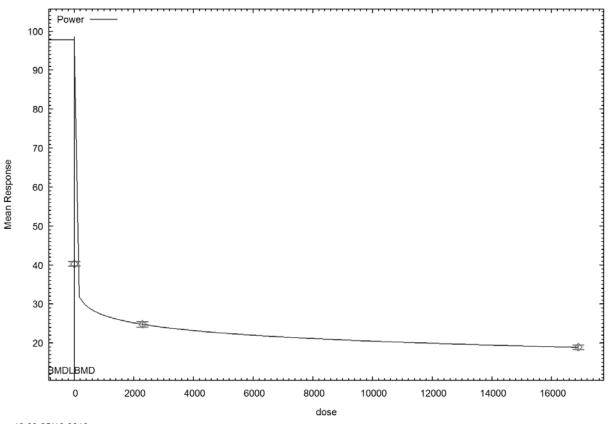
The p-value for Test 4 is less than .1. You may want to try a different model Benchmark Dose Computation Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 8782.33 BMDL = 6467.23

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

21

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt Wed May 18 10:09:52 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values alpha = 0.772667 rho = 0 Specified control = 40.3 -4.44772slope = -9999 power = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha control slope power alpha 1 -7.8e-008 7e-008 5.3e-008 control -7.8e-008 1 -1 -1 slope 7e-008 -1 1 1 5.3e-008 -1 1 1 power Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.702424	0.172925	0.363498	1.04135
control	98.5987	34.9733	30.0522	167.145
slope	-54.7977	34.5778	-122.569	12.9735
power	0.0384799	0.0199071	-0.000537281	0.0774971


Table of Data and Estimated Values of Interest

Dose	N 	Obs Mean				Est Std Dev	Scaled Res.
5 2290	12 9	40.3 24.8	40.3 24.8	0.5		0.838 0.838	4.54e-006 1.26e-006 6.96e-007
1.69e+004	12	18.9	18.9		0.9	0.838	6.96e-007
Degrees o	f freed	om for Test	A3 vs fitted	d <= 0			
Model De	scripti	ons for like	liboods cal	nulated			
nouci De	Beriper	ons for fine	111100ub cuit	Suracea			
Model A1		Yij = Mu(i (ij)} = Sigm					
Model A2		Yij = Mu(i (ij)} = Sigm					
Model A3		Yij = Mu(i (ij)} = Sigm					
	l A3 us	es any fixed ied by the u	variance pa	arameters	that		
Model R	:	Yi = Mu +	e(i)				
	Var{	e(i)} = Sigm	a^2				
		Likel	ihoods of I	nterest			
	Mode A1	l Log(l	ikelihood)	# Param	' S	AIC	
	AI A2	-10	.671908 .984641	4		29.343815	
	A3			4		29.343815	
	fitted	-10	.671908 .671908	4		29.343815 29.343815	
	R	-90	.476587	2		184.953175	
		Explanati	on of Tests				
Test 1:	Do res (A2 vs	ponses and/c	r variances	differ a	mong	Dose levels?	
		riances Homo			-	2.)	
		riances adeq he Model for					
						will be the s	ame.)
		Tests c	f Interest				
Test	-2*lo	g(Likelihood	Ratio) Tea	st df	р	-value	
Test 1		166.9		4		0001	
Test 2 Test 3		7.374 7.374		2 2		2504 2504	
Test 4		2.3654e-0		0	0.0	NA NA	
differenc	e betwe	Test 1 is le en response iate to mode	and/or varia			rs to be a e dose levels	1
-		Test 2 is le variance mod		Conside	r run	ning a	
The p-val different			ss than .1.	You may	want	to consider	a
TTT Tet.euc	varian	ce model					

NA - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square

test for fit is not valid Benchmark Dose Computation Specified effect = 1 Estimated standard deviations from the control mean Risk Type = Confidence level = 0.95 BMD = 6.61465e-048 BMDL = 6.61465e - 048

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:09 05/18 2016 18

_____ Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt Wed May 18 10:11:37 2016 _____ BMDS Model Run The form of the response function is: Y[dose] = control + slope * dose^power Dependent variable = Mean Independent variable = Dose The power is not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho) Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values lalpha = -0.257908 rho = 0 control = 40.3 slope = -4.44772 -9999 power = Asymptotic Correlation Matrix of Parameter Estimates lalpha rho control slope power lalpha 1 -1 0.076 -0.077 -0.078 rho -1 1 -0.076 0.076 0.077 control 0.076 -0.076 1 -1 -1 -0.077 0.076 slope -1 1 1 -0.078 0.077 1 -1 1 power Parameter Estimates 95.0% Wald Confidence Interval Va

			JJ.00 Mara Comr.	facinee fineervar
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	5.67563	2.91677	-0.0411307	11.3924
rho	-1.87073	0.883455	-3.60227	-0.139189
control	102.718	42.7736	18.8838	186.553
slope	-58.8798	42.3928	-141.968	24.2085
power	0.0362495	0.0217656	-0.00641027	0.0789093

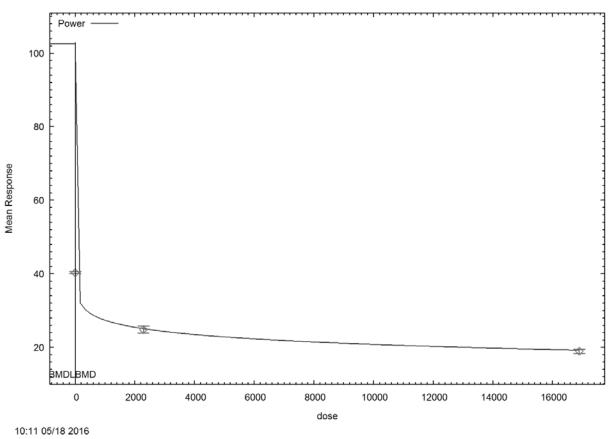
Table of Data and Estimated Values of Interest

Obs Mean

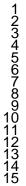
Dose

Ν

1051


Est Mean Obs Std Dev Est Std Dev Scaled Res.

	.3	40.3 24.8		0.5 1.2	0.538 0.848	-0.00903 0.0749
1.69e+004 12	.8 18.9	18.9		0.9	1.09	
Warning: Likelihood	for fitte	d model la	rger	than the	Likelihood fo	or model A3.
Model Descriptions for likelihoods calculated						
Model Al: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2						
Model A2: $Yij = Mu(i) + e(ij)$ $Var{e(ij)} = Sigma(i)^2$						
<pre>Model A3: Yij = Mu(i) + e(ij) Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) Model A3 uses any fixed variance parameters that were specified by the user</pre>						
Model R: Yi = Mu + e(i) Var{e(i)} = Sigma^2						
Likelihoods of Interest						
Model		elihood)	# Pa	ram's	AIC	
A1 A2		71908 84641		4 6	29.343815 25.969283	
A3		32413		5	27.264826	
fitted		32413		5	27.264826	
R	-90.4	76587		2 :	184.953175	
Explanation of Tests						
Test 1: Do responses and/or variances differ among Dose levels?						
(A2 vs. R)						
Test 2: Are Variances Homogeneous? (Al vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)						
(Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest						
Test -2*log(Li		atio) Tes	t df	n	-value	
Test 1	166.984		4	_	0001	
Test 2	7.37453		2		2504	
Test 3	3.29554		1		5947	
Test 4 -4.	89564e-012		0		NA	
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data						
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate						
The p-value for Test 3 is less than .1. You may want to consider a different variance model						
NA - Degrees of free test for fit is			ess t	han or e	qual to 0. Th	ne Chi-Square


test for fit is not valid

Benchmark Dose Computation Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 1.83728e-067 BMDL = 1.83728e-067

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

1053

16 17

1
2

4

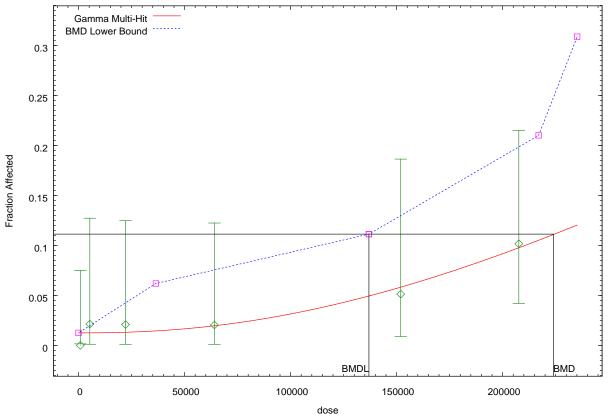
5

Benchmark Dose Analysis

Data from Butenhoff et al. (2012) and Thomford et al. (2002) - Hepatocellular Adenomas and
 Carcinomas in Female Rats

BMR = 0.10; Model Type = Dichotomous

6

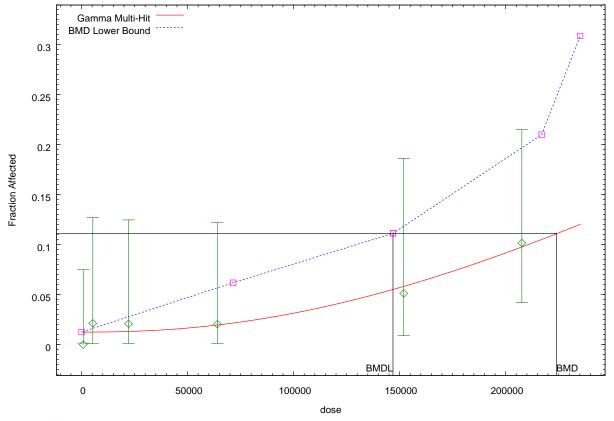

Pages	Model	Parameter Restrictions	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/ml)	BMDL (ng/ml)	BMDU (ng/ml)
2-3	Gamma	No Power Restriction	-	0.7254	91.72	223,921	136,931	NA
4-5	Gamma	Restrict Power ≥ 1	-	0.7254	91.72	223,921	146,863	NA
6-7	Log Logistic ¹	No Slope Restriction	-	0.7252	89.78	293,786	135,695	NA
8-9	Log Logistic	Restrict Slope ≥ 1	-	0.7278	91.71	222,762	145,871	NA
10-11	Log Probit ¹	No Slope Restriction	-	0.7065	89.89	341,864	134,024	NA
12-13	Log Probit	Restrict Slope ≥ 1	-	0.7297	91.77	224,375	163,078	NA
14-15	Logistic ¹	-	-	0.8680	89.54	217,195	172,669	NA
16-17	Multistage ²	No Beta Restriction	3rd	0.5175	93.16	207,177	144,054	NA
18-19	Multistage ³	Restrict Betas ≥ 0	3rd	0.7266	91.52	219,137	149,798	583,971
20-21	Multistage	Restrict Betas ≥ 0	2nd	0.6971	91.64	228,610	148,097	600,557
22-23	Multistage ²	No Beta Restriction	2nd	0.6971	91.64	228,610	135,207	NA
24-25	Probit ¹	-	-	0.8582	89.57	220,249	168,550	NA
26-27	Quantal-Linear ⁴	-	-	0.7698	89.81	257,440	145,713	NA
28-29	Weibull ⁵	No Power Restriction	-	0.7272	91.70	222,462	137,093	NA
30-31	Weibull ⁵	Restrict Power ≥ 1	-	0.7272	91.70	222,462	147,127	NA

- 8 ¹ Background parameter estimate hit a boundary.
- 9 ² BMDU did not converge, so BMDU calculation failed.
- 10 ³ The beta2 parameter estimate hit a boundary.
- ⁴ Power parameter estimate hit a boundary.
- ⁵ Background, slope, and power parameter estimates hit boundaries.

_____ Gamma Model. (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.plt Tue Oct 03 09:30:58 2017 _____ BMDS Model Run The form of the probability function is: P[response]= background+(1-background)*CumGamma[slope*dose,power], where CumGamma(.) is the cummulative Gamma distribution function Dependent variable = Effect Independent variable = Dose Power parameter is not restricted Total number of observations = 6 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00806452Slope = 1.30141e-006Power = 1.41289 Asymptotic Correlation Matrix of Parameter Estimates Background Slope Power Background 0.67 0.68 1 Slope 0.67 1 1 Power 0.68 1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -0.00999787 0.0125262 0.0350503 0.0114921 Background 3.30913e-006 Slope 1.31846e-005 -2.25323e-005 2.91505e-005 -7.36163 2.3869 4.97383 Power 12.1354 Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -41.869 6 Full model 3 Fitted model -42.862 3 1.98589 0.5753 10.732 5 0.05696 Reduced model -47.235 1 AIC: 91.7239

Goodness	of Fit				
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000 5309.0000 22153.0000 64073.0000 151939.0000 207633.0000	0.0125 0.0132 0.0197 0.0585	2.280	1.000	49.000 39.000	-0.872 0.538 0.467 0.037 -0.191 0.095
Chi^2 = 1.32	d.f.	= 3 P-v	alue = 0.725	54	
Benchmark	Dose Comput	ation			
Specified eff	lect =	0.1			
Risk Type	=	Extra risk			
Confidence le	evel =	0.95			
	BMD =	223921			
E	BMDL =	136931			

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

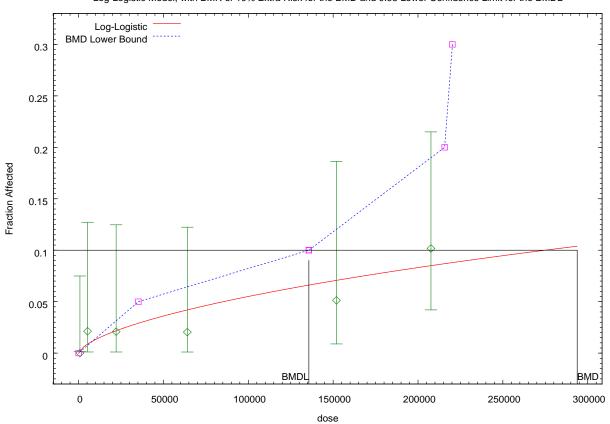


09:31 10/03 2017

_____ Gamma Model. (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.plt Tue Oct 03 09:35:11 2017 _____ BMDS_Model_Run The form of the probability function is: P[response]= background+(1-background)*CumGamma[slope*dose,power], where CumGamma(.) is the cummulative Gamma distribution function Dependent variable = Effect Independent variable = Dose Power parameter is restricted as power >=1 Total number of observations = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00806452Slope = 1.30141e-006Power = 1.41289 Asymptotic Correlation Matrix of Parameter Estimates Background Slope Power Background 1 0.67 0.68 Slope 0.67 1 1 Power 0.68 1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit -0.0100005 0.0350529 Background 0.0125262 0.0114934 Slope 3.30913e-006 1.31962e-005 -2.25549e-005 2.91731e-005 Power 2.3869 4.97812 -7.37003 12.1438 Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 б 1.98589 0.5753 Fitted model -42.862 3 3 Reduced model 10.732 5 0.05696 -47.235 1 AIC: 91.7239

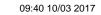
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
5309.0000 22153.0000 64073.0000	0.0125 0.0132 0.0197 0.0585	0.752 0.590 0.631 0.964 2.280 5.783	1.000 1.000 1.000 2.000	47.000 48.000 49.000 39.000	0.538 0.467 0.037 -0.191
	2 d.f. : Dose Computa	= 3 P-v	alue = 0.72	54	
Specified eff	fect =	0.1			
Risk Type	=]	Extra risk			
Confidence le	evel =	0.95			
	BMD =	223921			
I	BMDL =	146863			

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL


09:35 10/03 2017

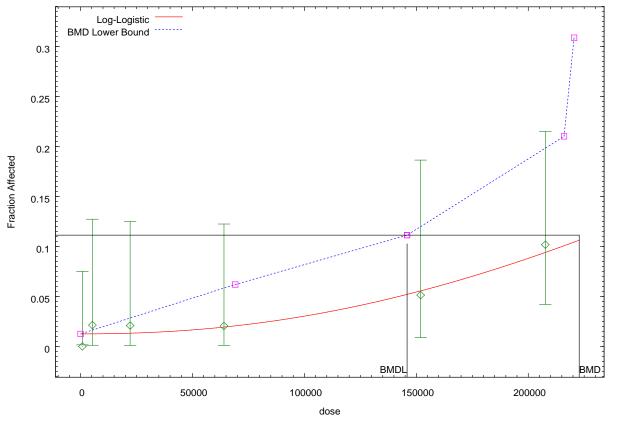
29

2345678901234567890122345678


_____ Logistic Model. (Version: 2.14; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.plt Tue Oct 03 09:40:22 2017 _____ BMDS_Model_Run The form of the probability function is: P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))] Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial Parameter Values background = 0 -7.33002 intercept = slope = 0.372346 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope 1 intercept -1 -1 1 slope Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA 3.29018 -10.2442 -16.6928 -3.79555 intercept 0.639124 0.284386 0.0817374 1.19651 slope NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 6

Fitted moo Reduced moo		2.8899 47.235	2 1	2.04172 10.732	4 5	0.7281 0.05696
A	IC: 8	9.7798				
		Good	ness of	Fit	Sca	lod
Dose	EstProb.	Expected	Observe	d Size	Resid	
Chi^2 = 2.06	0.0085 0.0209 0.0403 0.0679 0.0817	1.001 1.974 2.650 4.822	1.000 1.000 1.000 2.000 6.000	47.000 48.000 49.000 39.000 59.000	-0.7	58 01 08 414
Specified eff	fect =	0.1				
Risk Type	= E	xtra risk				
Confidence le	evel =	0.95				
	BMD =	293786				
I	BMDL =	135695				

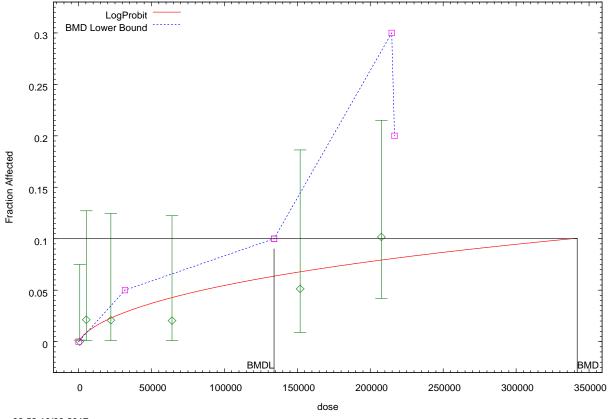
Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL




```
_____
        Logistic Model. (Version: 2.14; Date: 2/28/2013)
        Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.(d)
        Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.plt
                                              Tue Oct 03 09:45:34 2017
_____
BMDS_Model_Run
  The form of the probability function is:
  P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]
  Dependent variable = Effect
  Independent variable = Dose
  Slope parameter is restricted as slope >= 1
  Total number of observations = 6
  Total number of records with missing values = 0
  Maximum number of iterations = 500
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  User has chosen the log transformed model
                Default Initial Parameter Values
                  background =
                                       0
                   intercept =
                                 -14.5797
                       slope =
                                       1
         Asymptotic Correlation Matrix of Parameter Estimates
           background
                      intercept
                                     slope
background
                   1
                          -0.66
                                       0.66
intercept
               -0.66
                              1
                                         -1
    slope
               0.66
                              -1
                                          1
                             Parameter Estimates
                                                  95.0% Wald Confidence Interval
                                   Std. Err.
      Variable
                    Estimate
                                               Lower Conf. Limit Upper Conf. Limit
                                                                  0.0342719
    background
                    0.0124825
                                   0.0111172
                                                  -0.00930693
                    -29.0511
                                    41.4378
                                                     -110.268
     intercept
                                                                         52.1655
        slope
                     2.18079
                                     3.40031
                                                      -4.48371
                                                                         8.84528
                     Analysis of Deviance Table
      Model
               Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model
                    -41.869
                             6
                                          1.97294
                                                                 0.578
  Fitted model
                    -42.8555
                                   3
                                                      3
                                                  5
                                          10.732
 Reduced model
                    -47.235
                                   1
                                                               0.05696
         AIC:
                     91.711
```

Goodness of Dose		Expected	Observed	Size	Scaled Residual
5309.0000 22153.0000 64073.0000 151939.0000 207633.0000	0.0125 0.0132 0.0197 0.0579 0.0984	0.749 0.588 0.633 0.964 2.259 5.806 = 3 P-v	1.000 1.000 1.000 2.000 6.000	47.000 48.000 49.000 39.000 59.000	0.540 0.464 0.037 -0.178
Benchmark	Dose Comput	ation			
Specified eff	fect =	0.1			
Risk Type	=	Extra risk			
Confidence le	evel =	0.95			
	BMD =	222762			
E	BMDL =	145871			

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

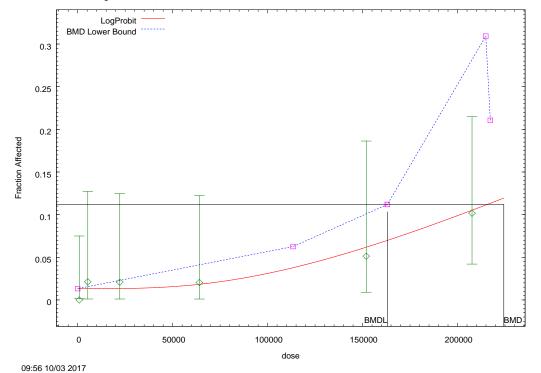

28 09:45 10/03 2017

29

_____ Probit Model. (Version: 3.3; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.plt Tue Oct 03 09:53:10 2017 _____ BMDS Model Run The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)), where CumNorm(,) is the cumulative normal distribution function Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial (and Specified) Parameter Values background = 0 intercept = -3.53583 0.163079 slope = Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope -0.99 intercept 1 -0.99 1 slope Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Estimate Std. Err. background 0 NA intercept -4.63098 1.2583 -7.0972 -2.164760.48018 0.0455437 slope 0.262862 0.110879 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -41.869 6 Fitted model -42.9471 2 2.1562 0.7071 4 Reduced model -47.235 1 10.732 5 0.05696

	AIC: 8	39.8942			
		Good	lness of F	it	Scaled
Dose	EstProb.	Expected	Observed	Size	
5309.0000 22153.0000 64073.0000 151939.0000	0.0021 0.0087 0.0227 0.0426 0.0675 0.0789	0.411 1.090 2.086 2.632	1.000 1.000 1.000 2.000	47.000 48.000 49.000 39.000	0.923 -0.087 -0.768 -0.404
	16 d.f. = k Dose Computa		ralue = 0.70	65	
Specified e	ffect =	0.1			
Risk Type	= E	Extra risk			
Confidence	level =	0.95			
	BMD =	341864			
	BMDL =	134024			

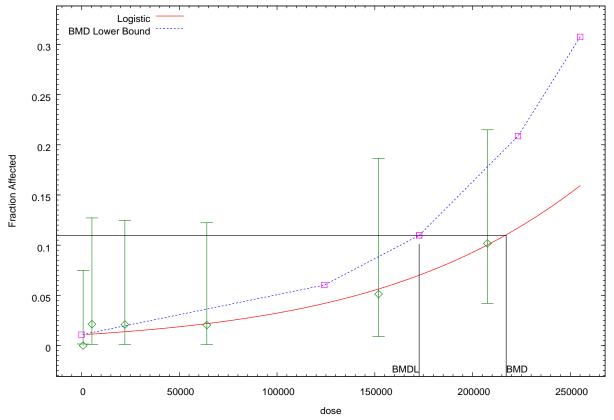
LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL



31 ^{09:53 10/03 2017}

_____ Probit Model. (Version: 3.3; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.plt Tue Oct 03 09:56:28 2017 _____ BMDS_Model_Run The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)), where CumNorm(.) is the cumulative normal distribution function Dependent variable = Effect Independent variable = Dose Slope parameter is restricted as slope >= 1 Total number of observations = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial (and Specified) Parameter Values background = 0 -13.2026 intercept = slope = 1 Asymptotic Correlation Matrix of Parameter Estimates background intercept slope background 1 -0.56 0.56 -0.56 intercept 1 -1 slope 0.56 -1 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. 0.0132652 0.010165 -0.00665789 0.0331882 background 18.4895 21.9316 -14.3071 -50.5458 intercept slope 1.05717 1.51836 -1.91875 4.0331 Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -41.869 б Fitted model -42.8832 3 0.5665 2.02844 3 Reduced model -47.235 1 10.732 5 0.05696

A	IC: 91	.7665			
Goodness o	f Fit				
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
5309.0000 22153.0000 64073.0000 151939.0000 207633.0000	0.0133 0.0133 0.0134 0.0178 0.0578 0.0985 0 d.f. =	0.623 0.641 0.871 2.255 5.810	1.000 1.000 2.000 6.000	47.000 48.000 49.000 39.000 59.000	0.480 0.451 0.139 -0.175
Benchmark	Dose Computat	ion			
Specified ef	fect =	0.1			
Risk Type	= Ex	tra risk			
Confidence 1	evel =	0.95			
	BMD =	224375			
:	BMDL =	163078			


LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

_____ Logistic Model. (Version: 2.14; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/log_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/log_2017_10_03_Opt.plt Tue Oct 03 09:59:09 2017 _____ BMDS Model Run The form of the probability function is: P[response] = 1/[1+EXP(-intercept-slope*dose)] Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values background = 0 Specified intercept = -4 01375 slope = 9.0843e-006 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -0.88 -0.88 slope 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate -4.51669 1.11565e-005 Std. Err. Lower Conf. Limit Upper Conf. Limit Variable -5.82591 3.24783e-006 0.667985 -3.20746 intercept 4.03513e-006 1.90653e-005 slope Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value -41.869 6 Full model 1.8118140.770310.73250.05696 Fitted model -42.7749 2 1 Reduced model -47.235 89.5498 AIC:

Dose	EstProb.	Good: Expected	ness of F: Observed		Scaled Residual
5309.0000 22153.0000 64073.0000 151939.0000	0.0115 0.0138 0.0218 0.0562	0.654 0.539 0.662 1.070 2.191 5.884	1.000 1.000 1.000 2.000	47.000 48.000 49.000 39.000	0.632 0.418 -0.069 -0.133
	d.f. = Dose Computa	= 4 P-v. ation	alue = 0.868	30	
Specified eff	ect =	0.1			
Risk Type	= 1	Extra risk			
Confidence le	vel =	0.95			
I	BMD =	217195			
BI	MDL =	172669			

Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:59 10/03 2017

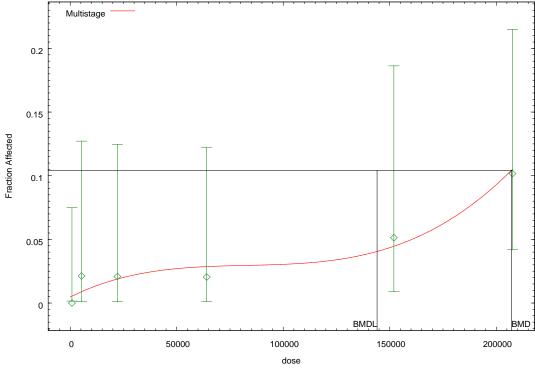
```
_____
        Multistage Model. (Version: 3.4; Date: 05/02/2014)
        Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d)
        Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt
                                              Tue Oct 03 10:04:42 2017
_____
BMDS Model Run
  The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
              -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are not restricted
  Dependent variable = Effect
  Independent variable = Dose
Total number of observations = 6
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                  Background = 0.00992005
                     Beta(1) = 4.10803e-007
                     Beta(2) = -4.2263e-012
                     Beta(3) = 2.17477e-017
         Asymptotic Correlation Matrix of Parameter Estimates
           Background
                        Beta(1)
                                    Beta(2)
                                               Beta(3)
Background
                  1
                           -0.76
                                      0.65
                                                  -0.57
  Beta(1)
               -0.76
                              1
                                       -0.94
                                                   0.86
  Beta(2)
               0.65
                           -0.94
                                         1
                                                  -0.98
               -0.57
                          0.86
                                      -0.98
  Beta(3)
                                                    1
                             Parameter Estimates
                                                  95.0% Wald Confidence Interval
      Variable
                                Sta. ...
0.0124066
                                              Lower Conf. Limit Upper Conf. Limit
                    Estimate
                                              -0.0195654
                 0.00475102
    Background
                                                                       0.0290674
                8.40464e-007
                               1.21818e-006
                                                                    3.22806e-006
      Beta(1)
                                                 -1.54713e-006
                -9.69896e-012
                               1.63302e-011
                                                 -4.17055e-011
                                                                    2.23076e-011
      Beta(2)
                 3.90821e-017
                                 5.5654e-017
                                                 -6.99978e-017
                                                                    1.48162e-016
      Beta(3)
                     Analysis of Deviance Table
               Log(likelihood) # Param's Deviance Test d.f. P-value
      Model
    Full model
                    -41.869 6
  Fitted model
                    -42.5822
                                   4
                                          1.42635
                                                     2
                                                               0.4901
```

Reduced model

-47.235

10.732

5

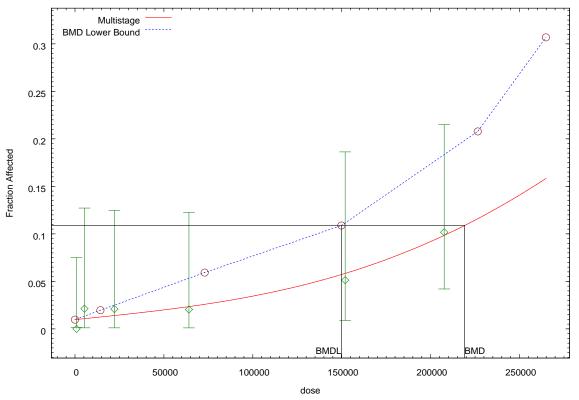

0.05696

A	IC: 9	3.1644			
		Good	ness of F	'it	
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
5309.0000 22153.0000 64073.0000 151939.0000 207633.0000	0.0189 0.0287 0.0446 0.1050	0.419 0.906	1.000 1.000 2.000 6.000	47.000 48.000 49.000 39.000 59.000	-0.346 0.202
	Dose Computa				
Specified ef:	fect =	0.1			
Risk Type	= E	xtra risk			
Confidence le	evel =	0.95			
	BMD =	207177			
1	BMDL =	144054			

BMDU did not converge for BMR = 0.100000BMDU calculation failed BMDU =

3.81336e+008

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL


10:04 10/03 2017

_____ Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt Tue Oct 03 10:08:56 2017 _____ BMDS Model Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2-beta3*dose^3)] The parameter betas are restricted to be positive Dependent variable = Effect Independent variable = Dose Total number of observations = 6 Total number of records with missing values = 0 Total number of parameters in model = 4 Total number of specified parameters = 0 Degree of polynomial = 3Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0128563 Beta(1) = 8.11345e-008Beta(2) = 0 Beta(3) = 8.54188e-018Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Beta(2) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Background Beta(1) Beta(3) Background 1 -0.67 0.53 Beta(1) -0.67 1 -0.91 0.53 -0.91 Beta(3) 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Variable Estimate Lower Conf. Limit Upper Conf. Limit Background 0.00975469 0.0107621 -0.0113387 0.030848 Beta(1) 1.9283e-007 4.09015e-007 -6.08825e-007 9.94484e-007 Beta(2) 0 NA 5.99669e-018 1.07517e-017 Beta(3) -1.50762e-017 2.70696e-017 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 6 Fitted model -42.7586 3 1.7792 3 0.6195 Reduced model -47.235 1 10.732 5 0.05696

A	IC: 91	.5172			
		Good	ness of F	it	Scaled
Dose	EstProb.	Expected	Observed	Size	Residual
5309.0000 22153.0000 64073.0000 151939.0000	0.0099 0.0108 0.0140 0.0235 0.0584 0.0983	0.506 0.674 1.149 2.276	1.000 1.000 2.000	47.000 48.000 49.000 39.000	-0.141 -0.189
$Chi^2 = 1.3$	1 d.f. =	3 P-v	alue = 0.72	66	
Benchmark	Dose Computat	ion			
Specified ef:	fect =	0.1			
Risk Type	= Ex	tra risk			
Confidence l	evel =	0.95			
	BMD =	219137			
1	BMDL =	149798			
1	BMDU =	583971			
Taken togeth	er, (149798 ,	583971) is	a 90 %	two-sided c	onfidence

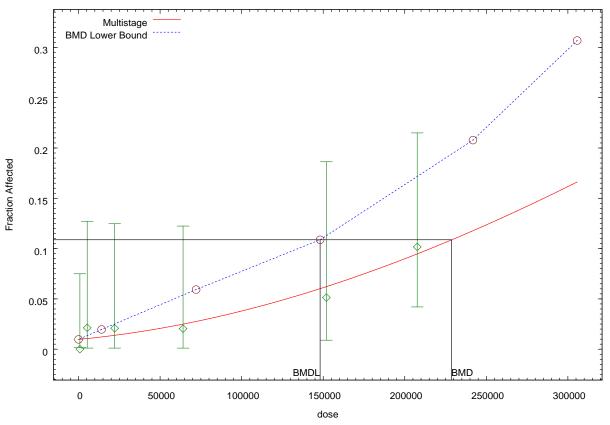
interval for the BMD

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:10 10/03 2017

1

234567890123


Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt Tue Oct 03 10:14:48 2017 _____ BMDS Model Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2)] The parameter betas are restricted to be positive Dependent variable = Effect Independent variable = Dose Total number of observations = 6 Total number of records with missing values = 0Total number of parameters in model = 3 Total number of specified parameters = 0 Degree of polynomial = 2 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0123231 Beta(1) = 0 Beta(2) = 2.09922e-012Asymptotic Correlation Matrix of Parameter Estimates Background Beta(1) Beta(2) Background 1 -0.72 0.63 Beta(1) -0.72 1 -0.96 Beta(2) 0.63 -0.96 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. 0.0116091 Lower Conf. Limit Upper Conf. Limit Variable Estimate -0.013004 Background 0.0097495 0.032503 Beta(1) 1.56493e-007 6.03753e-007 -1.02684e-006 1.33983e-006 -4.74102e-012 7.40392e-012 Beta(2) 1.33145e-012 3.09826e-012 Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 б Fitted model 1.89719 -42.8176 3 3 0.594 5 Reduced model -47.235 1 10.732 0.05696 AIC: 91.6352 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ 816.00000.00990.5930.00060.000-0.7745309.00000.01060.4991.00047.0000.7142153.00000.01380.6631.00048.0000.4164073.00000.02501.2241.00049.000-0.205
 5309.0000
 0.0106

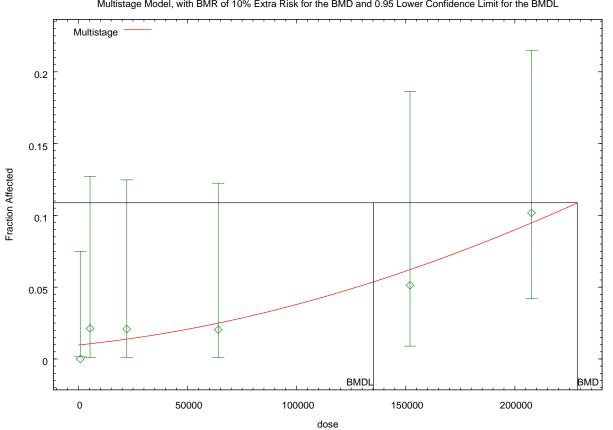
 22153.0000
 0.0138

 64073.0000
 0.0250

151939.0000 207633.0000				2.000 6.000		-0.284 0.179
Chi^2 = 1.44	d.f. =	3	P-valu	ae = 0.6971		
Benchmark Do:	se Computa	tion				
Specified effect	t =	0.2	1			
Risk Type	= E	xtra ris	sk			
Confidence leve	1 =	0.9	5			
BMI	D =	228610	0			
BMD	L =	14809	7			
BMD	U =	60055	7			
Taken together, interval for the		600557) is a 9	90 % two	o-sided conf	idence

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:14 10/03 2017


```
_____
       Multistage Model. (Version: 3.4; Date: 05/02/2014)
       Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d)
       Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt
                                           Tue Oct 03 10:17:08 2017
_____
BMDS Model Run
           The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
             -beta1*dose^1-beta2*dose^2)]
  The parameter betas are not restricted
  Dependent variable = Effect
  Independent variable = Dose
Total number of observations = 6
Total number of records with missing values = 0
Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                 Background = 0.0139536
                   Beta(1) = -8.34895e-008
                   Beta(2) = 2.49199e-012
         Asymptotic Correlation Matrix of Parameter Estimates
          Background
                      Beta(1)
                                 Beta(2)
Background
                1
                         -0.72
                                    0.63
             -0.72
                                   -0.96
  Beta(1)
                            1
              0.63
                        -0.96
  Beta(2)
                                        1
                          Parameter Estimates
                                               95.0% Wald Confidence Interval
                Estlinate

0.00974951 0.0110022

1.56493e-007 6.03753e-007

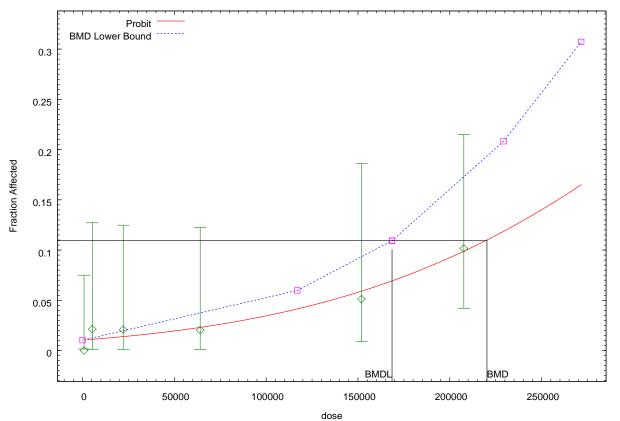
3.09826e-012
                                           Lower Conf. Limit Upper Conf. Limit
     Variable
                   Estimate
                                Std. Err.
                                                 -0.013004
    Background
                                                                   0.032503
      Beta(1)
                1.56493e-007
                                              -1.02684e-006
                                                               1.33983e-006
                                                              7.40392e-012
               1.33145e-012
                                              -4.74102e-012
      Beta(2)
                   Analysis of Deviance Table
     Model
              Log(likelihood) # Param's Deviance Test d.f. P-value
   Full model
               -41.869 6
  Fitted model
                   -42.8176
                                 3
                                       1.89719
                                                  3
                                                            0.594
                                               ہ
5
                                                         0.05696
 Reduced model
                   -47.235
                                1
                                        10.732
        AIC:
                  91.6352
                           Goodness of Fit
                                                     Scaled
   Dose Est._Prob. Expected Observed Size
                                                    Residual
 _____
                    816.0000 0.0099
5309.00000.010622153.00000.013854073.00000.0250
22153.0000
64073.0000
                                                    -0.284
151939.0000 0.0623
                                                     0.179
207633.0000 0.0949
```

```
Chi^{2} = 1.44
                  d.f. = 3
                                  P-value = 0.6971
   Benchmark Dose Computation
Specified effect =
                              0.1
Risk Type
                        Extra risk
                 =
Confidence level =
                             0.95
             BMD =
                           228610
                           135207
            BMDL =
BMDU did not converge for BMR = 0.100000
BMDU calculation failed
                   5.84472e+009
            BMDU =
```


Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

23 10:17 10/03 2017

_____ Probit Model. (Version: 3.3; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/pro_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/pro_2017_10_03_Opt.plt Tue Oct 03 10:21:00 2017 _____ BMDS_Model_Run The form of the probability function is: P[response] = CumNorm(Intercept+Slope*Dose), where CumNorm(.) is the cumulative normal distribution function Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted Total number of observations = 6 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values background = 0 intercept = -2.36759 Specified slope = 5.33993e-006Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -0.84 slope -0.84 1 Parameter Estimates 95.0% Wald Confidence Interval Std. Err. Variable Estimate Lower Conf. Limit Upper Conf. Limit -2.82696 -1.80108 1.53428e-006 8.30694e-006 -2.31402 0.261709 intercept 1.72775e-006 slope 4.92061e-006 Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -41.869 Full model б Fitted model -42.783 2 1.82805 4 0.7673 5 0.05696 Reduced model -47.235 1 10.732 AIC: 89.5661 Goodness of Fit Scaled Est._Prob. Expected Observed Size Residual Dose _____
 0.627
 0.000
 60.000


 0.520
 1.000
 47.000

 0.659
 1.000
 48.000

 1.118
 1.000
 49.000
 816.0000 0.0104 -0.796 0.0111 0.669 5309.0000 22153.0000 0.0137 0.423 0.0228 64073.0000 -0.1132.2872.00039.0005.7896.00059.000 -0.195 151939.0000 0.0586 207633.0000 0.0981 5.789 6.000 0.092

Chi^2 = 1.32 d.f. = 4 P-value = 0.8582 Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 BMD = 220249 BMDL = 168550

Probit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:21 10/03 2017

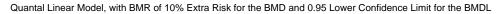
```
_____
         Quantal Linear Model using Weibull Model (Version: 2.16; Date: 2/28/2013)
         Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/qln_2017_10_03_Opt.(d)
         Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/qln_2017_10_03_Opt.plt
                                                     Tue Oct 03 10:24:56 2017
 _____
BMDS Model Run
                                              The form of the probability function is:
   P[response] = background + (1-background)*[1-EXP(-slope*dose)]
   Dependent variable = Effect
   Independent variable = Dose
   Total number of observations = 6
   Total number of records with missing values = 0
   Maximum number of iterations = 500
   Relative Function Convergence has been set to: 1e-008
   Parameter Convergence has been set to: 1e-008
                  Default Initial (and Specified) Parameter Values
                     Background = 0.00806452
                          Slope = 5.48047e - 007
                                                  Specified
                          Power =
                                             1
           Asymptotic Correlation Matrix of Parameter Estimates
           ( *** The model parameter(s) -Power
                 have been estimated at a boundary point, or have been specified by the user,
                 and do not appear in the correlation matrix )
             Background
                              Slope
Background
                     1
                              -0.46
                  -0.46
                                   1
     Slope
                                 Parameter Estimates
                                                          95.0% Wald Confidence Interval
      Variable
                        Estimate
                                        Std. Err.
                                                      Lower Conf. Limit Upper Conf. Limit
     Background
                     0.00692364
                                       0.00834718
                                                         -0.00943653
                                                                                  0.0232838
         Slope
                    4.09262e-007
                                    1.65659e-007
                                                          8.45761e-008
                                                                              7.33948e-007
                        Analysis of Deviance Table
      Model
                  Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model
                       -41.869
                                  б
                                                 2.07089
                                                                         0.7227
   Fitted model
                       -42.9045
                                         2
                                                              4
  Reduced model
                        -47.235
                                        1
                                                 10.732
                                                            5
                                                                        0.05696
          AIC:
                        89.8089
                                 Goodness of Fit
                                                                 Scaled
    Dose Est._Prob. Expected Observed Size
                                                                Residual
  -

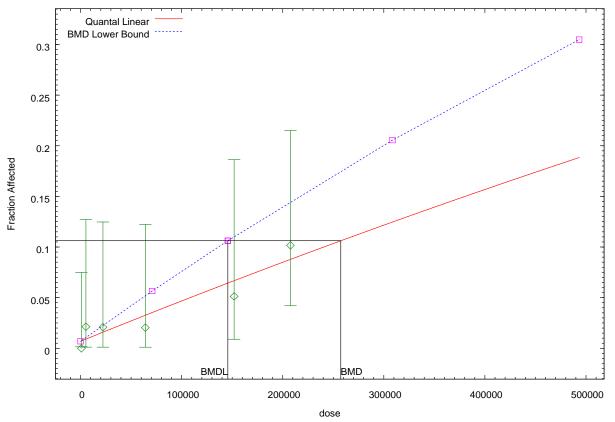
        816.0000
        0.0073
        0.435
        0.000
        60.000

        309.0000
        0.0091
        0.427
        1.000
        47.000

        2153.0000
        0.0159
        0.763
        1.000
        48.000

                                                                -0.662
                                                                 0.882
5309.0000
22153.0000
                                                                 0.274

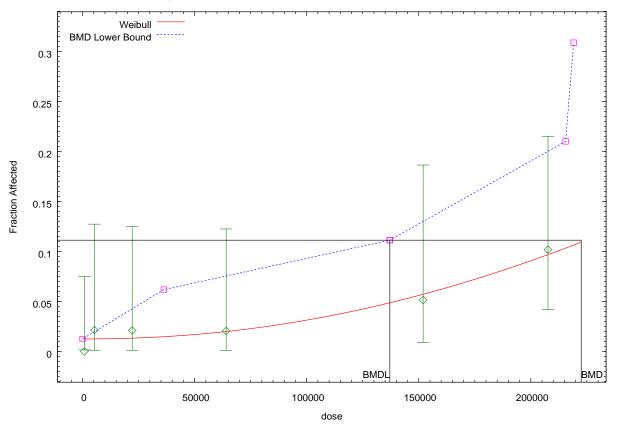

        64073.0000
        0.0326


        151939.0000
        0.0668

        207633.0000
        0.0878

                            1.5991.00049.0002.6052.00039.0005.1826.00059.000
                                       1.000
                                                                -0.481
                                                                -0.388
0.376
Chi^2 = 1.81 d.f. = 4
                                  P-value = 0.7698
```

Benchmark Dose Computation				
Specified effect =	0.1			
Risk Type =	Extra risk			
Confidence level =	0.95			
BMD =	257440			
BMDL =	145713			


15 ^{10:24 10/03 2017}

_____ Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.plt Tue Oct 03 10:29:25 2017 _____ BMDS Model Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-slope*dose^power)] Dependent variable = Effect Independent variable = Dose Power parameter is not restricted Total number of observations = 6 Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00806452 Slope = 7.78752e-009Power = 1.34744 Asymptotic Correlation Matrix of Parameter Estimates Background Slope Power Background 1.\$ 1.\$ 1.\$ Slope 1.\$ 1.\$ 1.\$ Power 1.\$ 1.\$ 1.\$ Parameter Estimates 95.0% Wald Confidence Interval Variable Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. Background 0.0123715 1.#QNAN 1.#QNAN 1.#QNAN 1.#QNAN 6.07921e-013 1.#QNAN 1.#QNAN Slope Power 2.10179 1.#QNAN 1.#QNAN 1.#QNAN Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -41.869 б 1.96664 Fitted model 3 0.5794 -42.85233 Reduced model -47.235 1 10.732 5 0.05696 AIC: 91.7047 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ 816.0000 0.0124 -0.867 0.0124 0.0132 5309.0000 0.549 0.464 22153.0000 0.0199 0.023 64073.0000 151939.00000.0580207633.00000.0984 2.2612.00039.0005.8066.00059.000 -0.179 0.085 207633.0000 $Chi^{2} = 1.31$ d.f. = 3 P-value = 0.7272

Benchmark Dose Computation

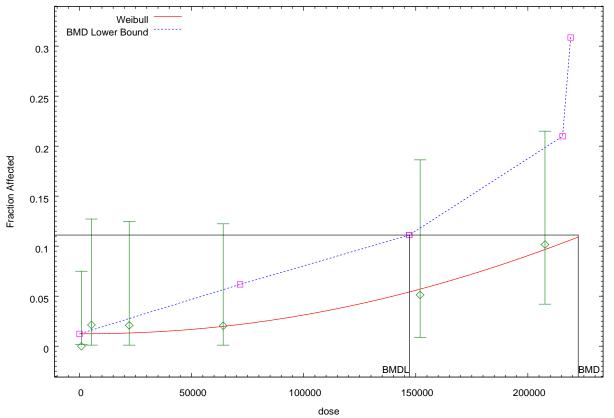
Specified effect	=	0.1
Risk Type	=	Extra risk
Confidence level	=	0.95
BMD	=	222462
BMDL	=	137093

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:29 10/03 2017

15

_____ Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.plt Tue Oct 03 10:38:14 2017 _____ BMDS Model Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-slope*dose*power)] Dependent variable = Effect Independent variable = Dose Power parameter is restricted as power >= 1.000000 Total number of observations = 6Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial (and Specified) Parameter Values Background = 0.00806452 Slope = 7.78752e-009Power = 1.34744 Asymptotic Correlation Matrix of Parameter Estimates Background Slope Power Background 1.\$ 1.\$ 1.\$ Slope 1.\$ 1.\$ 1.\$ Power 1.\$ 1.\$ 1.\$ Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0.0123715 1.#QNAN 1.#QNAN 1.#QNAN 1.#QNAN 1.#QNAN Slope 6.07921e-013 1.#QNAN 2.10179 1.#QNAN 1.#QNAN 1.#QNAN Power Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 6 1.96664 0.5794 Fitted model -42.85233 3 Reduced model -47.235 1 10.732 5 0.05696 AIC: 91.7047 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____
 0.742
 0.000
 60.000


 0.583
 1.000
 47.000

 0.633
 1.000
 48.000

 0.977
 1.000
 49.000
 -0.867 816.0000 0.0124 5309.0000 0.0124 0.549 0.0132 22153.0000 0.464 64073.0000 0.0199 0.023 151939.00000.0580207633.00000.0984 2.2612.00039.0005.8066.00059.000 -0.179 0.085 Chi^2 = 1.31 d.f. = 3 P-value = 0.7272

Benchmark Dose Co	omputat	ion
Specified effect	=	0.1
Risk Type	=	Extra risk
Confidence level	=	0.95
BMD	=	222462
BMDL	=	147127

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:38 10/03 2017