DRAFT FINAL REPORT FOR

MILITARY MUNITIONS RESPONSE PROGRAM (MMRP) REMEDIAL INVESTIGATION

Culebra Island Site

MRS 02 – Cerro Balcon and Adjacent Cays
MRS 04 – Flamenco Lagoon Maneuver Area
MRS 05 – Mortar and Combat Range Area
MRS 07 – Culebrita Artillery Impact Area

Contract #: W912DY-04-D-0009 Task Order #: 0013 FUDS Project No. I02PR006800

Prepared For:

U.S. Army Corps of Engineers, Jacksonville District 701 San Marco Boulevard Jacksonville, Florida 32207 and

U.S. Army Engineering & Support Center, Huntsville 4820 University Square Huntsville, Alabama 35816-1822

Prepared By:
Explosive Ordnance Technologies, Inc. (EOTI)
109 W. Tennessee Avenue
Oak Ridge, Tennessee 37830

CULEBRA ISLAND SITE

Jim Daffron

EOT Project Manager

March 2012

Jennifer Bugkels

ARCADIS/Malcolm Pirnie Project Manager

March 2012

Remedial Investigation Draft Final Report

Military Munitions Response Program

Culebra Island Site

MRS 02 - Cerro Balcon and Adjacent Cays

MRS 04 - Flamenco Lagoon Maneuver Area

MRS 05 - Mortar and Combat Range Area

MRS 07 - Culebrita Artillery Impact Area

Culebra Island, Puerto Rico

Prepared for:

U.S. Army Corps of Engineers, Jacksonville District

701 San Marco Boulevard

Jacksonville, Florida 32207

and

U.S. Army Engineering & Support Center, Huntsville

4820 University Square

Huntsville, Alabama 35816-1822

Prepared by:

Explosive Ordnance Technologies, Inc. (EOTI)

105 W. Tennessee Avenue

Oak Ridge, TN 37830

and

ARCADIS/Malcolm Pirnie

300 East Lombard Street, Suite 1510

Baltimore, MD 21202

TABLE OF CONTENTS

ES	S.O EXECUTIVE	SUMMARY	ES-1
	ES.1 OBJECTIVE		ES-1
	ES.2 REMEDIAL	INVESTIGATION (RI) FIELD WORK SUMMARY	ES-1
	ES.3 RI RISK AS	SESSMENT RESULTS	ES-2
	ES.4 Munition	ns Response Site Prioritization Protocol (MRSPP) AND Concept	tual Site
	Mode	l (CSM) and MEC Hazard Assessment (HA) Results	ES-3
1	INT	RODUCTION	1-1
	1.1 Purpos	SE	1-1
		RTY DESCRIPTION AND PROBLEM IDENTIFICATION	
	1.3 CULEBR	RA ISLAND HISTORICAL INFORMATION	1-2
		S 02 – Cerro Balcon and Adjacent Cays	
	1.3.2 MRS	S 04 – Flamenco Lagoon Maneuver Area	1-4
	1.3.3 MRS	S 05 – Mortar and Combat Range Area	1-4
	1.3.4 MRS	S 07 – Culebrita Artillery Impact Area	1-5
	1.4 Previo	US INVESTIGATIONS	1-5
2	PRC	DJECT REMEDIAL RESPONSE OBJECTIVES	2-1
	2.1 CONCE	PTUAL SITE MODEL (CSM) AND PROJECT APPROACH	2-1
		ect Approach	
	2.1.2 Initi	al CSM	2-2
	2.1.2.1	Site Profile	2-2
	2.1.2.2	Munitions / Release Profile	2-5
	2.1.2.3	Physical Profile	2-9
	2.1.2.4	Land Use and Exposure Profile	2-11
	2.1.2.5	Ecological Profile	2-13
	2.2 PRELIM	inary Remediation Goals and Remedial Action Objectives	2-13
	2.3 PRELIM	inary Identification of Potentially Applicable or Relevant and A	APPROPRIATE
	,	REMENTS AND "TO BE CONSIDERED" INFORMATION	
	2.3.1 Defi 14	nition of Applicable or Relevant and Appropriate Requireme	ents (ARAR). 2-
		ITIONAL ANALYSIS	2-16
	2.5 DATA N	NEEDS AND DATA QUALITY OBJECTIVES	2-17
	2.5.1 Data	a Needs	2-17
	2.5.2 Data	a Quality Objectives	2-18
	2.5.2.1	Data Quality Objectives for MEC Investigation	2-18
	2.5.2.2	Data Quality Objectives for MC Investigation	2-28
3	CHA	ARACTIZATION OF MEC AND MC	3-1
	3.1 RI FIELI	D ACTIVITIES OVERVIEW	3-1
	3.2 MEC	Characterization	3-1
	3.2.1 Geo	physical Prove-Out	3-1
	3.2.2 De-\	Vegetation and Surface Clearance	3-2

	3.2.3 ME	C Field Work Results	3-2
	3.2.4 Der	nolition and Disposal Operations	3-6
	3.2.5 ME	C Results Summary	3-6
	3.3 MC C	Characterization	3-7
	3.3.1 Fiel	d Sampling Methods	3-8
	3.3.2 Che	mistry Analyses	3-9
	3.3.3 Mu	nitions and Explosives of Concern Avoidance Procedures	3-9
	3.3.4 MC	Results Summary	3-9
	3.3.5 Inv	estigative-Derived Wastes	3-10
	3.4 DEVIA	TIONS FROM THE FINAL MMRP WORK PLAN	3-10
	3.5 QUALI	TY CONTROL	3-11
	3.5.1 Em	ployee Process Training Program	3-19
	3.5.2 Mu	nitions and Explosives of Concern Quality Assurance / Quality Cont	rol
	Me	thods Used	3-19
	3.5.2.1	Munitions and Explosives of Concern QC Results	3-19
	3.5.3 Mu	nitions Constituents Quality Assurance / Quality Control Samples	3-20
	3.5.3.1	QC Samples	3-20
	3.5.3.2	Quality Assurance Samples	3-20
	3.5.3.3	Data Quality Controls	3-21
4	RE	/ISED CONCEPTUAL SITE MODEL AND RI RESULTS	4-1
		AND MC PROFILE FOR MRS 02, 04, 05, AND 07	
		Use and Exposure Profile	
		•	
5	СО	NTAMINANT FATE AND TRANSPORT FOR MEC AND MC	5-1
	5.1 Conta	minant Fate and Transport Pathway Analysis for MEC and MC	5-1
	5.1.1.1 ME	C Pathway Analyses	5-1
	5.1.1.1.1	L MRS 02 – Cerro Balcon and Adjacent Cays	5-1
	5.1.1.1.3	3 Adjacent Cays	5-2
	5.1.1.1.4	1 MRS 04 – Flamenco Lagoon Maneuver Area	5-2
	5.1.1.1.5	5 MRS 05 – Mortar and Combat Range Area	5-2
	5.1.1.1.6	5 MRS 07 – Culebrita Artillery Impact Area	5-3
		Pathways Analysis	
	Insert M	IEC and MC pathways figures 5-1 through 5-10	5-4
6	ВА	SELINE RISK ASSESSMENT FOR MC AND HAZARD ASSESSMENT FO	R MEC 6-1
	6.1 BASI	ELINE RISK ASSESSMENT FOR MC	6-1
		MAN HEALTH RISK ASSESSMENT (HHRA)	
	6.2.2 6-2		
	6.2.2.1	MC Data Summary	6-2
	6.2.2.2	Surface Soil	
	6.2.2.3	Sediment	
	6.2.2.4	Exposure Assessment	
	6.2.2.5	Consideration of Uncertainty	
		REENING LEVEL ECOLOGICAL RISK ASSESSMENT	

6.2.3.1.1 Ecological Setting	6-17
6.2.3.1.2 Potential Ecological Habitat and Receptors	6-17
6.2.3.1.3 Sensitive Habitats and Threatened or Endangered Species	6-19
6.2.3.1.4 Problem Formulation	6-20
6.2.3.1.5 Assessment and Measurement Endpoints	6-20
6.2.3.1.6 Ecological Effects Evaluation	6-22
6.2.3.1.7 Selection of COPECs in Surface Soil	6-22
6.2.3.1.8 Selection of COPECs in Sediment	6-35
6.2.3.1.9 Risk Characterization	
6.2.3.1.10 Screening-Level Risk Calculations for COPECs in Surface Soil	6-37
6.2.3.1.11 Screening-Level Risk Calculations for COPECs in Sediment	
6.2.3.1.12 Uncertainty Evaluation	6-44
6.2.3.1.13 SLERA Conclusions	6-46
6.3 HAZARD ASSESSMENT FOR MEC	6-47
6.3.1 Munitions Response Site Prioritization Protocol	6-47
6.3.2 Baseline Munitions and Explosives of Concern Hazard Assessment	6-49
6.3.2.1 Hazard Level Descriptions	6-49
6.3.2.2 Baseline Scoring Results	6-51
6.3.2.3 MRS 02 – Cerro Balcon	6-51
6.3.2.4 MRS 02 –Adjacent Cays	6-51
6.3.2.5 MRS 04 – Flamenco Lagoon Maneuver Area	
6.3.2.6 MRS 05 – Mortar and Combat Range Area	6-52
6.3.2.7 MRS 07 – Culebrita Artillery Impact Area	
6.3.3 MEC Qualitative Risk Discussion	
6.3.3.1 MRS 02	6-52
6.3.3.1.1 Cerro Balcon	
6.3.3.1.2 Adjacent Cays	
6.3.3.1.3 MRS 04 – Flamenco Lagoon Maneuver Area	
6.3.3.1.4 MRS 05 – Mortar and Combat Range Area	
6.3.3.1.5 MRS 07 – Culebrita Artillery Impact Area	6-54
SUMMARY OF RESULTS	7-1
7.1 RI FIELD WORK SUMMARY	7-1
7.2 MEC Conclusions	
7.2.1 MRS 02 - Cerro Balcon	
7.2.2 MRS 02 - Adjacent Cays	
7.2.3 MRS 04 – Flamenco Lagoon Maneuver Area	
7.2.4 MRS 05 – Mortar and Combat Range Area	
7.2.5 MRS 07 – Culebrita Artillery Impact Area	
7.3 MC Conclusions	
7.4 MRS Delineation Recommendations	7-4
REFERENCES	8-1

7

8

LIST OF TABLES

Table ES-1:	Culebra Island MRS Summary
Table 1-1:	MEC Items Previously Identified for MRS 02, 04, 05, and 07.
Table 2-1:	Summary of Culebra Island RI Field Activity Decisions
Table 2-2:	MEC Data Quality Objectives for Cerro Balcon Area at MRS 02
Table 2-3:	MEC Data Quality Objectives for Adjacent Cays at MRS 02
Table 2-4:	MEC Data Quality Objectives for MRS 04
Table 2-5:	MEC Data Quality Objectives for Private Parcels at MRS 05
Table 2-6:	MEC Data Quality Objectives for Wildlife Refuge at MRS 05
Table 2-7:	MEC Data Quality Objectives for Beaches/Trails at MRS 07
Table 2-8:	MEC Data Quality Objectives for Vegetated Areas at MRS 07
Table 2-9:	MC Data Quality Objectives for Cerro Balcon Area at MRS 02
Table 2-10:	MC Data Quality Objectives for Adjacent Cays at MRS 02
Table 2-11:	MC Data Quality Objectives for MRS 04
Table 2-12:	MC Data Quality Objectives for Private Parcels at MRS 05
Table 2-13:	MC Data Quality Objectives for Wildlife Refuge at MRS 05
Table 2-14:	MC Data Quality Objectives for Beaches and Trail at MRS 07
Table 2-15:	MC Data Quality Objectives for Vegetated Areas at MRS 07
Table 3-1:	Summary of RI MEC Investigation
Table 3-2:	MEC and MD locations for RI Investigation
Table 3-3:	Sampling Design
Table 3-4:	Deviations from the Work Plan
Table 3-5:	Soil Sampling Results at MRS 04
Table 3-6:	Sediment Sampling Results at MRS 04
Table 3-7:	Soil Sampling Results at MRS 05
Table 3-8:	Sediment Sampling Results at MRS 05
Table 3-9:	Soil Sampling Results at MRS 07
Table 3-10:	Sediment Sampling Results at MRS 07
Table 3-11:	Quantities of Analyses
Table 4-1:	Munitions and MC Release Profile Culebra Island MRSs
Table 4-2:	Human Receptors at Culebra Island MRSs
Table 4-3:	Land Use and Exposure Profile – Culebra Island MRSs
Table 6-1:	Summary of Analytical Data Available for Each MRS
Table 6-2:	Summary of MRS 02 Surface Soil Data and Identification of COPCs
Table 6-3:	Summary of MRS 04 Surface Soil Data and Identification of COPCs
Table 6-4:	Summary of MRS 05 Surface Soil Data and Identification of COPCs
Table 6-5:	Summary of MRS 07 Surface Soil Data and Identification of COPCs
Table 6-6:	Summary of MRS 04 Sediment Data and Identification of COPCs
Table 6-7:	Summary of MRS 05 Sediment Data and Identification of COPCs
Table 6-8:	Summary of MRS 07 Sediment Data and Identification of COPCs
Table 6-9:	Culebra Federal Threatened and Endangered Species
Table 6-10A:	Selection of COPECs in MRS 02 (Cerro Balcon) Surface Soil: Plants and Soil Invertebrates
Table 6-10B:	Selection of COPECs in MRS 02 (Cerro Balcon) Surface Soil: Birds and Mammals
	Selection of COPECs in MRS 02 (cays) Surface Soil: Terrestrial Plants and Soil
	Invertebrates
Table 6-11B:	Selection of COPECs in MRS 02 (cays) Surface Soil: Birds

- Table 6-12A: Selection of COPECs in MRS 04 Surface Soil: Plants and Soil Invertebrates
- Table 6-12B: Selection of COPECs in MRS 04 Surface Soil: Birds and Mammals
- Table 6-13A: Selection of COPECs in MRS 05 Surface Soil: Plants and Soil Invertebrates
- Table 6-13B: Selection of COPECs in MRS 05 Surface Soil: Birds and Mammals
- Table 6-14A: Selection of COPECs in MRS 07 Surface Soil: Plants and Soil Invertebrates
- Table 6-14B: Selection of COPECs in MRS 07 Surface Soil: Birds and Mammals
- Table 6-15: Summary of MRS 04 Sediment Data and Identification of COPECs
- Table 6-16: Summary of MRS 05 Sediment Data and Identification of COPECs
- Table 6-17: Summary of MRS 07 Sediment Data and Identification of COPECs
- Table 6-18: Calculation of Hazard Quotients for COPECs in MRS 02 (Cerro Balcon) Surface Soil
- Table 6-19: Calculation of Hazard Quotients for COPECs in MRS 02 (cays) Surface Soil
- Table 6-20: Calculation of Hazard Quotients for COPECs in MRS 04
- Table 6-21: Calculation of Hazard Quotients for COPECs in MRS 05
- Table 6-22: Calculation of Hazard Quotients for COPECs in MRS 07
- Table 6-23: Calculation of Hazard Quotients for COPECs in MRS 04 Sediment
- Table 6-24: Calculation of Hazard Quotients for COPECs in MRS 05 Sediment
- Table 6-25: Calculation of Hazard Quotients for COPECs in MRS 07 Sediment
- Table 6-26: Summary of Revised MRSPP
- Table 6-27: Summary of Baseline MEC HA
- Table 7-1: MRSPP Scores for Revised MRS Delineations
- Table 7-2: MRSPP Priority and Baseline Hazard Categories

LIST OF FIGURES

- Figure 1-1: Culebra Island Location Map
- Figure 1-2: MRS 04 Flamenco Lagoon Maneuver Area
- Figure 1-3: MRS 05 Mortar and Combat Range Area
- Figure 1-4: MRS 07 Culebrita Artillery Impact Area
- Figure 3-1: MRS 04 Flamenco Lagoon Maneuver Area MC Data
- Figure 3-2: MRS 04 Flamenco Lagoon Maneuver Area MEC Data
- Figure 3-3: MRS 05 Flamenco Lagoon Maneuver Area MC Data
- Figure 3-4: MRS 05 Flamenco Lagoon Maneuver Area MEC Data
- Figure 3-5: MRS 07 Flamenco Lagoon Maneuver Area MC Data
- Figure 3-6: MRS 07 Flamenco Lagoon Maneuver Area MEC Data
- Figure 4-1: 3D Graphical CSM for MRS 02
- Figure 4-2: 3D Graphical CSM for MRS 04
- Figure 4-3: 3D Graphical CSM for MRS 05
- Figure 4-4: 3D Graphical CSM for MRS 07
- Figure 5-1: MEC Pathway Analysis for MRS 02 (Cerro Balcon)
- Figure 5-2: MEC Pathway Analysis for MRS 02 (Adjacent Cays)
- Figure 5-3: MEC Pathway Analysis for MRS 04
- Figure 5-4: MEC Pathway Analysis for MRS 05
- Figure 5-5: MEC Pathway Analysis for MRS 07
- Figure 5-6: MC Pathway Analysis for MRS 02 (Cerro Balcon)
- Figure 5-7: MC Pathway Analysis for MRS 02 (Adjacent Cays)
- Figure 5-8: MC Pathway Analysis for MRS 04
- Figure 5-9: MC Pathway Analysis for MRS 05
- Figure 5-10: MC Pathway Analysis for MRS 07

Figure 7-1: MRS Delineation Recommendations

LIST OF APPENDICES

Appendix A: GPO Letter Report
Appendix B: MEC Investigation Data
Appendix C: MC Investigation Data
Appendix D: Photograph Log

Appendix E: Munitions and Explosives of Concern Hazard Assessment

Appendix F: Munitions Response Site Prioritization Protocol

Appendix G: Federally Recognized Wetlands

Appendix H: GIS Data

ACRONYMS

°F Degrees Fahrenheit

% percent

µg/kg Micrograms per kilogram
APP Accident Prevention Plan

ARARs Applicable or Relevant and Appropriate Requirements

ASR Archive Search Report bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

CFR Code of Federal Regulations

CHE Chenical Warfare Materiel Hazard Evaluation

cm² centimeters squared

COPC Chemical of Potential Concern

COPEC Chemical of Potential Egological Concern

CSEM Conceptual Site Exposure Model

CSM Conceptual Site Model

DGM Digital Geophysical Mapping

DID Data Item Description

DMM Discarded Military Munitions

DNER Department of Natural and Environmental Resources

DoD Department of Defense
DQO Data Quality Objective

ECOSSL Ecological Soil Screening Level
ECSM Ecological Conceptual Site Model

EE/CA Engineering Evaluation and Cost Analysis

EHE Explosive Hazard Evaluation
Ellis Ellis Environmental Group, LC

EM Engineer Manual

EOTI/ARCADIS Explosive Ordnance Technologies, Inc. and ARCADIS/Malcolm Pirnie

EP Engineer Pamphlet

EPC Exposure Point Concentrations

ESE Environmental Science and Engineering, Inc.

ESL Ecological Screening Level

ESP Explosives Site Plan
EZ Exclusion Zone

FLEX Fleet Landing Exercise

FS Feasibility Study

FUDS Formerly Used Defense Site

GP Guided Projectile

GPO Geophysical Prove Out
GPS Global Positioning System

HA Hazard Assessment
HE High-Explosive

HEI High-Explosive Incendiary
HHE Health Hazard Evaluation

HHRA Human Health Risk Assessment

HQ Hazard Quotient

HRR Historical Records Review
INPR Inventory Project Report

lbs pounds

LTM Long Term Management

LUC Land Use Control

MC Munitions Constituents

MD Munitions Debris

MDAS Material Documented as Safe

MEC Munitions and Explosives of Concern

mg/kg milligrams per kilogram

mg/kg/day milligrams per kilogram of body weight per day

mm millimeter

MMRP Military Munitions Response Program

MPPEH Material Potentially Presenting an Explosives Hazard

MQL Method Quantitation Limits
MRS Munitions Response Site

MRSPP Munitions Response Site Prioritization Protocol

MSD Minimum Separation Distance

MS/MSD Matrix spike / Matrix Spike Duplicate

NA Not Applicable

NCP National Contingency Plan
OB/OD Open Burn/Open Detonation

OSHA Occupational Safety and Health Administration

PAOs Preliminary Action Objectives

PEL Probable Effects Level

QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

RAO Remedial Action Objective

RCRA Resource Conservation and Recovery Act
RI Remedial Investigation/Feasibility Study

RSL Regional Screening Level

SI Site Inspection

SLERA Screening Level Ecological Risk Assessment

SLRA Screening Level Risk Assessment

SUXOS Senior Unexploded Ordnance Supervisor
SWPP Storm Water Polution Prevention Plan

TBC To Be Considered

TEL Threshold Effects Levels
TPP Technical Project Plan
TRV Toxicity Rrefernce Value
UCL Upper Confidence Limit

U.S. United States

USC United States Code

USAEC United States Army Environmental Command

USAESCH United States Army Engineering Suoourt Center, Huntsville

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

USFWS United States Fish & Wildlife Service

UXO Unexploded Ordnance

UXOQCS Unexploded Ordnance Quality Control Specialist

UXOSO Unexploded Ordnance Safety Officer

ES.0 EXECUTIVE SUMMARY

ES.1 OBJECTIVE

ES.1.1 On behalf of the United States (U.S.) Army, U.S. Army Corps of Engineers (USACE) Jacksonville District and the U.S. Army Engineering and Support Center, Explosive Ordnance Technologies, Inc. (EOTI) and ARCADIS/Malcolm Pirnie (EOTI/ARCADIS) have performed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigation / Feasibility Study (RI) at Cerro Balcon and Adjacent Cays (Munitions Response Site [MRS] 02), Flamenco Lagoon Maneuver Area (MRS 04), Mortar and Combat Range Area (MRS 05), and Culebrita Artillery Impact Area (MRS 07) at the Culebra Island Formerly Used Defense Site (FUDS) under the Military Munitions Response Program (MMRP). An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. I02PR006800. A Site Inspection (SI) was conducted and the 2007 Final SI Report recommended all four MRSs proceed to RI for further evaluation of munitions and explosives of concern (MEC) and munitions constituents (MC). This Report has been developed to provide a description of the MMRP tasks that have been conducted by EOTI/ARCADIS under this RI. The objective of the project is to characterize the nature and extent of contamination within MRSs 02, 04, 05, and 07 meeting the requirements of ER 200-3-1 and CX Interim Guidance 06-04.

ES.2 REMEDIAL INVESTIGATION (RI) FIELD WORK SUMMARY

- ES.2.1 RI fieldwork was conducted from 11 October 2010 to 25 March 2011, in accordance with the approved Final MMRP Work Plan (EOTI, 2010) and decisions made during technical project planning (TPP) sessions. The fieldwork included geophysical investigations, during which surface and subsurface metallic anomalies were investigated along predefined transects throughout MRS 04, MRS 05, and MRS 07. The transects covered approximately 24 miles (123,000 ft) across the MRSs. In addition, four 25 x 25 foot minigrids were investigated in areas where indicators of MEC were discovered along the transects. One grid was located in MRS 04 and three were located in MRS 05. No investigations were conducted in MRS 02 due to the lack of rights-of-entry (ROE) in the Cerro Balcon area and the inability of field teams to access the cays, which comprise the remainder of MRS 02. The cays are difficult to access due to steep terrain and inadequate landing areas. The field teams attempted access to the cays but were deterred by rough seas. While access to all of the cays is prohibited, Cayo Lobo and Cayo Yerba are more accessible than the other cays by recreational users (trespassers). Portions of MRS 04 and 05 were not investigated by the field teams due to lack of ROEs, and in some cases, due to access issues caused by heavy vegetation and terrain.
- **ES.2.2** In total, 466 anomalies were intrusively investigated across MRS 04, MRS 05, and MRS 07. During the investigation, 49 pieces of munitions debris (MD) (items without an explosive hazard) were found, totaling 43 pounds. MD included items associated with mortars, 3-inch projectiles, 20mm projectiles, flares, fuzes, small arms ammunition, and unidentifiable fragments. The investigation confirmed that MD and metal scrap (non-munitons related metal) were located on the surface and in the subsurface at MRS 04,

MRS 05, and MRS 07. During the investigation, MEC associated with a warhead (HEAT) live rocket nose and a Mk 8 demolition hose was found within MRS 07. No MEC was found in MRS 04 or MRS 05. The remainder of the 466 anomalies were identified as either non-munitions-related metallic debris, such as barb wire and small arms ammunition not related to military use, or geologic anomalies. Table ES-1 summarizes the MEC investigation results for each MRS.

ES.2.3 A total of 28 soil samples and 7 sediment samples were collected from MRS 04, MRS 05, and MRS 07 and analyzed for munitions constituents (MC), including explosives and select metals (antimony, barium, chromium, copper, lead, mercury, and zinc). No samples were collected from MRS 02 due to lack of a ROE and inaccessibility issues for the Cays. Explosives were not detected in any of the field samples; however, 1,3,5-TNB and 4-NT were found at very low levels in one split sample at MRS 05 collected for quality assurance purposes. Both analytes were well below the US Environmental Protection Agency's (USEPA) Residential Screening Levels (RSL) and were not evaluated as part of the human health or ecological risk assessments. While detected metals concentrations in the RI surface soil samples from MRS 04, MRS 05, and MRS 07 were, for the most part, greater than the range of concentrations in background soil samples, they were less than the USEPA RSLs for Resident Soil. No background sediment data were available; however, detected metals concentrations in sediment samples from MRS 04, MRS 05, and MRS 07 were also less than the USEPA RSLs for Resident Soil.

ES.3 RI RISK ASSESSMENT RESULTS

- **ES.3.1** A human health risk assessment and screening-level ecological risk assessment were conducted for each MRS. The risk assessments were based on soil and sediment data collected during in 2007 as part of the Site Inspection (SI) in addition to the data collected as part of this effort. As no soil or sediment samples were collected during the SI or RI at MRS 02; the risk assessments for MRS 02 were based on the analytical results of ten pre-detonation surface soil samples collected during the 2006 clearance activities at Cerro Balcon and Cayo Lobo, as reported in the Final SI Report. In the human health risk assessment, no chemicals of potential concern (COPCs) were identified in surface soil or sediment from any of the MRSs. No soil remediation on the basis of human health risk is warranted.
- ES.3.2 The screening level ecological risk assessment determined that the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (cays), MRS 04, and MRS 07 is negligible, and the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (Cerro Balcon) and MRS 05 is low. Based on the evaluation of the sediment data, there is a low potential risk of adverse health effects in aquatic receptors. Given the conservative nature of the toxicity reference values (TRV) used to screen the sediment data, the potential for ecological risk is qualified as low. No soil or sediment remediation on the basis of ecological risk is warranted.

ES.4 Munitions Response Site Prioritization Protocol (MRSPP) AND Conceptual Site Model (CSM) AND MEC Hazard Assessment (HA) RESULTS

- ES.4.1 The Munitions Response Site Prioritization Protocol (MRSPP) and Conceptual Site Model (CSM) for the MRSs, as presented in the 2007 Final SI Report, were updated based on the RI fieldwork results. The revised CSM reflects incomplete exposure pathways for all human and ecological receptors of MEC at the surface for MRS 02 Cerro Balcon and Cayo Lobo, where surface clearances have been conducted. Complete pathways exist for receptors of MEC in the subsurface at MRS 02 Cerro Balcon and Cayo Lobo, because MEC is confirmed on site, and no subsurface clearance was conducted. Complete pathways also exist for both the surface and subsurface at MRS 07 due to the presence of MEC found during previous investigations and during the RI. Potentially complete pathways exist on the surface and subsurface for all other cays and MRS 04 and 05. While data is available to suggest low MEC density, data gaps remain for these sites based on lack of ROEs and inaccessibility issues. All MC pathways are incomplete for all MRSs, based on the results of the risk assessment.
- ES.4.2 The MRSPP for each MRS was updated to include the types of munitions encountered during the RI, as well as the results of MC sampling conducted. A baseline MEC Hazard Assessment (MEC HA) was also completed for the each MRS using the MEC HA guidance and accompanying automated scoring worksheets. Table ES-1 displays the summary of the RI results and hazard analysis. A description of the MRSPP, the MEC HA and an explanation of the scoring process is included in Section 5. The MEC HA categorized all sites as high risk except for the Cays, which are moderate risk. Based on a review of previous data and the RI data, along with current land use, MEC risk is qualitatively considered as: moderate for Cerro Balcon (subsurface only), low for the cays (subsurface only for Cayo Lobo), low for MRS 04 and MRS 05 and moderate-to-high for MRS 07.

ES.5 MRS Recommendations

MRS 02: MRS 02 includes Cerro Balcon and the Cays. Cerro Balcon is landlocked within MRS 05 with different access and receptors than the remainder of the cays. The Cays also have varied accessibility. While access to all cays is restricted, Cayo Lobo and Yerba are known to be frequented by recreational users, while the other cays are less accessible or frequented. Based on this information, it is recommended that MRS 02 be split into three areas for further evaluation in the feasibility study:

- Cerro Balcon MRS
- Cayo Lobo and Cayo Yerba MRS
- Remaining Cays MRS (Los Gemelos, Cayo Lobitto, Cayo Raton, Cayo Del Aqua, Cayo Ballena, Cayo Geniqui, and Cayo Sombrerito)

MRS 04 and MRS 05: MRS 04 and MRS 05 are adjacent MRSs at Culebra. U.S. Fish and Wildlife own a contiguous portion of each MRS. Receptors and land use varies in this area when compared to the remainder of MRS 04 and 05. Thus, it is recommended that the U.S. Fish and Wildlife Areas from each MRS be combined into a separate MRS. The remainder of each MRS 04 and MRS 05 will remain as separate MRSs. Thus, the following will result:

- U.S. Fish and Wildlife Area MRS
- MRS 04 (remaining area)

• MRS 05 (remaining area)

MRS 07: No changes to MRS boundaries are recommended for MRS 07 based on the RI results.

Table ES- 1: Culebra Island MRS Summary

MRS	MD	MEC	MC	HHRA	SLERA	MRSPP Score ¹	Baseline MEC HA Score ²	Data Gaps
02 - Cerro Balcon (28 acres)	No field activities conducted during the RI (lack of ROE). MD identified during previous investigations.	RI No field activities conducted during the RI (lack of ROE). Previous Investigations 3 inch common MK3, MOD 7 (3) Fuze, model 1898, 15 second PTTF (2) 81mm mortar (2) A surface clearance has been conducted over the entire area.	 No field activities conducted at MRS 02 during the RI (lack of ROE). No explosives detected in previously collected soil samples. All metals detected below USEPA RSLs in previously collected soil samples. 	- No chemical of potential concern (COPCs) identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	3	2	MEC: No subsurface investigation during RI or previous investigations to gather data on subsurface MEC density. MC: None
02 – Cays (88 acres)	No field activities conducted during the RI due to inaccessibility. MD identified during previous investigations at several cays.	RI No field activities conducted at MRS 02 during the RI. Previous Investigations 500 lb bomb (2) MK 27 Torpedo (1) MK 76 Practice Bomb (2) 76 mm projectile (1) Fuze, M151 (1) Practice bomb (32) 5-inch/54 MK 41 (1) A surface clearance was conducted on Cayo Lobo (2006).	 No field activities conducted at MRS 02 during the RI. No explosives detected in previously collected soil samples. All metals detected below USEPA RSLs in previously collected soil samples. 	- No COPCs identified. No risk to human receptors.	No soil or sediment remediation on the basis of ecological risk is warranted in the adjacent cays.	3	3	MEC: Some of the smaller cays have not had MEC investigations conducted due to access restrictions. MC: No sampling data for cays other than Cayo Lobo. Cays were inaccessible to the field teams during the SI and RI based on rough seas.
04 (550 acres)	Fragmentation identified during the RI.	None during the RI. One MEC item found on Flamenco Beach during 2008 NTCRA (5-inch projectile)	No explosives detected. All metals detected below USEPA RSLs.	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	4	2	MEC: Portions of MRS 04 were not investigated due to a lack of ROEs or accessibility (steep terrain / vegetation). MC: None
05 (2874 acres)	 Fragmentation (9) 30 caliber cartridges (2) 81mm mortar (3) 4.2" mortar base 	No MEC finds during the RI or previous investigations.	 1,3,5-TNB and 4-4-NT detected at very low levels below USEPA RSLs in one split sample. All metals detected below USEPA RSLs. 	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	4	2	MEC: Portions of MRS 05 were not investigated due toa lack of ROEs or accessibility (steep terrain / vegetation). MC: None
07 (374 acres)	 Expended flare 20 mm projectile Partial rotating band Powder Train Time Fuze Brass fragmentation (9) Partial fuze body Shotgun shell 3"projectile fragmentation 	RI warhead (HEAT) live rocket nose (1) Mk 8 Demo hose (1) Previous Investigations practice bombs (18) 6" Naval Gunfire Spotting charge 20 mm Projectile (39)	No explosives detected. All metals detected below USEPA RSLs.	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	3	2	MEC: Portions of MRS 07 were not investigated due to a lack of accessibility (steep terrain / vegetation). The investigation was focused outside of the areas with MEC clearances conducted (beaches). MC: None.

¹ The MRSPP is a method for assigning a relative priority for response actions to defense sites containing military munitions. Priority 1 indicates the highest potential hazard and Priority 8 indicates the lowest potential hazard.

The MEC HA is a baseline hazard analysis for MEC based on current site conditions. There are four hazard levels (1–4), with 1 indicating the highest potential explosive hazard condition and 4 the lowest potential explosive hazard condition.

1 INTRODUCTION

1.1 PURPOSE

- 1.1.1 This Remedial Investigation (RI) Report has been prepared on behalf of the United States Army Corps of Engineers (USACE) to further remedial activities under the Military Munitions Response Program (MMRP) in Culebra, Puerto Rico. This RI Report has been prepared in accordance with the U.S. Environmental Protection Agency (USEPA) Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA (1988) and the Munitions Response Remedial Investigation/Feasibility Study Guidance [United States Army Corps of Engineers (USACE) & United States Army Environmental Command (USAEC), 2009d]. All work was conducted in accordance with the field investigation procedures further developed in the Final MMRP Work Plan, (EOTI, 2010).
- 1.1.2 An Inventory Project Report (INPR) was signed on 24 December 1991, establishing Culebra as a Formerly Used Defense Site (FUDS), defining a site boundary, and assigning FUDS Project Number IO2PR006800. Culebra was subsequently investigated during a Site Inspection (SI) in 2007. The Final SI Report recommended a RI for munitions and explosives of concern (MEC) and munitions constituents (MC) to be conducted at Cerro Balcon and Adjacent Cays (Munitions Response Site [MRS] 02), Flamenco Lagoon Maneuver Area (MRS 04), Mortar and Combat Range Area (MRS 05), and Culebrita Artillery Impact Area (MRS 07), which prompted this RI.
- 1.1.3 The objective of the project is to characterize the nature and extent of contamination within MRSs 02, 04, 05, and 07 meeting the requirements of ER 200-3-1 and the Center of Expertise (CX) Interim Guidance 06-04.

1.2 Property Description and Problem Identification

- 1.2.1 The Culebra is approximately seventeen miles east of San Juan, Puerto Rico and nine miles north of Vieques (Figure 1-1). The Vieques Sound separates Culebra from Puerto Rico. The Caribbean Sea lies to the south, and the Atlantic Ocean is to the north. The total land area of Culebra and its outlying cays is approximately 7,300 acres, of which approximately 1,500 acres are owned by the United States Fish and Wildlife Service (USFWS). Puerto Rico Department of Natural and Environmental Resources (DNER owns 1,200 acres and private citizens and the Municipality of Culebra own the remaining 4,600 acres.
- 1.2.2 Culebra has sandy beaches, irregular rugged coastlines, lagoons, coastal wetlands, steep hills and narrow valleys. Ninety percent of the island is hilly, with the residential population concentrated in the flatlands. Mount Resaca is the highest point on the island, approximately 630 feet above mean sea level. The island has

a limited variety of soil types due to its volcanic origin, limited size, rugged terrain, and moderately uniform climate. Most soils, except along the slopes and on the beaches, are the result of weathering bedrock. The Desculabrado series is found on slopes of 20 to 40 percent and on over 75 percent of Culebra Island. The soils are well-drained, runoff is rapid, and permeability is moderate. Vegetation is moderately to extremely dense on undeveloped portions of Culebra and Culebrita. However, vegetation is sparse or absent on many of the smaller cays, as most are rocky with very little soil.

- 1.2.3 Surface water is scarce, and creeks and streams are intermittent and seasonal. Normally, they are dry and collect and drain runoff only during rainstorms. There are approximately twelve natural springs and seeps, but they are charged only during particularly wet seasons.
- 1.2.4 Fresh water is scarce. There are some shallow (10 to 20 feet deep) wells in areas away from coastal seepage, but the groundwater is high in chloride concentrations and salinity. Due to the shallow bedrock and impermeability of the lava and overlying soil, the potential for groundwater as a source of potable water is virtually nonexistent. No significant aquifers are on Culebra and the adjacent cays. Potable water is supplied by a desalination plant built by the Navy and a water line from Puerto Rico.
- 1.2.5 Currently Culebra has schools, residential areas, a medical clinic, an airport, restaurants, hotels, shops and a few industrial companies. There are two main commercial areas: the town of Dewey, located on the west side of the Great Harbor, and the area surrounding the airport. Most residential development is on the northwest end of Great Harbor; however, residences are scattered throughout the island. Lower Town, Flamenco Point, Mount Resaca, Northwest Peninsula, and all of the beaches are managed by the USFWS or DNER for wildlife conservation and recreational use. It is anticipated that land use on the island will remain the same, and development for similar purposes will likely continue.

1.3 CULEBRA ISLAND HISTORICAL INFORMATION

1.3.1 In 1898, the Spanish American War concluded, and the Kingdom of Spain ceded all public lands of Puerto Rico to the U.S. Culebra and the Cays are part of Puerto Rico. Shortly after, in 1900, President Theodore Roosevelt placed Culebra under the jurisdiction of the Department of the Navy. In 1903, the Navy acquired approximately 4,200 acres of land by transfer and purchase; further donations, transfers, and leases between 1939 and 1965 brought the total land acquired to approximately 4,800 acres. Although portions of the site were never formally acquired, military use included the entire Island of Culebra and all of the surrounding cays. The Navy retained 87.5 acres near Flamenco Point that are not eligible for FUDS. The 2005 revised Findings and Determination of Eligibility

report states that the site, except for 87.5 acres recently transferred from the control of the Navy, has been determined to be formerly used by the Department of Defense (DoD).

- 1.3.2 Although reconnaissance trips, development of a base, and placement of guns began as early as 1902, the first maneuvers at Culebra did not begin until January 1914, with the Marines first Advance Base Expedition establishing several encampments and 3-inch and 5-inch gun batteries at the mouth of Great Harbor. The Marines' use of the island continued over several more decades. In 1922, an exercise was conducted firing 7-inch, 8-inch, 3-inch, 155-millimeter (mm), 75mm, and 37mm guns. In 1924, maneuvers included establishment of ammunitions dumps throughout the island, firing of 75mm and 155mm guns, and mine placement in several water areas around Culebra.
- 1.3.3 In 1934, the Navy and Marines organized to carry out the first Fleet Landing Exercise (FLEX), Fleet Problem XV. Weapons used during this exercise included .30-caliber machine guns, 3-inch anti-aircraft guns, 6-inch gun batteries, 75mm batteries, and 6-inch naval guns. Six more FLEXs were conducted on Culebra Island between 1935 and 1941. Photographic accounts document additional Marine landing exercises in 1946 and 1947. Marine training at Culebra is believed to have continued until the late 1950s. The Navy used Culebra and the surrounding cays for bombing and gunnery training from 1935 through 1975. Naval exercises included aerial bombardment, submarine torpedo fire, and naval gunfire directed at the Northwest Peninsula and many cays. All military use of the island was terminated in 1975. In summary, the Island of Culebra, nearby cays, and surrounding water were used between 1902 and 1975 for training and live fire of bombs, mortars, rockets, torpedoes, projectiles, and small arms.
- 1.3.4 Beginning in 1978, all of the land acquired by the military on Culebra and the surrounding cays were excessed to the Department of the Interior or transferred to the government of Puerto Rico by quitclaim deed. These lands are currently managed by USFWS, DNER, or the Municipality of Culebra. No official lease or transfer documents have been identified for the remainder of the privately owned land; however, any portion of the island may have been used by the military during its long history of training on Culebra.
- 1.3.5 The Culebra FUDS consists of 13 MRSs, totaling 9,460 acres (8,430 land acres and 1,030 acres of water). This RI covers 4 of the 13 MRSs: Cerro Balcon and Adjacent Cays (MRS 02), Flamenco Lagoon Maneuver Area (MRS 04), Mortar and Combat Range Area (MRS 05), and Culebrita Artillery Impact Area (MRS 07), as illustrated in Figure 1. Below is a description of each MRS including historical military use, property acquisitions and excesses, known munitions use and present ownership.

1.3.1 MRS 02 – Cerro Balcon and Adjacent Cays

- 1.3.1.1 For this investigation, MRS 02 includes Cerro Balcon, Cayo Ballena, Cayo Lobo (also known as Cross Cay), Cayo Lobito, Cayo Del Agua (also known as Water Key), Cayo Yerba, Cayo Raton, Los Gemelos (also known as Twin Rock), Cayo Geniqui (also known as Palada Cay), and Cayo Sombrerito (Figure 1-1). The Northwest Peninsula of Culebra is also part of MRS 02 but was not investigated as part of this RI. Cerro Balcon is a former 30-acre mortar range in the center of MRS 5. The adjacent Cays consist of approximately 88 acres. All cays are considered conservation priority areas for Culebra.
- 1.3.1.2 The Navy conducted fleet maneuvers and FLEX on MRS 02 (Cays) between 1923 and 1941. During these exercises, the surrounding cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds. Training continued through the 1950s and 1960s, and in the early 1960s aerial bombardment was expanded from Northwest Peninsula, Los Gemelos, and Alcarazza to most of the cays on the east and west side of Culebra. Training continued until 1975. Cerro Balcon, in the center of Culebra MRS 5, was used as a mortar range target. Records show that the property near Cerro Balcon was leased beginning in 1924 to around 1939.
- 1.3.1.3 In 1975, the Navy issued a report of excess for the land associated with the Navy's original 1900 holdings. In 1980, the General Services Administration transferred 776 acres to the USFWS to establish the Culebra National Wildlife Refuge. The remaining 936 acres were accepted in a quitclaim deed from the Secretary of the Interior by the Governor of Puerto Rico in 1982. Currently, the USFWS manages the cays associated with MRS 02.

1.3.2 MRS 04 – Flamenco Lagoon Maneuver Area

1.3.2.1 The 550-acre MRS 04 includes Flamenco Lagoon and the hillside east of the lagoon (Figure 1-2). Records show that Combat Range #2, located on the south side of Flamenco Beach, was used for direct and indirect fire of small arms and 81mm mortars from firing positions on the hillside within MRS 04 during FLEX #4 in 1938. Firing positions for 75mm projectiles used during FLEX #5 in 1939 were also located in MRS 04. There are no records for lease or excess of this property; the majority of the MRS is currently under private ownership. DNER manages the property along the beaches on the northeastern side of the site.

1.3.3 MRS 05 – Mortar and Combat Range Area

1.3.3.1 MRS 05, the largest MRS, includes most of the landmass between Resaca Beach and Carenero Point, totaling approximately 2,842 acres (Figure 1-3). Historical training records indicate that many of the hills in this area may have been used for direct fire. Cerro Balcon Mortar Range, which is part of MRS 02, is surrounded by MRS 05. Unexploded ordnance (UXO) has been identified near

Cerro Balcon on portions of the MRS 05 property. MRS 05 includes two 1936 combat training areas leased for combat, target, and sweep-of-fire range training. Small arms and 81mm mortars may have been used at Combat Range #1 in 1937. A 1924 standing barrage training area is also included in the MRS. Historical records indicate that land within MRS 05 was leased in 1924 from Mr. A. Lugo for gun emplacements and other possible camp sites. The property was returned to Mr. A. Lugo in November 1939. Most of MRS 05 is privately owned; however, USFWS manages a large portion of the property surrounding Mount Resaca and DNER manages the property along the beaches on the northeastern side of the site.

1.3.4 MRS 07 – Culebrita Artillery Impact Area

1.3.4.1 MRS 07 includes the northern portion of Culebrita as well as Cayo Botella (a.ka. Ladrone Cay) (Figure 1-4). The Marines used this 375-acre area as an artillery impact area between 1936 and the late 1940s. The United States and the United Kingdom used Cayo Botella for an aircraft bombing/rocket target in 1969. Munitions included 20mm projectiles, flares, live and practice bombs up to 500 pounds, and 2.75-inch rockets as well as British bombs and rockets. Culebrita beaches and trails are used recreationally, and many boats visit the island each year. Culebrita was part of the land designated for use by the Department of the Navy in 1900; it was reported excess in 1972. This MRS is managed by the USFWS.

1.4 Previous Investigations

1.4.1 The following previous investigations are summarized for Culebra. For additional detail, please see the specific report referenced. These investigations cover all of Culebra including MRSs not covered in this RI; in each case the applicable data is specified. Table 1-1 includes a summary of previous MEC found at only the MRSs and areas covered within this RI.

1.4.2 1991 Inventory Project Report (INPR)

An INPR was signed on 24 December 1991, establishing the Culebra as a FUDS, defining a site boundary, and assigning FUDS Project Number IO2PRO06800 (USACE, 1991). The Findings and Determination of Eligibility concluded that "the site, except for 87.5 acres still under control of the Navy, has been determined to be formerly used by the Department of Defense. It is therefore eligible for the Defense Environmental Restoration Program (DERP)."

1.4.3 1995 Archives Search Report

The Archives Search Report (ASR) was completed by the USACE Rock Island District in February 1995 (USACE, 1995) after reviewing available records, photographs, and reports that documented the history of the site. As part of the ASR, a site visit was

conducted in October 1994, during which the team identified munitions debris (MD) on Cayo Botella, Cayos Geniqui and Cayo del Agua. In addition, MD was identified on Flamenco Beach, Flamenco Peninsula, and the hillside near Cerro Balcon. The ASR listed several ordnance items verified on site by either explosive ordnance disposal personnel or the ASR field team.

1.4.4 1995 Interim Remedial Action

In 1995 MTA, Inc. completed an interim remedial action on 3.66 acres of the Flamenco Bay Campground near Flamenco Beach to dispose of unexploded ordnance within 2 feet of the ground surface at the campground. Work was conducted on the site between 12 May and 26 May 1995. MTA found 11 items of MEC and MD. While part of Flamenco Beach falls within MRS 04, the area covered in this interim removal action is outside the MRS boundary.

1.4.5 1997 Final Engineering Evaluation / Cost Analysis

In April 1997, Environmental Science and Engineering, Inc. (ESE) submitted the final engineering evaluation and cost analysis (EE/CA) for Culebra. The EE/CA investigation included surface and subsurface sample grids on Flamenco Peninsula, Isla Culebrita (MRS 07), Cayo Botella (MRS 07), Cayo del Agua (MRS 02), Cayo Lobo (MRS 02), and Cerro Balcon (MRS 02). MEC were found in all areas except Cayo Lobo and Cerro Balcon, where only MD was identified.

1.4.6 2004 Unexploded Ordnance (UXO) Construction Support

In June 2004, Ellis Environmental Group, LC (Ellis) submitted the *Site-Specific Final Report, UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico* (Ellis, 2004a). The report documented clearance efforts conducted by Ellis on Northwest Peninsula. The Northwest Peninsula is part of MRS 02, but this portion of MRS 02 was not included in this RI. Ellis performed four phases of clearance from January 2001 to February 2004. Phase I consisted of construction support by clearing roadways, a wind generator foundation, a desalination plant foundation and re-grading the site. Phase II of the construction support was not exercised due to a stop in funding for the construction project. Phase III included surface clearance of 70 acres of bird nesting area and 4-foot-depth subsurface clearance of roadways, firebreaks and an observation post. Phase IV consisted of demilitarization of MD, construction of a fence and information kiosk, and development of public awareness information. The public awareness information included a video, safety posters and brochures.

1.4.7 2004 Archives Search Report Supplement

The ASR Supplement was completed by the USACE Rock Island District as an addition to the 1995 ASR (USACE, 2004). This report provides details of aerial training conducted by the Navy between 1935 and 1975 and identifies the following range areas.

- Mortar Range: This area is also called Cerro Balcon and is part of MRS 02 (located within MRS 05). The following munitions may have been used in this area: 3" mortars and 4.2" mortars.
- Shark Rock: Part of MRS 02, also known as Cayo Tiburon, this area was used as a target for aerial gunnery with bombs and rockets. Suspected ordnance includes 500-pound bombs and 5-inch rockets. Cayo Tiburon is not included within the scope of this RI.
- Palada Cay: Part of MRS 02, also known as Cayos Geniqui, this area was used as a target for aerial gunnery with bombs and rockets. Suspected ordnance includes 500-pound bombs and 5-inch rockets.
- Ladrone Cay: Part of MRS 02, also known as Cayo Botella (MRS 7), this area was used as a target for aerial gunnery with bombs and rockets. Suspected ordnance includes 500-pound bombs and 5-inch rockets.
- Culebrita Strafing Range: This strafing range target was on the north side of Culebrita and is part of MRS 07. Suspected munitions include small arms, and 20 mm high-explosive incendiary (HEI) rounds.
- Culebrita Torpedo Range: Firing at this range from the water north of Culebrita targeted the sheer cliffs of Cayos Geniqui, part of MRS 02.
 Suspected munitions include the Navy's general torpedo.
- Twin Rocks: This area, also known as Los Gemelos, is part of MRS 02. These cays were used as targets for aerial bombs and rockets. Munitions included bombs, 5-inch rockets and 5-inch practice rockets.
- Fungy Bowl: This area, also known as Alcarazza, is part of the original MRS 02 but not included within the scope of this RI. This large rock was used as a target for aerial bombs and rockets. Suspected munitions include bombs and 5-inch rockets.
- Cross Cay: This area, also known as Cayo Lobo, is part of MRS 02 and was used as a strafing and bombing target. Munitions included small arms, bombs, and 20 mm high-explosive incendiary.
- Agua Cay: This area, also known as Water Key, is part of MRS 02 and was used as a target for bombing and rocket fire. Munitions include general purpose bombs and 2.75-inch rockets.
- Air-to-Ground North: This target, at the northern tip of Northwest Peninsula, is part of the original MRS 02 but not included in the scope of this RI. Munitions used include small arms, 500-pound bombs, 2.75-inch rockets, and 11.75-inch Tiny Tim rockets.
- Air-to-Ground South: This target was located at the northern tip of Northwest Peninsula and is part of the original MRS 02 but not included in the scope of this RI. Munitions used include small arms, 500-pound bombs, 2.75-inch rockets, and 11.75-inch rockets.
- Rifle Range South: This small arms range is believed to be located on undeveloped land near the southern tip of the island in MRS 09, which is

not included in this RI. This range has not been confirmed; however, munitions used at this range would have included only small arms.

1.4 8 2005 Revised Inventory Project Report

A Revised INPR was completed in June 2005 (USACE, 2005a). The Revised INPR further clarified the military use of the Island of Culebra and divided the original site, Property No I02PR0068, into 14 separate MRSs. One hazardous and toxic waste project was identified and assigned the number 00, and 13 MMRP project areas were identified and assigned Risk Assessment Code scores. MRS 01 was not defined.

1.4.9 2005 Supplemental Archives Search Report

The Supplemental ASR was completed by the USACE St. Louis District in 2005 as an addition to the 1995 ASR (USACE, 2005c). The Supplemental ASR is the source of most of the historical information pertaining to site operations and identifies the key areas of focus for the SI. This document provided a detailed summary of military activities conducted on Culebra and the surrounding cays. The document summarizes planned and/or executed maneuvers and training conducted at the site, including specific time periods, locations, and munitions used.

1.4.10 2006 Non Time-Critical Removal Action

Ellis Environmental Group, under contract to USACE, completed a non-time-critical removal action on portions of Culebra. The surface clearance included Cerro Balcon, Culebrita, and the adjacent cays (Cayo Botella, Cayo Tiburon, Los Gemelos, Cayo del Agua, Cayo Genequi, Cayo Lobo and Cayo Alcarraza). Soil samples were collected at Cayo Lobo and Cerro Balcon.

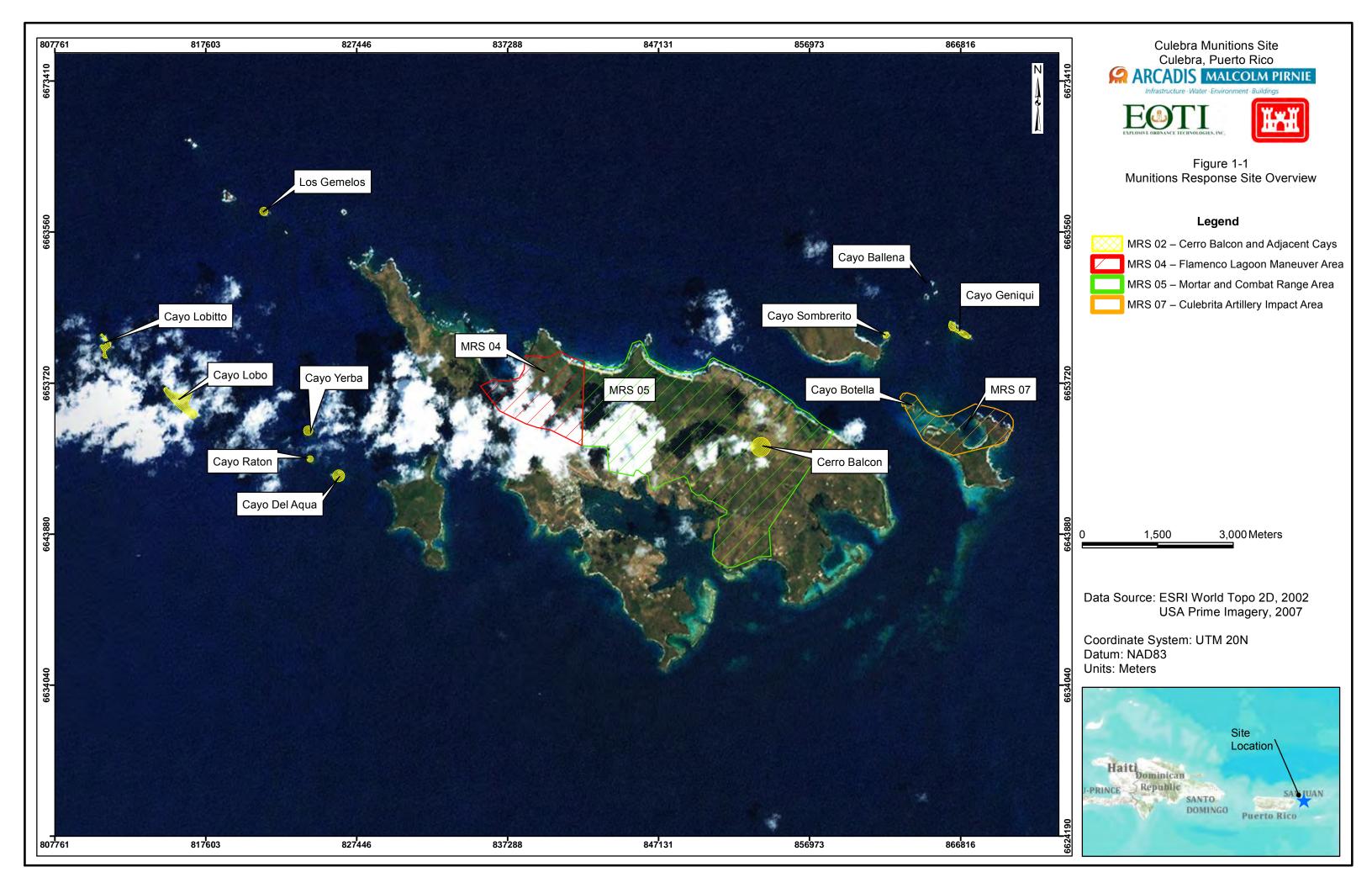
1.4.11 2007 Site Inspection (SI)

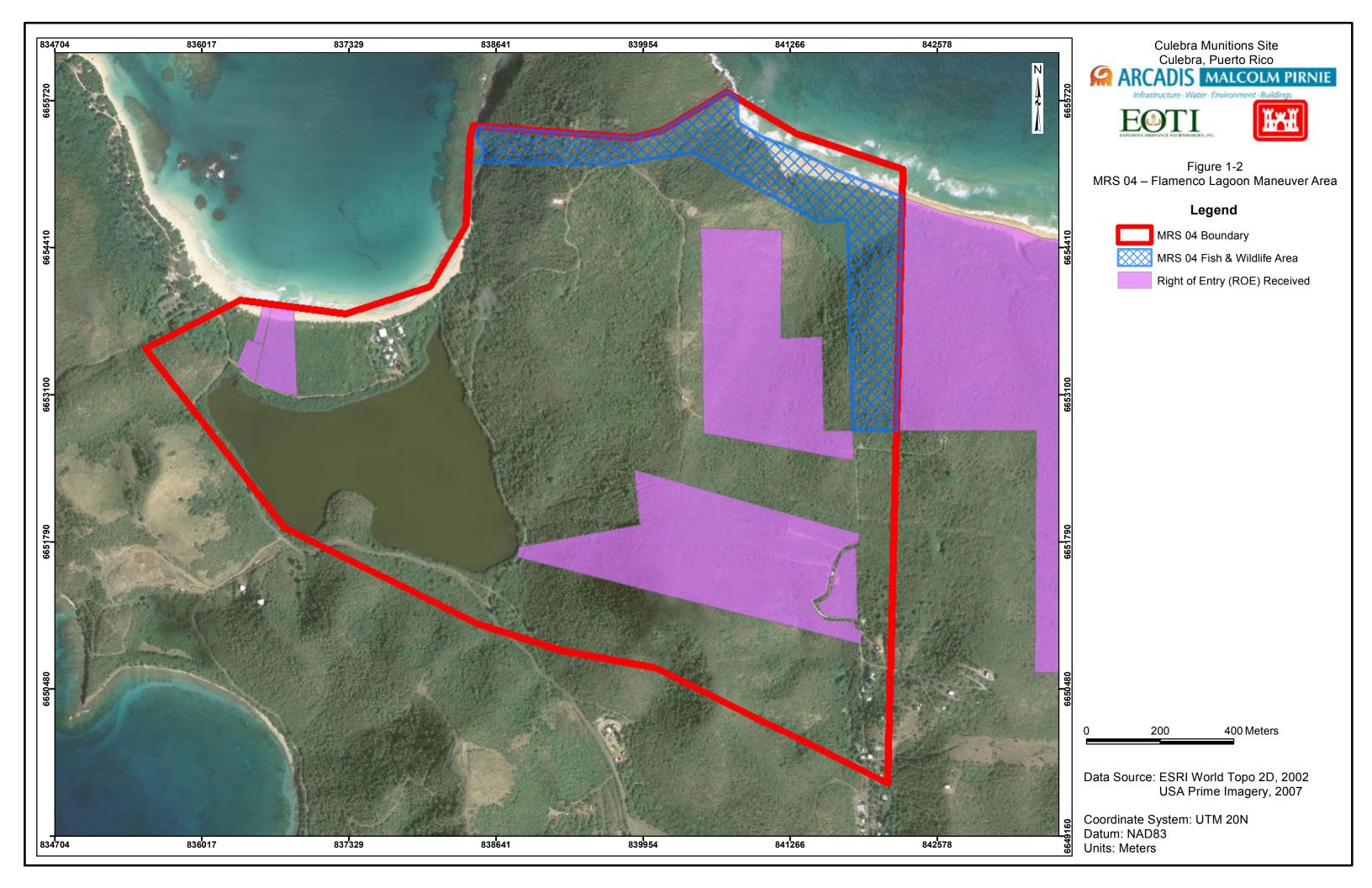
Parsons conducted a SI to determine if further investigation under the MMRP were warrented. Due to the presence of MEC and MD observed during previous investigations and during the SI field visit, a RI was recommended at 12 of the 13 MRSs. No MEC was identified during the SI; however, MD was identified on MRS 02, MRS 05, and MRS 07. No MD was found at MRS 04. At MRS 02, MD was identified on Cayo Del Agua only. The Cays were only observed from a boat since they were inaccessible due to wave action, steep terrain and rocky cliffs.

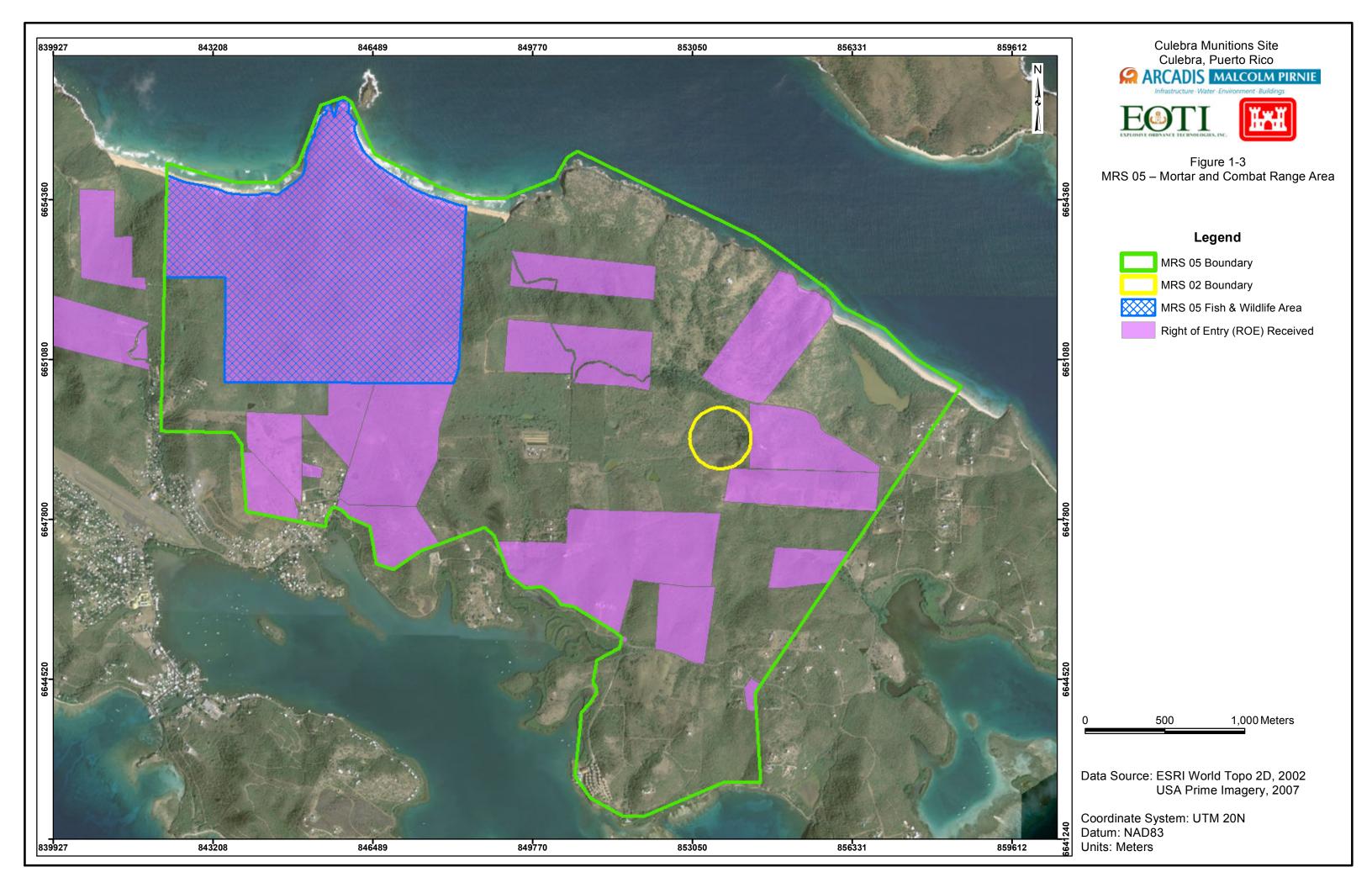
1.4.12 2008 Non Time-Critical Removal Action

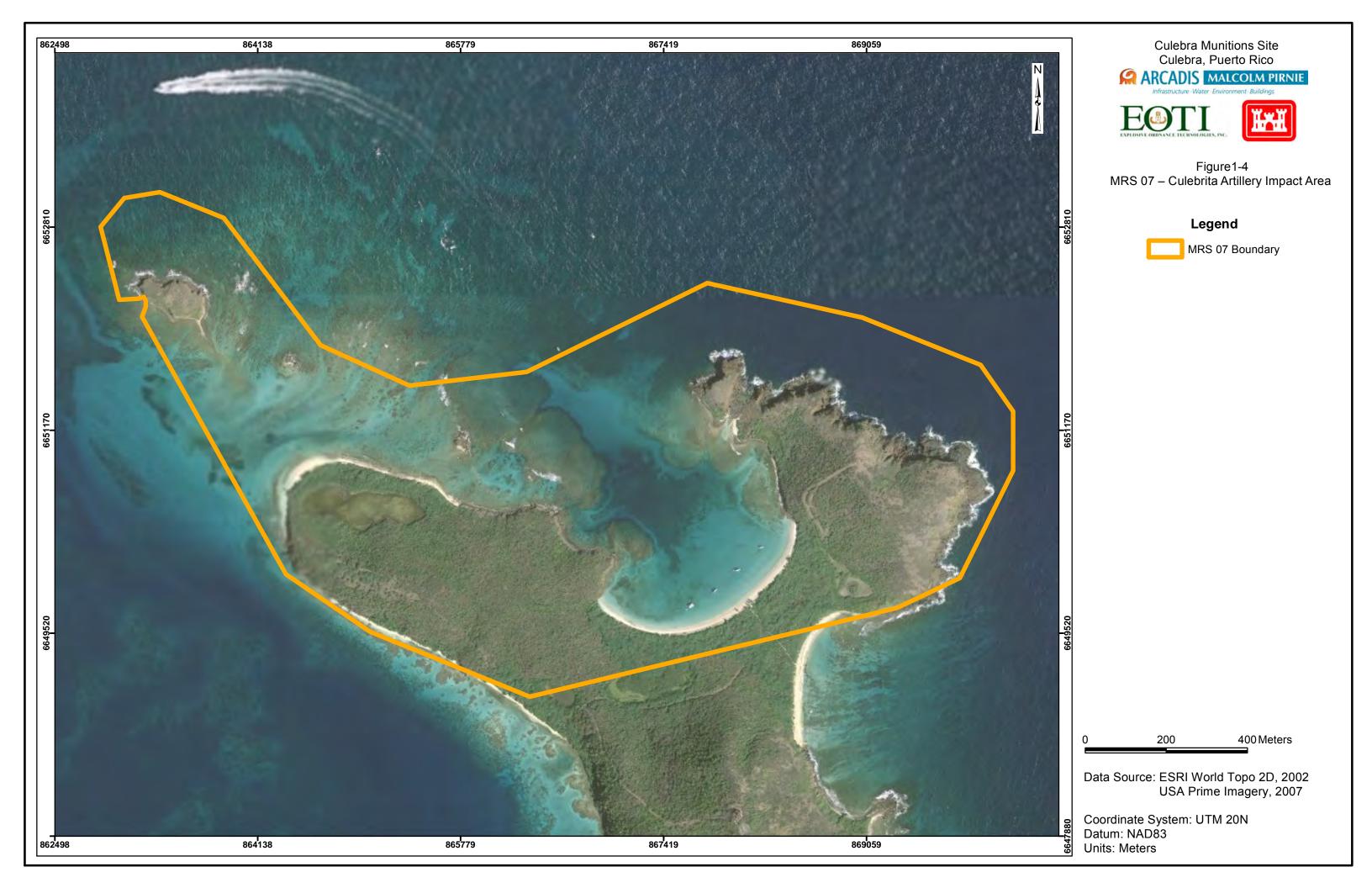
USA Environmental conducted a non time-critical removal action on Flamenco Beach (a portion of which is within MRS 04) and within selected beach areas at Isla Culebrita (MRS 07). The scope included Digital Geophysical Mapping (DGM) and the removal and

disposal of all explosive hazards within the selected beach areas at Isla Culebrita and Culebra. MEC and MD were identified on Flamenco Beach and the Culebrita Beaches.


Table 1-1: MEC Items Previously Identified for MRS 02, 04, 05 and 07


Item	Quantity	MRS	Reference	Location	Date
500 pound Bomb	1	2	ASR	West of Cayo Ballena	1983
500 pound Bomb	2	2	ASR	West of Cayo Geniqui (60 feet of water)	1983
Torpedo	1	2	ASR	East of Cayo Geniqui (60 feet of water)	1983
Practice Bombwith spotting charge	11	2	EE/CA	Cayo del Agua AQ-1	1997
Practice Bomb, with spotting charge	5	2	EE/CA	Cayo del Agua AQ-1	1997
76 mm Projectile	1	2	EE/CA	Cayo del Agua AQ-1	1997
Practice Bomb, with spotting charge	2	7	EE/CA	Cayo del Botella BO-1	1997
Practice Bomb with spotting charge	4	7	EE/CA	Cayo del Botella BO-1	1997
6 inch Naval Gunfire	1	7	EE/CA	Cayo del Botella BO-1	1997
Practice Bomb with spotting charge	6	7	EE/CA	Cayo del Botella BO-2	1997
Practice Bomb, practicewith spotting charge	3	7	EE/CA	Cayo del Botella BO-2	1997
Practice Bombwith spotting charge	3	7	EE/CA	Cayo del Botella BO-2	1997
Spotting charge	1	7	EE/CA	Cayo del Botella BO-2	1997
20 mm Projectile	5	7	EE/CA	Culebrita IC-4	1997
20 mm Projectile	2	7	EE/CA	Culebrita IC-5	1997
20 mm Projectile	3	7	EE/CA	Culebrita IC-5	1997
20 mm Projectile	23	7	EE/CA	Culebrita IC-6	1997
20 mm Projectile	2	7	EE/CA	Culebrita IC-6	1997
20 mm Projectile	4	7	EE/CA	Culebrita IC-6	1997
Fuze, M151	1	2	Ellis NTCRA	Cayo Lobo	2006
25 Pound Practice	28	2	Ellis NTCRA	Cayo Lobo	2006
5 pound Practice Bomb	4	2	Ellis NTCRA	Cayo Lobo	2006
5 inch Projectile	1	2	Ellis NTCRA	Cayo Lobo	2006


Culebra MMRP RI Draft Final Culebra, Puerto Rico


Item	Quantity	MRS	Reference	Location	Date
3 inch Projectile	1	2	Ellis NTCRA	Cerro Balcon	2006
Powder Train Time Fuze (PTTF)	2	2	Ellis NTCRA	Cerro Balcon	2006
3 inch Projectile	2	2	Ellis NTCRA	Cerro Balcon	2006
81 mm Mortar	2	2	Ellis NTCRA	Cerro Balcon	2006
20 mm Projectile	6	7	USAE NTCRA	Culebrita (NW beach)	2008
5 inch Projectile	1	4	USAE NTCRA	Flamenco Beach	2008

Note: Only MEC items reported within the MRS boundaries included in this RI report are included.

2 PROJECT REMEDIAL RESPONSE OBJECTIVES

2.1 CONCEPTUAL SITE MODEL (CSM) AND PROJECT APPROACH

2.1.1 Project Approach

- 2.1.1.1 All RI tasks were performed in accordance with the Final MMRP Work Plan (EOTI, 2010). The following summarizes the key elements of the RI for the sites investigated on Culebra.
 - Explosives Site Plan (ESP) An ESP was prepared by the Army in accordance with Data Item Description (DID) MMRP-09-003 (Safety Submissions) and Engineer Manual (EM) 1110-1-4009 (USACE, 2007b). The ESP is a stand-alone document that provided specifics on the minimum separation distance (MSD) and engineering controls that were enforced during intrusive operations. The Final ESP was approved on 15 October 2010.
 - RI Final MMRP Work Plan The RI Final MMRP Work Plan provided a detailed approach for MEC and MC RI activities. The Final MMRP Work Plan was approved by the Army, USEPA, and Puerto Rico Environmental Quality Board (PREQB) and is dated March 2010.
 - <u>RI Fieldwork</u> Fieldwork included the following tasks to meet the objectives of the RI: Geophysical Prove-Out (GPO), intrusive investigation of subsurface anomalies, MC sampling and analysis. Field work was conducted within portions of MRS 04, 05, and 07. RI field work was not conducted in MRS 2.
 - <u>GPO</u> A GPO was conducted to test the proposed equipment and methodologies in a site specific environment. However, analog methods were utilized in the field rather than DGM and as such the GPO results were not utilized. The Final GPO Report is included as Appendix A.
 - <u>Intrusive Investigation</u> An intrusive investigation along transects and grids was conducted at MRS 04, MRS 05, and MRS 07. This task included intrusive investigation of anomalies, suspected MEC/Material Potentially Presenting an Explosive Hazard (MPPEH) destruction; MEC/MPPEH accountability and anomaly count; final disposal of MPPEH, MD, and range scrap; and MPPEH inspection.
 - MC Sampling and Analysis Surface soil and sediment samples were collected from MRS 04, MRS 05 and MRS 07 and analyzed for explosives and select metals.
 - <u>RI Report</u> This report is submitted in accordance with the USEPA document Guidance for Conducting Remedial Investigations and Feasibility Studies under the Comprehensive Environmental Response, Compensation, and Liability Act

(CERCLA)(1988) and the MMRP Center of Expertise Technical Update. The RI Report is also submitted in accordance with the U.S. Army Munitions Response Remedial Investigation / Feasibility Study Guidance (USACE & USAEC, 2009d.

2.1.2 Initial CSM

2.1.2.1 The following presents the initial CSM for the Culebra MRSs based on the SI data and data presented during the TPP process. No updates have been made to this CSM, which is considered the baseline. The updated CSM with explosive pathway analysis using results from the field work is presented in Section 4.0.

2.1.2.1 Site Profile

2.1.2	2.1 Site Profile
Conceptual Site Mo	del Information Profiles – Site Profile
Information Needs	Current/Preliminary Information
FUDS Location	Culebra, Puerto Rico
FUDS Name	Culebra Island - Former Used Defense Sites
FUDS Location	Culebra is located approximately seventeen miles east of Puerto
	Rico, twelve miles west of St. Thomas and nine miles north of
	Vieques. Its coordinates are Latitude 18.33° N and Longitude:
	65.33° W
Culebra Island	In 1898 Spain ceded public lands in Culebra and its adjacent cays to
Military History	the U.S. In 1900, President Theodore Roosevelt placed Culebra
	under the jurisdiction of the Department of the Navy which through
	additional donations, transfers, and leases brought the total land
	controlled to approximately 4,800 acres. While portions of the
	Island were never formally acquired, military use included the entire
	Island of Culebra and all surrounding cays.
	While some advanced activities occurred as early as 1902, the first
	maneuvers at Culebra did not begin until January 1914, with the
	Marines First Advance Base Expedition establishing several
	encampments and 3- inch and 5-inch gun batteries at the mouth of
	Great Harbor. The Marines' use of the island continued with
	exercises involving the firing of a range of artillery including 37mm,
	75mm, 3-inch, 155-mm, 7- inch, and 8-inch projectiles. In 1924,
	maneuvers included establishment of ammunitions dumps
	throughout the island, firing of 75mm and 155mm guns, and mine
	placement in several water areas around Culebra.
	The Navy and Marines began organizing joint exercises in 1934,
	referred to as the first Fleet Landing Exercise (FLEX), Fleet
	Problem XV. The exercises continued through 1941 and included
	the use of .30 - caliber machine guns, 75mm batteries, 3-inch anti-
	aircraft guns, 6-inch gun batteries, and 6-inch naval guns. The
	operational history documents additional Marine landing exercises
	in 1946 and 1947 but training exercises are believed to have

Conceptual Site Mo	del Information Profiles – Site Profile
Information Needs	Current/Preliminary Information
	continued until the late 1950s. From 1935 through 1975 the Navy used Culebra Island and surrounding cays for exercises involving aerial bombardment, submarine torpedo fire, and naval gunfire directed at Northwest Peninsula and many cays. All military use of the island was terminated in 1975.
	In 1971 the people of Culebra began protests, known as the Navy-Culebra protests, for the removal of the US Navy from Culebra. Four years later, in 1975, the use of Culebra as a gunnery range ceased and all operations were moved to Vieques.
	Beginning in 1978, all of the land acquired by the military on Culebra and the surrounding cays were transferred to the Department of the Interior or transferred to the government of Puerto Rico by quitclaim deed. These lands are currently managed by USFWS, DNER, or the Municipality of Culebra.
Culebra Island Layout	Culebra (Snake Island) is an island municipality of Puerto Rico. It is also known as "Isla Chiquita" (Small Island) and "Ultima Virgen" (Last Virgin). Its total area including surrounding Cays is 7,000 acres. It is an archipelago consisting of the main island and twenty-three smaller islands that lie off its coast. The largest of these cays are: Culebrita to the east, Cayo Norte to the northeast, and Cayo Luis Peña and Cayo Lobo to the west. It is divided in five wards: Dewey (capital), Flamenco, Fraile, Playa Sardinas 1, Playa Sardinas 2 and San Isidrio. Culebra is characterized by an irregular topography and is approximately 7 by 5 miles. The coast is marked by cliffs, sandy coral beaches and mangrove forests. Inland, the tallest point on the island is Mount Resaca, with an elevation of 650 feet. According to the U.S. Army Corps the Island of Culebra and surrounding cays were divided into 13 MRSs based on the islands geography and historic military use totaling 9,460 acres (8,430 land acres and 1,030 acres of water).
Former Used Military and Current Island Structures	Facilities constructed by the Navy included a desalination plant, an airfield, barracks, helicopter pads, range instrumentation facilities, gun sites (for the defense of the islands), observation points, and impact ranges for aerial bombs and rockets, missiles, mortars, and naval ordnance. Currently the island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Water is provided by a desalination plant, built by the Navy, located on DNER land near the USFWS and DNER offices. The
	surrounding cays have no structures except Cayo Norte, which has a few full-time residents, and Culebrita, where the oldest operating lighthouse in the Caribbean is still maintained. Only Culebra and

Conceptual Site Mo	del Information Profiles – Site Profile
Information Needs	Current/Preliminary Information
	Cayo Norte have full-time residents.
MRS Boundaries	Culebra Island and the adjacent cays (7,300 acres) have sandy
and Landowners	beaches, irregular rugged coastlines, lagoons, coastal wetlands, steep
	mountains, and narrow valleys. Ninety percent of the island is
	mountainous, with population concentrations in the flatlands. The
	highest point on the Island is Monte Resaca, which is approximately
	630 feet above mean sea level. The second highest point is Cerro Balcon at 511 feet above mean sea level. Below is a description of
	each MRS included in this Task Order and information about
	present ownership of the land comprising the MRS.
	MRS-02 – Northwest Peninsula, Cerro Balcon, and Adjacent
	Cayos
	This MRS includes Northwest Peninsula, Cerro Balcon, Cayo Lobo,
	Cayo Lobito, El Mono, Cayo Del Agua, Cayo Yerba, Cayo Raton,
	Alcarraza, Los Gemelos, Piedra Stevens, Cayo Tiburon, Cayos Geniqui, and Cayo Sombrerito, encompassing approximately 660
	acres.
	In 1980, the General Services Administration (GSA) transferred 776
	acres to the USFWS to establish the Culebra National Wildlife
	Refuge. The remaining 936 acres were accepted in a quitclaim deed
	from the Secretary of the Interior by the Governor of Puerto Rico in
	1982.
	As part of this quitclaim deed, the governor agreed to the provisions
	of Section 204 of Public Law 93-166 stating that Northwest Peninsula was accepted in its present condition, having been used as
	a bombardment area by the Navy. It also stated that the grantor will
	hold no responsibility for decontamination nor any claims of
	damage or loss of property or persons associated with use or
	presence on the property. In accordance with Public Law 93-166, SI
	data were not collected on Northwest Peninsula.
	Currently, the DNER manages the southern half of Northwest
	Peninsula and the USFWS manages the northern half of Northwest
	Peninsula and the cays associated with MRS-02.
	MRS-04 – Flamenco Lagoon Maneuver Area The 550 agre MRS 04 includes Flamence Lagoon and the hillside
	The 550-acre MRS-04 includes Flamenco Lagoon and the hillside east of the lagoon. There are no records for lease or excess of this
	property; it is currently under private ownership.
	MRS-05 – Mortar and Combat Range Area
	MRS-05, the largest MRS on Culebra Island, includes most of the
	landmass between Resaca Beach and Carenero Point, totaling
	approximately 2,842 acres. Historical records indicate that 1,500
	acres of land within MRS-05 and part of MRS 06 were leased in
	1924 from Mr. A. Lugo for gun emplacements and other possible

Conceptual Site Mo	Conceptual Site Model Information Profiles – Site Profile					
Information Needs	Information Needs Current/Preliminary Information					
	camp sites. The property was returned to Mr. A Lugo in November 1939. Most of MRS-05 is privately owned; however, USFWS manages a large portion of the property surrounding Mount Resaca and DNER manages the property along the beaches on the northeastern side of the site.					
	MRS-07 – Culebrita Artillery Impact Area MRS-07 includes the northern portion of Culebrita as well as Cayo Botella. Culebrita beaches are used recreationally, and many boats visit the island each year. This MRS is managed by the USFWS.					

2.1.2.2 Munitions / Release Profile

Conceptual Site Mo	del Information Profiles – Munitions/Release Profile
Information Needs	Preliminary Information
_	Culebra Island and adjacent cays were used as an impact range for aerial bombs and rockets, missiles, mortars, and naval projectiles and torpedoes from 1903 until 1975. Munitions and Explosives of Concern, to include UXO, and Munition Constitutes (MC) can exist at these MRSs in a number of physical states that may create risk from exposure to explosive and chemical hazards. MEC may occur at the MRSs from either being abandoned or discarded at the site or from fired munitions that failed to function as designed. MC can be released from fully intact munitions through corrosion and breaching of the casing or the development of cracks, or from dissolved filler leaking through screw threads on the munition casing, or exposed filler that resulted from incomplete detonation. This explosive filler may be scattered over the MRS or partially encased in the remains of the munition casing. MRS-02 – Northwest Peninsula, Cerro Balcon, and Adjacent Cayos The Navy conducted fleet maneuvers and FLEXs on MRS-02 between 1923 and 1941. During these exercises, Northwest Peninsula and the surrounding cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds. Training continued through the 1950s and 1960s, and in the early 1960s aerial bombardment was expanded from Northwest Peninsula, Los Gemelos, and Alcarazza to most of the cays on the east and west side of Culebra. Training continued until 1975. Cerro Balcon, in the center of Culebra, was used as a mortar range target.
	MRS-04 – Flamenco Lagoon Maneuver Area Records show that Combat Range No. 2, located on the south side of Flamenco Beach, was used for direct and indirect fire of small arms and 81mm mortars from firing positions on the hillside within MRS- 04 during FLEX No. 4 in 1938. Firing positions for 75mm projectiles used during FLEX No. 5 in 1939 were also located in MRS-04.

Conceptual Site Model Information Profiles – Munitions/Release Profile	
Information Needs	Preliminary Information
	MRS-05 – Mortar and Combat Range Area MRS-05, the largest MRS on Culebra Island, includes most of the landmass between Resaca Beach and Carenero Point, totaling approximately 2,842 acres. Historical training records indicate that many of the hills in this area may have been used for direct fire. Cerro Balcon Mortar Range, which is part of MRS-02, is surrounded by MRS-05. Unexploded ordnance (UXO) has been identified near Cerro Balcon on portions of the MRS-05 property. MRS-05 includes two 1936 combat training areas leased for combat, target, and sweep-of-fire range training. Small arms and 81mm mortars may have been used at Combat Range No. 1 in 1937 during FLEX No. 4. A 1924 standing barrage training area is also included in the MRS.
	MRS-07 – Culebrita Artillery Impact Area MRS-07 includes the northern portion of Culebrita as well as Cayo Botella. The Marines used this 375-acre area as an artillery impact area between 1936 and the late 1940s. The United States and the United Kingdom used Cayo Botella for an aircraft bombing/rocket target in 1969. Munitions included 20mm projectiles, Mk 44 and Mk 45 flares, live and practice bombs up to 500 pounds, and 2.75-inch rockets as well as British bombs and rockets.
Types of	MRS-02 – Bombs: GP: Mk 81; Mk 82; Mk 83; Mk 84 GP
Munitions Used at Each MRS	Practice Bomb: MK 76, 100 lb. bomb, Rocket: 5-inch Zuni; 5-inch; Tiny Tim 11.75-inch Mk 1 mod 0; general rockets Practice Rocket: Mk 8, 2.75- inch Projectiles: HEI Projectile: 20mm; 76mm; 105mm HE Projectile: M1; 155mm; 75mm; 37mm AP: 8-inch Mk 21; 16-inch Mk 5; 7-inch; 8-inch; 3-inch; 6- inch; 12-inch shell; 3-inch shell 5-inch Flat Nose; 5-inch common; 5-inch HE; 5-inch Naval; 6-inch; 4-inch shrapnel; 3-inch HE; 3-inch shrapnel; 14- inch projectile; 12-inch Mortar : 81mm HE and practice; 3-inch, HE MK1; 4.2-inch HE M329A1 Torpedo : General Navy Aircraft flares MRS-04 - Mortar : 81mm HE and practice; 75mm shrapnel
	MRS-05 - Mortar: 81mm HE and practice; 75mm practice
	MRS-07 - Bombs: GP Bomb: Mk 82, 500-pound Rocket: 5-inch Zuni; Projectile: 75mm; 20mm HEI MkI; 75mm
Period of Use	At varying levels from 1902 until 1975
Munition Locations Based on Operational History	MRS-02 –Northwest Peninsula, Cerro Balcon, and Adjacent Cayos Several previous investigations at this MRS have confirmed the presence of MEC and MD items. MRS-02 is a very diverse site that includes the smaller cays surrounding Culebra Island, Northwest Peninsula, and portions of Cerro Balcon. As shown above in the Types of Munitions section, MRS-02 has a large and diverse population of MEC items most of which were found on the
	Northwest Peninsula and Flamenco Beach, but MEC items have also

Conceptual Site Model Information Profiles – Munitions/Release Profile			
Information Needs	s Preliminary Information		
	been identified on Cayo Del Agua, Cayo Botella, Cayo Lobo, and Cerro Balcon.		
	MRS-04 – Flamenco Lagoon Maneuver Area Previous investigations have not identified MEC or MD within MRS-04; however, due to its close proximity to portions of MRS- 02, it is possible that MEC are present on site.		
	MRS-05 – Mortar and Combat Range Area Previous investigations at MRS-05 have confirmed the presence of MEC and MD items within this MRS to include MD within MRS-05 near Cerro Balcon.		
	MRS-07 – Culebrita Artillery Impact Area Previous investigations at MRS-07 have confirmed the presence of MEC and MD items within this MRS to include MD on the northeastern lobe of Culebrita.		
MEC Density Based on Previous Site Activities	Density will be described for each MRS associated with this task order based on site reconnaissance completed during a recent Site Inspection conducted at each MRS and from historical investigation and removals efforts completed on a limited number of MRSs.		
	MRS-02: Reconnaissance efforts encountered MK 80 series bomb body (1) MK 76 practice bomb body (25+), and Aircraft flares (2). Previous efforts at MRS-02 encountered: Bomb, 500 pound (3)Torpedo, MK 27(1) Candle- illumination, from 5-inch 38 naval projectile (13) Bomb, practice, 25 pound, MK76/BDU-33 (47) Projectile, 40mm, M81A1 TP-T (3) Projectile, 3 inch, 50 HE (6), 3-inch common MK3, MOD 7(1) Projectile Fuze, BD, from 5-inch 38 projectile (2) Projectile, 40mm, Bofors(1) Rocket, 5-inch, HVAR(1) Bomb, practice, MK 23(1) Projectile, 20mm HEI(1) Mortar, 81mm(1) Naval Projectile, 5 inch (9), 5-inch/54 MK 41(1) Naval Projectile, 6 inch(3) Grenade, w/o fuze(1) Mortar, 81mm(4) Fuze, projectile base(1) Projectile, 37mm HE(1) Warhead, rocket, 5-inch(1) Projectile, 76mm (1) Bomb, 100 pound(1) Bomb, 1,000 pound(1) Fuze, M151(1), Fuze, model 1898, (2) Bomb, practice, 5 pound, MK106 (4). MRS-04: No MEC or MD was encountered during the site reconnaissance and there is no record of MEC/MD being encountered at this MRS during previous investigative/removal efforts despite its operational history. MRS-05: Reconnaissance efforts encountered 4.2-inch mortar round/base (1) .30-caliber cartridge (4) .30-caliber bullet (1). There is no record of additional MEC/MD being encountered at this MRS during previous investigative/removal efforts. MRS-07: Reconnaissance efforts encountered a single Mechanical time fuze. Previous efforts at MRS-07 encountered Bomb, practice,		

Conceptual Site Mo	Conceptual Site Model Information Profiles – Munitions/Release Profile				
Information Needs	Preliminary Information				
	MK 76 w/MK 4 spotting charge (18) with (1) additional MK 4spotting charge, Naval Projectile, 6-inch (1) Projectile, 20mm HEI				
	(39).				
Munitions Debris	Munitions debris is expected to be present at each of the four MRSs based upon their operational history, however; no MD was encountered at MRS-04 during the recent site reconnaissance. MRS-02, MRS-05, and MRS-07 all reported some level of MD thought to be associated with the operational history involving military munitions.				
Associated Munitions Constituents (MC)	At the four MRSs previous efforts have included the collection and analysis of soil samples for explosives using Method SW8321A and for select metals using EPA SW-846 Methods 6010B or 6020, and Methods 7470A and 7471A for mercury. A summary of the results from that sampling effort is as follows: MRS-2: Explosive compounds were not detected in previously collected samples, but metals were detected in each of the samples. Chromium and zinc were the two metals reported to be present in elevated concentrations in some areas of MRS-02 thus were recommended during previous efforts to be retained for use in Screening Level Risk Assessments. MRS-04: Laboratory analysis of a single soil sample previously collected at MRS-04 detected several metals but no explosive compounds. The maximum detected concentration of each metal was compared to selected background concentrations however none of the soil analytes were recommended to be retained for consideration in a SLRA. MRS-05: Laboratory analysis of the six soil samples detected several metals but no explosive compounds. The maximum detected concentrations and four of the soil analytes (barium, chromium, copper, and zinc) were recommended to be retained for consideration in a SLRA. MRS-07: Laboratory analysis of a single soil sample previously collected at MRS-07 detected several metals but no explosive compounds. The maximum detected concentration of each metal was compared to selected background concentration of each metal was compared to selected background concentration of each metal was compared to selected background concentration of each metal was compared to selected background concentration of each metal was compared to selected background concentration of each metal was compared to selected background concentrations and three of				
	the soil analytes (barium, copper, and zinc) were recommended to be retained for consideration in the SLRA.				
Migration Routes / Release Mechanisms	Migration of MEC on the surface may occur naturally through soil erosion or a storm event, or by human activities such as farming, ranching, construction, or maintenance at the site. Migration of MEC in the subsurface may occur naturally through surface soil erosion or by human activities such as intrusive activities such as farming or ranching techniques, construction, excavation, and/or				

Conceptual Site Model Information Profiles – Munitions/Release Profile			
Information Needs	Preliminary Information		
	maintenance at the site. Migration of MEC within near-shore marine environments and impounded water bodies is possible due to a storm event, potential dredging, and recreational activities such as crabbing, claiming, boating and diving.		
	Migration of MC may occur naturally through surface soil erosion, plant or animal uptake, or by human activities such as maintenance and site work. If soil erosion and subsequent surface runoff carries MC into inland impounded water bodies, migration of MC through surface water and sediment contact, or indirect or direct ingestion can occur as well. Migration of MC may occur through groundwater; however, it is not a concern as the shallow groundwater in the area is not a source of potable water.		

2.1.2.3 Physical Profile

Conceptual Site Mod	Conceptual Site Model Information Profiles – Physical Profile		
Information Needs	Preliminary Information		
Climate	The weather at Culebra Island is generally warm year round due to its tropical marine climate. Average rainfall is approximately 36 inches, with the heaviest rain in May, October, September, and November. The months of August through November are considered the wet season, and the driest months are January through April. Daily temperatures average 80°F year round with an average maximum of 86°F and an average low of 74°F. Winds are generally from the east-northeast during November through January and from the east during February through October. Winds speeds average 8 knots. Hurricane season is from June through November, and severe hurricanes hit Culebra every 10 to 20 years.		
Topography	Culebra Island and the adjacent cays have sandy beaches, irregular rugged coastlines, lagoons, coastal wetlands, steep mountains, and narrow valleys. Ninety percent of the island is mountainous, with population concentrations in the flatlands. The highest point on Culebra Island is Monte Resaca, which is approximately 630 feet above mean sea level. The second highest point is Cerro Balcon at 511 feet above mean sea level. The island has a limited variety of soil types, due to its volcanic origin, limited size, rugged terrain, and moderately uniform climate. Most soils, except along the slopes, are the result of weathering bedrock. The soils are well-drained, runoff is rapid, and permeability is moderate.		

Conceptual Site Mod	lel Information Profiles – Physical Profile			
Information Needs	Preliminary Information			
Geology	Culebra Island and the surrounding cays are part of the Culebra			
	Archipelago. The rocks are predominantly intrusive or extrusive			
	volcanic rocks consisting of andesite lava and tuff. The rocks in the			
	north-central portion of Culebra and on the east side of Cayo Luis			
	Pena contain diorite porphyry inclusions and have little to no			
	porosity due to compaction and quartz and calcite growth in the			
	pore space. Puerto Rico and its outlying islands are part of an			
	island arc that largely consists of faulted and folded vulcaniclastic			
	and sedimentary rock, locally intruded by igneous rock. These			
	rocks range from Cretaceous to Eocene in age (USGS 1999).			
Soil	Soils are generally shallow and rocky and consist mostly of silts			
	and clays. Loamy organic-rich soils are found in areas of dense			
	vegetation and grasses, while sandy soils are found on tidal flats or			
	areas near the beach. Many of the beaches on Culebra and the surrounding cays have clean white to tan sand, while other beaches			
	are rocky with a mix of cobbles and pieces of dead coral reef.			
Hydrogeology	Due to the shallow bedrock and impermeability of the lava and			
Tryurogeology	overlying soil, the potential for use of groundwater as potable			
	domestic, municipal, or commercial water source is virtually			
	nonexistent. No significant aquifers are on Culebra Island and the			
	adjacent cays.			
Hydrology	Fresh water is scarce on the island, and it is high in chloride and			
•	saline. Most residents get their water from a desalination plant			
	installed by the Navy at the lower camp and from a water line from			
	the Island of Puerto Rico. There are some shallow (10 to 20 feet			
	deep) wells in areas away from coastal seepage, but these wells are			
	high in chloride concentrations and salinity. Surface water is also			
	scarce, and creeks and streams are intermittent and seasonal.			
	Normally they are dry and only collect and drain runoff water			
	during rainstorms. Approximately 12 natural springs and seeps			
	exist, but they are charged only during particularly wet seasons			
Vacatation	(USACE-RI 1995).			
Vegetation	Vegetation is moderately to extremely dense on undeveloped			
	portions of Culebra, Luis Pena Cay, Northeast Cay, and Culebrita; however, vegetation is sparse or absent on many of the smaller			
	cays as most are rocky with very little soil. Hazardous vegetation			
	include the Mesquite acacia or thorny brush, which may be present			
	on Culebra and all of the surrounding cays, and the poisonous			
	Manchineel tree (also called Manzanillo Tree on Culebra), which is			
	known to be present on Northwest peninsula and near Flamenco			
	Lagoon.			
	Lagoon.			

Conceptual Site Model Information Profiles – Physical Profile			
Information Needs	Preliminary Information		
Near Shore Marine	The National Oceanic and Atmospheric Administration (NOAA)		
Environment	estimates that water depths average approximately 70 to 90 feet in		
	the areas adjacent Culebra Island; however, some areas west of		
	Flamenco Peninsula and east of Cayos Geniqui are more than 130		
	feet deep. Localcharts show "Caution UXO [unexploded		
	ordnance]" in the northern and western areas. Tidal data for		
	Culebra Island indicates that tides are chiefly diurnal. The height		
	difference between mean higher high water and mean lower low		
	water is 1.1 feet. The mean tide level is 0.6 foot		

2.1.2.4 Land Use and Exposure Profile

Conceptual Site Mod	lel Information Profiles – Land Use and Exposure Profile
Information Needs	Preliminary Information
Current Land Use	There are two main commercial areas on Culebra: the town of Dewey, located on the west side of Great Harbor, and the area surrounding the airport. Most of the residential development is on
	the northwest end of Great Harbor; however, residents are scattered throughout the island. Two houses are present on Cerro Balcon and it is reported that land has been cleared for development on the southeast side of Cerro Balcon; therefore, future residential
	development is expected in this area. Lower Town, Flamenco Point, Mount Resaca, Northwest Peninsula, and all of the beaches are managed by the USFWS or DNER for wildlife conservation
	and recreational use. Specifically MRS-02 is currently a Wildlife refuge with protected areas for several species. MRS-04 is privately owned and developed for tourist/recreational use. MRS-05 is a combination of Wildlife Refuge and some privately owned land
	used for cattle grazing. MRS-07 is designated as a Wildlife Refuge.
Current Human Receptors	The U.S. Census Bureau's (USCB) Census 2000 provided the general demographics of the Municipality of Culebra. Of the 1868 residents 51.9% are male and 48.1% are female with both groups reporting a Median age of 36. Resident under 5 Years of age (138 or 7.4%), residents 18 Years of age and Over (1,351 or 72.3%),
Current Activities (frequency, nature	and residents 65 Years of age and Over (237 or 12.4%). MRS-02 is designated as a Wildlife Refuge and is inaccessible to the public but is visited by FWS employees and researchers. MRS-
of activity)	04 is accessible to the public and used for recreation at the beach. MRS-05 is wildlife refuge and privately owned and used for cattle grazing and is accessible to the public. MRS-07 is controlled by FWS and inaccessible to the public.
Potential Future Land Use	It is anticipated that the land use will remain the same and that development for similar purposes will likely continue on site.

Conceptual Site Mod	Conceptual Site Model Information Profiles – Land Use and Exposure Profile			
Information Needs	Preliminary Information			
Potential Future Human Receptors	Same as current receptors.			
Potential Future Land Use Related Activities	Same as current activities			
Land Use Restrictions	MRS-02 and MRS-07 are inaccessible to the public and MRS-04 and MRS-05 are accessible. Some institutional controls in the form of signage have been placed at some locations on Culebra Island.			
Beneficial Resources	According to the National Wildlife Refuge System (NWRS), portions of Culebra Island and 22 of the associated cays are considered National Wildlife Refuge area. The three largest cayos are Culebrita, Cayo Norte, and Luis Pena. These resemble Culebra in that they all have sandy beaches, rugged coastline, and gentle to steep hills. Vegetation ranges from moderate to extremely dense. The smaller cays are primarily solid rock with sparse or no vegetation. A few of the smaller cays have small beaches; however,			
Demographics/ Zoning	most are rugged rock all around The island is inhabited at an average density of 71.8 persons per square mile even though the population is concentrated near the town of Dewey and the Airport. Of the four MRSs only MRS-04, with 389, and MRS-05, with 553, have any residents within ¼ of a mile of the site. Residents living ¼ to ½ miles from the MRSs are as follows: MRS-02 (11), MRS-04 (378), MRS-05 (475), and MRS-07 (0). Residents living 1/2 to 1 mile from the MRSs are as follows: MRS-02 (29), MRS-04 (777), MRS-05 (783), and MRS-07 (18).			

2.1.2.5 Ecological Profile

Conceptual Site Model Information Profiles – Ecological Profile				
Information Needs	Preliminary Information			
Flora and Fauna	The main island of Puerto Rico and its associated islands support			
	75 federally listed threatened and endangered species consisting of			
	26 animals and 49 plants. Among this diverse group of fauna and			
	flora are multiple species that are known to exist, potentially exist,			
	or temporarily use areas within the Culebra Island, such as			
	migratory birds. Of the 75 federally listed species, nine are known			
	or are suspected to occupy			
	Culebra Island and/or the associated cays. In addition to the			
	federally listed species, 13 state-listed species are known to			
	occupy Culebra Island and/or the associated cays. The			
	federally and state-listed species includes both terrestrial and			
	marine life. The federally listed species of most concern for the			
	wildlife refuge are the Culebra Island giant anole, Virgin Islands			
	tree boa, roseate tern, brown pelican, green sea turtle, hawksbill			
	sea turtle, leatherback sea turtle, loggerhead sea turtle,			
	Leptocereus grantianus (cactus), and Wheeler's peperomia. Due to			
	declining populations, the elkhorn and staghorn corals in			
	the surrounding waters are proposed to be federally listed			
C I I I D	threatened and endangered species. According to the National Pagister Information System (NPIS)			
Cultural Resources	According to the National Register Information System (NRIS),			
	National Historic Landmarks (NHL) list, National Heritage Areas			
	(NHA) list, and National Park Service (NPS), there is only one			
	registered cultural resource within the boundaries of the Culebra			
	Island site. On the Isla Culebrita is an historic lighthouse called Faro Isla de Culebritas. The lighthouse is not open to the public			
	due to building deterioration. According to the Puerto Rico State			
	Historic Preservation Office (SHPO), there are no known			
	architectural resources within the boundaries of the Culebra Island			
	site; however, an architectural survey has not yet been conducted			
	for Culebra. An archeological survey performed at Lower Camp in			
	1992 found evidence of prehistoric and historic inhabitants			
	distributed over a half-acre area within the Lower Camp site.			
	distributed over a fiant-acte area within the Lower Camp site.			

2.2 Preliminary Remediation Goals and Remedial Action Objectives

2.2.1 The RI was conducted to adequately characterize MRSs 02, 04, 05 and 07 for the purpose of developing and evaluating effective remedial alternatives. The characterization was designed to find the nature and extent risks related to MEC and MC within each MRS. The primary goal of the RI is to determine the following:

- Nature and extent of contamination, evaluate risk, and determine if a remedial action may be warranted, and
- What actions are necessary to allow for protection of the environment and human health.
- 2.2.2 To achieve the objectives of this RI, the MRSs required sufficient characterization of the presence of MEC and MD. MEC and MD were to be characterized in these areas based on analog transects and intrusive data collected during the RI. The MEC characterization goals include:
 - Determining the nature and extent of the MEC and MD on the surface by conducting analog transects across MRS 04, 05, and 07 within accessible areas;
 - Digging anomalies along analog transects to characterize subsurface MEC risk;
 - Documenting the intrusive findings; and
 - Removing and destroying identified MEC.
- 2.2.3 The preliminary action objectives (PAOs) for all of the MRSs is to limit interaction between residual MEC and persons accessing the MRSs.
- 2.2.4 MC was assessed through a sampling program for explosives and metals at locations where MEC and selected MD was found and at specific locations determined by the technical project planning (TPP) team. The analytical MC of concern were selected on the basis of the MEC and MD items recovered at the site. The standard analytical methods include USEPA Method 6010B for antimony, copper, lead, magnesium, and zinc; USEPA Method 7471A for mercury; and USEPA Method 8330B-modified for explosives. The MC characterization goals include the following:
 - Collecting soil and sediment samples to characterize the nature and extent of MC;
 - Collecting background samples for comparison to sample results;
 - Conducting a human and ecological risk assessment with the MC results.
- 2.2.5 The preliminary MC remediation goal for all of the MRSs is to limit interaction between MC identified as a hazard through the risk assessment process to persons and ecological receptors accessing the MRSs.
- 2.3 PRELIMINARY IDENTIFICATION OF POTENTIALLY APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS AND "TO BE CONSIDERED" INFORMATION

2.3.1 Definition of Applicable or Relevant and Appropriate Requirements (ARAR)

According to 40 CFR 300.5, applicable requirements means those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility siting laws that specifically address a hazardous substance, pollutant,

contaminant, remedial action, location, or other circumstance found at a CERCLA site. Only those state standards that are identified by a state in a timely manner and that are more stringent than federal requirements may be applicable.

Relevant and appropriate requirements means those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility siting laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site. Only those state standards that are identified in a timely manner and are more stringent than federal requirements may be relevant and appropriate.

- 2.3.1.1 Response actions under FUDS must identify and attain or formally waive ARARs under Federal and State laws (ER 200-3-1). Although the RI is not considered a response action, preliminary identification of chemical-specific and location-specific applicable or relevant and appropriate requirements (ARARs) is conducted during RI site characterization. ARARs are used as a "starting point" to determining the protectiveness of a site remedy. When ARARs do not exist for a particular chemical or remedial activity, other criteria, advisories, and guidance referred to as To Be Considered (TBC) are useful in designing and selecting a remedial alternative.
- 2.3.1.2 As the RI/FS process continues, the list of ARARs and TBCs will be updated, particularly as guidance is issued by commonwealth and federal agencies. ARARs and TBCs will be used as a guide to establish the appropriate extent of site cleanup; to aid in scoping, formulating, and selecting proposed treatment technologies; and to govern the implementation and operation of the selected remedial alternative. As part of the FS, primary consideration should be given to remedial alternatives that attain or exceed the requirements of the identified ARARs and TBCs. Throughout the RI/FS phase, ARARs and TBCs are identified and used by taking into account the following:
 - Contaminants suspected or identified to be at the site;
 - Chemical analysis performed, or scheduled to be performed;
 - Types of media (air, soil, ground water, surface water, and sediment);
 - Geology and other site characteristics;
 - Use of site resources and media;
 - Potential contaminant transport mechanisms;
 - Purpose and application of potential ARARs and TBCs; and
 - Remedial alternatives considered for site cleanup.

- 2.3.1.2 Chemical-Specific. Chemical-specific requirements define acceptable exposure levels for specific hazardous substances and, therefore, may be used as a basis for establishing preliminary remediation goals and cleanup levels for chemicals of concern in the designated media. Chemical-specific ARARs and TBCs are also used to determine treatment and disposal requirements for remedial actions. In the event a chemical has more than one requirement, the more stringent of the two requirements will be used.
- 2.3.1.3 Location-Specific. Location-specific requirements set restrictions on the types of remedial actions that can be performed based on site-specific characteristics or location. Alternative remedial actions may be restricted or precluded based on federal and state laws for hazardous waste facilities or proximity to wetlands, floodplains or man-made features, such as existing landfills, disposal areas, and local historic landmarks or buildings.
- 2.3.1.4 Action-Specific. Action-specific requirements set controls or restrictions on the design, implementation, and performance of remedial actions. They are triggered by the particular types of treatment or remedial actions that are selected to accomplish the cleanup. After remedial alternatives are developed, action-specific ARARs and TBCs that specify remedial action performance levels, as well as specific contaminant levels for discharge of media or residual chemical levels for media left in place, are used as a basis for assessing the feasibility and effectiveness of the remedial action.

Potential ARARs and TBCs at Culebra

Chemical- Specific TBCs	Target Cleanup Levels
Location-Specific ARARs and TBCs	Substantive requirements of the Endangered Species Act 16 U.S.C Sections 1538 and 1540
Action-Specific ARARs and TBCs	Substantive requirements of the Migratory Bird Treaty Act (16 USC 703)

2.4 INSTITUTIONAL ANALYSIS

- 2.4.1 Institutional analyses are prepared to support the development of institutional control strategies and plans of action as a munitions response alternative. These strategies rely on existing powers and authorities of government agencies to protect the public at large from MEC risks.
- 2.4.2 A review of government institutions and private entities that exercise jurisdiction and ownership of the areas indicates that the property encompassing Culebra is

under the jurisdiction of several private landowners and agencies including the US Fish and Wildlife Service.

2.5 DATA NEEDS AND DATA QUALITY OBJECTIVES

2.5.1 Data Needs

2.5.1.1 Technical Project Planning (TPP) meetings were periodically held with USACE, USEPA and PREQB during the field work planning and Final MMRP Work Plan development stage of the RI. Site characterization goals were discussed and agreed upon through the TPP process and review of the Final MMRP Work Plan. Table 2-1 provides a summary of agreed-upon MEC and MC field activities for the RI at MRS 02, MRS 04, MRS 05, and MRS 07. Changes from the Final Work Plan were discussed at the March 2011 TPP Session.

Table 2-1: Summary of RI Field Activity Decisions

MADC	RI Activities			
MRS	MEC Activity	MC Activity	Purpose	
02	No MEC or MC field activities for MRS 02 during the RI.		- Due to the lack of rights-of-entry in the Cerro Balcon area and because the outlying cays were inaccessible, no MEC or MC field activities could be conducted during the RI. This was discussed at the March 2011 TPP session Future remedial actions will be based upon historical data and current / future land use.	
04	Investigation of metallic anomalies along transects. Transects will be limited to accessible areas based on ROEs, vegetation, sensitive habitats and terrain.	- Collection of surface soil samples near MEC and MD - Collection of sediment samples from lagoons and streams	 Characterize explosive safety hazards, including MEC and MPPEH on the surface and in the subsurface in accessible areas. Investigate and characterize MC in the surface soil and sediment. Collect data to support a MEC Hazard Assessment (HA). Collect data to support site remedial action decisions. 	

MRS	RI Activities			
IVIKS	MEC Activity	MC Activity	Purpose	
05	Investigation of metallic anomalies along transects. Transects will be limited to accessible areas based on ROEs, vegetation, sensitive habitats and terrain.	- Collection of surface soil samples near MEC and MD - Collection of sediment samples from lagoons and streams	 Characterize explosive safety hazards, including MEC and MPPEH on the surface and in the subsurface. Investigate and characterize MC in the surface soil and sediment. Collect data to support a MEC HA. Collect data to support site remedial action decisions. 	
07	Investigation of metallic anomalies along transects. Transects will be limited to accessible areas based on ROEs, vegetation, sensitive habitats and terrain.	- Collection of surface soil samples near MEC and MD - Collection of sediment samples from lagoons and streams	 Characterize explosive safety hazards, including MEC and MPPEH on the surface and in the subsurface. Investigate and characterize MC in the surface soil and sediment. Collect data to support a MEC HA. Collect data to support site remedial action decisions. 	

2.5.2 Data Quality Objectives

- 2.5.2.1 The use of Data Quality Objectives (DQOs) is a systematic approach for establishing the quality and quantity of data needed to support project decisions. To establish DQOs, the intended use of the data, possible consequences of incorrect decisions attributed to inadequate or invalid data, and an acceptable level of uncertainty must be considered. Guidelines followed in the preparation of DQOs are set out in EM 1110-1-4009, Engineering and Design Military Munitions Response Actions and Guidance on Systematic Planning Using the Data Quality Objectives Process, USEPA QA/G-4 (USEPA, 2007b). The DQO process is fully outlined in the Final MMRP Work Plan.
- 2.5.2.2 Based on the DQO process outlined in the Final MMRP Work Plan and the TPP process, the following project DQOs were established for the RI.

2.5.2.1 Data Quality Objectives for MEC Investigation

2.5.2.1.1 DQOs for MEC are summarized in the following tables. The DQOs presented in the Final Work Plan were modified during the March 2011 TPP session. DQOs were modified based on the identification of inaccessible areas (due to terrain, vegetation, and sensitive habitats) and the lack of ROEs achieved for the MRSs. DQOs were revised to focus on collecting information in accessible areas frequented by human receptors.

Table 2-2: MEC Data Quality Objectives for Cerro Balcon Area at MRS 02

DQO Step	MRS 2 – Cerro Balcon Area
State the Problem	Define the nature and extent of MEC contamination within the area of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MEC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos, maps) regarding potential MEC. Observations: Visual field MEC confirmation Type(s)/location(s) of MEC Proximity to inhabited locations and structures (public roads, recreation paths, homes, etc.) Accessibility of the site The Conceptual Site Model (i.e. historical information {ASR, field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define Boundaries of Study	 Established MRSs will be utilized to subdivide investigation areas. Limited to the ground surface and near surface. Exclusive of inaccessible areas (due to vegetation / terrain). Time frame for collection (including ecological factors). Spatial boundary based on geophysical equipment capabilities for particular MEC types and site conditions. Rights of Entry
Develop a Decision Rule	Data will be collected along meandering transects using one of two methods, depending on terrain, vegetation, and other factors.

DQO Step	MRS 2 – Cerro Balcon Area
	 Qualitative Reconnaissance - meandering transects divided into 200' segments that are investigated with analog geophysical techniques. The team will count "hits" and keep a log of the "hits" per segment. Detected anomalies will be investigated by UXO technicians as they are detected. Once the segment is characterized by a MPPEH item or three or more indicators of MEC, no additional intrusive investigation will be conducted on the segment. The investigation will be conducted as a typical "mag and dig" on the meandering transect segments. Digital geophysical mapping along meandering transects with 250 feet separation with no more than 25 feet or 10% deviation from course (for heavy vegetation or lack of ROE).
Specify	If all the inputs to the decision rule were performed to the standard
Tolerable Limits	of Quality Control/Quality Assurance (QC/QA) procedures as specified
of Detection	in the QAPP and the Work Plan, then the error is within tolerable
Error	limits.
Optimize the	Meandering transects will be utilized to establish a contamination
Design for	boundary and possibly reduce the area of interest.
Obtaining Data	

Table 2-3: MEC Data Quality Objectives for Adjacent Cays at MRS 02

DQO Step	MRS 2 – Adjacent Cays
State the	Define the nature and extent of MEC contamination within the area
Problem	of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable
	remedial alternatives, if required.
Identify the	Determine where MEC contamination posses an unacceptable risk to
Decision	human health and the environment and may require further
	investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is
	necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos, maps) regarding potential MEC.
	Observations:
	Accessibility of the site
	The Conceptual Site Model (i.e. historical information {ASR,
	field notes, aerial photographs, maps}, anticipated MEC
	type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural

DQO Step	MRS 2 – Adjacent Cays
	 boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define	Established MRSs will be utilized to subdivide investigation
Boundaries of	areas.
Study	 Limited to the ground surface and near surface.
	 Exclusive of inaccessible areas (due to vegetation / terrain).
	Time frame for collection (including ecological factors).
Develop a	Based on access controls and access limitations due to adequate
Decision Rule	beaching areas, terrain and vegetation exposure to receptors is very
	limited. The expected future land use area is limited to wildlife
	management with no development and limited access. The CSM
	indicates limited completed exposure pathways and the sensitive
	habitat limits potential remedial alternatives. Therefore existing
	data, from historical records is sufficient to make the decision.
Specify	Based on limited exposure pathways identified in the CSM and the
Tolerable Limits	limited remedial alternatives that can be implemented without
of Detection	violating ARARs, existing data is sufficient to make the decision.
Error	
Optimize the	Existing, historical data will be used to make decisions since there is
Design for	limited access and limited potential remedial alternatives.
Obtaining Data	

Table 2-4: MEC Data Quality Objectives for MRS 04

DQO Step	MRS 4 – Flamingo Lagoon Area
State the	Define the nature and extent of MEC contamination within the area
Problem	of interest that may pose a potential threat to human health and the
	environment for the purpose of developing and evaluating viable
	remedial alternatives, if required.
Identify the	Determine where MEC contamination posses an unacceptable risk to
Decision	human health and the environment and may require further
	investigation to develop and evaluate potential remedial response
	alternatives or support a recommendation of no further action is
	necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos,
	maps) regarding potential MEC.
	Observations:

DQO Step	MRS 4 – Flamingo Lagoon Area
	 Visual field MEC confirmation Type(s)/location(s) of MEC Proximity to inhabited locations and structures (public roads, recreation paths, homes, etc.) Accessibility of the site The Conceptual Site Model (i.e. historical information {ASR, field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define	Established MRSs will be utilized to subdivide investigation
Boundaries of	areas.
Study	Limited to the ground surface and near surface. Control of the second black and the s
	 Exclusive of inaccessible areas (due to vegetation / terrain). Time frame for collection (including ecological factors).
	 Spatial boundary based on geophysical equipment capabilities for particular MEC types and site conditions. Rights of Entry
Develop a Decision Rule	 Data will be collected along meandering transects using one of two methods, depending on terrain, vegetation, and other factors. Qualitative Reconnaissance - meandering transects divided into 200' segments that are investigated with analog geophysical techniques. The team will count "hits" and keep a log of the "hits" per segment. Detected anomalies will be investigated by UXO technicians as they are detected. Once the segment is characterized by a MPPEH item or three or more indicators of MEC, no additional intrusive investigation will be conducted on the segment. The investigation will be conducted as a typical "mag and dig" on the meandering transect segments. Digital geophysical mapping along meandering transects with 250 feet separation with no more than 25 feet or 10% deviation from course (for heavy vegetation or lack of ROE).
Specify	If all the inputs to the decision rule were performed to the standard
Tolerable Limits of Detection	of Quality Control/Quality Assurance (QC/QA) procedures as specified in the QAPP and the Work Plan, then the error is within tolerable

DQO Step	MRS 4 – Flamingo Lagoon Area
Error	limits.
Optimize the	Meandering transects will be utilized to establish a contamination
Design for	boundary and possibly reduce the area of interest.
Obtaining Data	

Table 2-5: MEC Data Quality Objectives for Private Parcels at MRS 05

DQO Step	MRS 5 – Private Parcels
State the Problem	Define the nature and extent of MEC contamination within the area of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MEC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos, maps) regarding potential MEC. Observations: Visual field MEC confirmation Type(s)/location(s) of MEC Proximity to inhabited locations and structures (public roads, recreation paths, homes, etc.) Accessibility of the site The Conceptual Site Model (i.e. historical information {ASR, field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define Boundaries of Study	 Established MRSs will be utilized to subdivide investigation areas. Limited to the ground surface and near surface. Exclusive of inaccessible areas (due to vegetation / terrain). Time frame for collection (including ecological factors). Spatial boundary based on geophysical equipment capabilities

DQO Step	MRS 5 – Private Parcels
	for particular MEC types and site conditions.
	Rights of Entry
Develop a	Data will be collected along meandering transects using one of two
Decision Rule	methods, depending on terrain, vegetation, and other factors.
	Qualitative Reconnaissance - meandering transects divided
	into 200' segments that are investigated with analog
	geophysical techniques. The team will count "hits" and keep a
	log of the "hits" per segment. Detected anomalies will be
	investigated by UXO technicians as they are detected. Once
	the segment is characterized by a MPPEH item or three or
	more indicators of MEC, no additional intrusive investigation
	will be conducted on the segment. The investigation will be
	conducted as a typical "mag and dig" on the meandering
	transect segments.
	 Digital geophysical mapping along meandering transects with 250 feet separation with no more than 25 feet or 10%
	deviation from course (for heavy vegetation or lack of ROE).
Specify	If all the inputs to the decision rule were performed to the standard
Tolerable Limits	of Quality Control/Quality Assurance (QC/QA) procedures as specified
of Detection	in the QAPP and the Work Plan, then the error is within tolerable
Error	limits.
Optimize the	Meandering transects will be utilized to establish a contamination
Design for	boundary and possibly reduce the area of interest.
Obtaining Data	

Table 2-6: MEC Data Quality Objectives for Wildlife Refuge at MRS 05

DQO Step	MRS 5 – Wildlife Refuge
State the	Define the nature and extent of MEC contamination within the area
Problem	of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the	Determine where MEC contamination posses an unacceptable risk to
Decision	human health and the environment and may require further
	investigation to develop and evaluate potential remedial response
	alternatives or support a recommendation of no further action is
	necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos,
	maps) regarding potential MEC.
	Observations:
	Accessibility of the site
	The Conceptual Site Model (i.e. historical information {ASR,

DQO Step	MRS 5 – Wildlife Refuge
DQO Step	-
	 field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define	Established MRSs will be utilized to subdivide investigation
Boundaries of	areas.
Study	 Limited to the ground surface and near surface.
	 Exclusive of inaccessible areas (due to vegetation / terrain).
	 Time frame for collection (including ecological factors).
Develop a Decision Rule	Based on access controls and access limitations due to terrain and vegetation exposure to receptors is very limited. The expected future land use area is limited to wildlife management with no development and limited access. The CSM indicates limited completed exposure pathways and the sensitive habitat limits potential remedial alternatives. Therefore existing data, from historical records is sufficient to make the decision.
Specify	Based on limited exposure pathways identified in the CSM and the
Tolerable Limits	limited remedial alternatives that can be implemented without
of Detection Error	violating ARARs, existing data is sufficient to make the decision.
Optimize the	Existing, historical data will be used to make decisions since there is
Design for	limited access and limited potential remedial alternatives.
Obtaining Data	

Table 2-7: MEC Data Quality Objectives for Beaches/Trails at MRS 07

DQO Step	MRS 7 – Beaches and Trails
State the Problem	Define the nature and extent of MEC contamination within the area of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MEC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.

DQO Step	MRS 7 – Beaches and Trails
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos, maps) regarding potential MEC. Observations: Visual field MEC confirmation Type(s)/location(s) of MEC Proximity to inhabited locations and structures (public roads, recreation paths, homes, etc.) Accessibility of the site The Conceptual Site Model (i.e. historical information {ASR, field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.) Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data. Present and/or future land use considerations. Statistical analysis tools.
Define Boundaries of Study	 Statistical analysis tools. Established MRSs will be utilized to subdivide investigation areas. Limited to the ground surface and near surface. Exclusive of inaccessible areas (due to vegetation / terrain). Time frame for collection (including ecological factors). Spatial boundary based on geophysical equipment capabilities for particular MEC types and site conditions. Rights of Entry
Develop a Decision Rule	 Data will be collected along meandering transects using one of two methods, depending on terrain, vegetation, and other factors. Qualitative Reconnaissance - meandering transects divided into 200' segments that are investigated with analog geophysical techniques. The team will count "hits" and keep a log of the "hits" per segment. Detected anomalies will be investigated by UXO technicians as they are detected. Once the segment is characterized by a MPPEH item or three or more indicators of MEC, no additional intrusive investigation will be conducted on the segment. The investigation will be conducted as a typical "mag and dig" on the meandering transect segments. Digital geophysical mapping along meandering transects with 250 feet separation with no more than 25 feet or 10% deviation from course (for heavy vegetation or lack of ROE).

DQO Step	MRS 7 – Beaches and Trails
Specify	If all the inputs to the decision rule were performed to the standard
Tolerable Limits	of Quality Control/Quality Assurance (QC/QA) procedures as specified
of Detection	in the QAPP and the Work Plan, then the error is within tolerable
Error	limits.
Optimize the	Meandering transects will be utilized to establish a contamination
Design for	boundary and possibly reduce the area of interest.
Obtaining Data	

Table 2-8: MEC Data Quality Objectives for Vegetated Areas at MRS 07

DQO Step	MRS 7 – Vegetated Areas
State the Problem	Define the nature and extent of MEC contamination within the area of interest that may pose a potential threat to human health and the environment for the purpose of developing and evaluating viable
	remedial alternatives, if required.
Identify the Decision	Determine where MEC contamination posses an unacceptable risk to human health and the environment and may require further
	investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information (e.g., ASR, field notes, aerial photos, maps) regarding potential MEC. Observations:
	Accessibility of the site
	 The Conceptual Site Model (i.e. historical information {ASR, field notes, aerial photographs, maps}, anticipated MEC type(s), anticipated MEC distribution, terrain and vegetation, current/proposed land use, and natural and cultural boundaries.)
	 Statistically calculated MEC densities based on historical use of area, previous MEC investigation and removals, and current field sampling data.
	Present and/or future land use considerations.
	Statistical analysis tools.
Define	Established MRSs will be utilized to subdivide investigation
Boundaries of	areas.
Study	Limited to the ground surface and near surface. Typically of increase in a group (due to vegetation / terrain)
	 Exclusive of inaccessible areas (due to vegetation / terrain). Time frame for collection (including ecological factors).
Develop a	Based on access controls and access limitations due to terrain and
Decision Rule	vegetation exposure to receptors is very limited. The expected future

DQO Step	MRS 7 – Vegetated Areas
	land use area is limited to wildlife management with no development and limited access. The CSM indicates limited completed exposure pathways and the sensitive habitat limits potential remedial alternatives. Therefore existing data, from historical records is sufficient to make the decision.
Specify Tolerable Limits of Detection Error	Based on limited exposure pathways identified in the CSM and the limited remedial alternatives that can be implemented without violating ARARs, existing data is sufficient to make the decision.
Optimize the Design for Obtaining Data	Existing, historical data will be used to make decisions since there is limited access and limited potential remedial alternatives.

2.5.2.2 Data Quality Objectives for MC Investigation

2.5.2.2.1 DQOs for MC sampling and analysis were developed following the same guidelines previously described for the MEC investigation and are summarized in the following tables. The DQOs presented in the Final Work Plan were modified during the March 2011 TPP session. DQOs were modified based on the identification of inaccessible areas (due to terrain, vegetation, and sensitive habitats) and the lack of ROEs achieved for the MRSs. DQOs were revised to focus on filling data gaps, where possible.

Table 2-9: MC Data Quality Objectives for Cerro Balcon Area at MRS 02

DQO Step	MRS 2 – Cerro Balcon
State the Problem	Define the nature and extent of MC contamination within the Cerro Balcon area of MRS 2 that may pose a potential threat to human health and the environment, relative to potential receptors and their activity, for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information from previous uses of the site Location of MEC and MD identified in previous investigations at the Cerro Balcon Area Location of MEC, MD, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field

DOO CL	MDC 2 Carrier Dalas
DQO Step	MRS 2 – Cerro Balcon
Define	 Compare soil metals detections in background samples to site-specific background concentrations Compare soil and sediment metal and explosive detections to USEPA residential Regional Screening Levels (RSL) (if required) Screening-level ecological risk assessment (if required) Overall Cerro Balcon Area boundary; MRS boundaries
Boundaries of	 Exclusive of inaccessible areas (due to vegetation / terrain /
Study	sensitive species and habitat)
Study	 Sampling locations based on documentation of previous use and previous investigations/removals MC may be present in the known impact areas (especially areas with visible ground scarring or impact craters) MC may be present in areas of previous removal actions and potentially areas outside the impact areas due to migration Sampling locations limited to MEC investigation areas Sampling locations based on the intrinsic geophysical MEC investigation in fixed range locations MC may be present in front of and behind the firing lines, in target areas, and in other identified impact areas Surface soil from areas within the fixed ranges with identified MEC will also be sampled for MC Rights of Entry.
Develop a Decision Rule	 Compare biased metals results to site-specific background concentrations If soil and sediment samples results exceed site-specific background concentrations, results will be compared to USEPA residential RSLs and ecological assessment levels If there are exceedances of the assessment levels, additional samples will be collected to delineate the soil to the appropriate assessment levels If vertical delineation is necessary, a more extensive subsurface investigation will be conducted
Specify Tolerable Limits of Detection Error	 Two possible decision errors for this project: Concluding that the suspect medium (surface soil) within the boundaries of the study is contaminated when it is really not (Type I error) Concluding that the soil within the boundaries of the study is not contaminated when it really is (Type II

DQO Step	MRS 2 – Cerro Balcon
	error)
	Type I error is more tolerable; minimize Type II errors
Optimize the Design for Obtaining Data	 Employ judgmental sampling – focus sampling locations at areas most likely to contain residual MC (firing points, target areas, impact areas) Analyze at method quantitation limits (MQLs) that are equal to or lower than screening levels to minimize Type II errors

Table 2-10: MC Data Quality Objectives for Adjacent Cays at MRS 02

DQO Step	MRS 2 – Adjacent Cays
State the Problem	Define the nature and extent of MC contamination within the portion of MRS 2 consisting of the surrounding cays, which may pose a potential threat to human health and the environment, relative to potential receptors and their activities, for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information from previous uses of the site Location of MEC and MD identified in previous investigations at the adjacent cays Location of MEC, MD, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field
Define Boundaries of Study	 Overall adjacent cays boundary; MRS boundaries Exclusive of inaccessible areas (due to vegetation / terrain / sensitive species and habitat) Rights of Entry
Develop a Decision Rule	Based on access controls and access limitations due to adequate beaching areas, terrain and vegetation exposure to receptors is very limited. The expected future land use area is limited to wildlife management with no development and limited access. The CSM indicates limited completed exposure pathways and the sensitive habitat limits potential remedial alternatives. Therefore existing data, from historical records is sufficient to make the decision.
Specify Tolerable Limits of Detection Error	Based on limited exposure pathways identified in the CSM and the limited remedial alternatives that can be implemented without violating ARARs, existing data is sufficient to make the decision.

DQO Step	MRS 2 – Adjacent Cays
Optimize the	Existing, historical data will be used to make decisions since there is
Design for	limited access and limited potential remedial alternatives.
Obtaining Data	

Table 2-11: MC Data Quality Objectives for MRS 04

DQO Step	MRS 4 – Flamenco Lagoon Area
State the Problem	Define the nature and extent of MC contamination within MRS 4 that may pose a potential threat to human health and the environment, relative to potential receptors and their activities, for the purpose of developing and evaluating viable remedial alternatives, if required.
Identify the Decision	Determine where MC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.
Identify Inputs	 Historical information from previous uses of the site Location of MEC and MD identified in previous investigations at the Flamenco Lagoon Area Location of MEC, MD, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field Compare soil metals detections in background samples to site-specific background concentrations Compare soil and sediment metal and explosive detections to USEPA residential RSL (if required)
Define Boundaries of Study	 Screening-level ecological risk assessment (if required) Overall Flamenco Lagoon Area boundary; MRS boundaries Exclusive of inaccessible areas (due to vegetation / terrain / sensitive species and habitat) Sampling locations based on documentation of previous use and previous investigations/removals MC may be present in the known impact areas (especially areas with visible ground scarring or impact craters) MC may be present in areas of previous removal actions and potentially areas outside the impact areas due to migration Sampling locations limited to MEC investigation areas Sampling locations based on the intrinsic geophysical MEC investigation in fixed range locations MC may be present in front of and behind the firing

DQO Step	MRS 4 – Flamenco Lagoon Area
	lines, in target areas, and in other identified impact areas Surface soil from areas within the fixed ranges with identified MEC will also be sampled for MC Rights of Entry
Develop a Decision Rule	 Compare biased metals results to site-specific background concentrations If soil and sediment samples results exceed site-specific background concentrations, results will be compared to USEPA residential RSLs and ecological assessment levels If there are exceedances of the assessment levels, additional samples will be collected to delineate the soil to the appropriate assessment levels If vertical delineation is necessary, a more extensive subsurface investigation will be conducted
Specify Tolerable Limits of Detection Error	 Two possible decision errors for this project: Concluding that the suspect medium (surface soil) within the boundaries of the study is contaminated when it is really not (Type I error) Concluding that the soil within the boundaries of the study is not contaminated when it really is (Type II error) Type I error is more tolerable; minimize Type II errors
Optimize the Design for Obtaining Data	 Employ judgmental sampling – focus sampling locations at areas most likely to contain residual MC (firing points, target areas, impact areas) Analyze at MQLs that are equal to or lower than screening levels to minimize Type II errors

Table 2-12: MC Data Quality Objectives for Private Parcels at MRS 05

DQO Step	MRS 5 – Mortar and Combat Range Area
State the	Define the nature and extent of MC contamination within the portion
Problem	of MRS 5 consisting of privately owned parcels, which may pose a
	potential threat to human health and the environment, relative to
	potential receptors and their activities, for the purpose of developing
	and evaluating viable remedial alternatives, if required.
Identify the	Determine where MC contamination posses an unacceptable risk to
Decision	human health and the environment and may require further
	investigation to develop and evaluate potential remedial response
	alternatives or support a recommendation of no further action is

DQO Step	MRS 5 – Mortar and Combat Range Area				
	necessary.				
Identify Inputs	 Historical information from previous uses of the site Location of MEC and MD identified in previous investigations at the private parcels Location of MEC, MD, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field Compare soil metals detections in background samples to site-specific background concentrations Compare soil and sediment metal and explosive detections to USEPA RSLs (if required) 				
	 Screening-level ecological risk assessment (if required) 				
Define Boundaries of Study	 Overall private parcels boundary; MRS boundaries Exclusive of inaccessible areas (due to vegetation / terrain / sensitive species and habitat) Sampling locations based on documentation of previous use and previous investigations/removals MC may be present in the known impact areas (especially areas with visible ground scarring or impact craters) MC may be present in areas of previous removal actions and potentially areas outside the impact areas due to migration Sampling locations limited to MEC investigation areas Sampling locations based on the intrinsic geophysical MEC investigation in fixed range locations MC may be present in front of and behind the firing lines, in target areas, and in other identified impact areas Surface soil from areas within the fixed ranges with identified MEC will also be sampled for MC Rights of Entry 				
Develop a Decision Rule	 Compare biased metals results to site-specific background concentrations If soil and sediment samples results exceed site-specific background concentrations, results will be compared to USEPA residential RSLs and ecological assessment levels If there are exceedances of the assessment levels, additional samples will be collected to delineate the soil to the appropriate assessment levels If vertical delineation is necessary, a more extensive 				

DQO Step	MRS 5 – Mortar and Combat Range Area				
	subsurface investigation will be conducted				
Specify Tolerable Limits of Detection Error	 Two possible decision errors for this project: Concluding that the suspect medium (surface soil) within the boundaries of the study is contaminated when it is really not (Type I error) Concluding that the soil within the boundaries of the study is not contaminated when it really is (Type II error) 				
Optimize the Design for Obtaining Data	Type I error is more tolerable; minimize Type II errors Employ judgmental sampling – focus sampling locations at areas most likely to contain residual MC (firing points, target areas, impact areas) Analyze at MQLs that are equal to or lower than screening levels to minimize Type II errors				

Table 2-13: MC Data Quality Objectives for Wildlife Refuge at MRS 05

DQO Step	MRS 5 – Wildlife Refuge				
State the Problem	Define the nature and extent of MC contamination within the portion of MRS 5 consisting of designated Wildlife Refuge, which may pose a potential threat to human health and the environment, relative to potential receptors and their activities, for the purpose of developing and evaluating viable remedial alternatives, if required.				
Identify the	Determine where MC contamination posses an unacceptable risk to				
Decision	human health and the environment and may require further				
	investigation to develop and evaluate potential remedial response				
	alternatives or support a recommendation of no further action is necessary.				
Identify Inputs	 Historical information from previous uses of the site Location of MEC and munitions debris identified in previous investigations at the Wildlife Refuge Location of MEC, munitions debris, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field 				
Define	Overall Wildlife Refuge boundary; MRS boundaries				
Boundaries of	Exclusive of inaccessible areas (due to vegetation / terrain /				
Study	sensitive species and habitat)				
	Rights of Entry				

DQO Step	MRS 5 – Wildlife Refuge				
Develop a Decision Rule	 Based on access controls and access limitations due to adequate beaching areas, terrain and vegetation exposure to receptors is very limited. The expected future land use area is limited to wildlife management with no development and limited access. The CSM indicates limited completed exposure pathways and the sensitive habitat limits potential remedial alternatives. Therefore existing data, from historical records is sufficient to make the decision. 				
Specify Tolerable Limits of Detection Error	 Based on limited exposure pathways identified in the CSM and the limited remedial alternatives that can be implemented without violating ARARs, existing data is sufficient to make the decision. 				
Optimize the Design for Obtaining Data	 Existing, historical data will be used to make decisions since there is limited access and limited potential remedial alternatives. 				

Table 2-14: MC Data Quality Objectives for Beaches and Trail at MRS 07

DQO Step	MRS 7 – Beaches and Trails				
State the	Define the nature and extent of MC contamination within readily				
Problem	accessible portions of MRS 7 that may pose a potential threat to				
	human health and the environment, relative to potential receptors and				
	their activities, for the purpose of developing and evaluating viable				
	remedial alternatives, if required.				
Identify the	Determine where MC contamination posses an unacceptable risk to				
Decision	human health and the environment and may require further				
	investigation to develop and evaluate potential remedial response				
	alternatives or support a recommendation of no further action is				
	necessary.				
Identify Inputs	 Historical information from previous uses of the site 				
	 Location of MEC and munitions debris identified in previous 				
	investigations at the beaches and trails				
	 Location of MEC, munitions debris, range structures, and other evidence of munitions based on MEC 				
	characterization/geophysical investigations to be completed in the field				
	 Compare soil metals detections in background samples to site- specific background concentrations 				
	Compare soil and sediment metal and explosive detections to				
	United States Environmental Protection Agency (USEPA)				
	residential Regional Screening Levels (RSL) (if required)				

DQO Step	MRS 7 – Beaches and Trails				
	Screening-level ecological risk assessment (if required)				
Define Boundaries of Study	 Overall beaches and trails boundary; MRS boundaries Exclusive of inaccessible areas (due to vegetation / terrain / sensitive species and habitat) Sampling locations based on documentation of previous use and previous investigations/removals MC may be present in the known impact areas (especially areas with visible ground scarring or impact craters) MC may be present in areas of previous removal actions and potentially areas outside the impact areas due to migration Sampling locations limited to MEC investigation areas Sampling locations based on the intrinsic geophysical MEC investigation in fixed range locations MC may be present in front of and behind the firing lines, in target areas, and in other identified impact areas Surface soil from areas within the fixed ranges with 				
De ales	identified MEC will also be sampled for MC • Rights of Entry				
Develop a Decision Rule	 Compare biased metals results to site-specific background concentrations If soil and sediment samples results exceed site-specific background concentrations, results will be compared to USEPA residential RSLs and ecological assessment levels If there are exceedances of the assessment levels, additional samples will be collected to delineate the soil to the appropriate assessment levels If vertical delineation is necessary, a more extensive subsurface investigation will be conducted 				
Specify Tolerable Limits of Detection Error	 Two possible decision errors for this project: Concluding that the suspect medium (surface soil) within the boundaries of the study is contaminated when it is really not (Type I error) Concluding that the soil within the boundaries of the study is not contaminated when it really is (Type II error) Type I error is more tolerable; minimize Type II errors 				

DQO Step	MRS 7 – Beaches and Trails			
Optimize the	 Employ judgmental sampling – focus sampling locations at 			
Design for	areas most likely to contain residual MC (firing points, target			
Obtaining	areas, impact areas)			
Data	 Analyze at method quantitation limits (MQLs) that are equal to 			
	or lower than screening levels to minimize Type II errors			

Table 2-15: MC Data Quality Objectives for Vegetated Areas at MRS 07

DQO Step	MRS 7 – Vegetated Areas				
State the Problem	Define the nature and extent of MC contamination within heavily vegetated portions of MRS 7 that may pose a potential threat to human health and the environment, relative to potential receptors and their activities, for the purpose of developing and evaluating viable remedial alternatives, if required.				
Identify the Decision	Determine where MC contamination posses an unacceptable risk to human health and the environment and may require further investigation to develop and evaluate potential remedial response alternatives or support a recommendation of no further action is necessary.				
Identify Inputs	 Historical information from previous uses of the site Location of MEC and munitions debris identified in previous investigations at the vegetated areas Location of MEC, munitions debris, range structures, and other evidence of munitions based on MEC characterization/geophysical investigations to be completed in the field 				
Define Boundaries of Study	 Overall vegetative areas boundary; MRS boundaries Exclusive of inaccessible areas (due to vegetation / terrain / sensitive species and habitat) Rights of Entry 				
Develop a Decision Rule	 Based on access controls and access limitations due to adequate beaching areas, terrain and vegetation exposure to receptors is very limited. The expected future land use area is limited to wildlife management with no development and limited access. The CSM indicates limited completed exposure pathways and the sensitive habitat limits potential remedial alternatives. Therefore existing data, from historical records is sufficient to make the decision. 				

DQO Step	MRS 7 – Vegetated Areas					MRS 7 – Vegetated Areas		
Specify Tolerable Limits of Detection Error	 Based on limited exposure pathways identified in the CSM and the limited remedial alternatives that can be implemented without violating ARARs, existing data is sufficient to make the decision. 							
Optimize the Design for Obtaining Data	 Existing, historical data will be used to make decisions since there is limited access and limited potential remedial alternatives. 							

2.5.2.2.2 All QA / QC procedures outlined in the Final MMRP Work Plan were followed closely. These procedures and the overall design of the investigation were created initially to assure that all of the DQOs were met. The QA/QC procedures followed are outlined in detail in Section 3 of the Final MMRP Work Plan. Based upon the design of the investigation, the revised DQOs outlined above for this RI were met for the accessible areas of the MRSs. Portions of each MRS were not accessible for the RI field work.

3 CHARACTIZATION OF MEC AND MC

3.1 RI FIELD ACTIVITIES OVERVIEW

- 3.1.1 RI field activities at the MRSs began in October 2010 and continued through March 2011. The MEC field investigation team consisted of a SUXOS, a dual UXO Safety Officer (UXOSO) / UXO Quality Control Specialist (UXOQCS), and UXO Technician IIIs, UXO Technician IIs, and UXO Technician Is. RI field activities were completed on 24 March 2011. The following sections discuss the various portions of the MEC field investigation and results in detail.
- 3.1.2 The following major tasks were performed to meet the project objectives:
 - Geophysical Prove Out (GPO);
 - Brush cutting and surface sweep;
 - Analog transects and mini-grids
 - Intrusive investigation and identification of anomalies
 - Proper disposal of all recovered MEC, MD and non-MD material in accordance with federal, state and local regulations:
 - MC sampling.
- 3.1.3 The primary analog instrument identified in the Final Work Plan was the White Eagle Spectrum XLT. This instrument was tested in the test-strip and its performance was compared to that of the Schonstedt GA-52Cx. The Schonstedt proved to be able to locate items at a greater depth; however, due to the geology it was not effective in many areas. The project team mobilized the White Model DFX-300. This instrument proved more effective at eliminating geological effects than the White XLT but was inferior to the Mine Lab F3. CEHNC provided Mine Labs F3 for the teams to use for the duration of the project. One was provided starting 15 February 2011 and a second was provided on 23 February 2011.
- 3.1.4 Before engaging in any activities on site, all personnel reviewed the ESP, RI Work Plan and the Accident Prevention Plan (APP). A Daily Safety Meeting was completed every morning before the commencement of the day's activities.

3.2 MEC Characterization

3.2.1 Geophysical Prove-Out

3.2.1.1 It was determined in the field that qualitative reconnaissance, using analog equipment would be utilized for all MRSs based on the site conditions. However, the team determined that it was advantageous to test the digital geophysical equipment, even if it was not used during the RI data collection. The GPO was performed to evaluate the geophysical sensor and navigational instruments. The results can be used to make future decisions about the most appropriate

equipment to use during future activities on Culebra. Details on the GPO can be found in the Final GPO Report (Appendix A).

3.2.2 De-Vegetation and Surface Clearance

- 3.2.2.1 UXO technicians performed a 100% surface clearance along each transect prior to the brush cutting and intrusive investigation. A de-vegetation and surface clearance team, comprised of UXO technicians and local brush cutters, performed a detector-assisted MEC surface clearance and vegetation removal along all transects.
- 3.2.2.2 Natural debris (e.g., fallen trees) was moved from the areas to be cleared, and small trees and brush were cut to grade with no disturbance to the roots or ground surface (Photograph 3-3). All brush and natural debris were spread thinly into the surrounding areas. A biologist familiar with the local flora and fauna was present during brush clearing activities to monitor the field crew and ensure no sensitive habitats were destroyed.

Photograph 3-1: Brush clearing at MRS 07

3.2.3 *MEC Field Work Results*

3.2.3.1 Approximately 23.5 miles of analog transects were collected from MRS 04, 05, and 07. No investigation took place at MRS 02 due to access issues (Cays) and lack of ROEs (Cerro Balcon). Several attempts to access the cays via boat were made; however, they were unsuccessful based on sea conditions and inadequate landing areas. According to the local population, weather conditions typically prohibit access to the cays during that time of year. It was determined that historical data available for the cays provide adequate information for risk characterization.

- 3.2.3.2 A total of 466 anomalies were intrusively investigated across the MRSs (38 in MRS 04, 406 in MRS 05, and 22 in MRS 07). During the investigation, two (2) MEC items were discovered; both in MRS 07. The MEC items in MRS 07 were discovered in the northwest portion of the MRS along transect 28A on the ground surface. The location of MEC items were recorded using hand-held GPS equipment. The location of MD was recorded by the UXO teams based on the measured distance from start point of the transect segment. Table 3-1 summarizes the MEC investigation for each MRS. Table 3-2 provides a summary of all MEC and MD items identified with specified depths. The majority of MD was found on or near to the surface, with the exception of MD on MRS 5, which was located about 12 inches bgs. Figures 3-2, 3-4, and 3-6 show the intrusive results for MRS 04, MRS 05, and MRS 07, respectively. All excavation holes were backfilled to their prior condition.
- 3.2.3.3 At the conclusion of all intrusive activities, approximately 43 pounds (lbs) of MD items were identified and removed from the investigated area. The majority of the MD was found in MRS 05 (18 MD items) and MRS 07 (22 MD items), and the remainder of the anomalies uncovered non-munitions-related metal waste such as barbed wire or nails.
- 3.2.3.4 Based on the intrusive results, one 25 x 25 foot mini-grid was established and investigated in MRS 04 north of Flamenco Lagoon and three mini-grids were investigated in MRS 05 on 7 and 8 March 2011. Grids were placed along transects in areas where there were indicators of potential MEC. The initial locations of the grids were proposed during a TPP meeting. Based on discussion at the meeting an additional grid was placed in MRS 04. The decision not to place grids in MRS 07 was based on the revised CSM and DQOs. No MEC or MD was observed in any of the grids.

Table 3-1: Summary of RI MEC Investigation

MRS	Completed Transects (miles)	Investigated Anomalies	MEC	MD
02	No MEC investigation activities were conducted at MRS 02 during the RI due to accessibility issues (Cays) and lack of ROEs (Cerro Balcon), as discussed upon at the March 2011 TPP.			
04	2.03	38	None	- Fragments
05	19.42	406	None	 Fragments (9) 30 caliber cartridges (2) 81mm mortar (3) 4.2" mortar base Small arms ammunition debris
07	2.04	22	- MK5 Mod 0 Rocket - MK8 Demo Hose	 Expended flare 20 mm Partial rotating band Powder train time fuze (PTTF) Brass frag (9) Partial fuze body Shotgun shell 3"projectile fragments Lead bullet

Photograph 3-2: Mk5 Mod 0 Rocket in MRS 07

Photograph 3-5: Mk8 Demolition Hose in MRS 07

Table 3-2: MEC and MD Locations - RI Investigation

Transect	MRS	Anomaly Type	Description	Depth (inches)
17a	4	MD	Fragment	2
23b-2	5	MD	Fragment	8
24A-5	5	MD	30 caliber cartridge	0.5
24A-5	5	MD	30 caliber cartridge	0.5
26c-7	5	MD	Fragment	7
29A-10	5	MD	81mm Mortar	0
29c-10	5	MD	Fragment	8
29c-12	5	MD	Fragment	8
29c-12	5	MD	Fragment	6
29c-12	5	MD	Fragment	10
29c-12	5	MD	Fragment	12
29c-12	5	MD	Fragment	8
31c-1	5	MD	4.2" mortar base	0
31c-2	5	MD	mortar frag	0
32c-3	5	MD	81 mm mortar fragments/ tailboom	0.5
35B-9	5	MD	81mm mortar fragments, (5 Pounds)	0
41b-4	5	MD	Fragment	8
42b-2	5	MD	Fragment	8
43b-2	5	MD	81mm mortar fragment	14
4A-3	7	MD	PTTF Fuze, expended	0

Transect	MRS	Anomaly Type	Description	Depth (inches)
3A-1	7	MD	Partial Rotating band	1
12A-4	7	MD	Expended Flare	0
28A-9	7	MD	20mm projectile	0
4A-5	7	MD	Brass Fragment	0
4A-5	7	MD	Brass Fragment	0
4A-5	7	MD	Brass Fragment	0
4A-6	7	MD	Brass Fragment	0
4A-6	7	MD	Brass Fragment	0
4A-6	7	MD	Brass Fragment	0
4A-6	7	MD	lead bullet	0
4A-6	7	MD	Brass Fragment	0
4A-6	7	MD	Brass Fragment	0
4A-7	7	MD	Brass Fragment	0
4A-7	7	MD	Partial Fuze body	0
4A-8	7	MD	Shotgun shell	0
8A-1	7	MD	Partial Fuze body	0
8A-4	7	MD	Fragment from 3" Projectile	0.5
8A-5	7	MD	Fragment from 3" Projectile	0.5
8A-6	7	MD	Lead bullet	0.5
28A-9	7	MEC	warhead (HEAT) live, rocket nose	0
28A-9	7	MEC	Mk 8 Demo hose	0

3.2.4 Demolition and Disposal Operations

3.2.4.1 All demolition and disposal was conducted in accordance with the Final Approved Explosive Siting Plan (ESP) and Final MMRP Work Plan. Onsite destruction of all MEC/MPPEH was conducted on 21 March 2011. One demolition shot took place on the northwestern portion of MRS 7 near where the MEC were found. The demolition hole was inspected; the debris was removed, and the hole was then backfilled. After the demolition was completed, the items were inspected to confirm final classification (*i.e.*, MEC). No post-demolition MC soil samples were collected.

3.2.5 MEC Results Summary

3.2.5.1 A warhead (HEAT) live rocket nose and a MK 8 demolition hose were identified on the surface in the northwestern portion of MRS 07. During the investigation, 49 MD were found, totaling 43 lbs, and included items associated with mortars, 3-inch projectiles, 20 mm projectiles, flares, fuzes, small arms ammunition, and

unidentifiable fragments. The investigation confirmed that MD and metal scrap (non-munitions related metal) were located on the surface and in the subsurface at MRS 04, MRS 05, and MRS 07. The remainder of the anomalies were identified as either non-munitions-related metallic debris, such as barbed wire and small arms ammunition not related to military use or geologic anomalies.

3.2.5.2 The results of MEC and MC RI field activities are shown on Figures at the end of this section. Approximately 24 miles (123,000 feet) were investigated during the RI. A complete risk characterization for MEC within the studied MRSs in Culebra is included in Section 4.

3.3 MC Characterization

3.3.1 Environmental samples were collected in MRS 04, MRS, 05, and MRS 07 March 21-23, 2011. No environmental samples were collected in MRS 02 due to a lack of rights-of-entry in the Cerro Balcon area and adverse site conditions and the inaccessibility of the adjacent cays. Surface soil and sediment samples were collected where munitions or munitions debris was found. The samples were analyzed for explosives and metals found in munitions or their breakdown products.

Table 3-3: Sampling Design

MRS	Surface Soil Samples	Sediment Samples	Background Soil Samples	QA/QC Soil Samples	Analytes Sampled	Sampling Design
02			cted in MRS 02 d nt cays could no			ry in the Cerro Balcon ditions.
04	6	3	3	5	Selected metals (antimony, barium, chromium,	Surface soil samples were collected near locations where MEC and MD were found along the cleared
05	14	2	4	10	copper, lead, mercury, and zinc) and explosive suite	transects. Sediment locations were limited due to dry conditions. Sediment samples were
07	8	2	3	5		collected from lagoons and streams. Sampling locations are shown on Figures 3-1, 3-3, and 3-5.

3.3.2 Twenty-eight surface soil samples, plus QA/QC samples, were taken at MRS 04, MRS 05, and MRS 07 at biased locations near where MEC and MD were found. Nine surface soil samples were collected at the MRSs (one in MRS 04, six in MRS 05, and one in MRS 07) during the 2006 SI fieldwork at Culebra Island and used

- in the evaluation of human and ecological risk discussed in Section 6. Soil sample locations are shown on Figures 3-1 to 3-5.
- 3.3.3 Ten background soil samples were collected from MRS 04, MRS 05, and MRS 07. The three samples collected from MRS 07 were collected outside of the MRS, south of the southern MRS boundary directly south of a trail used by visitors to Culebrita. The background samples collected at MRS 04 and MRS 05 were taken within the MRS boundary since there are no locations on Culebra which are not part of a MRS. Samples collected from MRS 04 and MRS 05 were biased to locations were no MEC or MD was found during previous MEC investigations in an effort to collect soil unaffected by historic munitions use in on the island. Background soil sample locations are shown on Figures 3-1 to 3-5.
- 3.3.4 A total of seven sediment samples were taken at MRS 04, MRS 05, and MRS 07 at random locations from lagoons and streams (Figures 3-1, 3-3, 3-5). Four sediment samples were collected at the MRSs (two in MRS 04, one in MRS 05, and one in MRS 07) during the 2006 SI fieldwork at Culebra Island and used in the evaluation of human and ecological risk discussed in Section 6. Sediment sample locations are shown on Figures 3-1 to 3-5.
- 3.3.5 Ten surface soil samples were collected before and after the detonation of ordnance in the Cerro Balcon area of MRS 02 in 2001 by Ellis during construction support activities. These samples were used in the qualitative analysis of MC that will be developed for MRS 02. This data was used in the evaluation of human and ecological risk discussed in Section 6 as no samples were collected in MRS 02 during the RI.

3.3.1 Field Sampling Methods

- 3.3.1.1 Surface soil samples were composite samples collected using the Cold Regions Research and Engineering Laboratory (CRREL) 7-sample wheel approach. Sample design and locations are described in Table 3-3. Each of the surface soil samples was collected from a depth of 0 to 2 inches bgs using disposable sampling equipment. Each sampling location was cleared of surface vegetation and organic topsoil prior to sample collection. New sterile sampling equipment and new gloves were used at each sampling location. Soil characteristics for each soil sample were logged on a sampling log form (Appendix C). The remaining soil was disposed of on the ground surface at the sampling locations from which they were collected.
- 3.3.1.2 Sediment samples were discreet samples collected from available surface water bodies such as lagoons and streams. Each of the sediment samples was collected from a depth of 0 to 6 inches bgs using disposable sampling equipment avoiding the collection of rocks, twigs, leaves and other debris. Each sample

- container was filled to zero headspace. New sterile sampling equipment and new gloves were used at each sampling location.
- 3.3.1.3 Soil and sediment sampling locations were recorded in the sampling logs as sampling was completed. When possible, distances to reference points were given. Surface sampling locations were recorded using a handheld Global Positioning System (GPS). Photographs were taken of each of the sampling areas (Appendix D). MEC / Multiple Anomaly Discovery Logs were not completed because no MEC or MD discoveries occurred during soil sampling.

3.3.2 Chemistry Analyses

- 3.3.2.1 The analytical MC of concern were selected on the basis of the MEC and MD items recovered at the site. The standard analytical methods include USEPA Method 6010B for antimony, copper, lead, magnesium, and zinc; USEPA Method 7471A for mercury; and USEPA Method 8330B-modified for explosives.
- 3.3.2.2 Project-specific DQOs (Section 2) were met for sampling and analysis and the QA/QC objectives by collecting the proper quantities and types of samples, using the correct analytical methodologies, implementing field and laboratory QA/QC procedures, and using various data validation and evaluation processes. The DQOs for each analytical method are provided in the QAPP. Laboratory requirements for the analytical methods used for this project are provided in the Work Plan and QAPP.
- 3.3.2.3 As described in the Data Validation Reports in Appendix C, the analytical data was found to be valid and acceptable and met the comprehensive data level for risk assessments being conducted for the site.

3.3.3 Munitions and Explosives of Concern Avoidance Procedures

3.3.3.1 Anomaly avoidance techniques were used during the MC sampling event strictly to ensure the safety of field sampling personnel. All surface soil samples were collected from previously cleared transects and sediment sample locations were cleared by the UXO Technician prior to sample collection. The UXO Technician had direct field responsibility for MEC avoidance, and no MEC or MD was identified during the MC field effort.

3.3.4 MC Results Summary

3.3.4.1 A total of 28 soil and 7 sediment samples were collected from MRS 04, MRS 05, and MRS 07 and analyzed for MC, including explosives and select metals (antimony, barium, chromium, copper, lead, mercury, and zinc). Explosives were not detected in any of the field samples. One split sample detected very low levels of 1,3,5-TNB and 4-NT, but both were well below the USEPA RSLs. All detected metals were below the USEPA RSLs. Tables 3-5 through 3-10 show the

sample results. All sample results are provided Appendix C. A complete discussion of MC findings and the MC risk assessment is included in Section 5.

3.3.5 Investigative-Derived Wastes

3.3.5.1 Soil and excess sample material were returned to the sample location immediately after completion of sampling. Used gloves and any other disposable sampling equipment or personal protective equipment were double bagged and disposed of in a designated trash bin at the field office. Reusable sample equipment was not used therefore no decontamination rinse or decontamination fluid was collected.

3.4 DEVIATIONS FROM THE FINAL MMRP WORK PLAN

3.4.1 Field conditions dictated deviations from the Work Plan; these changes are presented in Table 3-4. All changes were presented to the stakeholders for concurrence prior to implementation.

Table 3-4: Deviations from the Work Plan

Change	Rationale
A portion of the originally planned transects were not completed.	Some rights-of-entry were not received for the MRSs. The team also could not access the cays due to terrain. Some of the transects planned in US Fish and Wild Life managed areas were not completed because of changes in DQOs that specify data would be focused in areas of high receptor use vs. undeveloped areas. Many of the wildlife management areas are also inaccessible due to terrain and vegetation. Concern was noted over disturbance of specie status species and habitats in these areas. These changes were discussed in the March 2011 TPP session.
MC sample numbers and locations were modified based on MRS access and MEC and MD locations, as well as field conditions.	Portions of MRSs were either inaccessible or a right-of-entry was not granted for a specific property. Revised sample locations were presented during the March 2011 TPP session.
No MEC or MC activities were conducted in MRS 02.	A right-of-entry was not granted for Cerro Balcon and the adjacent cays were not accessible due to rough seas and the absence of suitable access points during the time of year the field teams were present. While access to all cays is prohibited, Cayo Lobo and Cayo Yerba are frequented by recreational users. These cays have small beaches that allow access during good weather in certain times of the year. It was agreed upon at the TPP meeting in March 2011 that historical data would be sufficient to make future action decisions for these areas.

3.5 QUALITY CONTROL

3.5.1 The QC Plan for this project established the methods and procedures that were used to evaluate the project's process and to address QC inspection, audit, and reporting requirements. Throughout site operations, the field crew performed quality control inspections, which consisted of daily observations by the UXOQCS of operational activities and formal inspections of completed work. Daily inspections included checks of maintenance and calibration procedures, as well as monitoring for compliance with the Work Plan. Daily magnetometer checks were performed. Throughout all site operations the SUXOS completed a daily report detailing all site operations, man-hours and equipment used each day, and operating issues. The overall effectiveness of the QC program for this project was dependent on the RI activities being conducted in accordance with the Final MMRP Work Plan, which were developed to ensure the project met the requirements of the established DQOs. To ensure an effective QC program, the Project Manager, SUXOS, and UXOQCS worked closely together during all aspects of the fieldwork, to monitor and document the procedures conducted in support of the RI in accordance with the Final MMRP Work Plan. QC data and records are located within Appendix B.

Table 3-5: Soil Sampling Results at MRS 04

Analytic Method	Chemical Name	Report Result Unit		CI-MRS04-SS-01 3/23/2011		SS-02 11	CI-MRS04-SS-03 3/23/2011		CI-MRS04-SS-04 3/23/2011		CI-MRS04-SS-05 3/23/2011		CI-MRS04-9 3/23/20	11
				DVQ		DVQ		DVQ		DVQ		DVQ		DVQ
	Percent Solids	%	96		79.9		94.1		91.4		97.2		94	
SW846 3050B	Antimony, Total	mg/kg	1.03 UN	UJ	1.23 UN	UJ	0.357 BN	UJ	1.02 UN	UJ	0.471 BN	UJ	0.984 UN	UJ
SW846 3050B	Barium, Total	mg/kg	218 N	J	216 N	J	129 N	J	17.6 N	J	12.4 N	J	12.3 N	J
SW846 3050B	Chromium, Total	mg/kg	4.42		2.83		14.7		9.34		8.29		8.18	
SW846 3050B	Copper, Total	mg/kg	41.2		33		61.8	J	6.16		3.05		3.78	
SW846 3050B	Lead, Total	mg/kg	9.92		10.3		9.66		10.2 U		9.76 U		9.84 U	
SW846 7471A Prep	Mercury, Total	mg/kg	0.0139 B	J	0.0286 B	J	0.0218 B	J	0.0312 B	J	0.00558 BB	J	0.0186 B	J
SW846 3050B	Zinc, Total	mg/kg	60.6		65.3		117	J	11.1		5.22		6.67	
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	НМХ	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	PETN	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Tetryl	ug/kg	500 QU		500 QU		500 QU		500 QU		500 QU		500 QU	
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U	

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-6: Sediment Sampling Results at MRS 04

Analytic Method	Chemical Name	Report Result	CI-MRS04-9 3/23/20		CI-MRS04-S 3/23/20		CI-MRS04-SD-03 3/23/2011	
7 mary the infection	Circinical Name	Unit	, ,	DVQ	, ,	DVQ	, ,	DVQ
	Percent Solids	%	74.3		68.8		63.6	
SW846 3050B	Antimony, Total	mg/kg	2.54 BN	UJ	0.594 BN	UJ	1.57 UN	UJ
SW846 3050B	Barium, Total	mg/kg	65.9 N	J	21.2 N	J	24.5 N	J
SW846 3050B	Chromium, Total	mg/kg	12.1		8.14		8.7	
SW846 3050B	Copper, Total	mg/kg	120		2.94		5.9	
SW846 3050B	Lead, Total	mg/kg	159		13.1 U		15.7 U	
SW846 7471A Prep	Mercury, Total	mg/kg	0.227 B	J	0.0159 UB	J	0.0172 UB	J
SW846 3050B	Zinc, Total	mg/kg	95.5		3.65		6.11	
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	нмх	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	PETN	ug/kg	1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	Tetryl	ug/kg	500 QU		500 QU		500 QU	
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		500 U	
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		500 U	

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-7: Soil Sampling Results at MRS 05

Applytic Mathed	Chemical Name	Report Result	CI-MRS05-SS 3/22/201		CI-MRS05-: 3/22/20		CI-MRS05-SS-03 3/22/2011		CI-MRS05-SS-04 3/22/2011		CI-MRS05-SS-05 3/22/2011		CI-MRS05-SS-06 3/22/2011		CI-MRS05-SS-07 3/22/2011	
Analytic Method	Chemical Name	Unit	3/22/201	DVQ	3,22,20	DVQ	3,22,20	DVQ	3/22/20	DVQ	3/22/20	DVQ	3/22/20	DVQ	3/22/201	DVQ
	Percent Solids	%	94.7		92.3		90.9		90.5		89.7		91.6		91.2	
SW846 3050B	Antimony, Total	mg/kg	1.04 UN	UJ	3.46 BN	UJ	5.25 UN	UJ	5.44 UN	UJ	0.662 BN	UJ	1.77 BN	UJ	1.1 UN	UJ
SW846 3050B	Barium, Total	mg/kg	100 N	J	65 N	J	35.1 N	J	37.3 N	J	56.4 N	J	46.5 N	J	616 N	J
SW846 3050B	Chromium, Total	mg/kg	15.9 N	J	13.9 N	J	12.3 N	J	8.62 N	J	60.5 N	J	23.7 N	J	13.5 N	J
SW846 3050B	Copper, Total	mg/kg	77 N	J	63.5 N	J	76.8 N	J	84.6 N	J	89.5 N	J	77 N	J	138 N	J
SW846 3050B	Lead, Total	mg/kg	3.19 N	J	5.53		2.36 B		2.36 B		2.31 B		4.53 B		6.06	
SW846 7471A Prep	Mercury, Total	mg/kg	0.00741 BB	J	0.0333 B		0.0309 B		0.0363 B		0.0305 B		0.0302 B		0.0313 B	
SW846 3050B	Zinc, Total	mg/kg	68.8 N	J	90.1 N	J	91.8 N	J	93.5 N	J	74.9 N	J	76.9 N	J	103 N	J
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	нмх	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	PETN	ug/kg	1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU	
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Tetryl	ug/kg	500 U		500 QU		500 QU		500 QU		500 QU		500 QU		500 QU	
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-7: Soil Sampling Results at MRS 05

Analytic Method	Chemical Name	Report Result Unit	CI-MRS05-S 3/22/201		CI-MRS05-9 3/22/20		CI-MRS05-: 3/22/20		CI-MRS05-: 3/22/20		CI-MRS05- 3/22/20		CI-MRS05-: 3/22/20		CI-MRS05-S 3/22/201	
		Offic		DVQ		DVQ		DVQ		DVQ		DVQ		DVQ		DVQ
	Percent Solids	%	60.6		93.8		94		90.4		92.3		88.8		91	
SW846 3050B	Antimony, Total	mg/kg	7.57 UN	UJ	2.82 BN	UJ	4.88 UN	UJ	5.53 UN	UJ	1.06 UN	UJ	5.43 UN	UJ	4.83 UN	UJ
SW846 3050B	Barium, Total	mg/kg	958 N	J	36.8 N	J	44.8 N	J	407 N	J	262 N	J	626 N	J	543 N	J
SW846 3050B	Chromium, Total	mg/kg	12.8 N	J	8.19 N	J	8.76 N	J	26.9 N	J	14.6 N	J	23.5 N	J	10.8 N	J
SW846 3050B	Copper, Total	mg/kg	171 N	J	75.3 N	J	85.1 N	J	165 N	J	115 N	J	121 N	J	87 N	J
SW846 3050B	Lead, Total	mg/kg	17.3	J	3.13 B		3.45 B		9.98		7.1		12.6		9.31	
SW846 7471A Prep	Mercury, Total	mg/kg	0.0167 BB		0.0234 B		0.0346 B		0.0335 B		0.0434 B		0.0316 B		0.0414 B	
SW846 3050B	Zinc, Total	mg/kg	105 N	J	67.6 N	J	68 N	J	88.6 N	J	58.4 N	J	127 N	J	88.6 N	J
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	НМХ	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	PETN	ug/kg	1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU	
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Tetryl	ug/kg	500 QU		500 QU		500 QU		500 QU		500 QU		500 QU		500 QU	
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U	

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-8: Sediment Sampling Results at MRS 05

		Danast Danish	CI-MRS05-SI	D-01	CI-MRS05-SD-02		
Analytic Method	Chemical Name	Report Result Unit	3/22/201	.1	3/22/20	11	
		Offic		DVQ		DVQ	
	Percent Solids	%	50.7		60.4		
SW846 3050B	Antimony, Total	mg/kg	UN	UJ	UN	UJ	
SW846 3050B	Barium, Total	mg/kg	196 N	J	175 N	J	
SW846 3050B	Chromium, Total	mg/kg	14.3 N	J	13.3 N	J	
SW846 3050B	Copper, Total	mg/kg	149 N	J	130 N	J	
SW846 3050B	Lead, Total	mg/kg	6.29		5.56		
SW846 7471A Prep	Mercury, Total	mg/kg	0.00818 BB		0.0129 BB		
SW846 3050B	Zinc, Total	mg/kg	68.7 N	J	73.3 N	J	
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	нмх	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		
SW846 8330B (no MIS)	PETN	ug/kg	1000 QU		1000 QU		
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	Tetryl	ug/kg	500 QU		500 QU		
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-9: Soil Sampling Results at MRS 07

Analytic Method	Chemical Name	Report Result	CI-MRS07-S 3/21/202		CI-MRS07-: 3/21/20		CI-MRS07-S 3/21/202		CI-MRS07-9 3/21/20	·	CI-MRS07-S 3/21/202		CI-MRS07-: 3/21/20		CI-MRS07- 3/21/20		CI-MRS07-9 3/21/20	
		Unit		DVQ		DVQ		DVQ		DVQ		DVQ		DVQ		DVQ		
	Percent Solids	%	58.8		93		92.8		92.8		94.9		91.1		91.4		88.8	
SW846 3050B	Antimony, Total	mg/kg	1.7 UN	UJ	5.37 UN	UJ	5.3 UN	UJ	5.29 UN	UJ	5.26 UN	UJ	5.49 UN	UJ	0.489 BN	UJ	5.15 UN	UJ
SW846 3050B	Barium, Total	mg/kg	132 N	J	260 N	J	29.6 N	J	118 N	J	134 N	J	129 N	J	317 N	J	272 N	J
SW846 3050B	Chromium, Total	mg/kg	17.8 N	J	17 N	J	11.4 N	J	10.9 N	J	12.2 N	J	22.5 N	J	15.5 N	J	18.8 N	J
SW846 3050B	Copper, Total	mg/kg	173 N	J	170 N	J	193 N	J	124 N	J	109 N	J	143 N	J	194 N	J	225 N	J
SW846 3050B	Lead, Total	mg/kg	8.79 N	J	9.66 N	J	3.4 BN	J	7.05 N	J	4.24 BN	J	7.45 N	J	22.8 N	J	15.3 N	J
SW846 7471A Prep	Mercury, Total	mg/kg	0.0101 BB	J	0.0276 B	J	0.0113 UB	UJ	0.041 B	J	0.0321 B	J	0.0379 B	J	0.0436 B	J	0.0517 B	J
SW846 3050B	Zinc, Total	mg/kg	51.7 N	J	88.5 N	J	66.8 N	J	76.8 N	J	74.6 N	J	61.7 N	J	116 N	J	143 N	J
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	НМХ	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U		1000 U	
SW846 8330B (no MIS)	PETN	ug/kg	1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU		1000 QU	
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	Tetryl	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		500 U		500 U		500 U		500 U		500 U		500 U	

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

Table 3-10: Sediment Sampling Results at MRS 07

		Donout Dooult	CI-MRS07-S	D-01	CI-MRS07-SD-02		
Analytic Method	Chemical Name	Report Result Unit	3/21/201	1	3/21/20	11	
		Offic		DVQ		DVQ	
	Percent Solids	%	32.6		75.3		
SW846 3050B	Antimony, Total	mg/kg	1.97 BN	UJ	0.592 BN	UJ	
SW846 3050B	Barium, Total	mg/kg	369 N	J	24.1 N	J	
SW846 3050B	Chromium, Total	mg/kg	12.6 N	J	2.69 N	J	
SW846 3050B	Copper, Total	mg/kg	151 N	J	11.8 N	J	
SW846 3050B	Lead, Total	mg/kg	20.1 N	J	11.7 UN	UJ	
SW846 7471A Prep	Mercury, Total	mg/kg	0.0338 UB	UJ	0.0768 UB	UJ	
SW846 3050B	Zinc, Total	mg/kg	115 N	J	6.2 N	J	
SW846 8330B (no MIS)	1,3,5-Trinitrobenzene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,4,6-Trinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,4-Dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2,6-Dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	2-Amino-4,6-dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	3,5-Dinitroaniline	ug/kg	1000 U		1000 U		
SW846 8330B (no MIS)	4-Amino-2,6-dinitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	НМХ	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	Nitroglycerin	ug/kg	1000 U		1000 U		
SW846 8330B (no MIS)	PETN	ug/kg	1000 QU		1000 QU		
SW846 8330B (no MIS)	RDX	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	Tetryl	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	m-Dinitrobenzene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	m-Nitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	o-Nitrotoluene	ug/kg	500 U		500 U		
SW846 8330B (no MIS)	p-Nitrotoluene	ug/kg	500 U		500 U		

U – indicates the target analyte was analyzed for but not detected above the detection limit.
 J – indicates an estimated value.
 B – Target analyte was detected in the sample as well as the associated blank
 N – Spiked sample recovery not within control limits
 Q – LCS recovery not within control limits

3.5.1 Employee Process Training Program

- 3.5.1.1 All site personnel received the applicable training as specified in the APP. In addition, UXO-qualified personnel met the qualification standards for personnel conducting MEC operations, as set forth in Department of Defense Explosives Safety Board Technical Paper 18 Minimum Qualifications for UXO Technicians and Personnel (2004).
- 3.5.1.2 Documentation of training requirements for each UXO Technician was reviewed by the SUXOS/UXOSO and filed in on-site project files before personnel were allowed to enter the Exclusion Zone (EZ). No one was permitted to work in an EZ without the appropriate training and medical clearances.

3.5.2 Munitions and Explosives of Concern Quality Assurance / Quality Control Methods Used

- 3.5.2.1 A three-phase control system was used in the implementation of the QC program to ensure that all project work conformed to project DQOs, with the phases being Preparatory, Initial, and Follow-up. The Preparatory Phase included familiarization by project personnel with established DQOs and incorporation of any required follow-up work to ensure the process would pass QC. The Initial Phase was the start of the QC checks on the project process. The Follow-Up Phase included checks conducted after the initial QC check to ensure any discrepancies discovered during the initial QC checks were corrected.
- 3.5.2.2 All of the areas in which surface and subsurface investigations were completed were subjected to a QC analysis by the UXOQCS. All of the investigated areas passed QC inspection.

3.5.2.1 Munitions and Explosives of Concern QC Results

- 3.5.2.1.1 The following QC/QC failure criteria were documented in the Work Plan:
- 3.5.2.1.2 The quality failure criteria will be no MEC item equal to or smaller than the (audible or digital) response of a 20mm projectile, as established within the guidelines of the GPO process at the project start. The Team Leader will notify the SUXOS and / or UXOQCS as soon as the grid or transect segment is completed. The SUXOS will immediately notify the USAESCH on-site representative so that QC and QA checks can be scheduled and completed as soon as possible.
- 3.5.2.1.3 During field work, the project team revised the QC failure criteria to correct an error in the Work Plan and to provide a better standard of quality control. Formal changes to the Work Plan were submitted on 8 February 2011. The

- criteria were specifically revised to "...no metal that produces a signal response equivalent to or greater than the response of a 20mm projectile..."
- 3.5.2.1.4 Within the field the project team identified four transects where the quality of work was questionable based on the outlined failure criteria. Each of these transects were reworked. As a result of the rework, additional items were located; however none were MEC or MD. A portion of the transect segments received a quality assurance check by the CEHNC on-site OE Safety Specialist and none failed. There were no QA failures recorded as a result of the RI field effort.

3.5.3 Munitions Constituents Quality Assurance / Quality Control Samples

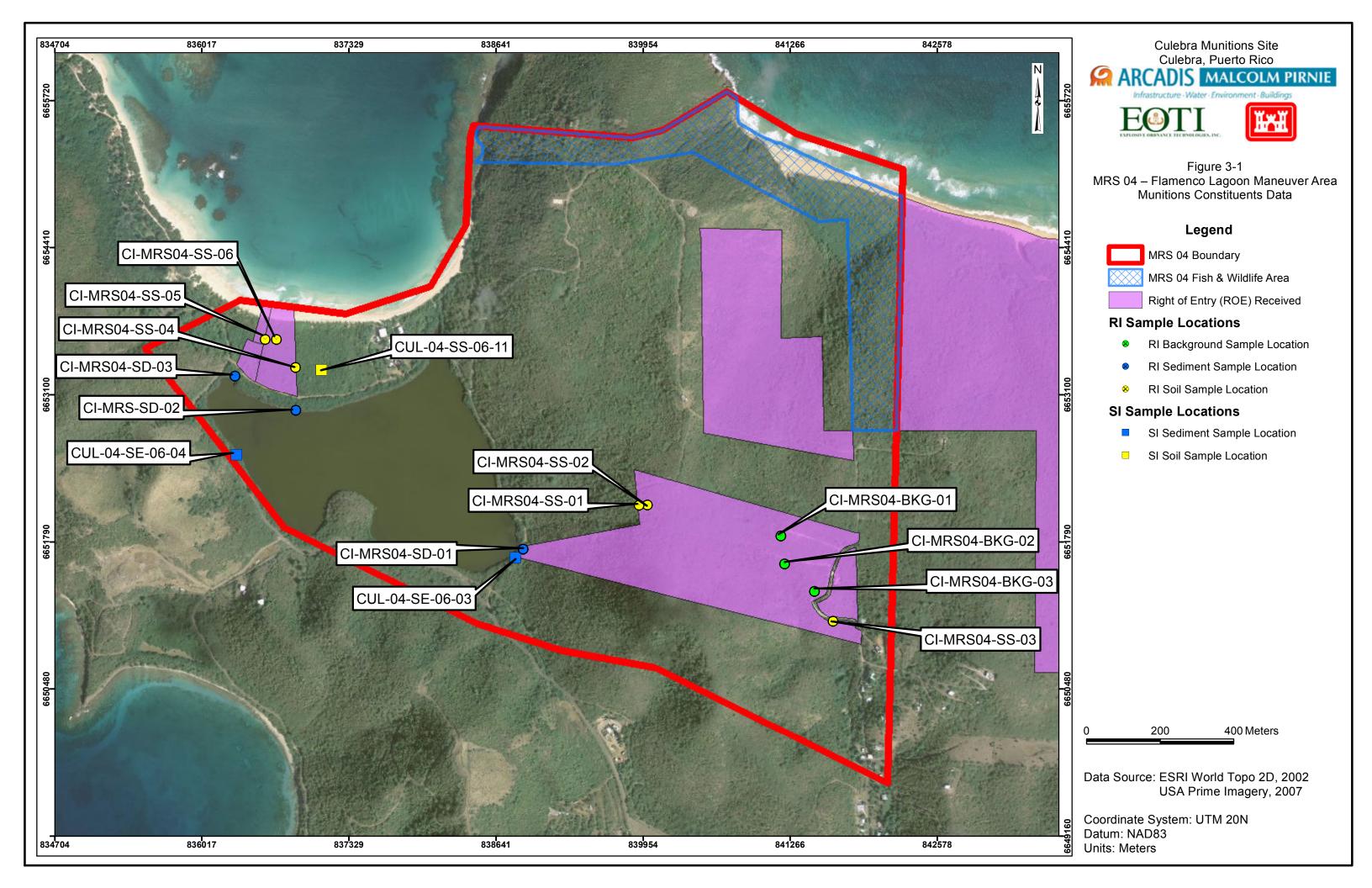
QA and QC procedures for the MC investigation are documented in the QAPP. Samples were analyzed for the purpose of assessing the quality of the sampling effort and the analytical data.

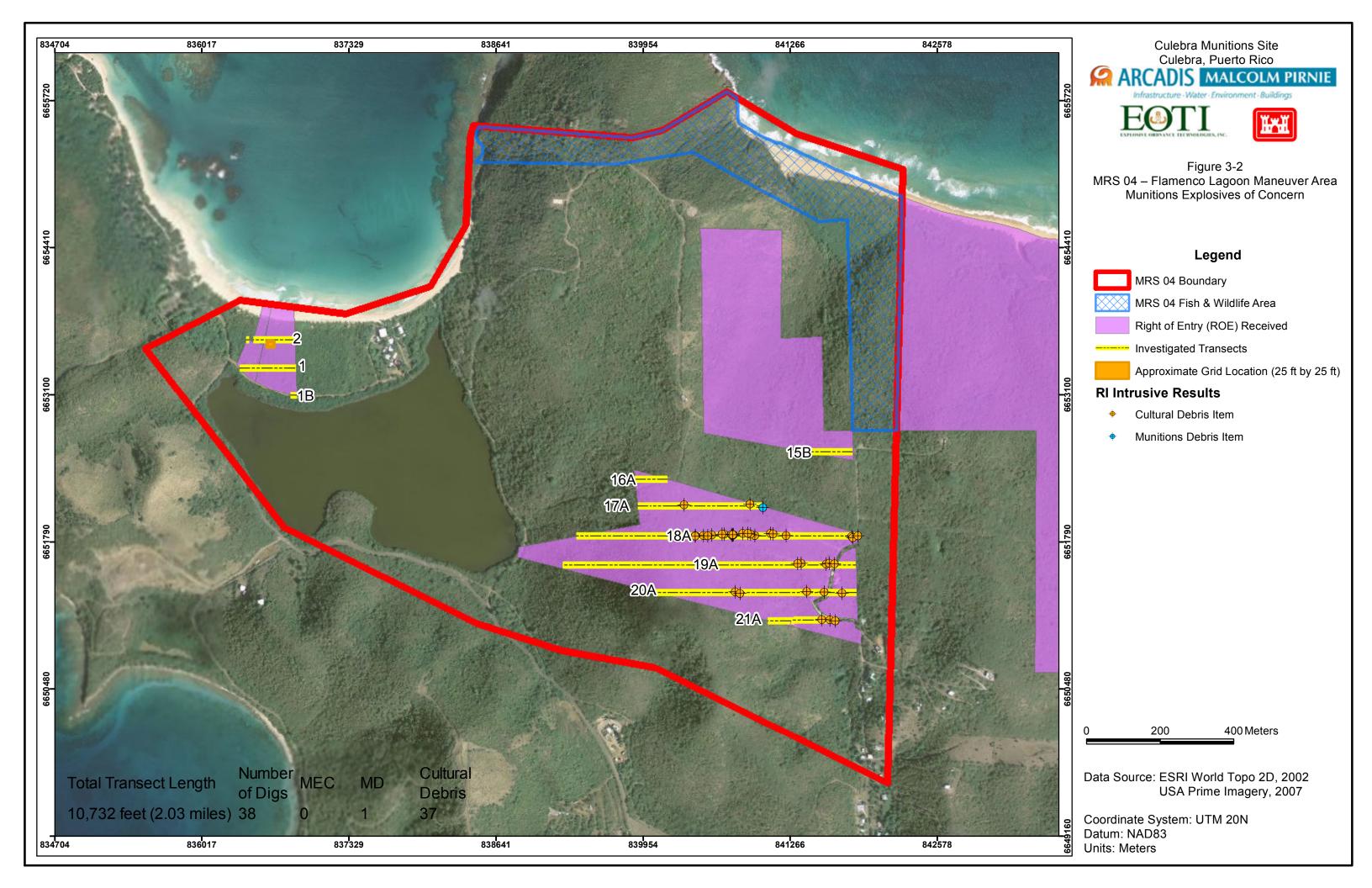
3.5.3.1 QC Samples

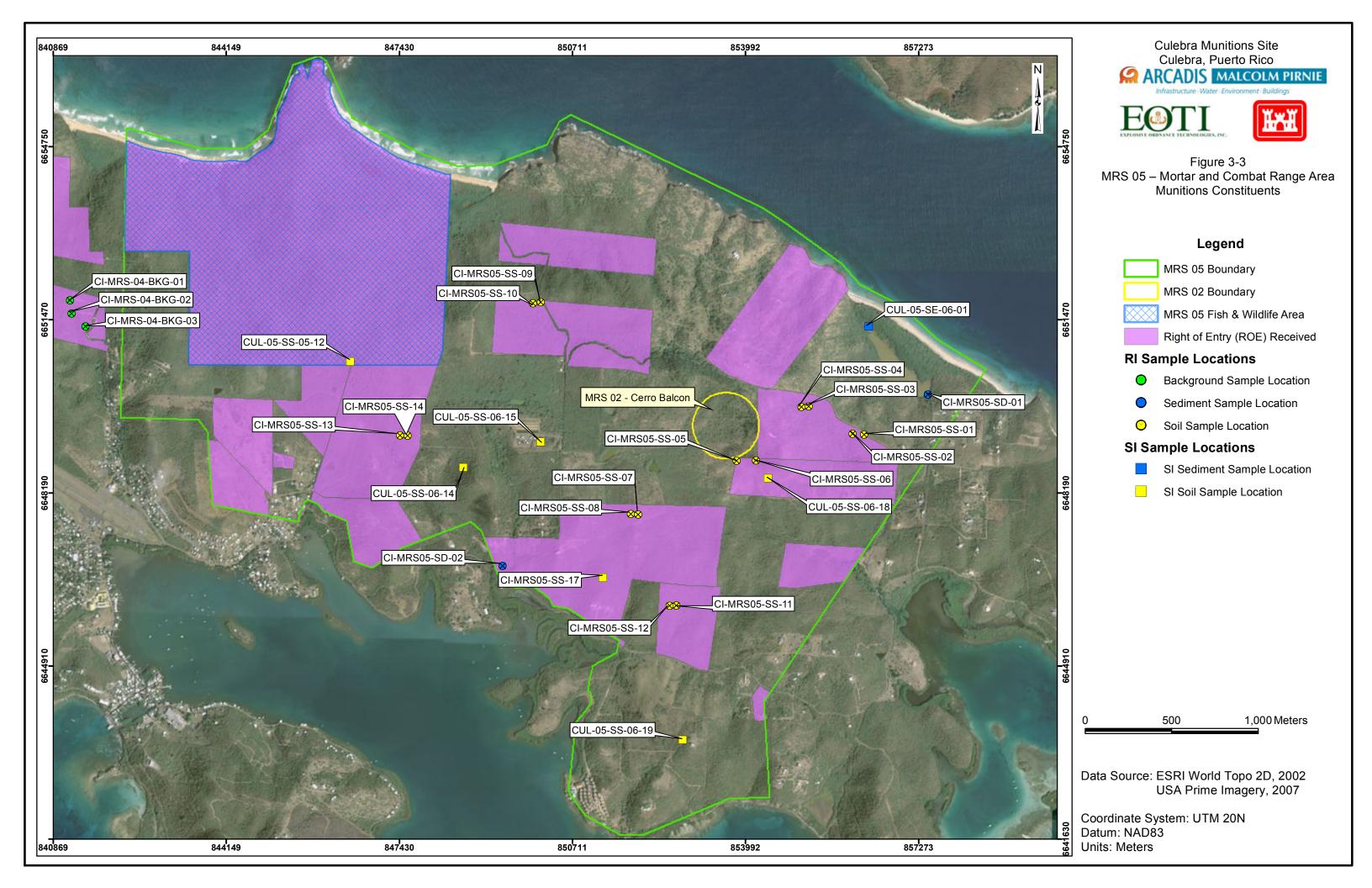
- 3.5.3.1.1 QC for analytical samples was provided through the use of temperature blanks, matrix spike / matrix spike duplicates (MS/MSDs) and field splits samples. The QC samples were handled as regular samples. QC for the analytical samples was provided through the use of field split samples.
- 3.5.3.1.2 The following QC samples were collected for analytical samples (Table 3-11):
 - MSs: Samples were collected to be split in the laboratory and run as MS/MSDs in an amount equal to at least 10% of the field samples for laboratory analysis for soil.
 - Field Splits: Field splits were collected at eight locations over MRS 04, MRS 05, and MRS 07. Field split samples were collected as a single sample that was divided into equal parts before being sent for laboratory analysis. These samples were collected in a quantity equal to at least 20% of the field samples for soil.

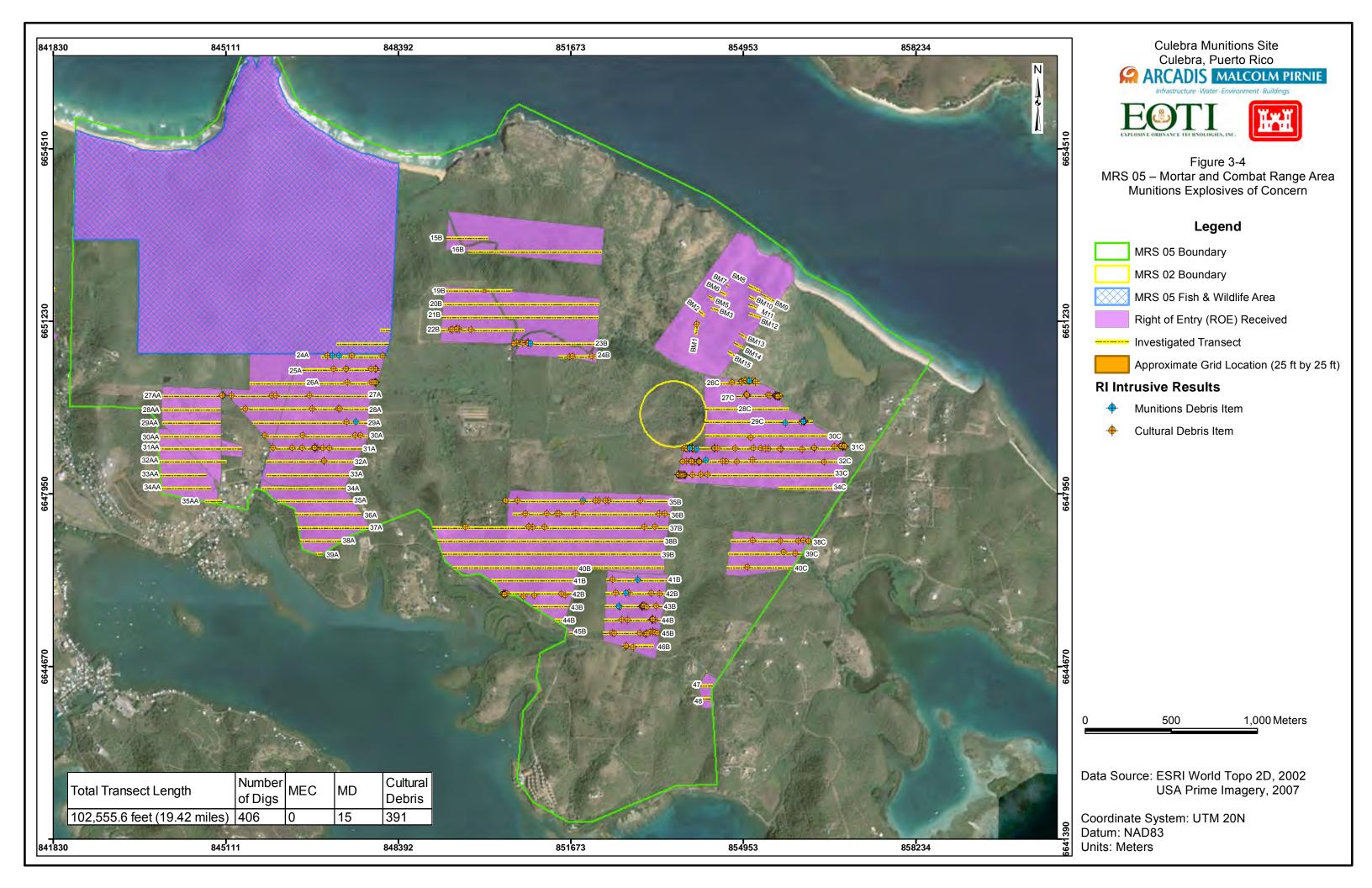
Field Splits Field Splits Number of Analyses

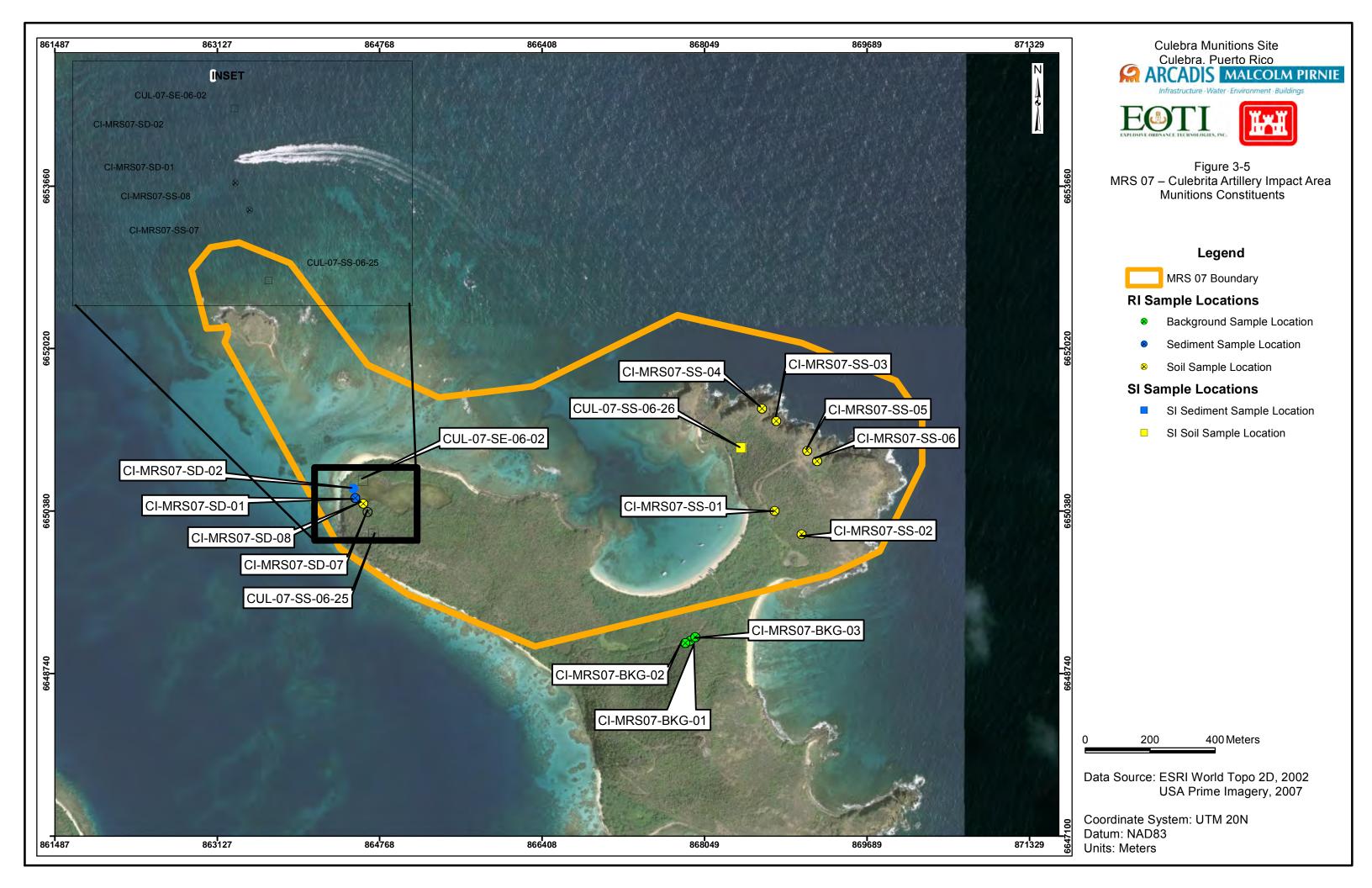
28 4 8 40

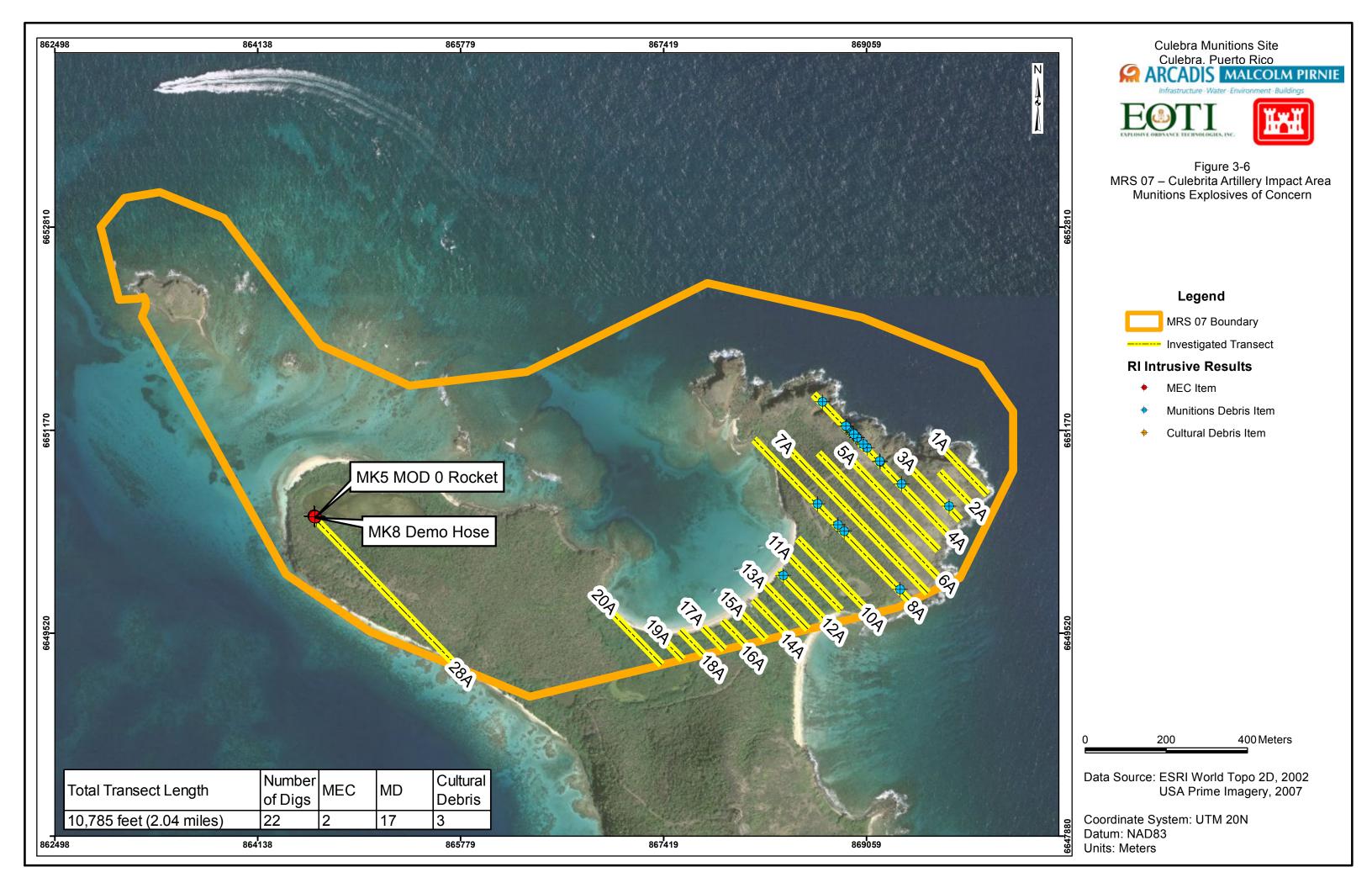

Table 3-11: Quantities of Analyses


3.5.3.2 Quality Assurance Samples


3.5.3.1.3 Eight QA split samples were collected during the sampling effort, as identified in the approved Work Plan. These samples were sent to a separate QA lab, and were validated separately from the primary samples.


3.5.3.3 Data Quality Controls


- 3.5.3.3.1 An independent third party conducted analytical data validation for this project and Data Validation Reports are provided in Appendix C. Objectives for this review are in accordance with the QA/QC objectives stated in the QAPP. Outlying data were flagged, as appropriate, in accordance with laboratory Standard Operating Procedures.
- 3.5.3.3.2 Validation activities were performed in accordance using the "USEPA National Functional Guidelines (NFG) for Inorganic Data Review, October 2004 (EPA 540-R-04-004)" as guidance, as per the QAPP.



4 REVISED CONCEPTUAL SITE MODEL AND RI RESULTS

RI fieldwork for Culebra Island was conducted from October 2010 to March 2011. A revised CSM has been created based on the results of the RI fieldwork and risk assessment conducted for each MRS. The starting point for this effort was the CSM established during the Historical Records Review/SI and presented at the TPP meetings. The following presents the amended CSM for MRS 02, MRS, 04, MRS 05, and MRS 07 at Culebra Island. Historical use of the sites was presented in Section 1. The physical profile for Culebra Island can be found in Section 2, which remains unchanged. Figures 4-1, 4-2, 4-3, and 4-4 present the 3D graphical CSMs for each MRS, which visually illustrate receptors, source, and land use activities for each MRS.

4.1 MEC AND MC PROFILE FOR MRS 02, 04, 05, AND 07

Table 4-1: Munitions and MC Release Profile Culebra Island MRSs

	4-1. Municions and Mc Release Frome Calebra Island MR55								
Information Type	Summary Information								
Types of Munitions Historically Used	MRS 02 (Cerro Balcon) - Mortar: 81mm HE and practice; 75mm practice								
	MRS 02 (Cays) – Bombs: Guided Projectile (GP): Mk 81; Mk 82; Mk 83; Mk 84 GP Practice Bomb: MK 76, 100 lb. bomb, Rocket: 5-inch Zuni; 5-inch; Tiny Tim 11.75-inch Mk 1 mod 0; general rockets Practice Rocket: Mk 8, 2.75- inch; Projectiles: HEI Projectile: 20mm; 76mm; 105mm HE Projectile: M1; 155mm; 75mm; 37mm AP: 8-inch Mk 21; 16-inch Mk 5; 7-inch; 8-inch; 3-inch; 6- inch; 12-inch shell; 3-inch shell 5-inch Flat Nose; 5-inch common; 5-inch HE; 5-inch Naval; 6-inch; 4-inch shrapnel; 3-inch HE; 3-inch shrapnel; 14- inch projectile; 12-inch; Mortar: 81mm HE and practice; 3-inch, HE MK1; 4.2-inch HE M329A1; Torpedo: General Navy Aircraft flares								
	WRS 04 - Mortar: 81mm HE and practice; 75mm projectiles								
	MRS 05 - Mortar: 81mm HE and practice; 75mm projectiles								
	MRS 07 - Bombs: GP Bomb: Mk 44, 45, 82, 500-pound; Rocket: 2.75-inch; Projectile: 75mm; 20mm HE								
Identified MEC and	MRS 02 – Cerro Balcon								
MD (Previous	1995 ASR: Munitions debris identified (fragments of mortars)								
Investigations and	1997 EE/CA: Munitions debris								
RI)	• 2006 NTCRA: MEC and MD, 3-inch common MK3, MOD 7, 81 mm mortars, fuzes								
	2007 SI: No data collected								
	2011 RI: No data collected								
	MRS 02 – Cays								
	 1995 ASR: Munitions debris found on Cayos Geniqui (MK 80 series bomb) and Cayo Agua (MK 76 practice bomb). 500-lb bombs identified west of Cayo Ballena and Cayo Geniqui in the water (MEC). Torpedo reported east of Cayo Geniqui in the water (MEC). 								

Information Type	Summary Information					
iniormation type						
	 1997 EE/CA: MK 76 practice bombs and 76mm projectile at Cayo Agua; munitions debris found on Cayo Lobo 2006 NTCRA: fuzes, 5-lb and 25-lb practice bombs, 5-inch 54 MK 41 found on Cayo Lobo 2007 SI: munitions debris from MK 80 series bomb and MK 76 practice bombs at Cayo Agua. 2011 RI: No data collected 					
	MRS 04 – Flamenco Lagoon Maneuver Area					
	1995 ASR: MD found on Flamenco Beach					
	• 2007 SI: No MEC or MD					
	2008 NTCRA: MEC 5-inch projectile					
	2011 RI: no MEC; frag identified					
	MRS 05 – Mortar and Combat Range Area					
	1995 ASR: MD from a 3-inch stokes mortar					
	2007 SI: MD from a 4.2-inch mortar base and .30 cal catridges					
	• 2011 RI: no MEC; MD included frag, .30 cal cartridges, 81 mm mortar, 4.2-inch mortar base, SAA debris.					
	 MRS 07 – Culebrita Artillery Impact Area 1995 ASR: MD from MK 76 / MK 80 practice bombs and HE bon fragments found on Cayo Botella 					
	 1997 EE/CA: MEC and MD including MK 76 practice bombs and 6-inch naval gun at Cayo Botella; 20 mm HEI projectiles at Culebrita 2007 SI: MD including mechanical time fuze 2008 NTCRA: MEC 20-mm projectiles; MD 					
	 2011 RI: MEC included MK5 Mod 0 Rocket and MK8 demo hose; MD included expended flare, 20mm, rotating band, PTTF, brass frag, fuze body, 3-inch projectile 					
MEC Density	MRS 02 – Cerro Balcon MEC has been previously identified; however, a removal action has been completed. As such MEC density is considered negligible at the surface. Subsurface MEC density is unknown due to lack of ROEs.					
	MRS 02 – Cays MEC has been identified on Cayo Agua and Cayo Lobo. The rest of the cay inaccessible to confirm MEC presence or density. A surface clearance has conducted at Cayo Lobo. MEC density is considered moderate for all of the outside of removal areas based on previous investigations. Table 1-1 s quantities of MEC at MRS 2.					
	MRS 04 – Flamenco Lagoon Maneuver Area One MEC item was identified at Flamenco Beach during the NTCRA in 2008. Due to the removal action completed, Flamenco Beach is considered low density. No other MEC has been found on MRS 4 during previous investigations or this RI. As such, the MEC density is considered to be low.					
	MRS 05 – Mortar and Combat Range Area No MEC items have been found at MRS 5, during previous investigations or the RI. As such, MEC density is considered to be low.					
	MRS 07 – Culebrita Artillery Impact Area Significant quantities of MEC have been identified at MRS 7 during the EE/CA (see table 1-1). MEC was also found during the NW beach removal action in 2008					

Information Type	Summary Information			
	and the RI. As such, MEC density is considered to be moderate except i			
	locations that have a removal action completed, which are low density.			
Associated MC	MRS 02 – Cerro Balcon			
	HHRA: No COPCs were identified.			
	SLERA: COPECs include antimony, barium, chromium, copper, mercury and zinc.			
	MRS 02 – Cays			
	HHRA: No COPCs were identified.			
	SLERA: COPECs include antimony, barium, chromium, copper, mercury, and zinc.			
	Risk identified to be low.			
	MRS 04 – Flamenco Lagoon Maneuver Area			
	HHRA: No COPCs were identified.			
	SLERA: COPECs include chromium, copper, lead, mercury. Risk identified to be			
	low.			
	MRS 05 – Mortar and Combat Range Area			
	HHRA: No COPCs were identified.			
	SLERA: COPECs include barium, chromium, mercury, lead and copper. Risk			
	identified to be low.			
	MRS 07 – Culebrita Artillery Impact Area			
	HHRA: No COPCs were identified.			
	SLERA: COPECs include barium, chromium, copper, lead, and zinc. Risk identified			
	to be low.			

4.2 Land Use and Exposure Profile

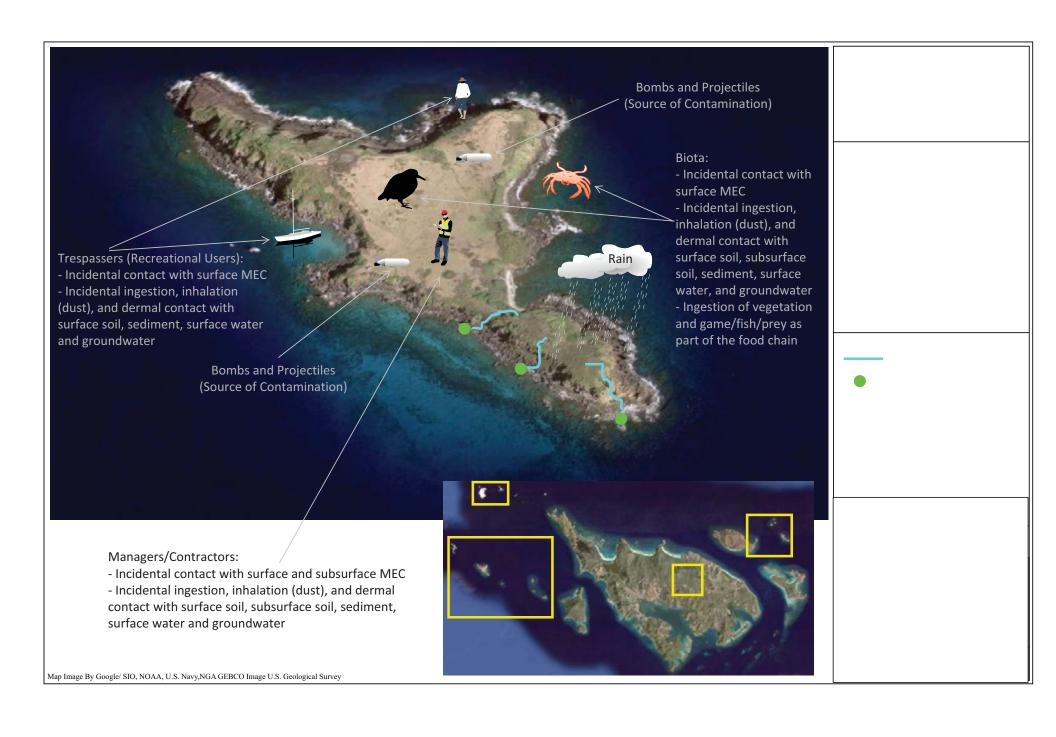
Table 4-2: Human Receptors – Culebra Island MRSs

	MRS	502	MRS04	MRS05	MRS07
	Cerro Balcon	Adjacent	Flamenco	Mortar	Culebrita
Potential Human		Cays	Lagoon	and	Artillery
Receptor Population			Artillery	Combat	Impact Area
			Impact Area	Range	
Compart Forescent Second				Area	
Current Exposure Scenario				1	T
Residents	Υ	N	Υ	Υ	N
Outdoor Site Workers	N	Υ	Υ	Υ	Υ
Construction/Utility Workers	Υ	N	Υ	Υ	N
Recreationists/Visitors/Tourists	N	N*	Υ	Υ	Υ
Trespassers	Υ	Υ	Υ	Υ	Not applicable
Future Exposure Scenario					
Residents	Υ	N	Υ	Υ	N
Construction Workers	Υ	N	Υ	Υ	N
Outdoor Site Workers	Υ	Υ	Υ	Υ	Υ
Construction/Utility Workers	Υ	N	Υ	Υ	N
Recreationists/Visitors/Tourists	N	N*	Υ	Υ	Υ
Trespassers	Υ	Υ	Υ	Υ	Not applicable

Y - indicates receptor population was identified for this MRS

N - indicates receptor population is not present at this MRS

^{*} Recreational users present at the Cays are considered trespassers


Outdoor site workers include contractors and refuge workers.

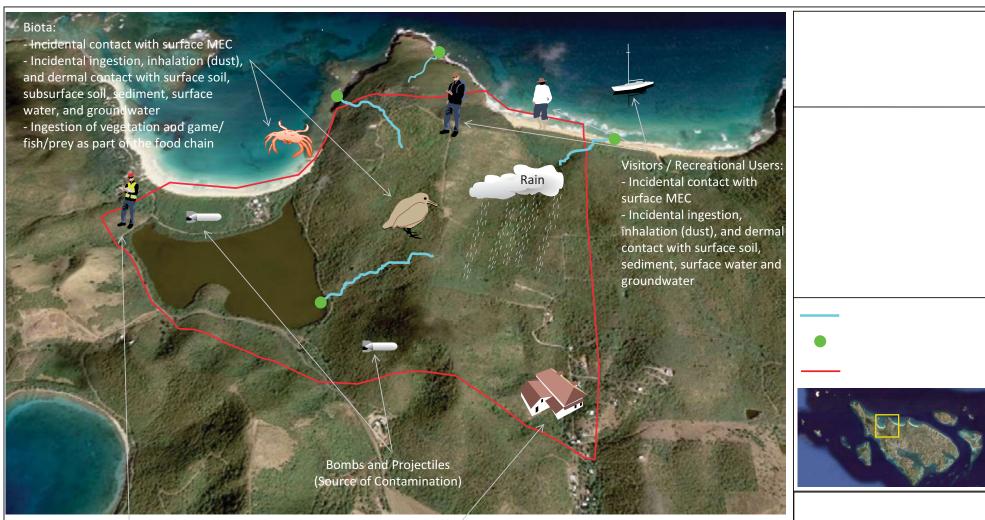
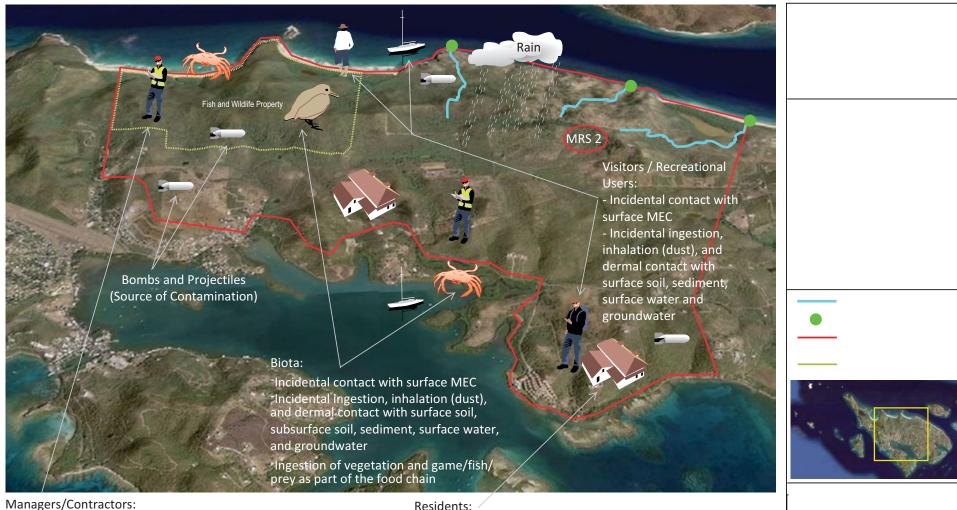

Indoor site workers/visitors were not included as potential human receptor populations, because their exposure is expected to be less than that of outdoor site workers. Evaluation of outdoor site workers is considered protective of indoor workers/visitors as well.

Table 4-3: Land Use and Exposure Profile – Culebra Island MRSs

Information Needs	Preliminary Information
Current Land Use /	MRS 02 – Cerro Balcon: Residential; undeveloped
Activities	MRS 02 – Cays: USFW (protected species areas); trespassers for recreational use. Public use restricted other than USFW workers. Signs indicating no trespassing were posted several years ago but have not been maintained or replaced as needed. The condition or number of remaining signs has not been verified. While access to all of the cays is prohibited, Cayo Lobo and Cayo Yerba are more accessible by recreational users (trespassers). These cays are slightly larger than the others on which small beaches facilitate access during low tide and good weather conditions. MRS 04 – Flamenco Lagoon Maneuver Area: Tourist / recreational use (beach); undeveloped land (wildlife area); residential; construction activities
	MRS 05 – Mortar and Combat Range Area: Residential; wildlife refuge; recreational; cattle crazing; construction activities
	MRS 07 – Culebrita Artillery Impact Area: USFWS area; limited accessibility but recreational activities permitted on trails and beaches.
Potential Future Land Use / Activities	It is anticipated that the land use will remain the same for MRS 02 – Cays, and MRS 07. Additional residential development is likely for MRS 4 and 5. There is also potential commercial development for MRS 4.
Land Use Restrictions	MRS 02 — Cays, MRS 07, and the wildlife refuges on MRS 04 and MRS 05 are managed by USFWS and have restricted access. Public access is not permitted at the Cays. Although not permitted, some of the Cays are frequented by recreational users (primarily Cay Lobo and Cay Yerba).
Beneficial Resources	MRS 02 – Cays, MRS 07, and portions of MRS 04 and 05 are National Wildlife Refuge areas. Sensitive habitats exist in these areas.
Demographics/ Zoning	The island is inhabited at an average density of 71.8 persons per square mile even though the population is concentrated near the town of Dewey and the Airport. Of the four MRSs only MRS 04, with 389, and MRS 05, with 553, has any residents within ¼ of a mile of the site. Residents living ¼ to ½ miles from the MRSs are as follows: MRS 02 (11), MRS 04 (378), MRS 05 (475), and MRS 07 (0). Residents living 1/2 to 1 mile from the MRSs are as follows: MRS 02 (29), MRS 04 (777), MRS 05 (783), and MRS 07 (18).
Flora and Fauna	See section 6.1.2.3

Information Needs	Preliminary Information
Cultural Resources	According to the National Register Information System, National Historic Landmarks list, National Heritage Areas list, and National Park Service there is only one registered cultural resource within the boundaries of the Culebra Island site. On Culebrita (MRS 07) is an historic lighthouse called Faro Isla de Culebritas. The lighthouse is not open to the public due to building deterioration. According to the Puerto Rico State Historic Preservation Office there are no known architectural resources within the boundaries of the Culebra Island site; however, an architectural survey has not yet been conducted for Culebra.

Managers/Contractors:


Incidental contact with surface and subsurface MEC Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water and groundwater

Residents:

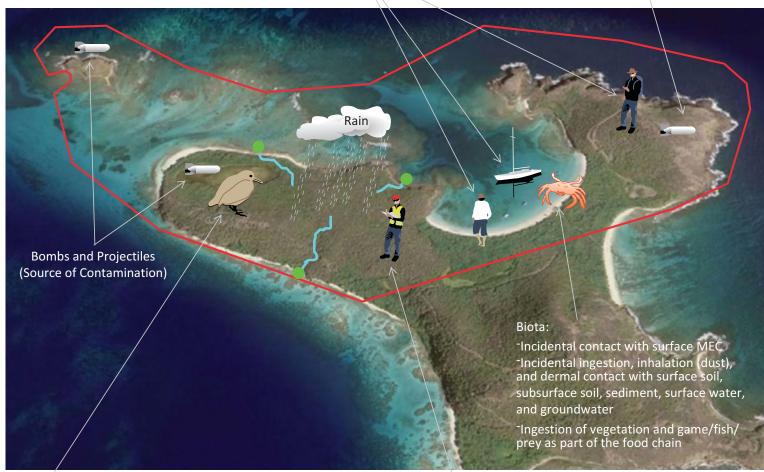
Incidental contact with surface and subsurface MEC Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water and groundwater

⁻Ingestion of vegetation and game/fish/prey as part of the food chain

Map Image By Google/ SIO, NOAA, U.S. Navy,NGA GEBCO Image U.S. Geological Survey

Managers/Contractors:

Incidental contact with surface and subsurface MEC Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water and groundwater


- Incidental contact with surface and subsurface MEC
- Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water and groundwater
- Ingestion of vegetation and game/fish/prey as part of the food chain

Map Image By Google/ SIO, NOAA, U.S. Navy,NGA GEBCO Image U.S. Geological Survey

Visitors / Recreational Users:

- Incidental contact with surface MEC
- Incidental ingestion, inhalation (dust), and dermal contact with surface soil, sediment, surface water and groundwater

Bombs and Projectiles (Source of Contamination)

Biota:

- Incidental contact with surface MEC
- Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water, and groundwater
- Ingestion of vegetation and game/fish/prey as part of the food chain

Managers/Contractors:

Incidental contact with surface and subsurface MEC Incidental ingestion, inhalation (dust), and dermal contact with surface soil, subsurface soil, sediment, surface water and groundwater

Map Image By Google/ SIO, NOAA, U.S. Navy,NGA GEBCO Image U.S. Geological Survey

5 CONTAMINANT FATE AND TRANSPORT FOR MEC AND MC

5.1 Contaminant Fate and Transport Pathway Analysis for MEC and MC

- 5.1.1 The following sections include a discussion of exposure pathways for MEC and MC based on historical information, previous investigations, and RI field activities. Exposure pathways diagrams based on the results of the RI (and previous investigations) showing either incomplete, complete, or potentially complete pathways are presented in the sections below for MEC and MC, respectively.
- 5.1.2 Three types of exposures pathways are considered for each receptor of MEC and/or MC: incomplete, complete, and potentially complete. An exposure pathway consists of four elements: 1) a source and mechanism of chemical release, 2) a retention or transport mechanism, 3) a point of potential human contact with the contaminated medium, and 4) an exposure route at the contact point (USEPA, 1989). If any one of these elements is missing, the exposure pathway is incomplete. An incomplete pathway indicates that no receptor pathway exists, or there is evidence that MEC or MC does not exist. A complete pathway indicates a receptor has an available exposure route to be exposed to MEC or MC. A potentially complete pathway indicates that there is a data gap within information (it is uncertain whether or not a receptor can come into contact with MEC or MC or whether MEC or MC exists).

5.1.1.1 MEC Pathway Analyses

5.1.1.1.1 MRS 02 - Cerro Balcon and Adjacent Cays

The pathway analysis for MRS 02 has been separated for Cerro Balcon and the Cays because the areas have different land uses and receptors. Cerro Balcon is located within and is completely surrounded by MRS 05 and includes residential and undeveloped areas. The adjacent cays, which are part of MRS 02, are managed by the USFWS and public access is restricted. While visiting the adjacent cays is difficult, due to the rough terrain and lack of access locations, and prohibited by USFWS, recreational users are known to trespass on the cays. While access to all of the cays is prohibited, Cayo Lobo and Cayo Yerba are more accessible by recreational users (trespassers). These cays are slightly larger than the others on which small beaches facilitate access during low tide and good weather conditions.

5.1.1.1.2 Cerro Balcon

The MEC pathway analysis for Cerro Balcon, Figure 5-1, shows that there are incomplete pathways for all human and ecological receptors of MEC on the surface based on the surface clearance activities that have been conducted (2006). Because a subsurface clearance has not been completed for this area and MEC has been found during previous investigations, complete exposure pathways exist in the subsurface soil for human receptors, such as contractors who may need to access underground utilities in the subsurface soil or may perform intrusive work during future construction activities,

and residents and visitors who may disturb subsurface soil. The subsurface pathway is also complete for biota that may nest or burrow at the MRS.

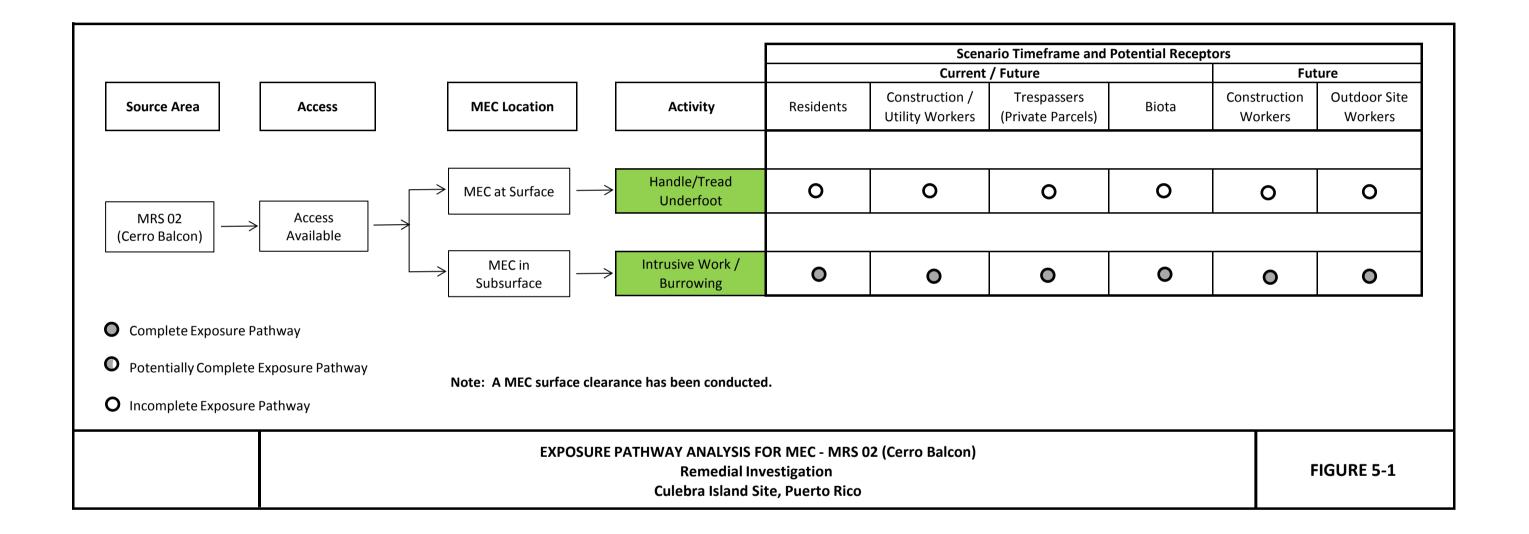
5.1.1.1.3 Adjacent Cays

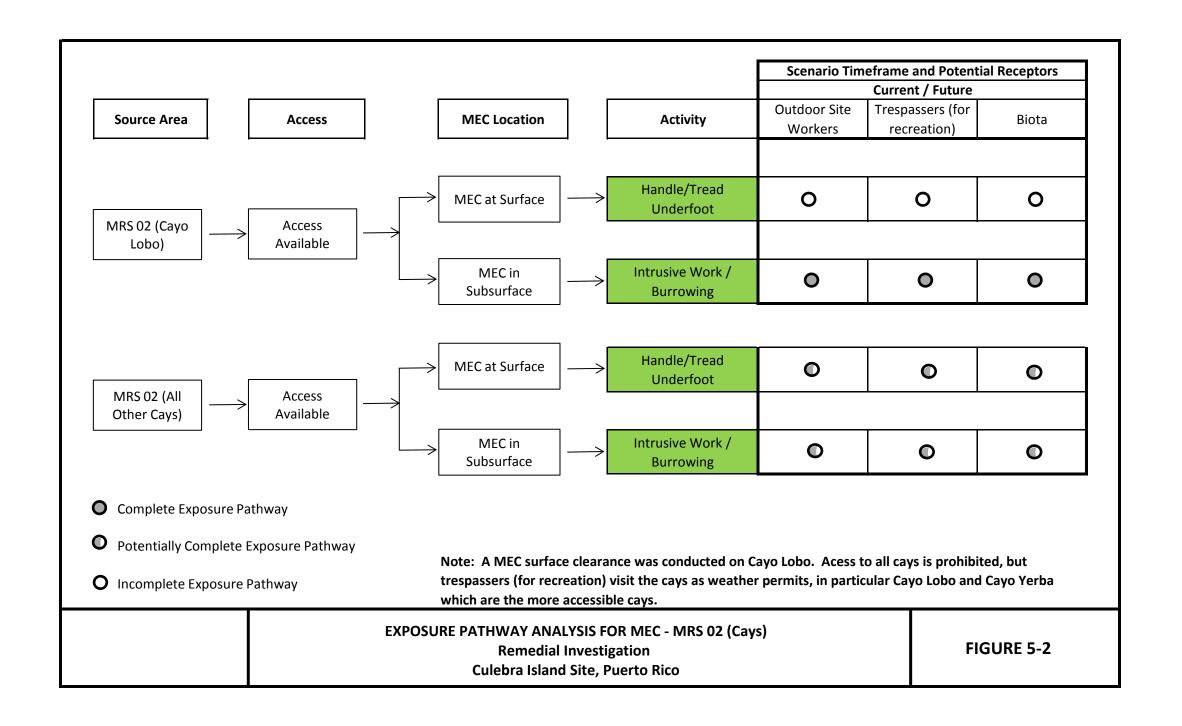
The MEC pathway analysis for the adjacent cays, Figure 5-2, shows that there are potentially complete pathways for all human and ecological receptors of MEC on all of the cays with the exception of Cayo Lobo, where a surface clearance has been conducted. This represents a data gap; due to inaccessibility, very little field work has been conducted on the majority of the cays. MEC is suspected in all of the cays. For Cayo Lobo, subsurface pathways to MEC are complete since MEC has been confirmed but no subsurface clearance has been conducted. Cayo Lobo and Cayo Yerba are the two cays suspected to be frequented by recreational users (trespassers).

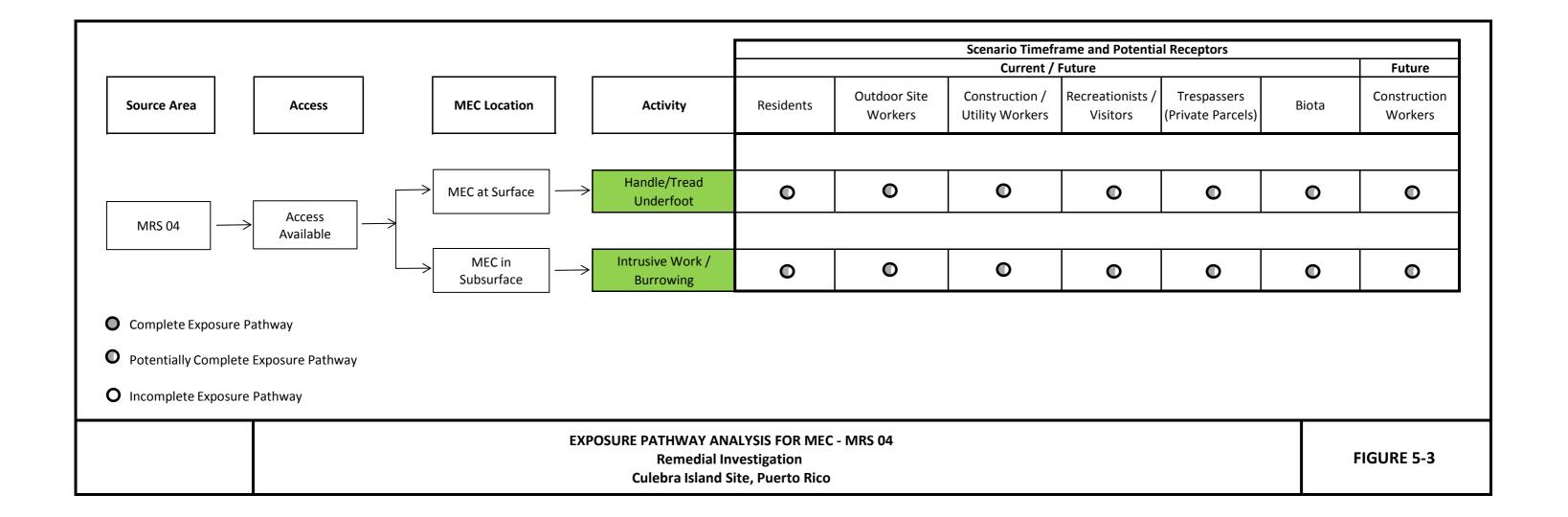
5.1.1.1.4 MRS 04 - Flamenco Lagoon Maneuver Area

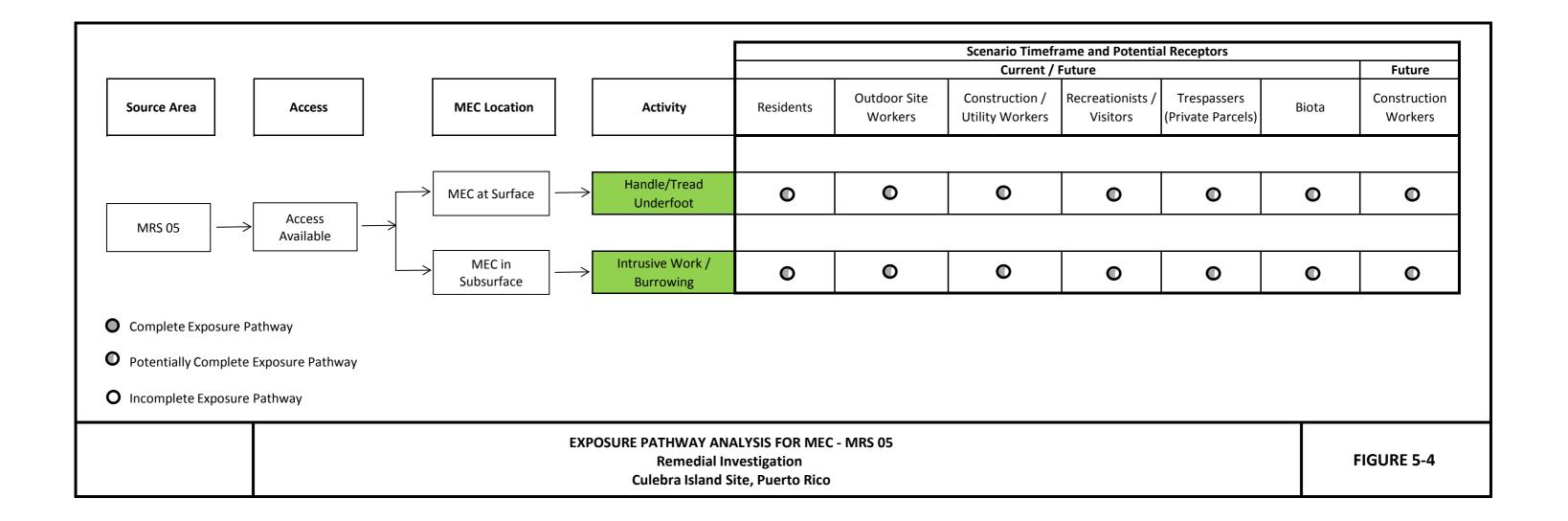
The MEC pathway analysis for MRS 04, Figure 5-3, shows that there are potentially complete pathways for all human and ecological receptors of MEC based on the results of previous investigations, this RI, and existence of data gaps. Because large portions of this MRS could not be investigated due to lack of ROEs, MEC characterization could not be completed in these areas. Munitions debris has been found in MRS 4 suggesting that MEC could be present. No MEC was found during the RI or previous investigations other than at Flamenco beach during the removal action. Exposure pathways include receptors for handle/treads underfoot contact (surface), as well as surface intrusive work that may be conducted. Potentially complete exposure pathways also exist in the subsurface soil for human receptors, such as contractors who may need to access underground utilities in the subsurface soil or may perform intrusive work during future construction activities, and residents and recreational visitors who may disturb subsurface soil. The subsurface pathway is also potentially complete for biota that may nest or burrow at the MRS.

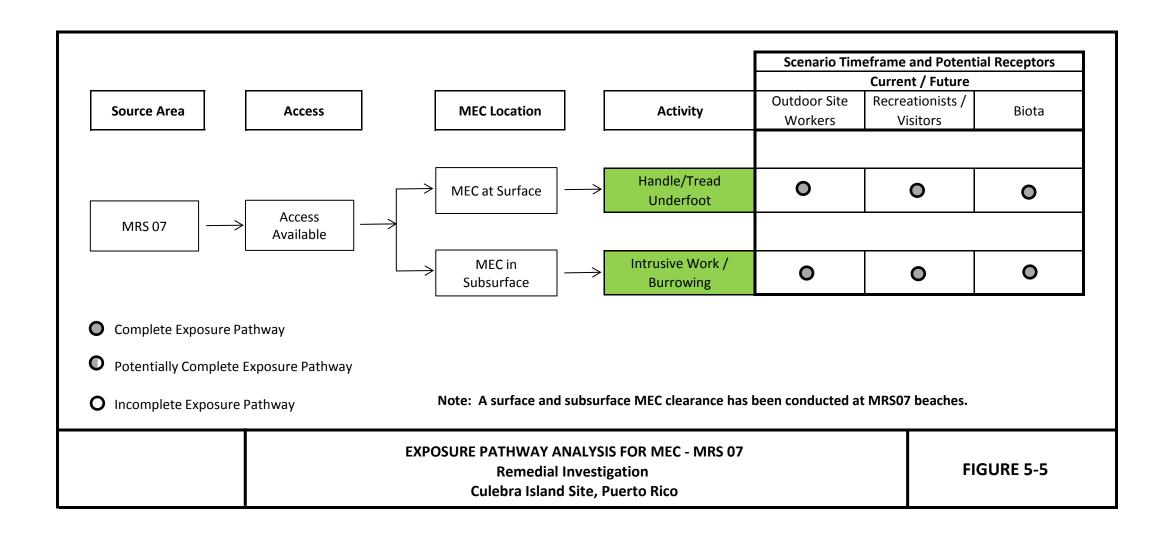
5.1.1.1.5 MRS 05 – Mortar and Combat Range Area

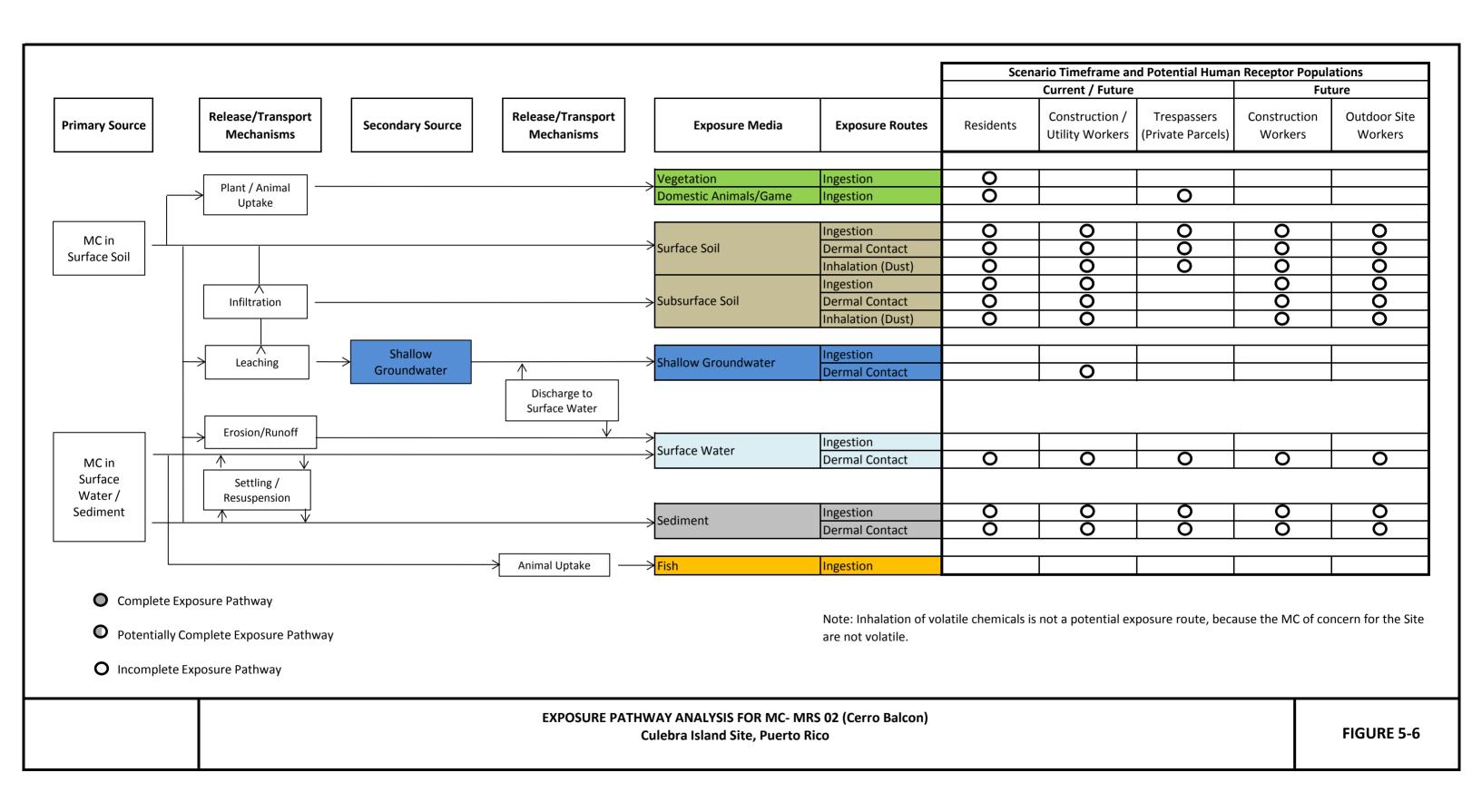

The MEC pathway analysis for MRS 05, Figure 5-4, shows that there are potentially complete pathways for all human and ecological receptors of MEC based on the results of previous investigations, the RI and existing data gaps. Because large portions of this MRS could not be investigated due to lack of ROEs, MEC characterization could not be completed in these areas. Munitions debris has been found in MRS 5 suggesting that MEC could be present. No MEC was found during the RI or previous investigations. Exposure pathways include receptors for handle/treads underfoot contact (surface), as well as surface intrusive work that may be conducted. Potentially complete exposure pathways also exist in the subsurface soil for human receptors, such as contractors who may need to access underground utilities in the subsurface soil or may perform intrusive work during future construction activities, and residents and recreational visitors who may disturb subsurface soil. The subsurface pathway is also potentially complete for biota that may nest or burrow at the MRS.

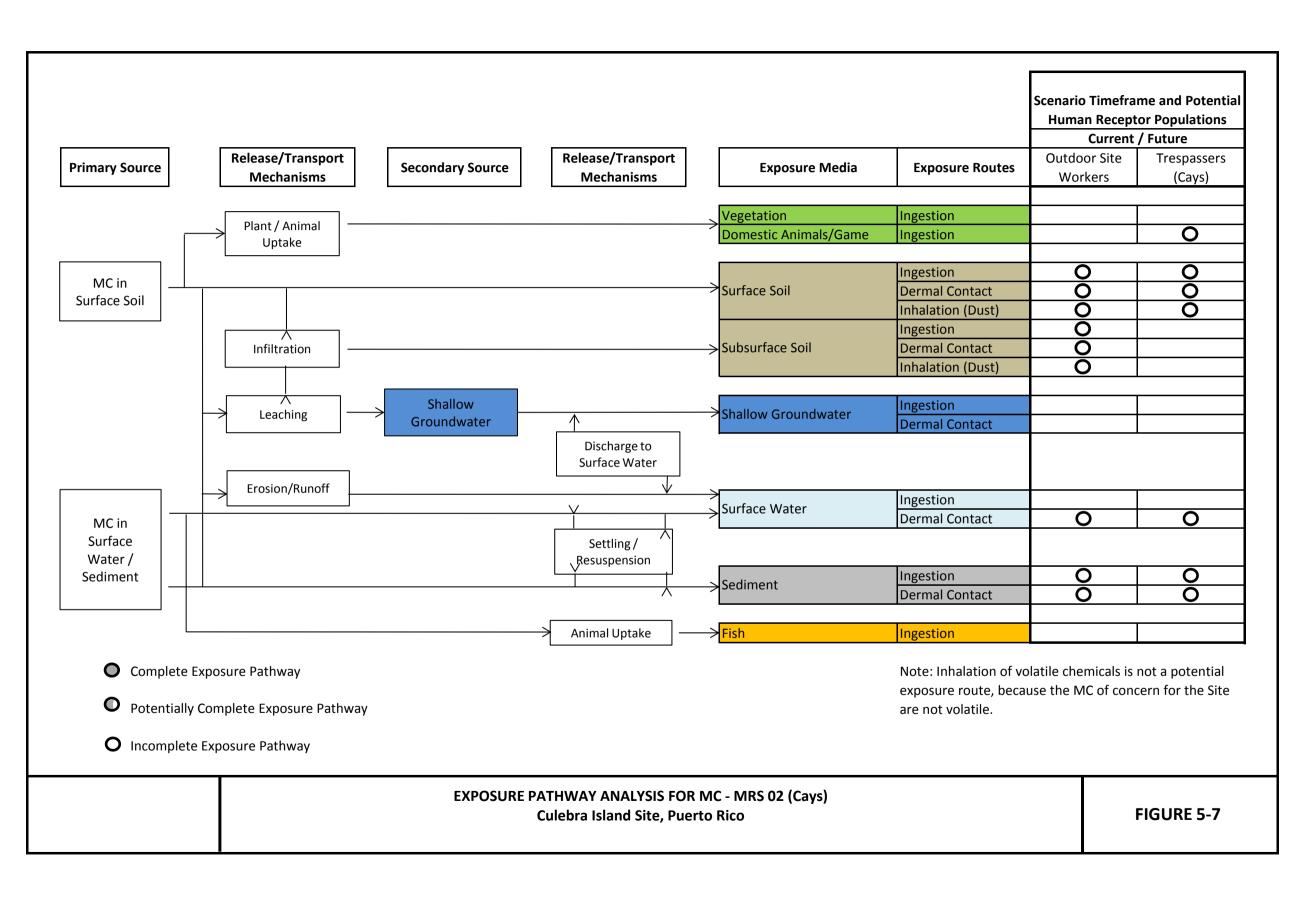

5.1.1.1.6 MRS 07 – Culebrita Artillery Impact Area

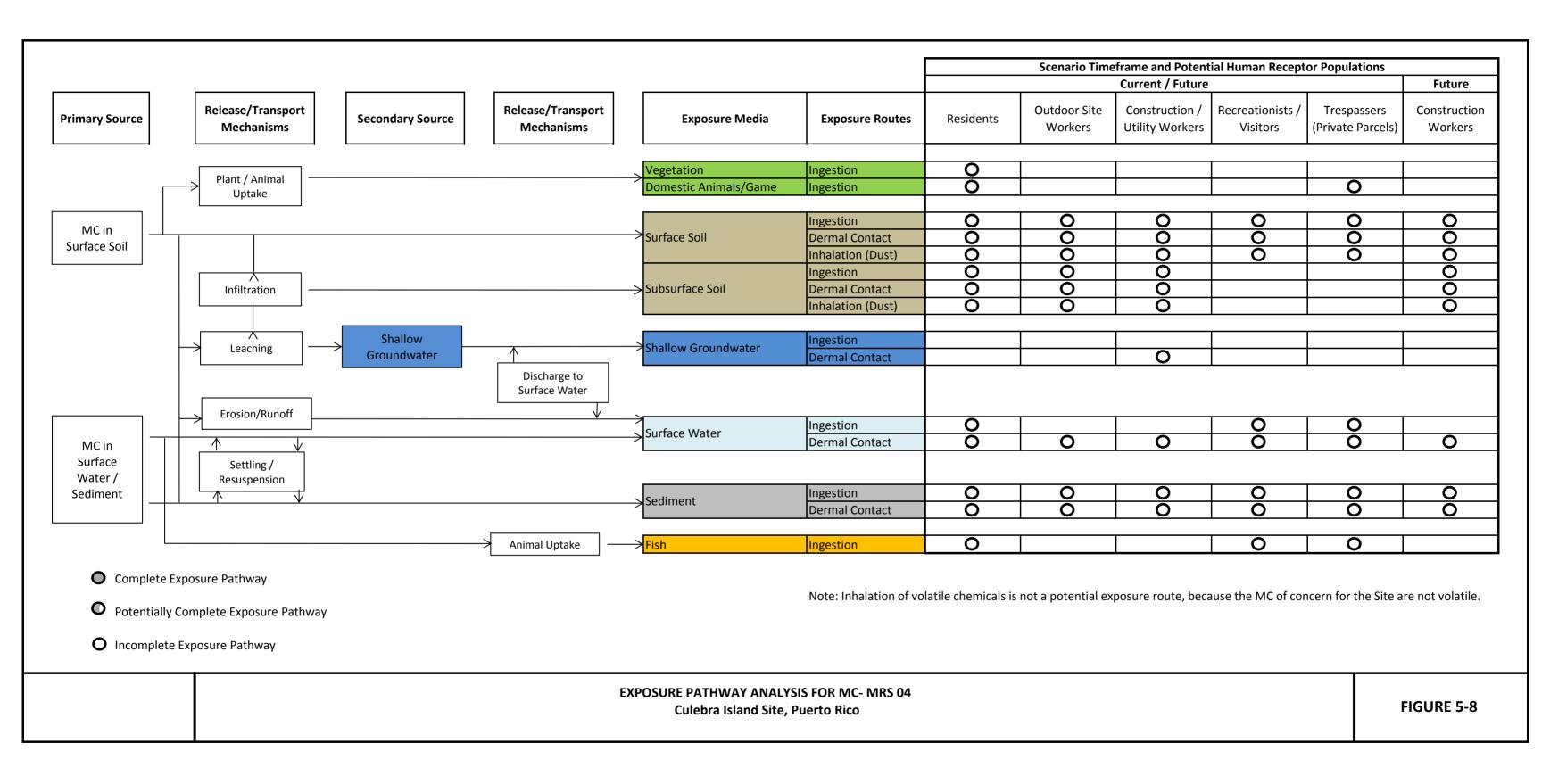

The MEC pathway analysis for MRS 07, Figure 5-5, shows that there are complete pathways for all human and ecological receptors of MEC based on the results of the RI field work and previous investigations. MEC was identified on MRS 7. This includes receptors for handle/treads underfoot contact (surface), as well as surface intrusive work that may be conducted. Complete exposure pathways also exist in the subsurface soil for human receptors, such as outdoor site workers who may perform intrusive work and recreational visitors who may visit the site and disturb subsurface soil. The subsurface pathway is also complete for biota that may nest or burrow at the MRS.

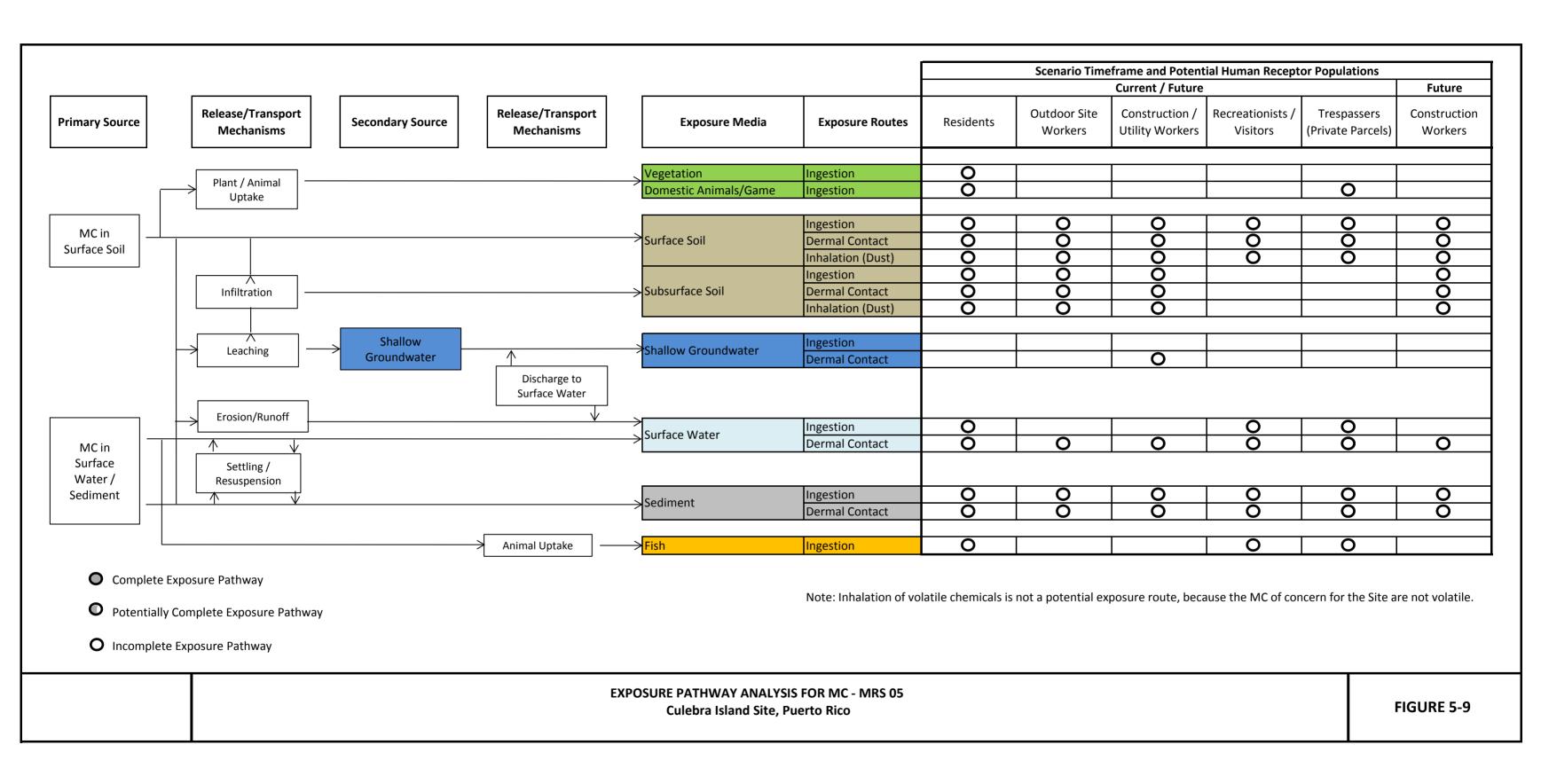

5.2.1 MC Pathways Analysis

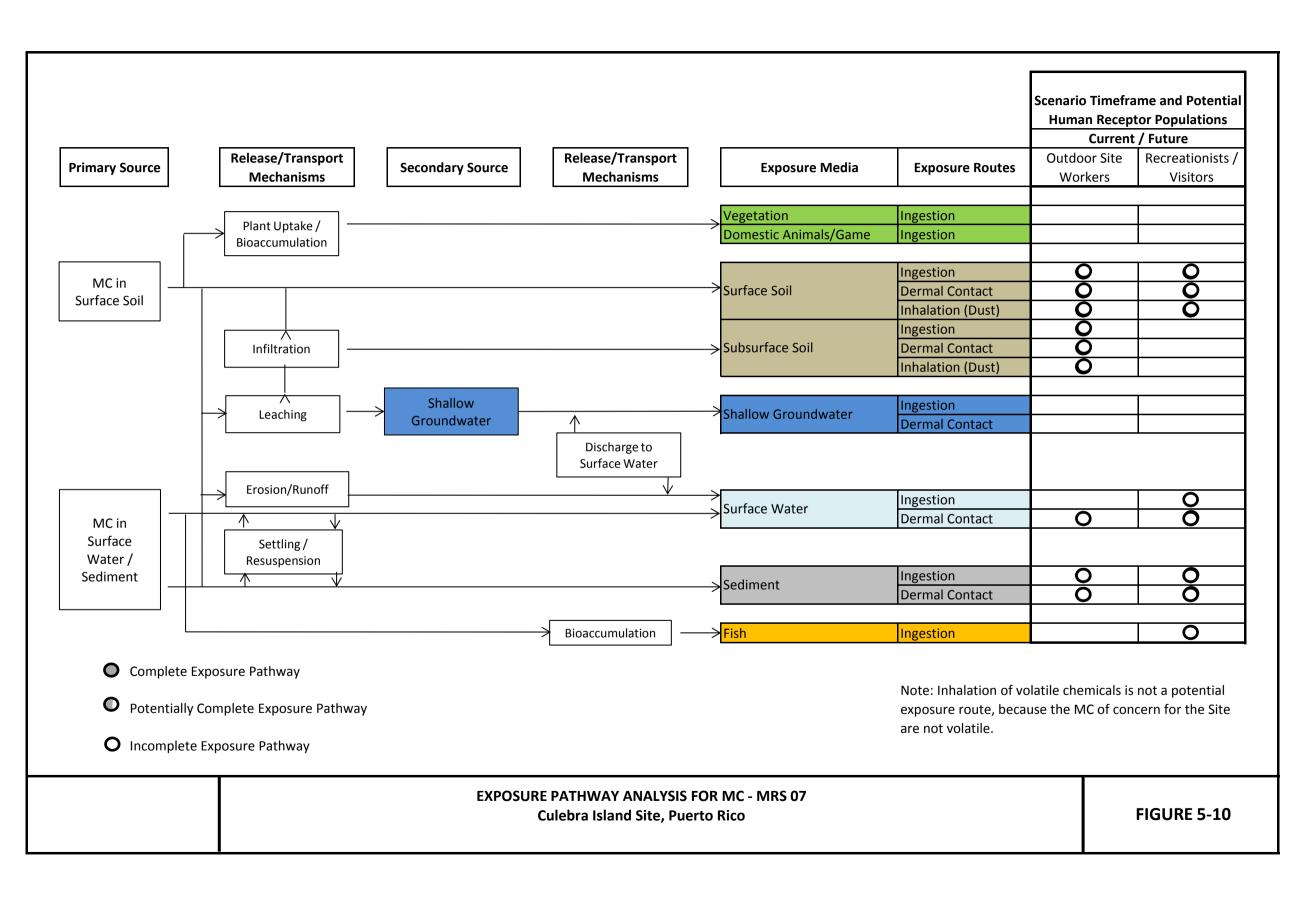

- 5.2.1.1 Due to the nature of historical military activities at the Site, MC can exist at an MRS and may present a risk of adverse health effects, if human exposure occurs. MC can be released from fully intact munitions through corrosion and breaching of the casing or the development of cracks, or from dissolved filler leaking through screw threads on the munitions casing, or exposed filler that resulted from incomplete detonation. This explosive filler may be scattered over the MRS or partially encased in the remains of the munitions casing. Migration of MC may occur naturally through surface soil erosion, plant or animal uptake, or by human activities such as maintenance and site work. MC in surface soil may migrate to the subsurface with infiltrating water. If soil erosion and subsequent surface runoff carries MC into inland impounded water bodies, migration of MC through surface water and sediment may occur as well. MC in soil/sediment may also migrate through leaching to groundwater; however, shallow groundwater is not a source of potable water at Culebra.
- 5.2.1.2 Based on sampling data from previous investigations and the RI combined, a HHRA and SLERA were conducted for each MRS (presented in Section 6). The results of the HHRA indicate that no COPCs exist for any MRS included in this RI. As such, the exposure pathways are all incomplete for human receptors of MC. Figures 5-6 to 5-10 illustrate the incomplete pathways to human receptors.
- 5.2.1.3 The SLERA identified COPECs for all of the MRSs. However, the conclusion of the SLERA is that the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (adjacent cays), MRS 04, and MRS 07 is negligible, and the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (Cerro Balcon) and MRS 05 is low based on the hazard quotient for chromium. Based on the evaluation of the sediment data, a potential for risk of adverse health effects in aquatic receptors is indicated. However, given the conservative nature of the toxicity reference values (TRV) used to screen the sediment data, the potential for ecological risk is qualified as low. No sediment remediation on the basis of ecological risk is warranted. No soil or sediment remediation on the basis of ecological risk is warranted. As such, all exposure pathways are incomplete for ecological receptors of MC.











6 BASELINE RISK ASSESSMENT FOR MC AND HAZARD ASSESSMENT FOR MEC

6.1 BASELINE RISK ASSESSMENT FOR MC

This section presents an assessment of potential human health and ecological risks associated with exposure to MC in surface soil and sediment at MRSs 02, 04, 05, and 07. The risk assessment is based on the analytical results of 48 surface soil and 11 sediment samples collected at MRSs 04, 05, and 07 during the SI in October 2006 and the RI in March 2011. For MRS 02, the risk assessment is based on the results of 10 surface soil samples collected by Ellis Environmental and reported in the Final SI Report (Parsons, 2007).

- 6.1.1 The objectives of the risk assessment are to:
 - Assess potential human health risks, currently and in the future, in the absence of any major action to control or mitigate soil or sediment contamination.
 - Evaluate the potential for adverse ecological health effects, currently and in the future, in the absence of any major action to control or mitigate soil or sediment contamination.
 - Assist in determining the need for and extent of soil or sediment remediation.
 - Provide a basis for comparing various remedial alternatives and determining which of them will meet the goals of protection of human health and the environment, as defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP; 40 CFR Part 300.5).
- 6.1.2 The human health risk assessment (HHRA) and screening-level ecological risk assessment (SLERA) are presented below.

6.2 HUMAN HEALTH RISK ASSESSMENT AND SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT

6.2.1 HUMAN HEALTH RISK ASSESSMENT (HHRA)

6.2.1.1 The HHRA addresses the potential for adverse human health effects associated with exposure to MC in surface soil and sediment at MRSs 02, 04, 05, and 07. The HHRA methodology conforms to the USEPA's *Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual Part A* (USEPA, 1989). The goal of the Superfund HHRA process is to provide a framework for developing the risk information necessary to assist in determination of possible remedial actions at a site. Risk assessment is a tool used to characterize and assess the toxicity of contaminants, evaluate the potential pathways and routes through which an individual may be exposed to contaminated environmental media, and characterize the cancer risks and non-cancer hazards at a site (USEPA, 1989).

6.2.1.2 There are four components to the HHRA process: data evaluation, exposure assessment, toxicity assessment, and risk characterization. The data evaluation focuses on the identification of chemicals of potential concern (COPC) at a site. In the exposure assessment, assumptions about the potential for human exposure to COPCs originating at a site are established. Representative exposure point concentrations (EPC) for each COPC are derived from the relevant data sets and used to model human exposure, in the form of chemical intakes and dermally absorbed doses. The likelihood and magnitude of adverse human health effects are expressed as incremental lifetime cancer risks and non-cancer hazard quotients, which are estimated in the risk characterization by combining chemical intakes/doses with chemical-specific toxicity information. Sources of uncertainty associated with the HHRA process and the extent to which human health risks may be over- or under-estimated are also discussed.

6.2.2 Data Evaluation 6.2.2.1 MC Data Su

6.2.2.1 MC Data Summary

- 6.2.2.1.1 This section presents the usable MC data and identifies COPCs in soil and sediment samples collected at MRSs 02, 04, 05, and 07. As stated previously, each MRS was treated as a separate exposure unit in this HHRA. Therefore, the analytical data for each MRS were summarized and evaluated separately.
- 6.2.2.1.2 Table 6-1 summarizes the surface soil and sediment samples available for each MRS. As shown, a total of 10 composite surface soil samples (including 3 background samples) and 5 discrete sediment samples are available for MRS 04 from the SI in October 2006 and RI in March 2011. Twenty-four composite surface soil samples (including four background samples) and three discrete sediment samples are available from the SI and RI at MRS 05. Fourteen composite surface soil samples (including four background samples) and three discrete sediment samples are available from the SI and RI at MRS 07. Due to difficulties accessing the outlying cays and access restrictions at Cerro Balcon, no soil or sediment samples were collected during the SI or RI at MRS 02. Therefore, the risk assessment for MRS 02 relies on 10 discrete pre-detonation surface soil samples collected by Ellis during 2006 clearance activities at Cerro Balcon and Cayo Lobo.

Table 6-1: Summary of Analytical Data Available for Each MRS

	MRS02	MRS04	MRS05	MRS07
	Cerro Balcon and Cayo Lobo	Flamenco Lagoon Maneuver Area	Mortar and Combat Range Area	Culebrita Artillery Impact Area
9 ,		Discrete Surface Soil Samp	les (sample depth unknown)	
Ellis 2006 NTCRA Samples	C08005	Not Applicable	Not Applicable	Not Applicable
Ellis A	B08001			
ш •,	B07002			

	MRS02	MRS04	MRS05	MRS07
	Cerro Balcon and Cayo Lobo	Flamenco Lagoon Maneuver Area	Mortar and Combat Range Area	Culebrita Artillery Impact Area
	C08001			
	B08002			
	D04001			
	D04002			
	C05001			
	C04001			
	B05001			
Site Investigation (SI) Samples - October 2006		Composite Surface Soil	Samples (2-6 inches bgs)	
ctok	None	CUL-04-SS-06-11*	CUL-05-SS-06-12	CUL-07-SS-06-25*
Ō			CUL-05-SS-06-14	CUL-07-SS-06-26
ples			CUL-05-SS-06-15	
am			CUL-05-SS-06-17*	
SI) S			CUL-05-SS-06-18	
) uo			CUL-05-SS-06-19	
gati		Discrete Sediment Sample	es (sample depth unknown)	
esti	None	CUL-04-SE-06-03	CUL-05-SE-06-01	CUL-07-SE-06-02
2		CUL-04-SE-06-04		
Site	C	Composite Background Surfa	ce Soil Samples (2-6 inches bgs)	
	None	None	None	CUL-07-SS-06-22
		Composite Surface Soil	Samples (0-2 inches bgs)	
	None	CI-MRS04-SS-01	CI-MRS05-SS-01*	CI-MRS07-SS-01*
011		CI-MRS04-SS-02*	CI-MRS05-SS-02	CI-MRS07-SS-02
ch 2011		CI-MRS04-SS-03*	CI-MRS05-SS-03	CI-MRS07-SS-03
Лаго		CI-MRS04-SS-04	CI-MRS05-SS-04	CI-MRS07-SS-04
S - R		CI-MRS04-SS-05	CI-MRS05-SS-05*	CI-MRS07-SS-05
ple		CI-MRS04-SS-06	CI-MRS05-SS-06	CI-MRS07-SS-06
San			CI-MRS05-SS-07	CI-MRS07-SS-07*
(RI)			CI-MRS05-SS-08*	CI-MRS07-SS-08
Ö			CI-MRS05-SS-09*	
Remedial Investigation (RI) Samples - Mar			CI-MRS05-SS-10	
resti			CI-MRS05-SS-11	
<u> </u>			CI-MRS05-SS-12	
dia			CI-MRS05-SS-13	
eme			CI-MRS05-SS-14	
ĕ	Discrete		es bgs, in about 6 inches surface	
	None	CI-MRS04-SD-01	CI-MRS05-SD-01	CI-MRS07-SD-01
		CI-MRS04-SD-02	CI-MRS05-SD-02	CI-MRS07-SD-02

	MRS02	MRS04	MRS05	MRS07
	Cerro Balcon and Cayo Lobo	Flamenco Lagoon Maneuver Area	Mortar and Combat Range Area	Culebrita Artillery Impact Area
		CI-MRS04-SD-03		
	В	Background Composite Surfa	ce Soil Samples (0-2 inches bgs)	
	None	CI-MRS04-BKG-01	CI-MRS05-BKG-01	CI-MRS07-BKG-01
		CI-MRS04-BKG-02	CI-MRS05-BKG-02	CI-MRS07-BKG-02
		CI-MRS04-BKG-03	CI-MRS05-BKG-03	CI-MRS07-BKG-03
			CI-MRS05-BKG-04	
Total No. Samples:	10 surface soil samples	7 surface soil samples; 5 sediment samples; 3 background soil samples	20 surface soil samples; 3 sediment samples; 4 background soil samples	10 surface soil samples; 3 sediment samples; 4 background soil samples

bgs - below ground surface

Ellis samples were pre-detonation samples analyzed for explosives and metals.

SI samples were analyzed for explosives and metals.

RI samples were analyzed for explosives and select metals (antimony, barium, chromium, copper, lead, mercury, and zinc).

6.2.2.1.3 Fieldwork and environmental sampling for the RI were conducted in accordance with the EOTI Performance Work Statement (PWS), with field investigation procedures further developed in the RI work plan (EOTI, 2010). Laboratory analytical methods and data validation procedures were selected to meet the data quality objectives identified in the QAPP. The SI sample data were identified as "validated analytical results" in Tables 5.1 and 5.2 of the SI Report (Parsons, 2007), but the validation procedures were not indicated. It is unlikely the analytical data from soil samples collected by Ellis were independently validated; these data are presented in Table 5.4 of the SI Report (Parsons, 2007).

6.2.2.2 Surface Soil

6.2.2.2.1 Figures 3-1, 3-3 and 3-5 depict the locations of surface soil samples collected during the SI and RI at MRSs 04, 05, and 07. The SI soil samples "were collected at locations selected to represent areas with the highest likelihood for the presence of MEC or MC contamination" (Parsons, 2007). The RI soil samples were collected near locations where MEC or MD was found during the RI MEC fieldwork. The single exception to this is CI-MRS04-SS-03, which was collected to better characterize an area of MRS 04 where no other samples were collected. Background soil samples at MRS 04 and MRS 05 were collected at locations presumed to be un-impacted by military activities based on the RI MEC investigation. Background soil samples at MRS 07 were collected near the Culebrita lighthouse and at locations known to be un-impacted by historical activities.

^{*}Duplicate sample was collected.

- 6.2.2.2.2 Surface soil samples for both the SI and RI were collected using the CRREL 7-sample wheel approach. The SI samples were collected at depths of two to six inches bgs and were analyzed for explosives and metals (Parsons, 2007). The RI samples were collected at depths of zero to two inches bgs and were analyzed for the MC of concern listed in Table 5-1 of the RI work plan (EOTI, 2010). These MC include explosives and the following metals: antimony, barium, chromium, copper, lead, mercury, and zinc. These metals were selected based on the munitions types used at Culebra.
- 6.2.2.2.3 Tables 6-2 to 6-5 present summaries of the available surface soil data for each MRS, with the frequency of detection and range of detected concentrations for each detected chemical. No explosives were detected in any of the field surface soil samples; however, 1,3,5-TNB and 4-NT were found at very low levels in one split sample collected for quality assurance purposes. Both analytes were well below the USEPA RSLs and are not evaluated as part of the HHRA. The SI data for only the select metals noted above were included in these data summaries, as the list of MC of concern was narrowed based on the use of military munitions during training activities from 1942-1946.
- 6.2.2.2.4 The decision process for the identification of COPCs is dictated by relevant USEPA (1989) guidance. A risk-based screen of detected MC concentrations was implemented, using the USEPA (2011a) RSLs for resident soil as screening toxicity values. The RSLs are chemical- and medium-specific concentrations derived to be protective of adverse health effects from ingestion, dermal contact, and inhalation exposures. Depending on the toxic effect, RSLs are based on either a cancer risk of one-in-a-million (i.e., 10⁻⁶ or 1E-06) or a non-cancer hazard quotient (HQ) of 1. In this HHRA, RSLs based on non-cancer health effects were reduced by one-tenth to represent a target HQ of 0.1 and thereby account for additive health effects. Chemicals with maximum detected concentrations greater than the RSLs were selected as COPCs. However, if the maximum concentration of a metal was less than or within the range of site-specific background concentrations, the metal was not selected as a COPC regardless of comparison to the RSL.

The following sections note the COPCs identified in surface soil at each MRS.

6.2.2.2.5 MRS 02 – Cerro Balcon and Adjacent Cays

Table 6-2 presents a data summary for the metals detected in surface soil samples collected by Ellis at MRS 02. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentration of each detected metal is less than the USEPA RSL. Therefore, no COPCs were identified in surface soil at MRS 02.

6.2.2.2.6 MRS 04 – Flamenco Lagoon Maneuver Area

Table 6-3 presents data summaries for the metals detected in surface soil samples collected during the SI and RI at MRS 04. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentrations of the detected metals are less than the USEPA RSLs. Therefore, no COPCs were identified in surface soil at MRS 04.

6.2.2.2.7 MRS 05 – Mortar and Combat Range Area

Table 6-4 presents data summaries for the metals detected in surface soil samples collected during the SI and RI at MRS 05. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentrations of the detected metals are less than the USEPA RSLs. Therefore, no COPCs were identified in surface soil at MRS 05.

6.2.2.2.8 MRS 07 – Culebrita Artillery Impact Area

Table 6-5 presents data summaries for the metals detected in surface soil samples collected during the SI and RI at MRS 07. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentrations of all detected metals are less than the USEPA RSLs. The maximum copper concentration is greater than the range of site-specific background concentrations. Therefore, no COPCs were identified in surface soil at MRS 07.

Table 6-2: Summary of MRS 02 Surface Soil Data and Identification of COPCs

	Ellis Pr	e-E	Detonation	on Surface S	oil	Samples ¹	USEPA RSL t Resident So		COPC? 3
Detected Chemicals			icy of ion	Range o Conce					
				(m	ıg/k	(g)	(mg/kg)	basis	[Y/N]
Antimony	9	/	10	0.79 B		2 B	3.1	n	N
Barium	10	/	10	28		60	1,500	n	N
Chromium ²	10	/	10	19		110	12,000	nm	N
Copper	10	/	10	58		110	310	n	N
Lead	10	/	10	2.1		9	400	n	N
Mercury ²	9	/	10	0.0087 B		0.047	2.3	n	N
Zinc	10	/	10	43		150	2,300	n	N

B - estimated

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

¹ Surface soil samples were collected by Ellis Environmental during clearance activities at Cayo Lobo and Cerro Balcon. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007) and are summarized herein.

² With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

³ A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil.

Table 6-3: Summary of MRS 04 Surface Soil Data and Identification of COPCs

				mples - per 2006				Samples - arch 2011		USEPA RSL Resident So		Chemical of Potential Concern	Backg Surfac Samp	ce S	Soil
Detected Chemicals		equency (Detection		Range of Detected Concentrations			ncy of tion	Range of D Concentr				(COPC)? ²	Range of Concen		
				(mg/kg)				(mg/l	(g)	(mg/kg)	basis	[Y/N]	(mg	/kg)	;)
Barium	1	/	1	12	6	/	6	12.3 J	218 J	1,500	n	N	111 J		257 J
Chromium	1	/	1	10	6	/	6	2.83	14.7	12,000	nm	N	2.74		14.2
Copper	1	/	1	3.6 J	6	/	6	3.05	61.8 J	310	n	N	39.7		60.3
Lead	1	/	1	1.2	3	/	6	9.66	10.3	400	n	N	3.21		15.1
Mercury	1	/	1	0.029 J	6	/	6	0.00558 J	0.0312 J	2.3	n	N	0.017 J		0.0353 J
Zinc	1	/	1	5.3 J	6	/	6	5.22	117 J	2,300	n	N	33		71.9

J - estimated

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil and is also greater than the range of detected concentrations in background surface soil samples.

³ Represents combined SI and RI background sample data.

 $[\]ensuremath{\text{n}}$ - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

Table 6-4: Summary of MRS 05 Surface Soil Data and Identification of COPCs

				Samples - tober 2006					mples - ch 2011		USEPA RSL Resident So		COPC? ²	Backg Surfa Sam	ce S	Soil
Detected Chemicals		quenc etectio	•	Range of D Concentr		Frequ Det		•	Range of Concent					Ran Dete Concen	ecte	ed
				(mg/k	g)				(mg/	/kg)	(mg/kg)	basis	[Y/N]	(mg	g/kg)
Barium	6	/	6	59	1,300	14	/	14	35.1 J	958 J	1,500	n	N	236 J		421 J
Chromium	6	/	6	2.8	150	14	/	14	8.26 J	26.9 J	12,000	nm	N	11.5		14.3
Copper	6	/	6	18 J	170 J	14	/	14	63.5 J	171 J	310	n	N	135		152
Lead	6	/	6	2.7	9.4	14	/	14	2.36	17.3 J	400	n	N	5.08		9.83
Mercury	6	/	6	0.0097 J	0.059	14	/	14	0.007 J	0.0434	2.3	n	N	0.0113 J		0.0357 J
Zinc	6	/	6	62 J	120	14	/	14	58.4 J	127 J	2,300	n	N	60.3		164

J - estimated

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil and is also greater than the range of detected concentrations in background surface soil samples.

³ Represents combined SI and RI background sample data.

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

Table 6-5: Summary of MRS 07 Surface Soil Data and Identification of COPCs

	•	Site In		gation (SI) Sa tober 2006	mples -	Remed	dia		gation (RI) ch 2011	Sa	mples -	USEPA Region Screening Long (RSL) for Resi	evel	Chemical of Potential Concern	Backg Surfac Sam	ce s	Soil
												Soil ¹		(COPC)? ²	Ran	_	
Detected	Fre	quenc	y of	Range of	Detected	Frequ	Frequency of Detection			f D	etected				Dete	ecte	ed
Chemicals	D	etectio	n	Concent	trations	Detection Concentrations					Concen	tra	tions				
				(mg,	/kg)				(m	g/k	(g)	(mg/kg)	basis	[Y/N]	(mg	g/kg	<u>;</u>)
Barium	2	/	2	180	480	8	/	8	29.6 J		317 J	1,500	n	N	118 J		130 J
Chromium	2	/	2	8.0 J	9.9	8	/	8	10.9 J		22.5 J	12,000	nm	N	12.9 J		15.9 J
Copper	2	/	2	110	200 J	8	/	8	109 J		225 J	310	n	N	125 J		136 J
Lead	2	/	2	37	69 J	8	/	8	3.4 J		22.8 J	400	n	N	4.57 J		5.35 J
									-						-		0.0314
Mercury	2	/	2	0.032 J	0.048	7	/	8	0.0101 J		0.052 J	2.3	n	N	0.0255 J		J
Zinc	2	/	2	67 J	190 J	8	/	8	51.7 J		143 J	2,300	n	N	60 J		77.6 J

J - estimated

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil and is also greater than the range of detected concentrations in background surface soil samples.

³ Represents combined SI and RI background sample data.

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

6.2.2.3 Sediment

- 6.2.2.3.1 Figures 3-1, 3-3 and 3-5 show the locations of sediment samples collected during the SI and RI at MRSs 04, 05, and 07. As with surface soil, the SI sediment sample locations were biased toward "areas with the highest likelihood for the presence of MEC or MC contamination" (Parsons, 2007). The RI sediment sample locations were randomly selected. Sediment samples during the RI at MRS 04 and MRS 07 were collected from lagoon sediments. One sediment sample collected during the RI at MRS 05 was from the shore of a lagoon, while the other was collected from a perennial stream. No sediment samples were collected at MRS 02. No background sediment samples were collected during the SI or RI.
- 6.2.2.3.2 Sediment samples for both the SI and RI were grab/discrete samples. The SI Report does not indicate sediment sample depth, but the samples were analyzed for explosives and metals (Parsons, 2007). The RI sediment samples were collected at depths of 0-6 inches bgs, in about 6 inches of surface water, and were analyzed for the MC of concern listed in Table 5-1 of the RI work plan (EOTI, 2010). These MC include explosives and the following metals: antimony, barium, chromium, copper, lead, mercury, and zinc.
- 6.2.2.3.3 Tables 6-6 to 6-8 present summaries of the available sediment data, with the frequency of detection and range of detected concentrations for each detected chemical. No explosives were detected in the sediment samples. The SI data for only the select metals noted above were included in these data summaries.
- 6.2.2.3.4 The decision process for the identification of COPCs is as described above for surface soil. The USEPA RSLs for resident soil were used as screening toxicity values. While human exposure to sediment is expected to be less (in exposure frequency and duration) than to soil in a residential setting, the RSLs for resident soil were used as a conservative screen of detected concentrations in sediment. The following sections note the COPCs identified in sediment.

6.2.2.3.5 MRS 04 – Flamenco Lagoon Maneuver Area

Table 6-6 presents data summaries for the metals detected in sediment samples collected during the SI and RI at MRS 04. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentrations of the detected metals are less than the USEPA RSLs. Therefore, no COPCs were identified in sediment at MRS 04.

6.2.2.3.6 MRS 05 – Mortar and Combat Range Area

Table 6-7 presents data summaries for the metals detected in sediment samples collected during the SI and RI at MRS 05. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown,

the maximum concentrations of the detected metals are less than the USEPA RSLs. Therefore, no COPCs were identified in sediment at MRS 05.

6.2.2.3.7 MRS 07 – Culebrita Artillery Impact Area

Table 6-8 presents data summaries for the metals detected in sediment samples collected during the SI and RI at MRS 07. The USEPA RSL for resident soil, its basis, and whether the chemical was identified as a COPC is indicated. As shown, the maximum concentrations of the detected metals are less than the USEPA RSLs. Therefore, no COPCs were identified in sediment at MRS 07.

6.2.2.4 Exposure Assessment

- 6.2.2.4.1 The objective of the exposure assessment is to estimate the type and magnitude of human exposure to the COPCs in surface soil and sediment at MRSs 02, 04, 05, and 07. Assumptions regarding the potential for human exposure (e.g., exposed populations, exposure frequency, etc.) are established. Representative EPCs for each COPC are calculated and used to model human exposure in the form of daily chemical intakes. These intakes are then combined in the Risk Characterization with COPC-specific toxicity values to calculate incremental lifetime cancer risks and non-cancer hazards.
- 6.2.2.4.2 In this HHRA, no COPCs were identified in surface soil or sediment from MRSs 02, 04, 05, and 07. Therefore, human exposure was not modeled. A CSM is presented in Section 6. In the event future environmental sampling occurs at MRSs 02, 04, 05, and 07, and COPCs are identified based on those future data, the CSM describes potentially relevant human exposure pathways.

Table 6-6: Summary of MRS 04 Sediment Data and Identification of COPCs

				SI Samples - October 2006						Samples - irch 2011		USEPA R		COPC? ²
Detected Chemicals		quenc etectio	•	Range of Concen			Frequ Dete		•	Range of Concen	Detected trations			
				(mg	/kg	:)				(mg	/kg)	(mg/kg)	basis	[Y/N]
Barium	1	/	2	60		81	3	/	3	21.2 J	65.9 J	1,500	n	N
Chromium	1	/	2	5.8		9.9	3	/	3	8.14	12.1	12,000	nm	N
Copper	1	/	2	75 J		93 J	3	/	3	2.94	120	310	n	N
Lead	1	/	2	5.8		12	1	/	3	15	59	400	n	N
Mercury	1	/	2	0.013 J		0.04 J	1	/	3	0.23	27 J	2.3	n	N
Zinc	1	/	2	53 J		74 J	3	/	3	3.65	95.5	2,300	n	N

J - estimated

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10⁵ mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil.

Table 6-7: Summary of MRS 05 Sediment Data and Identification of COPCs

				mples - er 2006						Samples arch 2011			USEPA R Resident		COPC? ²
Detected Chemicals		quency etectio		_	Range of Detected Concentrations				cy of on	_		etected ations			
					(mg/kg)						mg/k	g)	(mg/kg)	basis	[Y/N]
Barium	1	/	1		29		2	/	2	175	J	196 J	1,500	n	N
Chromium	1	/	1		7.7		2	/	2	13.3	J	14.3 J	12,000	nm	N
Copper	1	/	1		22		2	/	2	130	J	149 J	310	n	N
Lead	1	/	1		2.5		2	/	2	5.5	6	6.29	400	n	N
Mercury	1	/	1		0.013 J		2	/	2	0.0081	8	0.0129	2.3	n	N
Zinc	1	/	1		32 J		2	/	2	68.7	J	73.3 J	2,300	n	N

J - estimated

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III. RSL for mercury applies to mercuric chloride.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil.

Table 6-8: Summary of MRS 07 Sediment Data and Identification of COPCs

			SI Sam Octobe						amples - rch 2011			USEPA RS Resident		COPC? ²
Detected Chemicals		equency Detectio		Range Detec Concentr	ted	Frequ Deta		•	_		etected ations			
				(mg/l	g)				(m	ng/k	(g)	(mg/kg)	basis	[Y/N]
Barium	1	/	1	16		2	/	2	24.1 J		369 J	1,500	n	N
Chromium	1	/	1	3.0		2	/	2	2.69 J		12.6 J	12,000	nm	N
Copper	1	/	1	6.7		2	/	2	11.8 J		151 J	310	n	N
Lead	1	/	1	1.9		1	/	2	2	0.1	J	400	n	N
Zinc	1	/	1	5.0	J	2	/	2	6.2 J		115 J	2,300	n	N

J - estimated

n - indicates USEPA RSL for resident soil is based on a non-cancer hazard quotient of 0.1.

m - concentration exceeds theoretical ceiling limit of 10^5 mg/kg, which is equivalent to a chemical representing 10% by weight of the soil sample

¹ With the exception of lead, USEPA RSLs (May 2011) for resident soil are based on a non-cancer (n) hazard quotient of 0.1. RSL for chromium applies to Chromium III.

² A chemical is identified as a COPC where the maximum detected concentration in either the SI or RI data set is greater than the USEPA RSL for resident soil.

6.2.2.5 Consideration of Uncertainty

- 6.2.2.5.1 A basic assumption underlying this HHRA is that the available surface soil and sediment data adequately characterize environmental conditions and the potential for MC to be present at each MRS. However, there are always some uncertainties associated with environmental sampling and analysis. Uncertainty associated with environmental sampling is generally related to limitations in terms of the number and distribution of samples, while uncertainty associated with the analysis of samples is generally associated with systematic or random errors (i.e., false positive or negative results). Efforts to minimize uncertainty were made by collecting and analyzing the RI samples in accordance with the QAPP and by independently validating the analytical data. In addition, composite surface soil samples were collected in an effort to sample a larger areal extent at each selected location.
- 6.2.2.5.2 Sediment sample locations for the RI were randomly selected, while the RI surface soil sample locations were biased toward areas where MEC or MD were found. While the latter approach increased the likelihood of finding MC at elevated concentrations, dense vegetation throughout the upland areas of each MRS limited field investigations for both MEC and MC. The extent to which MC is present at elevated concentrations in the areas of each MRS that were not accessible by the field team is an area of uncertainty, and the potential for human exposure and adverse health effects may be understated to an unknown degree.
- 6.2.2.5.3 Due to difficulties accessing the outlying cays and access restrictions at Cerro Balcon, no soil or sediment samples were collected at MRS 02. The risk evaluation for MRS 02 is based on ten surface soil samples collected by Ellis during clearance activities in 2006 at Cerro Balcon and Cayo Lobo. The sample collection methods and quality control procedures used are not known. It is not likely the analytical data were independently validated. The extent to which the Ellis surface soil data are reliable indicators of MC presence and concentrations in soil at MRS 02 is uncertain, and the potential for exposure and adverse health effects may be understated to an unknown degree. In addition, the lack of sediment data for MRS 02 is an area of uncertainty in this HHRA.
- 6.2.2.5.4 Additional sources of uncertainty are associated with the equations and toxicity values used in deriving the RSLs. Standards default exposure parameters and factors representing reasonable maximum exposure conditions are used in deriving the RSLs (2011a). The toxicity values used in deriving the RSLs can result in over-estimates or under-estimates of the potential for adverse health effects. In most cases, the toxicity values are derived by extrapolating from laboratory animal data to humans. Uncertainty factors are usually applied to avoid underestimating the potential for adverse health effects.

6.2.3 SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT

This SLERA evaluates the potential for adverse health effects in ecological receptors from exposure to MC in surface soil and sediment at MRSs 02, 04, 05, and 07 at the Culebra Island Site. The SLERA was conducted following methodology in *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments* (USEPA, 1997) and *Guidelines for Ecological Risk Assessment* (USEPA, 1998).

6.2.3.1 The SLERA consists of the following:

- Ecological Setting describes the predominant vegetation and potential wildlife habitat on the Culebra Island Site.
- Problem Formulation presents an exposure pathway analysis and ecological conceptual site model (ECSM) and identifies appropriate assessment and measurement endpoints for each MRS.
- Ecological Effects Evaluation presents chemical-specific ecological screening values and identifies chemicals of potential ecological concern (COPEC) in surface soil and sediment samples from each MRS.
- Risk Characterization presents HQs for each COPEC and qualifies the potential for adverse health effects; discusses potential sources of uncertainty associated with assessing ecological risks; and draws conclusions regarding the need to perform further ecological evaluation.

6.2.3.1.1 Ecological Setting

As described above, Culebra is an archipelago consisting of the main island and 22 smaller cays. Culebra has a tropical marine climate with a year-round average daily temperature of 80 °F. The average rainfall is 36 inches, and the average humidity is 73%. The majority of rainfall occurs between April and November, with a dry season between January and April. Prevailing winds are from the east-northeast in November through January and from the east the rest of the year. The average wind speed is 9.2 miles per hour. The hurricane season is from June through November, with most storms occurring July through September. Severe hurricanes occur through this area every 15 to 33 years.

6.2.3.1.2 Potential Ecological Habitat and Receptors

Culebra supports subtropical fauna and flora and contains a diversity of habitats, including subtropical dry forest, mangroves, and grasslands (USFWS, 2011). The largest remaining forest on the island is a unique habitat known as a boulder forest, located on Mount Resaca within MRS 05 (USFWS, 2011). The forest is characterized by boulder-covered areas, rock-strewn ravines, and a canopy of cupey and jaguey (wild fig) trees that support bromeliads and succulent herbaceous plants.

6.2.3.1.2.1 The majority of undeveloped portions of MRS 02 (Cerro Balcon), MRS 04, and MRS 05 are densely vegetated with low-growing shrubs and grasses. Human disturbance on Culebra Island has led to the proliferation of invasive plants, such as the sweet acacia, mesquite acacia, and guinea grass. Native plants include the

- fiddlewood, Puerto Rico box, and Turk's head cactus. The poisonous manzanillo tree is known to be present near Flamenco Lagoon within MRS 04.
- 6.2.3.1.2.2 Culebrita is similar to Culebra in that it is characterized by sandy beaches, a rocky coastline, and gentle to steep hills with moderate to dense vegetation. Vegetation is sparse or absent on many of the smaller cays (including Cayo Botella), as most are rocky with very little soil (USACE, 1995).
- 6.2.3.1.2.3 Surface water is scarce, and creeks and streams are intermittent and seasonal. Normally they are dry and collect and drain runoff only during rainstorms. Permanent surface water bodies on Culebra are limited to coastal lagoons and brackish ponds.
- 6.2.3.1.2.4 Appendix G contains maps of federally-recognized wetlands within MRSs 04, 05, and 07. These maps were generated using the online National Wetlands Inventory mapping tool, Wetlands Mapper. The maps show coastal wetlands, lagoons, and freshwater ponds occur within MRS 04 and MRS 05. The lagoons from which sediment samples were collected during the SI and RI have the following classification:
 - E1AB3/UB2L estuarine, subtidal, aquatic bed, rooted vascular/unconsolidated bottom, sand, subtidal
- 6.2.3.1.2.5 In addition, these lagoons are surrounded by wetlands with the following classifications:
 - E2FO3N (MRS 04) estuarine, intertidal, forested, broad-leaved evergreen, regularly flooded
 - E2FO3M (MRS 05) estuarine, intertidal, forested, broad-leaved evergreen, irregularly exposed
- 6.2.3.1.2.6 Coastal wetlands and a lagoon are present within MRS 07 (i.e., on Culebrita). The lagoon from which sediment samples were collected during the SI and RI at MRS 07 has the following Cowardin (1979) classification:
 - E2US2M estuarine, intertidal, unconsolidated shore, sand, irregularly exposed
- 6.2.3.1.2.7 In addition, the lagoon within MRS 07 is surrounded by a wetland with the following Cowardin (1979) classification:
 - E2FO3P estuarine, intertidal, forested, broad-leaved evergreen, irregularly flooded
- 6.2.3.1.2.8 Potential terrestrial ecological receptors that may be found in the upland areas of Culebra Island [i.e., MRS 2 (Cerro Balcon), MRS 04, and MRS 05] and Culebrita (MRS 07) include soil invertebrates, terrestrial plants, birds (e.g., cattle egret, songbirds), reptiles and amphibians (e.g., snakes, iguanas, anoles, and toads), and small mammals (e.g., rodents and bats). Large mammals (i.e., white-

tailed deer) are present on Culebra Island but are not potential ecological receptors for Culebrita. The brackish lagoons within MRS 04, MRS 05, and MRS 07 provide habitat for benthic invertebrates, aquatic plants (e.g., mangroves), fish, wading birds and shorebirds (e.g., greater yellowlegs) (Heatwole et al., 1963). Aquatic beds in the lagoons within MRSs 04 and 05 likely provide spawning habitat for fish. Coastal areas support important rookeries for seabirds (e.g., laughing gulls, bridled terns, sooty terns, roseate terns, and brown boobies). Culebra beaches are used as nesting sites by leatherback and hawksbill sea turtles (USFWS, 2011).

6.2.3.1.2.9 The diversity of potential ecological receptors at MRS 02 (cays) is considerably less, as most cays are rocky with very little soil or vegetation. The only potential terrestrial receptors identified for the cays within MRS 02 are seabirds.

6.2.3.1.3 Sensitive Habitats and Threatened or Endangered Species

- 6.2.3.1.3.1 A survey for the presence of sensitive habitats and threatened or endangered species at each MRS was not conducted for this RI. However, the following summary of information on threatened or endangered species on Puerto Rico and Culebra was originally presented in the SI Report (Parsons, 2007) and supplemented through a review of the USFWS Southeast Region online resource (http://www.fws.gov/caribbean/es/Endangered-Main.html). Additional resources reviewed for threatened and endangered species included the: USACE Archives Search Report, 1995; Environmental and Cultural Resource Surveys for Isla Culebrita, 2006; and the Environmental and Cultural Resource Surveys for Cerro Balcon NTCRA, 2006.
- 6.2.3.1.3.2 The main island of Puerto Rico and its associated islands support 75 federally listed threatened and endangered species consisting of 26 animals and 49 plants. Among this diverse group of fauna and flora are multiple species that are known to exist, potentially exist, or temporarily use areas within the Culebra Island, such as migratory birds. The following are considered by the Puerto Rico Natural Heritage Program to be conservation-priority areas: Culebra National Wildlife Refuge, Mount Resaca, all of the lagoons and beaches on Culebra, and all cays around Culebra (Parsons, 2007). It should be noted the cays within MRS 02, portions of MRS 04 and MRS 05, and all of MRS 07 (Culebrita and Cayo Botella), are managed by the USFWS as part of the Culebra National Wildlife Refuge. The particular areas within MRS 04 and MRS 05 are depicted on Figure 1-2 (MRS 04) and Figure 1-3 (MRS 05) as "Fish & Wildlife Area." On Culebrita, all beachfront areas from mean high tide inland to a point 150 meters from shore have been designated critical habitat for hawksbill sea turtles. The sea turtle nesting season varies with locality, but in most locations nesting occurs sometime between April and November. Table 6-9 is a summary of the threatened/endangered species and critical habitats for Culebra (USFWS, 2011).

Table 6-9: Culebra Federal Threatened and Endangered Species (USFWS, 2011)

Scientific Name	Common Name	Group	Status	Distribution
Anolis rooseveltii	Culebra Giant Anole	Reptile	E, CH	Forested Areas
Caretta caretta	Loggerhead Sea Turtle	Reptile	Т	Coastal Zones
Chelonia mydas	Green Sea Turtle	Reptile	T, CH	Coastal Zones
Dermochelys coriacea	Leatherback Sea Turtle	Reptile	E, CH	Coastal Zones
Epicrates monensis granti	Virgin Islands Tree Boa	Reptile	E	Forested Areas
Eretmochelys imbricata	Hawksbill Sea Turtle	Reptile	E, CH	Coastal Zones
Leptocereus grantianus	No Common Name	Plant	E	Punta Melones
Pelecanus occidentalis	Brown Pelican	Bird	D, MP	Coastal Zone, No Nesting
Peperomia wheeleri	Wheeler's Peperomia	Plant	E	Monte Resaca, Playa Brava
Sterna dougallii	Roseate Tern	Bird	Т	Coastal Areas and Offshore Cays, Nesting
Trichechus manatus manatus	Antillean Manatee	Mammal	E	Coastal Zones

E=Endangered T=Threatened CH=Critical Habitat D=Delisted due to Recovery

MP= Monitoring Plan

6.2.3.1.4 Problem Formulation

Problem formulation establishes the goals, breadth, and focus of the SLERA (USEPA, 1997). It is based on the current understanding of potential ecological habitat and receptors at each MRS and information collected during environmental investigations. In this section, potential exposure pathways between MC originating in soil and sediment and ecological receptors are described and illustrated in an ECSM. Lastly, appropriate assessment and measurement endpoints for this SLERA are identified.

6.2.3.1.5 Assessment and Measurement Endpoints

6.2.3.1.5.1 Assessment endpoints refer to the valued ecological resources to be protected from potential adverse health effects caused by exposure to site-related COPECs. For most potential receptors of concern, USEPA (1997) guidance recommends the appropriate level of protection to be provided by any action that may be required is protection of the population or community of plants and/or animals present at a site. For this SLERA, the assessment endpoints are any adverse health effects (e.g., reduced vigor, population decline) on the terrestrial and aquatic communities that may be present at each MRS. Because it is often difficult to measure effects on entire communities or individual populations to verify if risk predictions are accurate, adverse effects

on individual organisms, representative of the entire population, are usually substituted in practice.

- 6.2.3.1.5.2 Measurement endpoints can be measures of effect (e.g., changes in community structure) or measures of exposure (e.g., concentrations in affected environmental media) used to infer the potential for adverse health effects in communities and the ecosystem in question (USEPA, 1997). In this SLERA, measures of exposure were compared to conservative risk-based toxicity reference values (TRV) protective of adverse effects on organisms.
- 6.2.3.1.5.3 To evaluate the potential for adverse health effects in terrestrial plants and soil invertebrates, detected MC concentrations in surface soil were compared to TRVs protective of direct toxicity to terrestrial plants and soil invertebrates. Chemicals with maximum concentrations greater than the applicable screening values were identified as COPECs. The following hierarchy of sources of soil screening values was used:
 - USEPA Ecological Soil Screening Levels (EcoSSL) (USEPA, 2011b). Separate EcoSSLs are derived for plants and soil invertebrates. However, EcoSSLs are not always available for both plants and soil invertebrates, and EcoSSLs are not available for all of the detected metals in surface soil.
 - USEPA Region 5 Ecological Screening Levels (ESL) for Soil (USEPA Region 5, 2003).
 - Oak Ridge National Laboratory (ORNL) Toxicological Benchmarks for Plants (Efroymson et al., 1997).
- 6.2.3.1.5.4 To evaluate the potential for adverse health effects in terrestrial wildlife, detected chemical concentrations in surface soil were compared to TRVs protective of such effects in birds and mammals. These screening values were derived using food chain bioaccumulation models and toxicity values based on no-observed-adverse-effect-levels. They consider direct exposure to chemicals in soil through feeding and nesting activities and exposure to bio-accumulated chemicals in food/prey items. The following hierarchy of sources of soil screening values was used:
 - USEPA EcoSSL (USEPA, 2011b). Separate EcoSSLs are derived for birds and mammals.
 - USEPA Region 5 ESLs for Soil (USEPA Region 5, 2003). However, no soil ESLs based on exposure to birds or mammals were available for the MC lacking applicable EcoSSLs.
- 6.2.3.1.5.5 To evaluate the potential for adverse health effects in aquatic receptors, detected chemical concentrations in sediment were compared to TRVs indicative of the potential for such effects in sediment-associated biota. Chemical-specific threshold effects levels (TEL) represent concentration levels below which adverse effects are not expected, while probable effects levels (PEL) are concentration levels above which adverse effects are likely to occur (Long and

MacDonald, 1998). As a conservative screen, COPECs in sediment were identified where the maximum detected concentration was greater than the TEL. However, both the TEL and PEL for a given chemical were presented (where available) to effectively bound the potential for adverse health effects.

6.2.3.1.6 Ecological Effects Evaluation

- 6.2.3.1.6.1 The ecological effects evaluation serves to focus the SLERA on those chemicals detected in surface soil and sediment that, if exposed to, may result in adverse health effects. This is achieved by comparing detected chemical concentrations to the applicable TRVs and selecting COPECs. A chemical was identified as a COPEC where the maximum detected concentration was greater than the TRV or where no applicable TRV was available. This is a conservative screening approach that assumes ecological receptors are continuously exposed to chemical concentrations equivalent to maximum detected concentrations at each MRS and that chemicals in soil and sediment are 100% bioavailable. In addition, exceedance of a TRV is not a predictor of adverse ecological effects, especially on sites where background metals concentrations are greater than TRVs or where ecological communities are diverse and thriving (Efroymson, et al., 1997). For detected metals in surface soil, if the maximum concentration was less than or within the range of site-specific background concentrations, it was not selected as a COPEC regardless of the comparison to or availability of the TRV.
- 6.2.3.1.6.2 The available surface soil and sediment samples are as described above for the HHRA. Table 6-1 summarizes the surface soil and sediment samples available for each MRS. As shown, a total of ten surface soil samples (including three background samples) and five sediment samples are available for MRS 04 from the SI in October 2006 and the RI in March 2011. Twenty-four surface soil samples (including four background samples) and three sediment samples are available from the SI and RI at MRS 05. Fourteen surface soil samples (including four background samples) and three sediment samples are available from the SI and RI at MRS 07. Due to difficulties accessing the outlying cays and access restrictions at Cerro Balcon, no soil or sediment samples were collected during the SI or RI at MRS 02. Therefore, the SLERA relies on ten pre-detonation surface soil samples collected by Ellis during clearance activities at Cerro Balcon and Cayo Lobo. Due to differences in potential ecological receptors and the geographic distance between them, soil data from Cerro Balcon and Cayo Lobo were summarized separately, and COPECs were identified for MRS 02 (Cerro Balcon) and MRS 02 (cays).

6.2.3.1.7 Selection of COPECs in Surface Soil

6.2.3.1.7.1 Tables 6-10A to 6-14 present a surface soil data summary and the selection of COPECs for each MRS. Separate tables (e.g., Table 6-10A and Table 6-10B) were prepared to show COPECs identified based on comparison to TRVs for

terrestrial plants and soil invertebrates vs. TRVs for birds and mammals. The following summarizes the COPECs identified in surface soil at each MRS.

6.2.3.1.7.2 MRS 02 – Cerro Balcon

As shown in Table 6-10A, the following MC were identified as COPECs in surface soil at MRS 02 (Cerro Balcon), because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in terrestrial plants and soil invertebrates: chromium, copper, and zinc.

6.2.3.1.7.3 Table 6-10B shows the following MC were identified as COPECs in surface soil because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in birds and mammals: antimony, chromium, copper, and zinc. In addition, antimony, barium, and mercury were identified as COPECs based on the lack of applicable TRVs for one or both categories of receptors.

6.2.3.1.7.4 MRS 02 - Cayo Lobo

As shown in Table 6-11A, the following MC were identified as COPECs in surface soil at MRS 02 (Cayo Labo), because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in terrestrial plants and soil invertebrates: chromium, copper, and zinc.

6.2.3.1.7.5 Table 6-11B shows the following MC were identified as COPECs in surface soil because their maximum detected concentrations are greater than the TRVs protective of adverse health effects in birds: chromium, copper, and zinc. In addition, antimony, barium, and mercury were identified as COPECs based on the lack of applicable TRVs.

6.2.3.1.7.6 MRS 04 - Flamenco Lagoon Maneuver Area

As shown in Table 6-12A, the following MC were identified as COPECs in surface soil at MRS 04, because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in terrestrial plants and soil invertebrates: chromium.

6.2.3.1.7.7 Table 6-12B shows the following MC were identified as COPECs in surface soil because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in birds and mammals: copper. While there are no TRVs for barium (birds) and mercury (birds and mammals), these metals were not identified as COPECs because their maximum detected concentrations were within the range of detected concentrations in background surface soil samples.

6.2.3.1.7.8 MRS 05 – Mortar and Combat Range Area

As shown in Table 6-13A, the following MC were identified as COPECs in surface soil at MRS 05, because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in terrestrial plants and soil invertebrates: barium, chromium, and copper. While the maximum zinc concentration is also greater than TRVs for plants and soil invertebrates, it was within the range of detected concentrations in background surface soil samples. Therefore, zinc was not identified as a COPEC in Table 6-13A.

6.2.3.1.7.9 Table 6-13B shows the following MC were identified as COPECs in surface soil because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in birds and mammals: chromium, copper, and lead. In addition, barium and mercury were identified as COPECs based on the lack of applicable TRVs for one or both categories of receptors. While the maximum zinc concentration is also greater than TRVs for birds and mammals, it was within the range of detected concentrations in background surface soil samples. Therefore, zinc was not identified as a COPEC in Table 6-13B.

6.2.3.1.7.10 MRS 07 - Culebrita Artillery Impact Area

As shown in Table 6-14A, the following MC were identified as COPECs in surface soil at MRS 07, because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in terrestrial plants and soil invertebrates: barium, chromium, copper, and zinc.

6.2.3.1.7.11 Table 6-14B shows the following MC were identified as COPECs in surface soil because their maximum detected concentrations are greater than one or both of the TRVs protective of adverse health effects in birds and mammals: copper, lead, and zinc. In addition, barium and mercury were identified as COPECs based on the lack of applicable TRVs for one or both categories of receptors.

Table 6-10A: Selection of COPECs in MRS 02 (Cerro Balcon) Surface Soil: Plants and Soil Invertebrates

		etonation Sur Samples ¹	face Soil		TR	V ²		COPEC? 3
Detected	Frequency of	Range of D	etected	Terrestrial	Plants	Soil Inverte	brates	
Chemicals	Detection	Concentr						
		(mg/l	kg)	(mg/kg)	basis	(mg/kg)	basis	[Y/N]
Antimony	5 / 5	1 B	2 B	5	С	78	a	N
Barium	5 / 5	45 -	60	500	С	330	a	N
Chromium ⁴	5 / 5	40	110	1	С	0.4	b	Υ
Copper	5 / 5	91 -	110	70	a	80	a	Υ
Lead	5 / 5	2.9	5.8	120	a	1,700	a	N
Mercury ⁵	5 / 5	0.028	0.047	0.3	С	0.1	b	N
Zinc	5 / 5	52 J ¯	130 J	160	a	120	а	Υ

- a USEPA (2011b) Ecological Soil Screening Levels
- b USEPA Region 5 (2003) ESL for soil
- c ORNL Toxicological Benchmarks for Plants (Efroymson, et al., 1997)

J, B - estimated

¹ Surface soil samples were collected by Ellis Environmental during clearance activities at Cerro Balcon. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007) and are summarized herein.

² TRVs were selected from the following hierarchy of sources:

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs.

⁴TRV applies to total chromium.

⁵ ONRL benchmark applies to elemental mercury. USEPA Region 5 ESL applies to total mercury.

Table 6-10B: Selection of COPECs in MRS 02 (Cerro Balcon) Surface Soil: Birds and Mammals

	Ellis Pre-Detonation Surface Soil Samples 1			TRV ³				COPEC? ⁴
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations		Birds		Mammals		
		(mg/kg)		(mg/kg)	basis	(mg/kg)	basis	[Y/N]
Antimony	5 / 5	1 B 2 B	N	NA		0.27	a	Υ
Barium	5 / 5	45 60	N	NA		2,000	a	Υ
Chromium ⁵	5 / 5	40 110	Cr VI	26	а	34	a	Υ
Copper	5 / 5	91 110	Υ	28	а	49	a	Υ
Lead	5 / 5	2.9 5.8	Υ	11	а	56	a	N
Mercury	5 / 5	0.028 0.047	MHg	NA		NA		Υ
Zinc	5 / 5	52 J 130 J	Υ	46	а	79	а	Υ

Cr VI - indicates only hexavalent chromium (Cr VI) is bioaccumulative

 $\ensuremath{\mathsf{MHg}}$ - indicates only methylmercury is bioaccumulative

J, B - estimated

NA - Not Available

¹ Surface soil samples were collected by Ellis Environmental during clearance activities at Cerro Balcon. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007) and are summarized herein.

² Chemicals considered bioaccumulative are those listed in Table 4-2, Important Bioaccumulative Compounds in USEPA, 2000.

³ TRVs were selected from the following hierarchy of sources:

a - USEPA (2011b) Ecological Soil Screening Levels

b - USEPA Region 5 (2003) ESL for soil

⁴ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs.

⁵ USEPA EcoSSL applies to trivalent chromium (Cr III).

Table 6-11A: Selection of COPECs in MRS 02 (Cayo Lobo) Surface Soil: Terrestrial Plants and Soil Invertebrates

	Ellis Pre-Detonation Surface Soil Samples 1			TRV ²				COPEC? ³
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations		Terrestrial	Plants	lants Soil Invertebrates		
		(mg	g/kg)	(mg/kg)	basis	(mg/kg)	basis	[Y/N]
Antimony	4 / 5	0.79 B	1.7 B	5	С	78	a	N
Barium	5 / 5	28	52	500	С	330	а	N
Chromium ⁴	5 / 5	19	30	1	С	0.4	b	Υ
Copper	5 / 5	58	83	70	а	80	a	Υ
Lead	5 / 5	2.1	4.2	120	а	1,700	а	N
Mercury ⁵	4 / 5	0.0087 B	0.021 B	0.3	С	0.1	b	N
Zinc	5 / 5	43	150	160	а	120	a	Υ

- a USEPA (2011b) Ecological Soil Screening Levels
- b USEPA Region 5 (2003) ESL for soil
- c ORNL Toxicological Benchmarks for Plants (Efroymson, et al., 1997)

B - estimated

¹ Surface soil samples were collected by Ellis Environmental during clearance activities at Cayo Lobo. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007) and are summarized herein.

² TRVs were selected from the following hierarchy of sources:

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs.

⁴TRV applies to total chromium.

⁵ONRL benchmark applies to elemental mercury. USEPA Region 5 ESL applies to total mercury.

Table 6-11B: Selection of COPECs in MRS 02 (cays) Surface Soil: Birds

	Ellis Pre-Detonation Surface Soil Samples 1		Bioaccumulative ²	TRV	3	COPEC? ⁴	
Detected Chemicals	Frequency of Detection	_	Detected trations		Birds		
		(ฑยู	g/kg)		(mg/kg)	basis	[Y/N]
Antimony	4 / 5	0.79 B	1.7 B	N	NA		Υ
Barium	5 / 5	28	52	N	NA		Υ
Chromium ⁵	5 / 5	19	30	Cr VI	26	а	Υ
Copper	5 / 5	58	83	Υ	28	а	Υ
Lead	5 / 5	2.1	4.2	Υ	11	а	N
Mercury	4 / 5	0.0087 B	0.021 B	MHg	NA		Υ
Zinc	5 / 5	43	150	Υ	46	а	Υ

B - estimated

Cr VI - indicates only hexavalent chromium (Cr VI) is bioaccumulative

MHg - indicates only methylmercury is bioaccumulative

NA - Not Available

¹ Surface soil samples were collected by Ellis Environmental during clearance activities at Cayo Lobo. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007) and are summarized herein.

² Chemicals considered bioaccumulative are those listed in Table 4-2, Important Bioaccumulative Compounds in USEPA, 2000.

³ TRVs were selected from the following hierarchy of sources:

a - USEPA (2011b) Ecological Soil Screening Levels

b - USEPA Region 5 (2003) ESL for soil

⁴ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs.

⁵ USEPA EcoSSL applies to trivalent chromium (Cr III).

Table 6-12A: Selection of COPECs in MRS 04 Surface Soil: Plants and Soil Invertebrates

	Surface So	Surface Soil Data Summary ¹			TF	RV ²		COPEC? ³	Surfa	round ce Soil ples ⁴
				Terres	trial	Soi	I		Ran	ge of
Detected	Frequency of	Range of	Detected	Plan	its	Invertek	rates		Dete	ected
Chemicals	Detection	Concen	trations						Concen	trations
		(mg	/kg)	(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mg	g/kg)
						T			T	
Barium	7 / 7	12	218 J	500	С	330	a	N	111 J	257 J
Chromium ⁵	7 / 7	2.83	14.7	1	С	0.4	b	Υ	2.74	14.2
Copper	7 / 7	3.05	61.8 J	70	a	80	a	N	39.7	60.3
Lead	4 / 7	1.2	10.3	120	а	1,700	а	N	3.21 - 0.017 -	15.1 0.0353
Mercury ⁶	7 / 7	0.00558 J	0.0312 J	0.3	С	0.1	b	N	J	J
Zinc	7 / 7	5.22	117 J	160	а	120	а	N	33	71.9

- a USEPA (2011b) Ecological Soil Screening Levels
- b USEPA Region 5 (2003) Ecological Screening Levels (ESL) for soil
- c Oak Ridge National Laboratory (ORNL) Toxicological Benchmarks for Plants (Efroymson, et al., 1997)

J - estimated

¹Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

 $^{^{\}rm 2}$ TRVs were selected from the following hierarchy of sources:

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁴ Represents combined SI and RI background sample data.

⁵TRV applies to total chromium.

⁶ ONRL benchmark applies to elemental mercury. USEPA Region

⁵ ESL applies to total mercury.

Table 6-12B: Selection of COPECs in MRS 04 Surface Soil: Birds and Mammals

	Surface S	oil Data Summary ¹	Bioaccumulative ²	TRV ³				COPEC?	_	nd Surface Imples ⁵
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations		Birds		Mammals			Range of Detected Concentrations	
		(mg/kg)		(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mį	g/kg)
Barium	7 / 7	12 218 J	N	NA		2,000	a	N	111 J	257 J
Chromium ⁶	7 / 7	2.83 14.7	Cr VI	26	а	34	a	N	2.74	14.2
Copper	7 / 7	3.05 61.8 J	Υ	28	а	49	a	Υ	39.7	60.3
Lead	4 / 7	1.2 10.3	Υ	11	а	56	a	N	3.21	15.1
Mercury	7 / 7	0.00558 J 0.0312 J	MHg	NA		NA		N	0.017 J ⁻	0.0353 J
Zinc	7 / 7	5.22 117 J	Υ	46	a	79	a	N	33 -	71.9

a - USEPA (2011b) Ecological Soil Screening Levels

b - USEPA Region 5 (2003) Ecological Screening Levels (ESL) for soil

J - estimated

Cr VI - indicates only hexavalent chromium (Cr VI) is bioaccumulative

 $\ensuremath{\mathsf{MHg}}$ - indicates only methylmercury is bioaccumulative

NA - Not Available

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

² Chemicals considered bioaccumulative are those listed in Table 4-2, Important Bioaccumulative Compounds in USEPA, 2000.

³ TRVs were selected from the following hierarchy of sources:

⁴ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁵ Represents combined SI and RI background sample data.

⁶ USEPA EcoSSL applies to trivalent chromium (Cr III).

Table 6-13A: Selection of COPECs in MRS 05 Surface Soil: Plants and Soil Invertebrates

	Surface So	Surface Soil Data Summary ¹		TF	RV ²		COPEC? ³	Background Surface Soil Samples 4	
			Terres	trial	Soi	I		Rang	ge of
Detected	Frequency of	Range of Detected	Plan	ts	Inverteb	rates		Dete	cted
Chemicals	Detection	Concentrations						Concen ⁻	trations
		(mg/kg)	(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mg	/kg)
Barium	20 / 20	35.1 J 1,300	500	С	330	a	Υ	236 J	421 J
Chromium ⁵	20 / 20	2.8 150	1	С	0.4	b	Υ	11.5	14.3
Copper	20 / 20	18 J	70	a	80	a	Υ	135	152
Lead	20 / 20	2.36 T7.3 J	120	а	1,700	a	N	5.08 - 0.0113 -	9.83 0.0357
Mercury ⁶	20 / 20	0.0097 J 0.059	0.3	С	0.1	b	N	J	J
Zinc	20 / 20	58.4 J 127 J	160	а	120	а	N	60.3	164

- a USEPA (2011b) Ecological Soil Screening Levels
- b USEPA Region 5 (2003) Ecological Screening Levels (ESL) for soil
- c Oak Ridge National Laboratory (ORNL) Toxicological Benchmarks for Plants (Efroymson, et al., 1997)

J - estimated

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

² TRVs were selected from the following hierarchy of sources:

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁴ Represents combined SI and RI background sample data.

⁵TRV applies to total chromium.

⁶ ONRL benchmark applies to elemental mercury. USEPA Region 5 ESL applies to total mercury.

Table 6-13B: Selection of COPECs in MRS 05 Surface Soil: Birds and Mammals

	Surface Soil I	Surface Soil Data Summary ¹		TRV ³			COPEC? 4	Background Surface Soil Samples ⁵		
Detected Chemicals	Frequency of Range of Detected Detection Concentrations			Birds		Mammals			_	Detected atrations
		(mg/kg)		(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mį	g/kg)
		1								
Barium	20 / 20	35.1 J 1,300	N	NA		2,000	a	Υ	236 J	421 J
Chromium ⁶	20 / 20	2.8 150	Cr VI	26	а	34	а	Υ	11.5	14.3
Copper	20 / 20	18 J 170 J	Υ	28	а	49	а	Υ	135	152
Lead	20 / 20	2.36 17.3 J	Υ	11	а	56	а	N	5.08	9.83
Mercury	20 / 20	0.0097 J 0.059	MHg	NA		NA		Υ	0.0113 J	0.0357 J
Zinc	20 / 20	58.4 J 127 J	Υ	46	а	79	а	N	60.3	164

a - USEPA (2011b) Ecological Soil Screening Levels

b - USEPA Region 5 (2003) Ecological Screening Levels (ESL) for soil

J - estimated

Cr VI - indicates only hexavalent chromium (Cr VI) is bioaccumulative

MHg - indicates only methylmercury is bioaccumulative

NA - Not Available

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

² Chemicals considered bioaccumulative are those listed in Table 4-2, Important Bioaccumulative Compounds in USEPA, 2000.

 $^{^{\}rm 3}$ TRVs were selected from the following hierarchy of sources:

⁴ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁵ Represents combined SI and RI background sample data.

⁶ USEPA EcoSSL applies to trivalent chromium (Cr III).

Table 6-14A: Selection of COPECs in MRS 07 Surface Soil: Plants and Soil Invertebrates

	Surface So	Surface Soil Data Summary ¹			TRV ²				Backg Surfac Samp	ce Soil
Detected	Frequency of	Range of	Detected	Terres	trial	Soi	l		Range of	Detected
Chemicals	Detection	Concer	ntrations	Plan	its	Inverteb	rates		Concen	trations
		(mį	g/kg)	(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mg	/kg)
				ı					T	
Barium	10 / 10	29.6 J	480	500	С	330	a	Υ	118 J	130 J
Chromium ⁵	10 / 10	8.0 J	22.5 J	1	С	0.4	b	Υ	12.9 J	15.9 J
Copper	10 / 10	109 J	225 J	70	а	80	a	Υ	125 J	136 J
Lead	10 / 10	3.4 J	69 J	120	а	1,700	a	N	4.57 J	5.35 J
Mercury ⁶	9 / 10	0.0101 J	0.052 J	0.3	С	0.1	b	N	0.0255 J	0.0314 J
Zinc	10 / 10	51.7 J	190 J	160	а	120	a	Υ	60 J	77.6 J

- a USEPA (2011b) Ecological Soil Screening Levels
- b USEPA Region 5 (2003) Ecological Screening Levels (ESL) for soil
- c Oak Ridge National Laboratory (ORNL) Toxicological Benchmarks for Plants (Efroymson, et al., 1997)

J - estimated

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

² TRVs were selected from the following hierarchy of sources:

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁴ Represents combined SI and RI background sample data.

⁵ TRV applies to total chromium.

⁶ ONRL benchmark applies to elemental mercury. USEPA Region 5 ESL applies to total mercury.

Table 6-14B: Selection of COPECs in MRS 07 Surface Soil: Birds and Mammals

	Surface Soi	l Data Sumn	nary ¹	Bioaccumulative ²		TR	V ³		COPEC? ⁴	Background Surfa Soil Samples ⁵	
Detected Chemicals	Frequency of Detection				Birds		Mammals			_	Detected trations
		(mg	/kg)		(mg/kg)	basis	(mg/kg)	basis	[Y/N]	(mg	/kg)
										T	
Barium	10 / 10	29.6 J	480	N	NA		2,000	a	Υ	118 J	130 J
Chromium ⁶	10 / 10	8.0 J	22.5 J	Cr VI	26	а	34	a	N	12.9 J	15.9 J
Copper	10 / 10	109 J	225 J	Υ	28	а	49	а	Υ	125 J	136 J
Lead	10 / 10	3.4 J	69 J	Υ	11	а	56	a	Υ	4.57 J ⁻	5.35 J
Mercury	9 / 10	0.0101 J	0.052 J	MHg	NA		NA		Υ	0.0255 J ⁻	0.0314 J
Zinc	10 / 10	51.7 J	190 J	Υ	46	а	79	a	Υ	60 J	77.6 J

J - estimated

Cr VI - indicates only hexavalent chromium (Cr VI) is bioaccumulative

MHg - indicates only methylmercury is bioaccumulative

NA - Not Available

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) surface soil data.

² Chemicals considered bioaccumulative are those listed in Table 4-2, Important Bioaccumulative Compounds in USEPA, 2000.

³ TRVs were selected from the following hierarchy of sources:

a - USEPA (2011b) Ecological Soil Screening Levels

⁴ A chemical is identified as a COPEC where the maximum detected concentration is greater than one or both TRVs and is also greater than the range of detected concentrations in background surface soil samples.

⁵ Represents combined SI and RI background sample data.

⁶ USEPA EcoSSL applies to trivalent chromium (Cr III).

6.2.3.1.8 Selection of COPECs in Sediment

6.2.3.1.8.1 Tables 6-15 to 6-17 present a sediment data summary and the selection of COPECs for MRSs 04, 05, and 07. The following summarizes the COPECs identified in sediment at each MRS.

6.2.3.1.8.2 MRS 04 – Flamenco Lagoon Maneuver Area

As shown in Table 6-15, the following MC were identified as COPECs in sediment at MRS 04, because their maximum detected concentrations are greater than chemical-specific TELs: copper, lead, and mercury.

6.2.3.1.8.3 MRS 05 – Mortar and Combat Range Area

Table 6-16 presents the data from the two lagoon sediment samples separately from the single sediment sample from the perennial stream. The following MC were identified as COPECs in lagoon sediments at MRS 05, because their maximum detected concentrations are greater than chemical-specific TELs: barium and copper. Barium was also identified as a COPEC in the stream sediment sample from MRS 05, based on the lack of applicable freshwater sediment TRVs.

6.2.3.1.8.4 MRS 07 - Culebrita Artillery Impact Area

As shown in Table 6-17, the following MC were identified as COPECs in sediment at MRS 07, because their maximum detected concentrations are greater than chemical-specific TELs: barium and copper.

	Lagoon Sedime	ent Data Summary ¹	TR	V ²	COPEC? 3
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations	TEL	PEL	
		(mg/kg)	(mg/kg)	(mg/kg)	[Y/N]
Barium	4 / 5	21.2 J - 81	130	NA	N
Chromium	4 / 5	5.8 - 12.1	52	160	N
Copper	4 / 5	2.94 - 120	19	108	Υ
Lead	2 / 5	5.8 - 159	30	112	Υ
Mercury	2 / 5	0.013 J - 0.227 J	0.1	0.7	Υ
Zinc	4 / 5	3.65 - 95.5	124	271	N

Table 6-15: Summary of MRS 04 Sediment Data and Identification of COPECs

Notes

NA - not available

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) sediment data.

² TRVs are threshold effects levels (TEL) and probable effects levels (PEL) for marine sediments (Buchman, M.F., 2008).

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than the TEL.

J - estimated

Table 6-16: Summary of MRS 05 Sediment Data and Identification of COPECs

	Lagoon Sedim	nent Data Summary 1	TR	V ²	COPEC? 3
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations	TEL	PEL	
		(mg/kg)	(mg/kg)	(mg/kg)	[Y/N]
Barium	2 / 2	29 - 196 J	130	NA	Υ
Chromium	2 / 2	7.7 - 14.3 J	52	160	N
Copper	2 / 2	22 - 149 J	19	108	Υ
Lead	2 / 2	2.5 - 6.29	30	112	N
Mercury	2 / 2	0.00818 - 0.013 J	0.1	0.7	N
Zinc	2 / 2	32 J - 68.7 J	124	271	N

	Stream Sedin	nent Data Summary ¹	Freshwater S	Sediment TRV	COPEC? 3
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations	TEL	PEL	
		(mg/kg)	(mg/kg)	(mg/kg)	[Y/N]
Barium	1 / 1	175 J	NA	NA	Υ
Chromium	1 / 1	13.3 J	37.3	90	N
Copper	1 / 1	130 J	35.7	197	N
Lead	1 / 1	5.56	35	91.3	N
Mercury	1 / 1	0.0129	0.174	0.486	N
Zinc	1 / 1	73.3 J	123	315	N

NA - not available

 $^{^{1}}$ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) sediment data.

² TRVs for lagoon sediments are threshold effects levels (TEL) and probable effects levels (PEL) for marine sediments. TRVs for stream sediments are TELs and PELs for freshwater sediments. (Buchman, M.F., 2008).

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than the TEL or ERL.

J - estimated

Table 6-17: Summary of MRS 07 Sediment Data and Identification of COPECs

	Lagoon Sedime	ent Data Summary 1	TR	V ²	COPEC? 3
Detected Chemicals	Frequency of Detection	Range of Detected Concentrations	TEL	PEL	
		(mg/kg)	(mg/kg)	(mg/kg)	[Y/N]
Barium	3 / 3	16 - 369 J	130	NA	Υ
Chromium	3 / 3	2.69 J - 12.6 J	52	160	N
Copper	3 / 3	6.7 - 151 J	19	108	Υ
Lead	2 / 3	1.9 - 20.1 J	30	112	N
Zinc	3 / 3	5.0 J - 115 J	124	271	N

J - estimated

NA - not available

6.2.3.1.9 Risk Characterization

Risk characterization involves risk estimation and risk description. Exposure and effects information are integrated to evaluate the potential for adverse health effects associated with exposure to the identified COPECs. The risk characterization notes some of the assumptions used in this SLERA, as well as sources of uncertainty, because the SLERA process relies on certain assumptions that warrant documentation.

6.2.3.1.10 Screening-Level Risk Calculations for COPECs in Surface Soil

- 6.2.3.1.10.1 The potential for adverse health effects from exposure to the COPECs identified in surface soil is characterized by calculating an ecological HQ, which is the ratio of the estimated exposure (i.e., soil concentration) to the corresponding chemical-specific TRV. In this SLERA, maximum detected concentrations were used as conservative estimates of exposure; it is not likely that MC would be present across an MRS at concentrations equivalent to the maximum detected concentration. An HQ greater than 1 indicates a potential for adverse health effects from exposure to that COPEC. According to the USEPA (1997), an HQ less than 1 does not indicate the absence of ecological risk. Rather, "it should be interpreted based on the severity of the effect reported and the magnitude of the calculated quotient" (USEPA, 1997).
- 6.2.3.1.10.2 Tables 6-18 to 6-22 present the HQs calculated for the COPECs identified in surface soil at each MRS. As shown, most of the HQs are between 1 and 10, indicating the maximum detected MC concentrations are typically within an

¹ Represents combined summary of Site Investigation (SI) and Remedial Investigation (RI) sediment data.

² TRVs are threshold effects levels (TEL) and probable effects levels (PEL) for marine sediments (Buchman, M.F., 2008).

³ A chemical is identified as a COPEC where the maximum detected concentration is greater than the TEL.

order of magnitude of the TRVs used to indicate the potential for adverse health effects in terrestrial receptors. Given the order-of-magnitude uncertainty factors sometimes used to derive TRVs, the potential for adverse health effects from exposure to these COPECs may be considered negligible. In addition, for some COPECs identified in surface soil (e.g., chromium at MRS 04), a potential for adverse health effects in terrestrial plants and soil invertebrates would be indicated using even the minimum detected concentration from the background soil samples as an exposure estimate in the HQ calculation. This reflects the conservative nature of the TRVs used in screening-level assessments and reinforces the concept that HQs are indicative of the potential for, but are not predictors of, adverse health effects.

- 6.2.3.1.10.3 As shown in Tables 6-18 to 6-22, chromium is the only COPEC in surface soil with consistently elevated HQs relative to one. The HQs calculated using TRVs protective of adverse health effects in terrestrial plants and soil invertebrates are particularly elevated (i.e., greater than 10), which may be a function of the low TRVs (i.e., 1 mg/kg for plants and 0.4 mg/kg for invertebrates). The range of chromium concentrations detected in surface soil samples from MRS 04 (2.49-14.7 mg/kg) is similar to that found in background soil samples at this MRS (2.74-14.2 mg/kg), indicating the detected chromium concentrations are not likely attributable to historic military activities. Overall, the potential for risk of adverse health effects in terrestrial receptors from exposure to chromium in surface soil at MRS 04 may be considered negligible.
- 6.2.3.1.10.4 The maximum chromium concentrations detected in surface soil samples from MRS 02 (Cerro Balcon) (110 mg/kg) and MRS 05 (150 mg/kg) are elevated relative to the range of concentrations in background soil samples from MRS 05 (11.5-14.3 mg/kg). Further evaluation of the data from MRS 02 (Cerro Balcon) reveals chromium concentrations in the soil samples collected by Ellis were 40, 42, 49, 53, and 110 mg/kg. The geospatial distribution of these samples, the reliability of the analytical data, and the actual background concentrations at MRS 02 (Cerro Balcon) are unknown.
- 6.2.3.1.10.5 Chromium concentrations detected in the soil samples collected during the SI at MRS 05 ranged from 2.8-150 mg/kg, with the second highest concentration being 18 mg/kg. The single elevated concentration (relative to background) of 150 mg/kg was detected in sample CUL-05-SS-06-18. Chromium concentrations detected in the soil samples collected during the RI at MRS 05 ranged from 8.26-63.6 mg/kg, with the maximum concentration detected in CI-MRS05-SS-05. The next three highest concentrations were only slightly elevated relative to the range of background surface soil concentrations and were detected in the following samples: CI-MRS05-SS-11 (26.9 mg/kg), CI-MRS05-SS-06 (23.7 mg/kg), and CI-MRS05-SS-13 (23.5 mg/kg). Three of these five aforementioned samples were collected at locations just southeast of Cerro Balcon. The other two

samples (CI-MRS05-SS-11 and CI-MRS05-SS-13) were collected in the south and west of the MRS, respectively. This data review reveals the majority of chromium concentrations detected in surface soil from MRS 05 are within or around the range of background but that elevated chromium concentrations may be detected at sporadic locations across the MRS. Overall, the potential for risk of adverse health effects in terrestrial receptors from exposure to chromium in surface soil at MRS 02 (Cerro Balcon) and MRS 05 may be considered low.

- 6.2.3.1.10.6 The maximum chromium concentrations detected in surface soil samples from MRS 02 (cays) (30 mg/kg) and MRS 07 (22.5 mg/kg) are only slightly elevated relative to the range of concentrations in background soil samples from MRS 07 (12.9-15.9 mg/kg). Further evaluation of the data from MRS 02 (cays) reveals chromium concentrations in the soil samples collected by Ellis were 28, 19, 30, 28, and 24 mg/kg. The geospatial distribution of these samples, the reliability of the analytical data, and the actual background concentrations at MRS 02 (cays) are unknown. Further evaluation of the SI and RI data from MRS 07 reveals the majority (7/10 samples) of chromium concentrations were within the range of background. Considering that the maximum chromium concentrations detected in surface soil samples from both MRS 02 (cays) and MRS 07 are only slightly elevated above background, the fact that the majority of the chromium concentrations detected in surface soil at MRS 07 are within background, and the relatively low TRVs, the potential for risk of adverse health effects in terrestrial receptors from exposure to chromium in surface soil at MRS 02 (cays) and MRS 07 may be considered negligible.
- 6.2.3.1.10.7 As shown in Tables 6-18 to 6-22, the only other COPEC with a calculated HQ greater than 10 is copper in surface soil at MRS 07. This HQ is based on the maximum detected copper concentration (225 mg/kg), which was detected in CUL-07-SS-06-25. Further evaluation of the SI and RI data reveals that all other detected copper concentrations would result in HQs less than 10. Therefore, the potential for risk of adverse health effects in terrestrial receptors from exposure to copper in surface soil at MRS 07 may be considered negligible.

Table 6-18: Calculation of Hazard Quotients for COPECs in MRS 02 (Cerro Balcon) Surface Soil

		Hazard Quo	tient (HQ) 1	
Detected	Terrestrial	Soil	Birds	Mammals
Chemicals	Plants	Invertebrates		
Antimony			NA	7
Barium			NA	
Chromium ²	110	275	4	3
Copper	2	1	4	2
Lead				
Mercury			NA	NA
Zinc		1	3	2

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - chemical-specific TRV was not available for this COPEC

Table 6-19: Calculation of Hazard Quotients for COPECs in MRS 02 (cays) Surface Soil

	Hazard Quotient (HQ) 1					
	Terrestrial	Soil	Birds			
Detected Chemicals	Plants	Invertebrates				
Antimony			NA			
Barium			NA			
Chromium ²	30	75	1			
Copper		1	3			
Lead						
Mercury			NA			
Zinc		1	3			

Notes

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

¹ The HQ was calculated as the ratio of the maximum detected concentration to the chemical-specific TRV.

² HQ was calculated using the TRV for total chromium (plants and soil invertebrates) or trivalent chromium (Cr III) (birds and mammals).

¹ The HQ was calculated as the ratio of the maximum detected concentration to the chemical-specific TRV.

² HQ was calculated using the TRV for total chromium (plants and soil invertebrates) or trivalent chromium (Cr III) (birds).

NA - chemical-specific TRV was not available for this COPEC

Table 6-20: Calculation of Hazard Quotients for COPECs in MRS 04

	Hazard Quotient (HQ) ¹						
Detected	Terrestrial	Soil	Birds	Mammals			
Chemicals	Plants	Plants Invertebrates					
Barium			NA				
Chromium ²	17	42					
Copper			3	2			
Lead							
Mercury			NA	NA			
Zinc							

Notes

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - chemical-specific TRV was not available for this COPEC

Table 6-21: Calculation of Hazard Quotients for COPECs in MRS 05

	Hazard Quotient (HQ) ¹						
Detected	Terrestrial	Soil	Birds	Mammals			
Chemicals	Plants	Invertebrates					
Barium	3	4	NA				
Chromium ²	150	375	6	4			
Copper	2	2	6	3			
Lead			1				
Mercury			NA	NA			
Zinc							

Notes

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - chemical-specific TRV was not available for this COPEC

¹ The HQ was calculated as the ratio of the maximum detected concentration to the chemical-specific TRV.

² HQ was calculated using the TRV for total chromium (plants and soil invertebrates) or trivalent chromium (Cr III) (birds and mammals).

¹ The HQ was calculated as the ratio of the maximum detected concentration to the chemical-specific (TRV).

² HQ was calculated using the TRV for total chromium (plants and soil invertebrates) or trivalent chromium (Cr III) (birds and mammals).

Table 6-22: Calculation of Hazard Quotients for COPECs in MRS 07

	Hazard Quotient (HQ) ¹						
Detected	Terrestrial	Soil	Birds	Mammals			
Chemicals	als Plants Invertebrates						
Barium	Barium 1		2 NA				
Chromium ²	23	56					
Copper	6	5	14	8			
Lead			6	1			
Mercury			NA	NA			
Zinc	1	2	5	3			

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - chemical-specific TRV was not available for this COPEC

6.2.3.1.11 Screening-Level Risk Calculations for COPECs in Sediment

- 6.2.3.1.11.1 Tables 6-23 to 6-25 present the HQs calculated for the COPECs identified in sediment at MRSs 04, 05, and 07. HQs were calculated as the ratio of the maximum detected concentration to the corresponding TEL and PEL. As stated above, adverse health effects in sediment-associated biota are not expected from exposure to concentrations less than the TEL, while PELs are concentration levels above which adverse health effects are likely to occur (Long and MacDonald, 1998).
- 6.2.3.1.11.2 As shown in Tables 6-23 to 6-25, HQs calculated using the TELs as the more conservative TRVs are greater than 1 but less than 10. HQs calculated using the PELs are 1, indicating a potential for risk of adverse health effects in aquatic receptors. However, considering the conservatism of the TRVs and the fact that the HQs were calculated using maximum detected concentrations in sediment, the potential for ecological risk may be qualified low.

¹ The HQ was calculated as the ratio of the maximum detected concentration to the chemical-specific (TRV).

² HQ was calculated using the TRV for total chromium (plants and soil invertebrates) or trivalent chromium (Cr III) (birds and mammals).

Table 6-23: Calculation of Hazard Quotients for COPECs in MRS 04 Sediment

	Lagoon Sediment Hazard Quotient (HQ) 1					
Detected Chemicals	TEL-based PEL-based					
Barium						
Chromium						
Copper	6	1				
Lead	5	1				
Mercury	2					
Zinc						

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

Table 6-24: Calculation of Hazard Quotients for COPECs in MRS 05 Sediment

	Lagoon Sediment Hazard Quotient (HQ) 1				
Detected Chemicals	TEL-based	PEL-based			
Barium	2	NA			
Chromium					
Copper	8	1			
Lead					
Mercury					
Zinc					

	Stream Sediment HQs ¹			
Detected Chemicals	TEL-based PEL-based			
Barium	NA	NA		
Chromium				
Copper				
Lead				
Mercury				
Zinc				

Notes

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - PEL not available

¹ The HQ was calculated as the ratio of the maximum detected concentration to the threshold effects level (TEL) or probable effects level (PEL).

¹ The HQ was calculated as the ratio of the maximum detected concentration to the threshold effects level (TEL) or probable effects level (PEL).

Table 6-25: Calculation of Hazard Quotients for COPECs in MRS 07 Sediment

	Lagoon Sediment Hazard Quotient (HQ) 1				
Detected Chemicals	TEL-based PEL-based				
Barium	3	NA			
Chromium					
Copper	8	1			
Lead					
Zinc					

COPEC - chemical of potential ecological concern

-- not a COPEC for this receptor

NA - PEL not available

6.2.3.1.12 Uncertainty Evaluation

- 6.2.3.1.12.1 Uncertainties in the SLERA process are related to environmental sampling, assumptions regarding the potential exposure of ecological receptors, and the TRVs used to select COPECs and calculate HQs.
- 6.2.3.1.12.2 A basic assumption underlying this SLERA is that the available surface soil and sediment data adequately characterize environmental conditions and the potential for MC to be present at each MRS. However, there are always some uncertainties associated with environmental sampling and analysis. Uncertainty associated with environmental sampling is generally related to limitations in terms of the number and distribution of samples, while uncertainty associated with the analysis of samples is generally associated with systematic or random errors (i.e., false positive or negative results). Efforts to minimize uncertainty were made by collecting and analyzing the RI samples in accordance with the QAPP and by independently validating the analytical data. In addition, composite surface soil samples were collected in an effort to sample a larger areal extent at each selected location.
- 6.2.3.1.12.3 Sediment sample locations for the RI were randomly selected, while the RI surface soil sample locations were biased toward areas where MEC or MD were found. While the latter approach increased the likelihood of finding MC at elevated concentrations, dense vegetation throughout the upland areas of each MRS limited field investigations for both MEC and MC. The extent to which MC is present at elevated concentrations in the areas of each MRS that were not accessible by the field team is an area of uncertainty, and the potential for

¹ The HQ was calculated as the ratio of the maximum detected concentration to the threshold effects level (TEL) or probable effects level (PEL).

exposure of and adverse health effects in ecological receptors may be understated to an unknown degree.

Due to difficulties accessing the outlying cays and access restrictions at Cerro Balcon, no soil or sediment samples were collected at MRS 02. The risk evaluation for MRS 02 is based on ten surface soil samples collected by Ellis during clearance activities at Cerro Balcon and Cayo Lobo. The sample collection methods and quality control procedures used are not known. It is not likely the analytical data were independently validated. The extent to which the Ellis surface soil data are reliable indicators of MC presence and concentrations in soil at MRS 02 is uncertain, and the potential for exposure of and adverse health effects in ecological receptors may be understated to an unknown degree. In addition, the lack of sediment data for MRS 02 is an area of uncertainty in this SLERA.

- 6.2.3.1.12.4 The SLERA necessarily overestimates the potential for risk of adverse health effects by making conservative assumptions about the potential for exposure of ecological receptors. These assumptions include:
 - Ecological receptors forage exclusively within the immediate MRS vicinity and are exposed to the COPEC present in surface soil/sediment on a daily basis. This is an especially conservative assumption for evaluating receptors with large home ranges.
 - Each COPEC is present at a concentration equal to its maximum detected concentration. This is unlikely because the COPECs are not likely present across each MRS at concentrations equivalent to the maximum detected concentrations.
 - The COPECs are 100% bioavailable in soil.
- 6.2.3.1.12.5 Sources of uncertainty in the TRVs used to select COPECs and calculate HQs stem mostly from differences in their derivation. In some cases, the TRVs were derived using clinical dose-response trials with laboratory animals under controlled environmental conditions. Differences in toxicity may exist between laboratory animals and wildlife. Additionally, toxicity values from various sources can differ by orders of magnitude for the same chemical, depending on the test species used and the type of trial conducted. The use of TRVs from multiple sources, depending on their availability, may limit the comparability of HQs for a single receptor. The usefulness of TRVs as indicators of potential ecological risk is limited in cases where TRVs are exceeded by background concentrations. Lastly, the lack of TRVs for some detected chemicals contributes to immeasurable uncertainty in either direction.
- 6.2.3.1.12.6 TRVs were not available to evaluate the potential for ecological risk from exposure to mercury in surface soil. Therefore, the potential for adverse effects in terrestrial wildlife from exposure to mercury in soil was not quantitatively evaluated in this SLERA. The following section provides a brief summary of

information on the environmental transport and potential ecotoxicity of mercury.

6.2.3.1.12.7 *Mercury*

Inorganic mercury can be methylated by microorganisms indigenous to soils, fresh water, and salt water. Two transformation processes of mercury in surface waters are biotransformation and bioaccumulation. Methylmercury in surface waters is rapidly accumulated by aquatic organisms.

- 6.2.3.1.12.8 Mercury compounds in soils may undergo the same chemical and biological transformations described for surface waters. Mercuric mercury usually forms complexes with chloride and hydroxide ions in soils, the specific complexes formed being dependent on the pH, salt content, and composition of the soil solution.
- 6.2.3.1.12.9 Numerous animal studies have determined the health effects from breathing and ingesting mercury. Effects from breathing metallic mercury range from lung, kidney, heart, stomach, liver damage, and possible damage to brain tissue in rabbits, to lung and liver disease in rabbits, decrease in number of fertile female rats over time, and shakiness, and temporary learning disability in rats. Effects from drinking inorganic mercury range from death in both young rats and developing young in pregnant hamsters, to weight loss, possible lowering of immune system, behavioral changes in mice, and kidney disease in rats.
- 6.2.3.1.12.10 From eating and drinking organic mercury, long-term health effects in animals include kidney disease in rats, brain damage and weakness in kittens, and liver damage in the developing young of pregnant rats. Studies have shown that short-term effects from drinking organic mercury include behavior problems in offspring of exposed mothers in rats, male infertility, and brain cell death in rabbits.

6.2.3.1.13 SLERA Conclusions

- 6.2.3.1.13.1 USEPA (1997) guidance indicates that following the screening-level risk calculation, a decision point is reached where it is determined which of these three statements applies:
 - The potential for adverse health effects in ecological receptors is negligible and there is no need for remediation on the basis of ecological risk.
 - There is inadequate information and the ecological risk assessment process should continue.
 - There is the potential for adverse ecological effects and a more thorough assessment is warranted.

- 6.2.3.1.13.2 Based on the evaluation presented herein, the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (cays), MRS 04, and MRS 07 is negligible; no soil remediation on the basis of ecological risk is warranted.
- 6.2.3.1.13.3 The potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (Cerro Balcon) and MRS 05 is low. Specifically, the HQs for chromium, calculated using TRVs protective of adverse health effects in terrestrial plants and soil invertebrates, were particularly elevated (i.e., greater than 10). Further evaluation of the data indicated the majority of chromium concentrations detected in surface soil samples from MRS 05 likely reflect background conditions, but that chromium may be present at elevated concentrations at sporadic locations across MRS 05. While relatively elevated chromium concentrations were detected within MRS 02, little is known about the geospatial distribution of these samples, the reliability of the analytical data, or the actual background concentrations within MRS 02.
- 6.2.3.1.13.4 Regardless of the possible distribution of chromium at each MRS, the potential for risk of adverse health effects was qualified "low" considering that the TRVs for terrestrial plants and soil invertebrates are exceptionally low, such that a potential for risk would also be indicated using the minimum detected background concentrations in surface soil. The HQs are not predictors of adverse health effects but are meant to indicate the potential for adverse health effects. The actual toxicity of a metal is a function of its bioavailability, its chemical form, and the exposure time of the receptor, among other factors. This SLERA assumes the MC are 100% bioavailable and necessarily overestimates exposure by using the maximum detected concentration as the exposure concentration. It is more likely that MC are present across each MRS at concentrations reflective of background. Therefore, no soil remediation on the basis of ecological risk is warranted.
- 6.2.3.1.13.5 Based on the evaluation of the sediment data, a potential for risk of adverse health effects in aquatic receptors is indicated. However, given the conservative nature of the TRVs used to screen the sediment data, the potential for ecological risk may be qualified low. No sediment remediation on the basis of ecological risk is warranted.

6.3 HAZARD ASSESSMENT FOR MEC

6.3.1 Munitions Response Site Prioritization Protocol

6.3.1.1 The Munitions Response Site Prioritization Protocol (MRSPP) is a method for assigning a relative priority for response actions to defense sites containing

- military munitions. It was developed in three modules to evaluate the unique hazards posed by UXO, Discarded Military Munitions (DMM), and MC.
- The Explosive Hazard Evaluation (EHE) Module provides a single approach to evaluate explosive hazards. This module is used when there is a known or suspected presence of an explosive hazard. The module considers data elements relative to three factors — explosive hazard, accessibility and potential effects on people.
- The Chemical Warfare Materiel (CWM) Hazard Evaluation (CHE) Module evaluates the chemical hazards associated with the physiological effects of chemical warfare materiel. The CHE module is used only when chemical warfare materiel is known or suspected of being present at a MRS. This module considers data elements related to three factors — chemical warfare materiel hazard, accessibility and potential effects on people.
- The Health Hazard Evaluation (HHE) Module approach evaluates relative risk to human health and the environment posed by MC and other non-munitionsrelated incidental contaminants. The module considers three factors contamination hazard factor, potential effects on people, other living things and the environment, and migration pathway.
- 6.3.1.2 Each of the modules is assigned a rating from G (lowest) to A (highest). Besides the ratings, there are three other possible outcomes of scoring for each module evaluation pending (insufficient data are available to conduct the scoring), no longer required (a response has already been conducted and completed), or no known or suspected hazard. Based on the results of scoring the three modules, each MRS is assigned one of eight priorities, where Priority 1 indicates the highest potential hazard and Priority 8 indicates the lowest potential hazard.
- 6.3.1.3 An MRSPP was prepared for MRSs in Culebra as part of the 2007 MMRP SI. Since additional data were collected, the MRSPP provided in the SI Report was reevaluated and updated in this RI Report to reflect the current understanding of site conditions. For the HHE module RI sampling results were utilized in conjunction with SI surface soil and sediment sampling results for MRS 04, MRS 05, and MRS 07. Surface soil sampling results from 2006 pre-detonation surface soils samples taken during removal action activities at Cerro Balcon and Cayo Lobo were used in the HHE module for MRS 02. The latest version of the MRSPP worksheets was utilized. Table 6-26 provides a summary of the revised MRSPP results for MRS 02, MRS 04, MRS 05, and MRS 07. The MRSPPs for the MRSs is provided in Appendix F.

Table 6-26: Summary of Revised MRSPP

MRS	EHE Rating	CHE Rating	HHE Rating	Overall Site Rating/Priority
02	В	No known or suspected CWM hazard	G	3
04	С	No known or suspected CWM hazard	G	4
05	С	No known or suspected CWM hazard	G	4
07	В	No known or suspected CWM hazard	G	3

Note: CHE – Chemical Hazard Evaluation EHE – Explosive Hazard Evaluation HHE – Health Hazard Evaluation

6.3.2 Baseline Munitions and Explosives of Concern Hazard Assessment

A baseline MEC HA was completed for MRS 02, MRS 04, MRS 05, and MRS 07 using the MEC HA guidance and accompanying automated scoring worksheets (Appendix E). The MEC HA presents a number of input factors that are scored based on current site conditions (baseline) and rescored based on proposed remedial alternatives. Based on the input factors for each MRS, the scoring worksheets generate a score for the site based on a sum of the scores determined for each input factor. The sum of the input factor scores falls within one of four hazard levels (1–4). The following description of each hazard level is summarized from the Interim MEC HA Methodology:

6.3.2.1 Hazard Level Descriptions

6.3.2.1.1 Hazard Level 1

This category identifies sites with the highest potential explosive hazard conditions. There may be instances where there is an imminent threat to human health from MEC. This hazard may be so obvious that an emergency response is appropriate without calculating a MEC HA.

- 6.3.2.1.2 Typical characteristics of a Hazard Level 1 site condition include a combination of the following:
 - HE-filled UXO, usually "Sensitive UXO" on the surface;
 - A former target area or Open Burn/Open Detonation (OB/OD) area;
 - An MRS with full or moderate accessibility;
 - Has the presence of additional human receptors inside the MRS or Explosive Safety Quantity Distance;

- May include subsurface MEC with intrusive activities to the depth of subsurface MEC; and
- An MRS that has not undergone a cleanup.

6.3.2.1.3 **Hazard Level 2**

This Hazard Level identifies MRS with high potential explosive hazard conditions. Typical characteristics of a Hazard Level 2 MRS include the following:

- Former target area, OB/OD area, function test range, or maneuver area;
- UXO, or Fuzed Sensitive DMM on the surface, or intrusive activities that overlap with minimum depths of UXO or Fuzed Sensitive DMM located only subsurface; and
- Has full or moderate accessibility to people who will engage in intrusive activities.

6.3.2.1.4 **Hazard Level 3**

This Hazard level identifies MRS with moderate potential explosive hazard conditions. Typical characteristics of a Hazard Level 3 MRS include the following:

- DMM on the surface, or intrusive activities that overlap with minimum depths of DMM located only subsurface;
- Former target area, OB/OD area, function test range, or maneuver area that has undergone a surface cleanup; and
- An MRS with moderate or limited accessibility, and a low number of contact hours.

6.3.2.1.5 **Hazard Level 4**

This Hazard Level identifies MRS with low potential explosive hazard conditions. The presence of MEC at an MRS means that an explosive hazard may exist. Therefore, MEC may still pose a hazard at a Hazard Level 4 MRS. Typical characteristics of an MRS in Hazard Level 4 include the following:

- A MEC cleanup was performed or MEC is only located subsurface, below the depth of receptor intrusive activities;
- Energetic Material Type is propellant, spotting charge, or incendiary; and
- Accessibility is Limited or Very Limited, and contact hours are few or very few. This may be the result of Land Use Controls (LUC).
- 6.3.2.1.6 LUCs may be required to reduce the MEC hazard level to support the reasonably anticipated land use. As an example, a MRS may be a Hazard Level 3 without LUCs but a Hazard Level 4 with LUCs.

6.3.2.2 Baseline Scoring Results

A baseline MEC HA was prepared for each MRS based on current site conditions and anticipated future activities. MEC finds from RI activities as well as previous investigations (Table 1-1) were used in the development of the MEC HAs. The MEC HA workbooks are included as Appendix E. The table below provides a summary of the MEC HA results for MRS 02, MRS 04, MRS 05, and MRS 07.

Hazard Level MRS Score Category 02 775 2 Cerro Balcon 02 680 3 Adjacent Cays 04 755 2 05 795 2 07 765 2

Table 6-27: Summary of Baseline MEC HA

6.3.2.3 MRS 02 – Cerro Balcon

Based upon current site conditions following the RI field effort, the Cerro Balcon portion of MRS 02 scored a 775, which corresponds to a Hazard Level 2. A Hazard Level of 2 identifies the MRS with high potential explosive hazard conditions. It is not an indication of MEC density. Major drivers for the MEC HA score include the historical range type, MEC type, and the current land use (residential). The surface clearance in this area did not significantly affect the score due to the potential for subsurface MEC within areas that have intrusive activities (residents and site workers during construction activities).

6.3.2.4 MRS 02 –Adjacent Cavs

Based upon current site conditions following the RI field effort, the adjacent cays of MRS 02 scored a 680, which corresponds to a Hazard Level 3. A Hazard Level of 3 identifies the MRS with moderate potential explosive hazard conditions. It is not an indication of MEC density. Major drivers for the MEC HA score include the historical range type and the MEC finds during previous investigations.

6.3.2.5 MRS 04 – Flamenco Lagoon Maneuver Area

Based upon current site conditions following the RI field effort, MRS 04 scored a 755, which corresponds to a Hazard Level 2. A Hazard Level of 2 identifies the MRS with high potential explosive hazard conditions. It is not an indication of MEC density. Major drivers for the MEC HA score include the historical range type, MEC type, and location of MEC (surface and subsurface) and the current land use (residential).

6.3.2.6 MRS 05 – Mortar and Combat Range Area

Based upon current site conditions following the RI field effort, MRS 02 scored a 795, which corresponds to a Hazard Level 2. A Hazard Level of 2 identifies the MRS with high potential explosive hazard conditions. It is not an indication of MEC density. Major drivers for the MEC HA score include the historical range type, MEC type, and location of MEC (surface and subsurface) and the current land use (residential).

6.3.2.7 MRS 07 – Culebrita Artillery Impact Area

Based upon current site conditions following the RI field effort, MRS 07 scored a 765, which corresponds to a Hazard Level 2. A Hazard Level of 2 identifies the MRS with high potential explosive hazard conditions, which is driven primarily by the types of MEC found at the site. It is not an indication of MEC density. Major drivers for the MEC HA score include the historical range type, MEC type, and location of MEC (surface and subsurface).

6.3.3 MEC Qualitative Risk Discussion

6.3.3.1 MRS 02

6.3.3.1.1 Cerro Balcon

No MEC investigation was completed at MRS 02 Cerro Balcon during the RI due to lack of ROEs. Previous investigations in this former mortar range include the 1995 ASR (identified munitions debris), 1997 EE/CA (identified munitions debris), and the 2006 NTCRA. During the NTCRA, a full surface clearance was conducted over this site and seven munitions were identified (Table 1-1). MEC included: 3-inch projectiles, fuze with black powder, and 81 mm mortars. The 2007 SI did not conduct any activities in this area. Overall, this entire area has been surface cleared; as such, there is negligible risk for receptor interaction with MEC at the surface. Due to the limited subsurface investigation in this area and the documented presence of surface MEC and subsurface MD, in conjunction with the range type (mortar firing), MEC is likely present in the subsurface. Sufficient subsurface characterization has not been met to verify this due to the lack of ROEs at the RI phase. However, since no MEC was found during the EE/CA (surface and subsurface), or noted to date by residents of the area, it is likely that MEC is low density in the subsurface. The subsurface is considered moderate risk for receptors that engage in subsurface activities to encounter MEC, such as residents and site workers during construction.

6.3.3.1.2 Adjacent Cays

No MEC investigation was completed for any of the Cays during the RI due to

accessibility issues. Multiple attempts were made to access the cays via boat, but rough seas deterred the field team's efforts. The Cays are generally difficult to access based on steep terrain and lack of landing points, as well as rough seas. As such, previous data is evaluated to consider MEC risk. Previous investigations include the 1995 ASR (identified MEC within the water and munitions debris on land), 1997 EE/CA (identified MEC and munitions debris on several cays), 2006 NTCRA at Cayo Lobo (identified surface MEC and munitions debris) and the 2007 SI (munitions debris observed from a boat along several cays). Cays at which MEC and/or MD have been identified include: Cayo Lobo, Cayo Ballena, Cayo Geniqui, and Cayo del Agua. While access to all of the cays is prohibited, Cayo Lobo and Cayo Yerba are more accessible by recreational users (trespassers). These cays are slightly larger than the others on which small beaches facilitate access during low tide and good weather conditions. Due to the surface clearance conducted at Cayo Lobo, risk for receptors encountering MEC at the surface is considered negligible. A data gap exists because subsurface MEC characterization is incomplete. MEC likely exists in both the surface and the subsurface based on historical use and surface data available, but there are very few receptors at this MRS, due to lack of accessibility. Trespassers are not anticipated to frequently engage in subsurface activities. No residents or structures are located on any of the cays. Subsurface confirmation of MEC has not been conducted. With the limited accessibility, the risk for receptors to encounter MEC on the cays is considered low.

6.3.3.1.3 MRS 04 – Flamenco Lagoon Maneuver Area

- 6.3.3.1.3.1 Approximately 2 miles of transects and 38 anomalies were investigated during the RI field work at MRS 04. No MEC was identified at MRS 04 during the RI; munition fragments were found at one location at a depth of 2 inches. Previous investigations have been conducted at MRS 04 including the 1995 ASR (MD found on the surface of Flamenco Beach), 2007 SI (no MEC or MD identified), and the 2008 NTCRA at Flamenco Beach. Only one munition has been found at MRS 04, located during the 2008 NTCRA on Flamenco Beach at a depth of 2 inches.
- 6.3.3.1.3.2 There are large data gaps for this MRS based on lack of ROEs, and thick vegetation creating inaccessible areas. Figure 3-2 displays the location of the RI transects and areas that ROEs were received. There is no pattern or concentration to the data to be observed; only one anomaly was characterized as MD. Although MEC has only been found on Flamenco Beach, there is not enough data collected to characterize all areas of the MRS. Overall, the data suggests that very limited MEC and/or MD are present at MRS 04. MEC risk is negligible for Flamenco Beach where the NTCRA occurred. Based on the site history, current land use, and previous investigations including the RI, there is a low risk for encounters with MEC at the remainder of MRS 04.

6.3.3.1.4 MRS 05 – Mortar and Combat Range Area

6.3.3.1.4.1 Approximately 19 miles of transects and 406 anomalies were investigated

during the RI field work at MRS 05. No MEC was identified during the RI; MD was found within several transects scattered throughout MRS 5. Previous investigations have been conducted at MRS 05 including the 1995 ASR (MD identified) and the 2007 SI (MD identified). No other intrusive work has been conducted at MRS 05 outside of the current RI. No MEC has ever been found or reported within this MRS.

6.3.3.1.4.2 There are data gaps for this MRS based on lack of ROEs and thick vegetation creating inaccessible areas. Figure 3-4 displays the location of the RI transects and areas that ROEs were received. As noted by the figure, the transects for the RI were scattered over several areas of the MRS 05. There is not a specific pattern for the presence of MD; it appears to be located within most areas investigated in this RI but no high concentrations were found. Overall the data suggests that very limited MEC and/or MD are present at MRS 05. MEC presence cannot be completely discounted based on the locations of MD and lack of full characterization in areas without a ROE or that were inaccessible due to thick vegetation. Based on the site history, current land use, previous investigations, and RI results, there is a low risk for encounters with MEC at MRS 05.

6.3.3.1.5 MRS 07 – Culebrita Artillery Impact Area

Two munitions were found on the surface, and MD was identified at MRS 07 during the RI (figure 3-6). Additionly, MEC and MD have been found on Culebrita and Cayo Botella (Table 1-1) during previous investigations. During the 1997 EE/CA, 20 munitions were found at Cayo Botella either on the surface or within the first three inches bgs. On Culebrita, 39 munitions were found; most were found on the surface although some were found down to four inches bgs. A NTCRA (surface and subsurface) has been conducted on the beaches of MRS 07 (see figure 6-1). Twelve munitions were found on the northwest beach of Culebrita; all were located near the surface. Within these beach areas, MEC has been removed from the surface and subsurface and the risk to receptors to encounter MEC is negligible. Within the rest of Culebrita, including Cayo Botella, MEC exists on the surface and near the surface (first 4 inches). Human receptors are limited to occasional use (recreational or site work); there are no residents on MRS 07. Areas of specific use include the beaches and trails that cut through MRS 07. As such, the risk of recreational users or site workers to encounter MEC (outside of the beaches) is considered moderate to high.

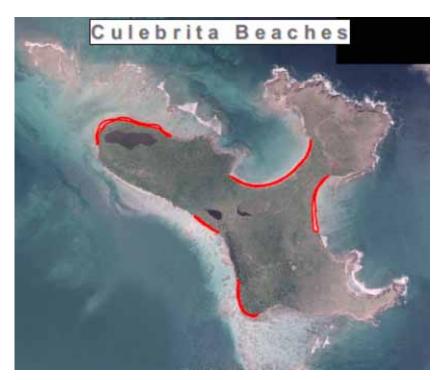


Figure 6-1: Location of NTCRA on MRS 07 during 2008

7 SUMMARY OF RESULTS

This section summarizes the results of the RI for the MRS 02, MRS 04, MRS 05, and MRS 07 and presents the conclusions based on these results.

7.1 RI FIELD WORK SUMMARY

- 7.1.1 RI fieldwork was conducted from 11 October 2010 to 25 March 2011, in accordance with the approved Final MMRP Work Plan (EOTI, 2010). No investigations were conducted in MRS 02 due to the lack of rights-of-entry in the Cerro Balcon area and the inability of field teams to access the cays due to steep terrain and inadequate landing points. The fieldwork included mag and dig investigations, during which surface and subsurface metallic anomalies were investigated along predefined transects throughout MRS 04, MRS 05, and MRS 07. The transects covered approximately 24 miles (123,000 ft) across the MRSs with magnetometers. In addition, four 25 x 25 foot mini-grids were investigated. One grid was located in MRS 04 and three were located in MRS 05. In total, 466 anomalies were intrusively investigated across MRS 04, MRS 05, and MRS 07.
- 7.1.2 A total of 28 soil samples and seven sediment samples were collected from MRS 04, MRS 05, and MRS 07 and analyzed for MC, including explosives and select metals (antimony, barium, chromium, copper, lead, mercury, and zinc).

7.2 MEC Conclusions

7.2.1 *MRS* 02 - *Cerro Balcon*

No MEC investigation was completed at MRS 02 Cerro Balcon during the RI due to lack of ROEs. Previous investigations in this former mortar range include the 1995 ASR (identified munitions debris), 1997 EE/CA (identified munitions debris), and the 2006 NTCRA. During the NTCRA, a full surface clearance was conducted over this site and 7 MEC items were identified. The 2007 SI did not conduct any activities in this area. Overall, this entire area has been surface cleared; as such, there is negligible risk for receptor interaction with MEC at the surface. Due to the limited subsurface investigation in this area and the documented presence of surface MEC and subsurface MD, in conjunction with the range type (mortar firing), MEC is likely present in the subsurface. Sufficient subsurface characterization has not been met to verify this due to the lack of ROE at the RI phase. However, since no MEC was found during the EE/CA (surface and subsurface), or reported to date by residents of the area, it is likely that MEC is low density in the subsurface. The MEC HA categorized this site as high risk. However, due to the completed surface clearance and likely low MEC density in the subsurface, it is a conclusion of this RI that Cerro Balcon exhibits moderate MEC risk based on receptor types, such as residents and site workers that engage in subsurface activities. Cerro Balcon should be considered separate from the Adjacent Cays based on the different receptor groups and current activities.

7.2.2 MRS 02 - Adjacent Cays

No MEC investigation was completed for any of the Cays during the RI due to accessibility issues. The Cays are difficult to access based on steep terrain and lack of boat landing points, as well as rough seas. As such, previous data is evaluated to consider MEC risk. Previous investigations include the 1995 ASR (identified MEC within the water and munitions debris on land), 1997 EE/CA (identified MEC and munitions debris on several cays), 2006 NTCRA at Cayo Lobo (identified surface MEC and munitions debris) and the 2007 SI (munitions debris observed from a boat along several cays). Cays at which MEC and/or MD have been identified include: Cayo Lobo, Cayo Ballena, Cayo Geniqui, and Cayo del Agua. Due to the surface clearance conducted at Cayo Lobo, risk for receptors encountering MEC at the surface is considered negligible. Subsurface MEC characterization is incomplete and an existing data gap for all cays. Surface characterization is also lacking for some cays. MEC likely exists in both the surface (outside of Cayo Lobo) and the subsurface for all cays based on historical use and surface data available. However, there are very few receptors at this MSR due to accessibility issues; potential exposure is extremely limited. No residents or structures are located on the cays. While access to all of the cays is prohibited, Cayo Lobo and Cayo Yerba are more accessible by recreational users (trespassers). These cays are slightly larger than the others on which small beaches facilitate access during low tide and good weather conditions. The MEC HA assigned a moderate risk to the Cays based on potential for access and presence of MEC. With the limited accessibility, it is a conclusion of this RI that the risk for receptors to encounter MEC on most of the cays is considered low. The risk for receptors to encounter MEC at Cayo Lobo and Yerba is considered moderate based on increased accessibility of these cays.

7.2.3 MRS 04 – Flamenco Lagoon Maneuver Area

No MEC was identified at MRS 04 during the RI; fragments were found at one location at a depth of 2 inches. Previous investigations have been conducted at MRS 04 including the 1995 ASR (MD found on the surface of Flamenco Beach), 2007 SI (no MEC or MD identified), and the 2008 NTCRA at Flamenco Beach. Only one MEC item has been found at MRS 04, located during the 2008 NTCA on Flamenco Beach at a depth of 2 inches. There are large data gaps for this MRS based on lack of ROEs, and areas of thick vegetation with steep terrain that created inaccessible areas. From the data collected, there is no pattern or concentration to the data; only one anomaly was characterized as MD. Although MEC has only been found on Flamenco Beach, there is not enough data collected to characterize all areas of the MRS, in locations that were not accessible or where a ROE was not obtained. Overall the data suggests that very limited MEC and/or MD are present at MRS 04. MEC risk is negligible for Flamenco Beach where the NTCRA occurred. The MEC HA assigned a high risk to this MRS. This was primarily because of the one MEC item and munitions debris that was an input, as well as the range type; however, the score in not based on MEC density. The score is also considered high because of the number of residents in this area, although population density is also not considered. Based on the site history, current land use, and previous investigations including the RI, a conclusion of this RI is that there is a low risk for encounters with MEC at MRS 04 in both the surface and the subsurface.

7.2.4 MRS 05 – Mortar and Combat Range Area

No MEC was identified during the RI; MD was found within several transects scattered throughout MRS 5. Previous investigations have been conducted at MRS 05 including the 1995 ASR (MD identified) and the 2007 SI (MD identified). No other intrusive work has been conducted at MRS 05 outside of the current RI. No MEC has ever been found or reported within this MRS. There are large data gaps for this MRS based on lack of ROEs, and thick vegetation with steep terrain that created inaccessible areas. The transects for the RI were scattered over several accessible areas of the MRS 05 providing adequate sampling for MEC density. There is not a specific pattern noted for the presence of MD; it appears to be located at a low density within most areas investigated in this RI. No high concentrations of MD were found. Overall the data suggests that very limited MEC or MD are present at MRS 05. MEC presence cannot be completely discounted based on the locations of MD (which are possible indicators of MEC) and lack of full characterization in areas that did not receive an ROE or were considered inaccessible. The MEC HA assigned a high risk to this MRS. This was primarily because of the munitions debris that was an input, as well as the range type; however, the score in not based on MEC density. The score is also considered high because of the number of residents in this area, although population density is also not considered. Based on the site history, current land use, and previous investigations including the RI, a conclusion of this RI is that there is a low risk for encounters with MEC at MRS 05 in both the surface and the subsurface.

7.2.5 MRS 07 – Culebrita Artillery Impact Area

Two MEC items and MD were identified at MRS 07 during the RI. Both of these items were found on the surface. In addition, MEC and MD have historically been found on Culebrita and Cayo Botella during previous investigations. During the 1997 EE/CA, 20 MEC items were found at Cayo Botella either on the surface or within the first 3 inches bgs. On Culebrita, 39 MEC items were found; most were found on the surface and some items were found down to 4 inches bgs. A NTCRA (surface and subsurface) has been conducted on the beaches of MRS 07. 12 MEC items were found on the northwest beach of Culebrita; all were received within the first inch bgs. Within these beach areas, MEC has been removed from the surface and subsurface and the risk to receptors to encounter MEC is negligible. Within the rest of Culebrita, including Cayo Botella, MEC exists on the surface and within the near subsurface (first 4 inches). Human receptors are limited to occasional use (recreational or USFWS site work); there are no residents on MRS 07. Areas of specific use include the beaches and trails that cut through MRS 07. As such, the risk of recreational users or site workers to encounter MEC (outside of the beaches) is considered moderate to high. This corresponds with the MEC HA which assigned a risk of moderate to MRS 07.

7.3 MC Conclusions

- 7.3.1 Explosives were not detected in any of the field samples; however, 1,3,5-TNB and 4-NT were found at very low levels in one split sample at MRS 05 collected for quality assurance purposes. Both analytes were well below the USEPA RSL. All metals were detected at levels below the USEPA RSLs. Table 3-5 through 3-10 show the field sample results. All sample results are provided Appendix C. Based on the human health risk assessment, no COPCs were identified in surface soil or sediment in any of the MRSs.
- 7.3.2 The SLERA determined the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (adjacent cays), MRS 04, and MRS 07 is negligible and the potential for adverse health effects in terrestrial receptors from exposure to MC in surface soil at MRS 02 (Cerro Balcon) and MRS 05 is low based on the hazard quotient for chromium. Based on the evaluation of the sediment data, a potential for risk of adverse health effects in aquatic receptors is indicated. However, given the conservative nature of the TRVs used to screen the sediment data, the potential for ecological risk may be qualified low. The revised CSM for MC reflects incomplete exposure pathways for all human and ecological receptors of MC at all MRS 04 and MRS 05 based on the absence of COPCs.
- 7.3.3 Due to difficulties accessing the outlying cays and access restrictions at Cerro Balcon, no soil or sediment samples were collected at MRS 02 during the RI. The risk evaluation for MRS 02 is based on ten surface soil samples collected by Ellis during clearance activities in 2006 at Cerro Balcon and Cayo Lobo. The extent to which the Ellis data at Cayo Lobo are reliable indicators of MC presence and concentrations at the remainder of the cays is uncertain. However, samples results both at Cerro Balcon and Cayo Lobo are consistent in the negligible risk to receptors. In addition, receptors are extremely limited at the Cays based on access issues. As such, a conclusion of this RI is that for all MRSs included in this RI, there is no risk to human or ecological receptors and no remediation is necessary for MC.

7.4 MRS Delineation Recommendations

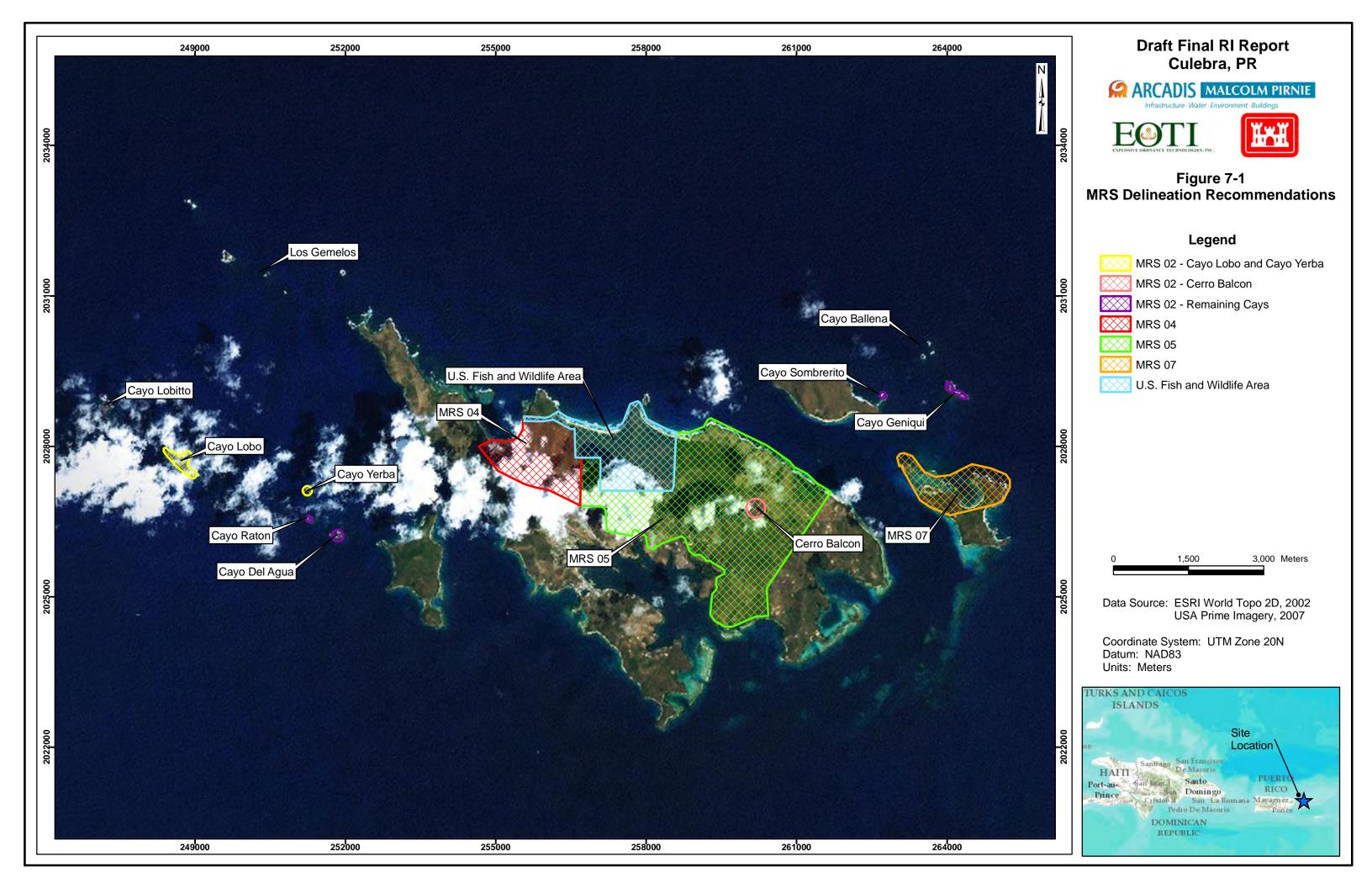
- 7.4.1 Based on the results of the RI fieldwork and review of existing data from previous investigations, the following recommendations have been made on Culebra MRS delineation.
- 7.4.2 MRS 02: MRS 02 includes Cerro Balcon and the Cays. Cerro Balcon is landlocked within MRS 05 with different access and receptors than the remainder of the cays. The Cays also have varied accessibility. While access to all cays is restricted, Cayo Lobo and Yerba are known to be frequented by recreational users, while the other cays are less accessible or frequented. Based on this

information, it is recommended that MRS 02 be split into three areas for further evaluation in the feasibility study:

- Cerro Balcon MRS
- Cayo Lobo and Cayo Yerba MRS
- Remaining Cays MRS (Los Gemelos, Cayo Lobitto, Cayo Raton, Cayo Del Aqua, Cayo Ballena, Cayo Geniqui, and Cayo Sombrerito)
- 7.4.3 **MRS 04 and MRS 05:** MRS 04 and MRS 05 are adjacent MRSs at Culebra. U.S. Fish and Wildlife own a contiguous portion of each MRS. Receptors and land use varies in this area when compared to the remainder of MRS 04 and 05. Thus, it is recommended that the U.S. Fish and Wildlife Areas from each MRS be combined into a separate MRS. The remainder of each MRS 04 and MRS 05 will remain as separate MRSs. Thus, the following will result:
 - U.S. Fish and Wildlife Area MRS
 - MRS 04 (remaining area)
 - MRS 05 (remaining area)
- 7.4.4 **MRS 07:** No changes to MRS boundaries are recommended for MRS 07 based on the RI results.

7-1: MRSPP Scores for Revised MRS Delineations

MRS	MRSPP Score
MRS 02 – Cerro Balcon	3
MRS 02 – Cayo Lobo and Cayo Yerba	3
MRS 02 – Remaining Cays	3
U.S. Fish and Wildlife Area	4
MRS 04	4
MRS 05	4
MRS 07	3


7-2: Culebra Island MRS Summary

	7-2: Culebra Island MRS Summary							
MRS	MD	MEC	МС	HHRA	SLERA	MRSPP Score ¹	Baseline MEC HA Score ²	Data Gaps
02 - Cerro Balcon	No MEC field activities conducted at MRS 02 during the RI due to lack of ROE. MD identified during previous investigations.	RI No MEC field activities conducted at MRS 02 during the RI. Previous Investigations 3 inch common MK3, MOD 7 (3) Fuze, model 1898, 15 second PTTF (2) 81mm mortar (2)	 No MC field activities conducted at MRS 02 during the RI (lack of ROE). No explosives detected in previously collected soil samples. All metals detected below USEPA RSLs in previously collected soil samples. 	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted in either Cerro Balcon.	3	2	MEC: No subsurface investigation during RI or previous investigations to gather data on subsurface MEC density. No ROE could be obtained during the SI or RI. MC: None
		A surface clearance has been conducted.						
02 - Cays	No MEC field activities conducted at MRS 02 during the RI due to inaccessibility. MD identified during previous investigations at several cays.	RI No MEC field activities conducted at MRS 02 during the RI. Previous Investigations 500 lb bomb (2) MK 27 Torpedo (1) MK 76 Practice Bomb (2) 76 mm projectile (1) Fuze, M151 (1) Practice bomb (32) 5-inch/54 MK 41 (1) A surface clearance was conducted on Cayo Lobo (2006).	 No MC field activities conducted at MRS 02 during the RI. No explosives detected in previously collected soil samples. All metals detected below USEPA RSLs in previously collected soil samples. 	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted in the adjacent cays.	3	3	MEC: Some of the smaller cays have not had MEC investigations conducted due to access restrictions. MC: No sampling data for cays other than Cayo Lobo. Cays were inaccessible during the SI and RI.
04	Frag identified during the RI.	None during the RI. One MEC item found on Flamenco Beach during 2008 NTCRA (5-inch projectile)	 No explosives detected. All metals detected below USEPA RSLs. 	- No COPCs identified. No risk to human receptors.	 No soil or sediment remediation on the basis of ecological risk is warranted. 	4	2	MEC: Portions of MRS 04 were not investigated due to ROE or accessibility issues (steep terrain / vegetation). MC: None
05	Frag (9)30 cal cartridges (2)81mm mortar (3)4.2" mortar base	No MEC finds during the RI or previous investigations.	 1,3,5-TNB and 4-4-NT detected at very low levels below USEPA RSLs in one split sample. All metals detected below USEPA RSLs. 	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	4	2	MEC: Portions of MRS 05 were not investigated due to ROE or accessibility issues (steep terrain / vegetation). MC: None
07	 Expended flare 20 mm Partial rotating band PTTF fuze Brass frag (9) Partial fuze body Shotgun shell 3"projectile frag 	RI MK5 Mod 0 rocket (1) MK8 Demo Hose (1) Previous Investigations MK 76 /Mk4 practice bomb (18) Naval gun fire, 6 inch Spotting charge, MK 4 Projectile, 20mm HEI (39)	No explosives detected. All metals detected below USEPA RSLs.	- No COPCs identified. No risk to human receptors.	- No soil or sediment remediation on the basis of ecological risk is warranted.	3	2	MEC: None MC: None

[•] Projectile, 20mm HEI (39)

The MRSPP is a method for assigning a relative priority for response actions to defense sites containing military munitions. Priority 1 indicates the highest potential hazard and Priority 8 indicates the lowest potential hazard.

The MEC HA is a baseline hazard analysis for MEC based on current site conditions. There are four hazard levels (1–4), with 1 indicating the highest potential explosive hazard condition and 4 the lowest potential explosive hazard condition.

8 REFERENCES

- 40 Code of Federal Regulations.430 National Oil and Hazardous Substances Pollution Contingency Plan (NCP) 1993.
- 49 Code of Federal Regulations Parts 100-199 Transportation.
- 62 Federal Register 6622, 1997 Military Munitions Rule.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administrations, 34 pages.
- Code of Federal Regulation. Clean Water Act 33 U.S.C. 1151 et seq., 1251 et seq., 40 U.S.C. 3906 et seq.
- Code of Federal Regulation. Comprehensive Environmental Response, Compensation, and Liability Act 42 U.S.C. 9601-11050.
- Department of Defense (DOD). 2008. Ammunition and Explosives Safety Standards, DoD 6055.09-STD.
- Department of Defense Explosives Safety Board (DDESB). 2004. Minimum Qualification for Unexploded Ordnance (UXO) Technicians and Personnel.
- -----. 2007. Technical Update Implementation of DDESB on MSD for Unintentional Detonations.
- Department of Defense Instruction (DoDI). 2008. MPPEH Guidance Document, 4140.62.
- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. ES/ER/TM-85/R3. Oak Ridge National Laboratory, Oak Ridge, TN.
- Ellis Environmental Group, LC. 2004a. Site Specific Final Report: UXO Construction Support, Culebra Island National Wildlife Refuge, Culebra Island, Puerto Rico. June.
- Ellis Environmental Group. 2004b. Final Field Sampling & Analysis Report. Construction Support Phase 1b, Culebra Island National Wildlife Refuge, Puerto Rico. (June 2004)
- Environmental Security Technology Certification Program (ESTCP). 2009. Final Report Geophysical System Verification (GSV): A Physics-Based Alternative to Geophysical Prove-Outs for Munitions Response.

- Explosive Ordnance Technologies, Inc. 2010. Final Geophysical Prove-Out for Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico. (February 2010)
- -----. 2010. Final Site Specific Work Plan for Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico. (March 2010)
- Heatwole, H., L. Kelts, R. Levins, and F. Torres. 1963. Faunal Notes on Culebra Island, Puerto Rico. Caribbean Journal of Science 8 (1): 29-30.
- Long, E.R. and D.D. MacDonald. 1998. Recommended Uses of Empirically Derived Sediment Quality Guidelines for Marine and Estuarine Ecosystems. Human and Ecological Risk Assessment 4 (5): 1019-1039.
- National Wetlands Inventory. 2011. Wetlands Mapper. Accessed online: http://www.fws.gov/wetlands/Data/Mapper.html
- Occupational Safety and Health Administration (OSHA) 1994 General Industry Standards, 29 CFR 1910 and Construction Industry Standards, 29 CFR 1926; especially 1910.120/29CFR 1926.65-Hazardous Waste Site Operations and Emergency Response.
- Parsons. 2007. Site Inspection Report, Culebra Island Site, Puerto Rico. Final Volume I of II. (September 2007)
- Puerto Rico Department of Natural and Environmental Resources. 2011. Puerto Rico Natural Heritage Program, Conservation Data Center. Accessed online: http://www.natureserve.org/nhp/lacarb/pr/
- United States Geological Survey (USGS), 1999. Groundwater Atlas of the United States Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands; HA 730-N; Puerto Rico and the U.S. Virgin Islands Regional Summary. At URL: http://capp.water.usgs.gov/gwa/ch_n/N-PR_Vitext1.html.
- U.S. Army Corps of Engineers (USACE). 1991. DERP-FUDS Findings and Determination of Eligibility, Culebra Island NWR, P. R., Project No. I02PR006800. Prepared by USACE Jacksonville District.
- -----. 1995. Archive Search Report Findings for Culebra Island National Wildlife Refuge, Culebra, Puerto Rico. Project No. IO2PR006802. Prepared by USACE Rock Island District. February.
- -----. 2003. Engineer Manual (EM) 1110-1-1200, Conceptual Site Models for Ordnance and Explosives (OE) and Hazardous, Toxic, and Radioactive Waste (HTRW) Projects.

2004. Supplemental Archives Search Report for Culebra Island National Wildlife Refuge, Culebra Island, Puerto Rico, Project Number I02PR006802.
2005a. Revised Inventory Project Report, Culebra, Puerto Rico, Project No. I02PR0068. Prepared by USACE Jacksonville District. June.
2005b. Supplemental Archive Search Report for Culebra, Puerto Rico. Project No. I02PR0068. Prepared by USACE St. Louis District. September.
2005c. Memorandum for the Assistance Chief of Staff for Installation Management, Munitions Response Terminology.
2005b. Technical Pamphlet 16, Calculating Fragment Characteristics.
2006a. Engineer Pamphlet (EP) 1110-1-18, Military Munitions Response Process.
2006b. Engineer Regulation (ER) 1110-1-8153, Military Munitions Response Process 2007a. Data Item Description (DID) MR-005-05.01, Geophysics.
2007b. Engineering Manual (EM) 1110-1-4009, Military Munitions Response Actions United States Army Corps of Engineers (USACE).
2007c. Engineer Regulation 385-1-92, Safety and Occupational Health Requirements for HTRW Activities.
2007d. Engineer Manual 1110-1-4009, Military Munitions Response Actions.
2007e. Engineer Pamphlet (EP) 1110-1-24, Establishing and Maintaining Institutional Controls for Ordnance and Explosive (OE) Projects.
2008a. Interim Guidance Document Explosive Site Plan.
2008b. Engineer Manual (EM) 385-1-1, Safety and Health Requirements.
2008c. Engineer Manual (EM) 385-1-97, Safety and Health Requirements Manual, Explosives.
2009. United States Army Military Munitions Response Program, Munitions Response Remedial Investigation/Feasibility Study Guidance.

USEPA/540/G-89/004.

Environmental Protection Agency (USEPA), 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act), Interim Final,

-----. 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, DC. (December 1989) -----. 1993. Data Quality Objectives Process for Superfund, Interim Final Guidance. EPA/540/G-93/071. -----. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. EPA 540-R-97-006. Office of Solid Waste and Emergency Response. Washington, DC. (June 1997) -----. 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. Risk Assessment Forum, Washington, DC. (April 1998) -----. 2000a. Data Quality Objectives Process for Hazardous Waste Site Investigations. EPA QA/G-4HW. EPA/600/R-00/007. -----. 2000b. Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/600/R-96/055. -----. 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, Washington, DC. (December 2002) -----. 2003. RCRA Ecological Screening Levels. (August 22, 2003) Accessed online: http://www.epa.gov/reg5rcra/ca/ESL.pdf -----. 2004. National Functional Guidelines (NFG) for Inorganic Data Review, USEPA/540/R-04/004). -----. 2011a. Regional Screening Levels (May 2011). Accessed online: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic Tables/index.htm

-----. 2011b. Ecological Soil Screening Levels. Accessed online:

http://www.epa.gov/ecotox/ecossl/

Contract No. W912DY-04-D-0009 Task Order No. 0013

U.S. Fish and Wildlife Service. 2011. The Culebra National Wildlife Refuge. Accessed

online: http://www.fws.gov/caribbean/refuges/Culebra/

Appendix A: GPO Letter Report

FINAL GEOPHYSICAL PROVE-OUT FOR

REMEDIAL INVESTIGATION / FEASBILITY STUDY AT THE CULEBRA ISLAND SITE PUERTO RICO

CONTRACT NO. W912DY-04-D-0009

TASK ORDER NO. 0013

Prepared For:

U.S. Army Engineering & Support Center CEHNC-CT 4820 University Square Huntsville, Alabama 35816-1822

Geographical District

U.S. Army Engineering District, Jacksonville

Prepared By:

Explosive Ordnance Technologies, Inc. (EOTI) 105 W. Tennessee Ave. Oak Ridge, Tennessee 37830

February 03, 2010 Revision 1

TABLE OF CONTENTS:

1.0	INT	RODUCTION	1-1
1.1	Pı	roject Scope	1-1
1	1.1.1	Project Objectives	1-1
I	1.1.2	GPO Reporting Requirements as Related to Project Scope	1-1
1.2	Ba	ackground	1-1
I	1.2.1	Site and Office Locations	1-1
1	1.2.2	Site Surface Topography, Vegetation, & Geology Conditions	1-1
2.0	Geo	ophysical Prove Out and Methology	2-1
2.1	G	eophysical Prove Out Plan and Report	2-1
2	2.1.1	Objective	2-1
2	2.1.2	GPO Specific Data Quality Objectives	2-1
2.2	Si	te Specific Geophysical Prove Out	2-2
2	2.2.1	GPO Location	2-2
2	2.2.2	GPO Construction	2-2
2	2.2.3	GPO Seeds	2-3
2.3	G	eophysical and Positioning Survey Equipment	2-6
2	2.3.1	Surveying	2-6
2	2.3.2	Positioning	2-6
3.0	Geo	physical Survey	3-1
3.1	Pı	re survey tests	3-1
ŝ	3.1.1	Instrument Standardization	3-1
3	3.1.2	Background survey	3-9
3	3.1.3	Seeded Surveys	3-10
3.2	Da	ata Download and Processing	3-10
ŝ	3.2.1	File Naming Conventions	3-10
3	3.2.2	Importing and Positioning of the Data	3-11
Ĵ	3.2.3	Filtering and/or DC Adjusting of the Data	3-12
ŝ	3.2.4	Lag Correction of the Data	3-12
ŝ	3.2.5	Overlap Removal within the Data	3-12
3	3.2.6	Warping of the Data	3-12
ŝ	3.2.7	Gridding of the data	3-12

3.2.8	3.2.8 Additional Data Analyses	
3.3 Di	iscussion of the GPO Results	3-13
3.3.1	Background Pass	3-13
3.3.2	Seeded Passes	3-15
3.3.3	Production-Area Geophysics Recommendations	3-24
3.4 Di	iscussion of the Instrument-Aided Reacquisition Results	3-24
3.4.1	Digital Instrument Recorded Response Checking	3-24
3.4.2	Analogue Instrument Audible Response Checking	3-25
4 0 CO	NCLUSIONS	4_1

LIST OF FIGURES AND TABLES

FIGURE 1 – GPO, VIEW FROM NW CORNER TOWARDS NE CORNER (LEFT) AND SW CORNER (RIGHT)	2-3
Figure 2 – "As Built" Diagram of GPO	2-5
FIGURE 3 – TIME FIDUCIALS IN TWO-PERSON, "LITTER"CARRIED MODE	2-6
FIGURE 4 – PERSONNEL TEST EXAMPLE (DECEMBER 16 th , 2010)	3-2
FIGURE 5 – CABLE SHAKE TEST EXAMPLE (DECEMBER 16 th , 2010)	3-3
FIGURE 6 – STATIC TEST EXAMPLE (AM TEST, DECEMBER 16 TH , 2010)	3-4
Figure 7 – Six-Line Test (14^{th} December, 2010). Left image shows data prior to Lag correct	ΓΙΟΝ, RIGHT
IMAGE SHOWS DATA AFTER APPLICATION OF A 3 FIDUCIAL LAG CORRECTION.	3-6
FIGURE 8 – 2-LINE TEST EXAMPLE (DECEMBER 14 th , 2010)	3-7
FIGURE 9 – GPO BACKGROUND SURVEY	3-14
FIGURE 10 – GPO BACKGROUND (COLORED, SEMI-TRANSPARENT) DISPLAYED OVER SEEDED GPS PASS (ORANGE)	3-16
Figure 11 – Seeded GPO; GPS, Litter Mode	3-17
FIGURE 12 – SEEDED GPO; TIME FIDS, LITTER MODE	3-18
FIGURE 13 – SEEDED GPO; WHEEL FIDS	3-19
FIGURE 14 – CHART OF TAU 1-3 AGAINST TAU 2-3	3-22
FIGURE 15 – TAU VALUE RANGES FOR CLASSIFICATION.	3-23
Table 1 – List of Seeds	2-3
Table 2 - Quality Control Measures and Associated Frequencies	3-1
Table 3 – Static-Spike Test Summary	3-5
Table 4 – Dynamic Repeatability Tests, December 16 th , 2010	3-8
TABLE 5 – POSITION CHECKS AND OFFSETS	3-9
Table 6 – Seed Responses, Sorted by GPO Pass	3-20
TABLE 7 - CH2 RESULTS BY SEED AND GPO PASS	3-21
TABLE 8 - GPO CH2 RESPONSE VERSUS INSTRUMENT CH2 RESPONSE FOR EACH SEED.	3-25

LIST OF APPENDICES

APPENDIX A, EXHIBIT A1 – Table of Ordnance Penetration/Detection

APPENDIX A, EXHIBIT A2 – Tables of EM61 Response as a Function of Item Depths

APPENDIX B – Simulated Ordnance Item Photos taken during the GPO Seeding Process

ACRONYM LIST

ARM Geophysics

cm Centimeter

DGM Digital Geophysical Mapping

DID Data Item Description

DMM Discarded Military Munitions

DoD Department of Defense
DQO Data Quality Objective

EM61 Geonics EM61-MKII Electromagnetic Sensor

EOTI Explosive Ordnance Technologies, Inc.

FTP File Transfer Protocol

ft Foot

GDB, GX, GRD Geosoft Data Base, Geosoft Executable, Geosoft Grid files

GPO Geophysical Prove-Out
GPS Global Positioning System
Hz Hertz (cycles per second)

MEC Munitions and Explosives of Concern

m Meter

mm Millimeter mV Millivolt

MRS Munitions Response Site

PDOP Positional Dilution Of Precision

QC Quality Control

RI/FS Remedial Investigation / Feasibility Study

RTK-DGPS Real-Time Kinematic Differential Global Positioning System

SOP Standard Operating Procedure

SOW Statement of Work

TDEM Time Domain Electromagnetic

WP Work Plan

1.0 <u>INTRODUCTION</u>

1.1 PROJECT SCOPE

1.1.1 Project Objectives

The objectives of the Culebra project, as defined in the Work Plan (WP), are to perform digital geophysical mapping (DGM) techniques to capture and document anomaly distributions, utilizing the Geonics EM61 MK2 (EM61) time domain electromagnetic (TDEM) system at a number of Munitions Response Sites (MRS) at Culebra Island, in support of a Remedial Investigation / Feasibility Study (RI/FS) document.

1.1.2 GPO Reporting Requirements as Related to Project Scope

As part of the scoped work, a Geophysical Prove Out (GPO) was required to test the proposed equipment and methodologies in a site specific environment. This GPO Report is to serve as a comprehensive summary for the completion of all activities associated with the GPO. Brief summaries of the activities conducted during all tasks are provided, but the primary focus will be on detailing the GPO results and the quality control (QC) performed.

1.2 BACKGROUND

1.2.1 Site and Office Locations

All field work related to the GPO was conducted on Culebra Island, Puerto Rico. Data processing and analysis was conducted by ARM personnel at its home office in Hershey, Pennsylvania and at a satellite office in Australia.

1.2.2 Site Surface Topography, Vegetation, & Geology Conditions

1.2.2.1 Culebra Island Site Location and Conditions

Culebra Island, Puerto Rico is located in the Caribbean, 17 miles east of the Island of Puerto Rico, separated by the Vieques Sound with the Caribbean Sea to the south and the Atlantic Ocean to the north. It consists of a main island, of approximately 598 acres, and 24 adjacent cays. The climate of Culebra is tropical maritime and the terrain hilly with a mix of rugged and sandy coastlines. More information regarding the terrain and climate of Culebra can be found in the Work Plan under Section 1.

1.2.2.2 Site Geology

The geology of Culebra Island is composed of both intrusive and extrusive volcanic rock of the Upper Cretaceous Age, mainly andesite and andesitic tuffs with the bedrock consisting of andesite and andesite breccia. The geology exhibits strong magnetic properties that can affect magnetometer (and, to a lesser extent, electro-magnetometer) readings. The island has a small variety of soil types due to its volcanic origin, limited size, rugged terrain, and moderately uniform climate. Most soils, except along the slopes, are the result of weathering bedrock. More information regarding the geology of Culebra can be found in the Work Plan under Sections 1.3.2 and 1.3.4.

1.2.2.3 Site History

From 1903 through 1975, US Navy and NATO forces used Culebra as a training facility with the island and adjacent cays used, amongst other purposes, as an impact range for aerial bombs and rockets, missiles, mortars, and naval projectiles. More information regarding the historical and military use of Culebra can be found in the Work Plan under Section 1.4.

2.0 GEOPHYSICAL PROVE OUT AND METHOLOGY

2.1 GEOPHYSICAL PROVE OUT PLAN AND REPORT

2.1.1 Objective

The objective of the GPO was to evaluate the geophysical sensor and navigational instruments proposed for use in the main part of the project, to recommend the system of choice and to propose a set of decision parameters for target picking based on the response of seeded item in the GPO.

2.1.2 GPO Specific Data Quality Objectives

Data Quality Objectives (DQO"s) were outlined in the work plan and included the following:

- 1. Demonstrate that the geophysical investigation system/equipment is operating properly.
- 2. Provide a set of isolated objects (e.g., single inert target items or target surrogates). The sensor signatures from these items will be used to determine the equipment limitations in this geologic setting.
- 3. Assess the operators performance and update related procedures
- 4. Establish a baseline of performance capabilities for the selected instruments.
- 5. Establish decision parameters for target selection by the site geophysicists.
- 6. Evaluate navigational/position systems for positional accuracy
- 7. Instrument latency will be corrected using an appropriate correction routine that accounts for instrument latency time and sensor velocity.

Additionally, specified objectives, related to positioning systems and data collection variables, included:

8. Positioning Systems:

EOTI will utilize a Leica 500, 1200 or comparable RTK Differential Global Positioning System (DGPS) to integrate location data with the EM data. The GPS system employed will have centimeter accuracy and will utilize a base station established at a known monument/control point. EOTI will also evaluate manportable EM61 with fiducial positioning if transects and/or grids in canopied areas are needed.

9. Down-Line Sampling Rate:

Sampling rates of the EM61 will be approximately 10-12 Hz for DGPS and once every 10cm for wheel mode fiducials. For DGPS, down-line sample separation will be 0.2m or less, 95% of the time. Sampling rates on the GPS will once per second.

10. Across-Line Sampling:

Grid data will be collected in lanes 0.6m apart based on the known presence of 25 mm projectiles at the Culebra Island

Note: Due to anticipated vegetation coverage documented after the first site-specific visits during project startup, the proposed navigation system was changed between the writing of the Work Plan and performance of the GPO. Due to the pervasive canopy in the areas considered for data collection, the DGPS was ruled out as a primary navigation method, in favor of the (more canopy-tolerant) sub-meter GPS and fiducial methods which were to be evaluated during this GPO. Additionally, due to the positioning instrumentation change and transect swath vegetation removal limitations (which also limited the positioning systems of choice), the across sampling metric was changed to be bound by a maximum of one coil size, or 1 meter (~ 3.3 feet). As such, the GPO passes have a nominal design lane spacing of 0.75 meters (2.5 feet) with a proposed coverage swath up to one coil width in order to accurately demonstrate transect detection rates while maneuvering within the tight transect paths.

2.2 SITE SPECIFIC GEOPHYSICAL PROVE OUT

2.2.1 GPO Location

A location for the GPO was selected by EOTI and brush-cut to allow surveying with the instrument. Some trees and brush remained however due to restrictions on brush cutting outlined in the work plan (See Figure 1, below). Following the background survey (see 3.1.2) the grid was further brush-cut to allow emplacement of seed items with a backhoe.

2.2.2 GPO Construction

After initial brush cutting had been completed, a 100ft x 100ft (~30.5m x 30.5m) GPO grid was laid out with measuring tapes and the positions of the corners recorded with the sub-meter GPS. As mentioned above, an amount of trees and brush with moderate canopy remained within the grid, impacting on the path of the surveys and having, as it would under real, production surveying conditions, a detrimental effect on the GPS coverage. As can be seen in Figure 1, tall brush and scrub surrounded the GPO on all sides, also preventing a full view of the sky and impacting GPS coverage. The sub-meter system was deemed to be the best GPS suited for the conditions due to the technological advances of correction methods and acceptance tolerances relative to the canopy limitations. The system chosen (see section 2.3.2) was considered the best trade-off as use of alternate GPS systems would have resulted in larger positional offsets from either

accepting "looser" fits or attempting and failing to achieve "tighter" fits.

Figure 1 – GPO, View from NW Corner towards NE corner (Left) and SW corner (Right)

2.2.3 **GPO** Seeds

Of the 25 seeds initially planned, only eight were able to be emplaced due to the inherent responsiveness of the chosen GPO, as found following the background survey (see section 3.1.2). The GPO area was limited to the current location, firstly due to issues relating to rights of property access prevented moving to another, prospectively cleaner, location and, secondly, due to time constraints in locating and preparing another area for survey that would likely have contained similar issues. The main issue to overcome with the current grid was the quantity and distribution of responses in the grid limiting the areas in which seeds could be emplaced, such that the seed response would not be masked by the background response. In order to demonstrate the minimum response criteria, a small suite of inert items were seeded (see Table 1) at the worse-case orientation: Horizontal and as perpendicular as possible to the line path).

Seed						
ID	Item	Diameter (m)	Depth (ft)	Depth (Diameter)	Orientation	Bearing
1-1	20mm	0.020	0.7	10.67	horizontal	90
1-2	37mm	0.037	1.2	9.88	horizontal	60
1-3	grenade	0.057	1.0	5.35	horizontal	45
2-1	105mm	0.105	3.0	8.71	horizontal	120
2-2	155mm	0.155	4.0	7.87	horizontal	80
3-1	60mm	0.060	2.0	10.16	horizontal	135
4-1	81mm	0.081	2.5	9.41	horizontal	100
5-1	2.75" rocket	0.070	2.5	10.89	horizontal	345

Table 1 – List of Seeds

Table 1 lists the seed items emplaced in the GPO grid, along with their type and burial depths, both as a function of distance and in multiples of their diameter. The seeded items were all simulants used to approximate the response to items listed in Table 1. Photos of simulants used in the GPO test plot are included in Appendix B. Individual depths for seeded items were selected based on the combined practical information contained in documents EM 1110-1-4009 (Table 7.3 – Ordnance Penetration / Detection) and NRL/MR/6110--08-9155 (Standardized EM61 response curve Tables). The important excerpts of these documents are provided as exhibits A-1 and A-2 of Appendix A, respectively, for reference. The responses tables have been focused into the region between the seed depth (highlighted in purple) and the maximum theoretical depth cross-referenced from Table 7.3 Ordnance Detection Depth Table (highlighted in yellow).

As can be seen from Table 1, the Table of Ordnance Penetration/Detection (exhibit A-1), and the Response Tables (exhibit A-2), the majority of the items were seeded close to the maximum emplacement depth, with the exception of the 155mm (Seed 2-2) which was buried at the anticipated maximum project excavation depth of 4 feet. All items were seeded at their worst case orientation to the extent possible while maintaining anomaly avoidance. Appendix B contains the simulant item photos as gathered by EOTI during the GPO seeding process.

Figure 2, an "As-Built Drawing", shows the locations of the seed items within the GPO.

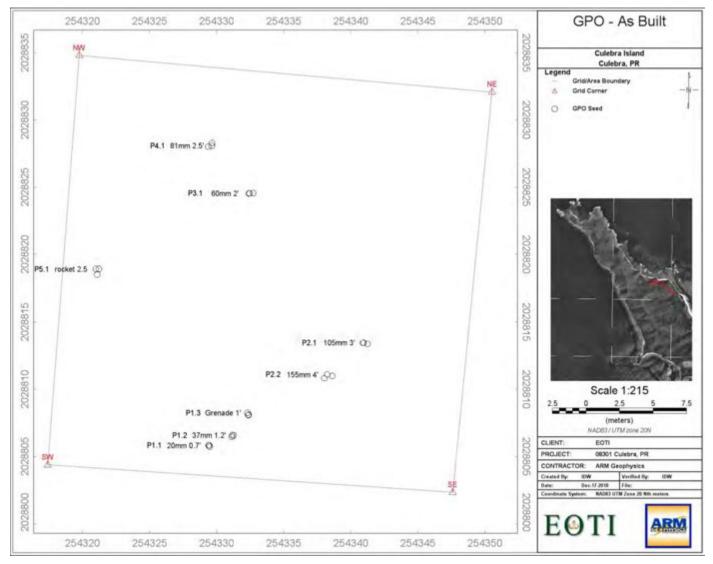


Figure 2 – 'As Built' Diagram of GPO

2.3 GEOPHYSICAL AND POSITIONING SURVEY EQUIPMENT

2.3.1 Surveying

The Geonics EM61 MK2 time domain EM system (EM61) was selected as the digital geophysical mapping (DGM) instrument of choice for the project. An additional instrument, a hand-held analogue EM detector to be used in terrain not conducive to the operation of the EM61, is discussed in Section 3.4.2.

The EM61 was operated in two modes – two person "litter" carried mode and two person push/pull wheeled mode, with the preferred mode being "litter" to avoid complications arising from uneven / rough ground or residual vegetation.

2.3.2 Positioning

Three positioning methods were trialed during the GPO, one GPS and two fiducial:

2.3.2.1 GPS

The GPS method (see Figure 3, below) involved streaming positions from a Trimble ProXRS Sub-Meter GPS to the field computer of the EM61 where they were integrated

Figure 3 – Time Fiducials in Two-Person, 'Litter'

Carried Mode

with the EM readings in real time. The anticipated canopy of the project was not conducive to use of a centimeter accuracy real time kinematic differential GPS (RTK-DGPS) and the use of the sub-meter GPS was approved prior to mobilization for the GPO. Positioning accuracy of the sub-meter GPS was increased through use of the subscription DGPS service, Omnistar as the primary set of corrections. A

secondary correction service – Coast Guard Beacon positioning corrections – was used as a backup in case the Omnistar services were not operating adequately according to digital readouts on the display screen of the GPS unit controller.

2.3.2.2 Fiducial Method 1 – Wheel Fiducials

The first fiducial method trialed was wheel-based fiducials. The Geonics EM61 counting wheel, factory modified, records one value (on each of four channels) for every 0.1m of wheel movement. A marker value is then input to the data at any point through the use of the "fiducial marker button", with these marks used to convey the location of start/endpoints and other survey control lines within the grid. The start/end point marks in the data are then used to position the data in DAT61 and the in-grid control line marks are used to correct for any positioning errors accumulated between control points.

2.3.2.3 Fiducial method 2 – Time Fiducials

The second fiducial method used over the GPO was time fiducials. With this method, data is recorded in the EM61 at its set rate (15Hz) and marks emplaced in the data through use of the "fiducial marker button" and these start/end and in-grid control point marks subsequently used to set the data positions in DAT61.

3.0 GEOPHYSICAL SURVEY

3.1 Pre survey tests

3.1.1 Instrument Standardization

QC Tests were performed in accordance with the required equipment tests and frequency of testing, summarized in Table 2.

Test # **Test Description** Specific detector Equipment Warm-up Х Personnel Test Х Vibration Test (Cable Shake) Х Static Background and Static Spike 6 Line Test Х 6 2 Line Test Dynamic Repeatability Positioning Device Check

Table 2 - Quality Control Measures and Associated Frequencies

The following tests were conducted:

3.1.1.1 Equipment/Electronics Warm-up

The purpose of Equipment/Electronics Warm-up is to minimize sensor drift. Most instruments require some time for the electronics to warm up to operating temperature before data collection begins. The EM61 equipment was given, typically, 5 to 15 minutes to warm up at the beginning of the day and after it had been switched off for an extended period of time.

3.1.1.2 Personnel Test

The purpose of personnel testing is to ensure survey personnel have removed all potential interference sources from about their person. Common interference sources can include steel-toed boots, boots with metal shanks, or large metallic belt buckles, which can produce data anomalies similar to MEC targets. All personnel who came within close proximity to the sensor during survey operations were tested for metallic response by approaching the sensor and have a second person monitor and record the results. Acceptance criterion for the EM61 was no response greater than +/- 2.5mV on channel 3

without being an isolated incident with an adequately documented and resolved cause. An example of a personnel test from December 16th is provided below as Figure 4. As can clearly be seen, no spikes, bumps, or responses are exhibited above the 2.5 mV threshold.

Figure 4 – Personnel Test Example (December 16th, 2010)

3.1.1.3 Record Relative Sensor Positions

The purpose of the record relative sensor positions test is to document relative navigation and sensor offsets, detector separation, and detector heights above the ground surface. This will ensure that detector offset corrections can be done correctly and that the surveys are repeatable. As the surveys were conducted using a single coil, this was achieved by ensuring that (1) the GPS antenna was located directly over the center of the coil through use of a stable antenna tripod and that (2) a constant coil height of 16 inches above ground surface was maintained within the acceptance criterion of +/- one inch. The height was measured by rotating the coil around a fixed point while measuring corner heights and adjusting the setup until the platform was within operational specifications.

3.1.1.4 Vibration Test (Cable Shake)

The purpose of the vibration test is to identify and replace any shorting cables or broken pin-outs on connectors causing noise or spikes to appear in the data. With the instrument held in a static position and collecting data, an assistant carefully shook all cables to test for shorts and broken pin-outs while the readings were observed for any changes (spikes) in instrument response. The acceptance criterion was a data profile that did not exhibit data spike responses +/- 2.5mV on channel 3. An example of a vibration (cable shake) test from December 16th is provided below as Figure 5. As can clearly be seen, no spikes, bumps, or responses are exhibited above the 2.5 mV threshold.

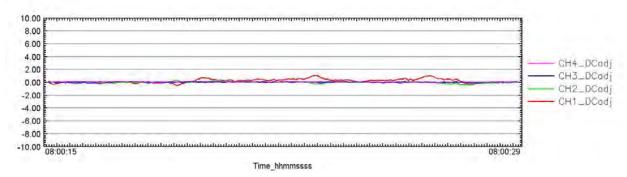


Figure 5 – Cable Shake Test Example (December 16th, 2010)

3.1.1.5 Static Background and Static Standard Response (Spike) Test

The purpose of this test was to quantify instrument background readings, repeatability of the instrument to a standard test item (test jig) and locate any potential sources of interference in the time domain. Improper instrument function and the presence of local sources of ambient noise (such as EM transmissions from high-voltage electric lines or electrical storms) are potential causes of inconsistent, non-repeatable readings. In humid environments and in tidal or wave affected areas, interference can sometimes also be seen from condensation in connections and movement of saline water within the subsurface. A minimum of 3 minutes static background collection, after instrument warm-up, followed by a 1-minute standard (spike) test followed by a 1-minute static background data was performed both before and after data collection. The acceptance criterion was as follows: Static Background Test: EM61 +/- 2.5 mV on channel 3, Spike Test: EM61 +/- 10% of standard item response, after background correction. An example of an acceptable static background / static response test from December 16th is provided below in Figure 6. As can clearly be seen, no spikes, bumps, or responses are exhibited above the 2.5 mV threshold and responses are within the percent range for repeatability. Table 3 summarizes the static tests results between days of operation. Based on the evaluating the static responses during the GPO and the static responses from previous projects using the same test jig, ARM has determined that the static response baseline values for the upcoming work should be 140 mV on channel 3, the same channel evaluated for spikes discussed above and dynamic response evaluations to follow in order to maintain consistency. If the test item (due to loss or replacement) and/or test item response changes appreciably, ARM will notify USAESCH Geophysicist as soon as possible.

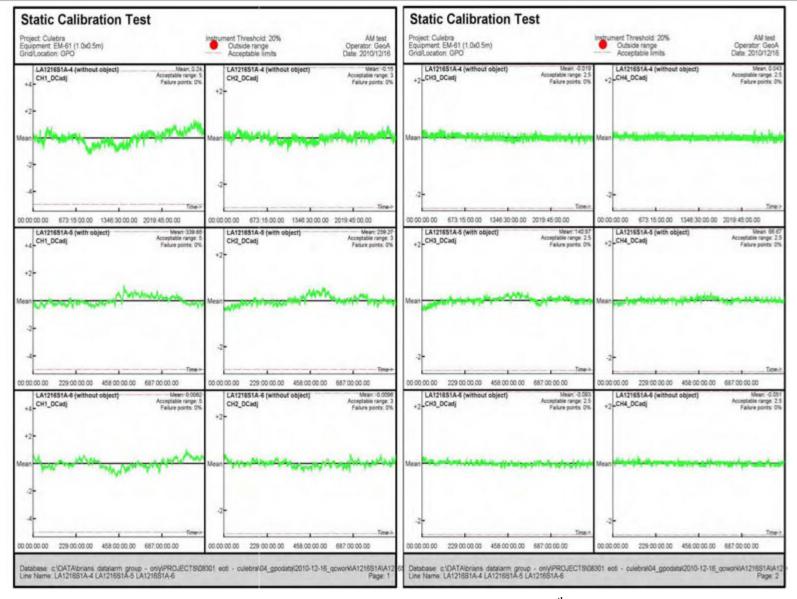


Figure 6 – Static Test Example (AM Test, December 16th, 2010)

Table 3 – Static-Spike Test Summary

% Difference Between AM and PM Spike				% Difference Between First Day's AM Spike				% Difference Between First Day's PM Spike				
Date	Ch1	Ch2	Ch3	Ch4	Ch1	Ch2	Ch3	Ch4	Ch1	Ch2	Ch3	Ch4
12/14/2010	1.81	1.39	0.92	0.65	n/a	-	-	-	n/a	-	-	-
12/16/2010	0.86	0.68	0.38	0.62	1.15	0.73	0.23	-0.32	0.20	0.02	-0.31	-0.35

3.1.1.6 Six Line Test

The purpose of this test was to document latency and repeatability of response amplitude, and to demonstrate that instrument latency is not variable across the normal range of survey speeds. The following procedure was followed after a 50 ft tape was laid out:

- 1. A line of data collected in one direction at normal survey speed
- 2. Line collected in reverse direction at normal survey speed
- 3. Target (test jig) placed at the midpoint of the tape (25 feet) and line of data collected at normal survey speed
- 4. Line collected in reverse direction at normal survey speed with target
- 5. Line collected in reverse direction at faster than normal survey speed with target
- 6. Line collected in reverse direction at slower than normal survey speed with target

An example of an acceptable six-line test, from December 14th, is provided below as Figure 7. As can clearly be seen, once the correction is applied all of the peaks line up accordingly regardless of (moderate, slow, or fast) walking pace.

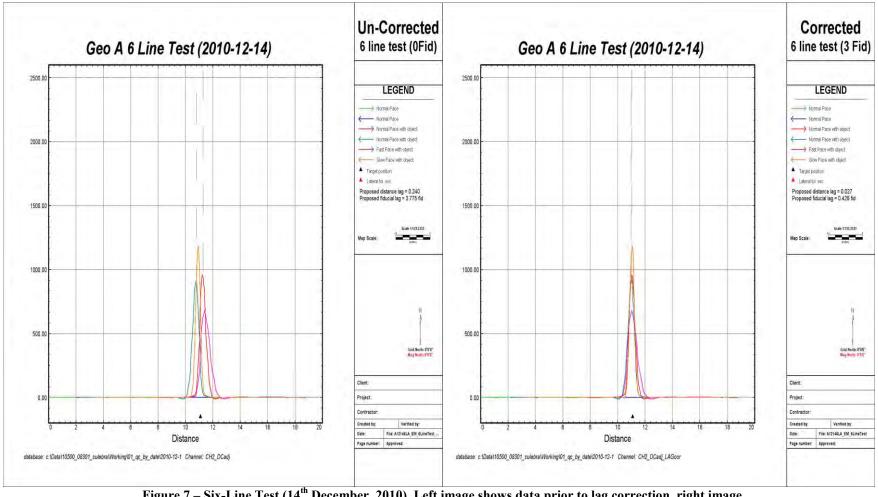


Figure 7 – Six-Line Test (14th December, 2010). Left image shows data prior to lag correction, right image shows data after application of a 3 fiducial lag correction.

3.1.1.7 Two Line Test

The purpose of this test was to (daily) test and document the latency adjustment required to correct the data. The test consisted of running the equivalent of lines 3 and 4 of the 6-Line Test and viewing the results in profile and map view (in cases where the line was not oriented N/S or E/W). An example of an acceptable two-line test from December 14th is provided below as Figure 8. As can clearly be seen, once the correction is applied all of the peaks line up with similar peak response ranges.

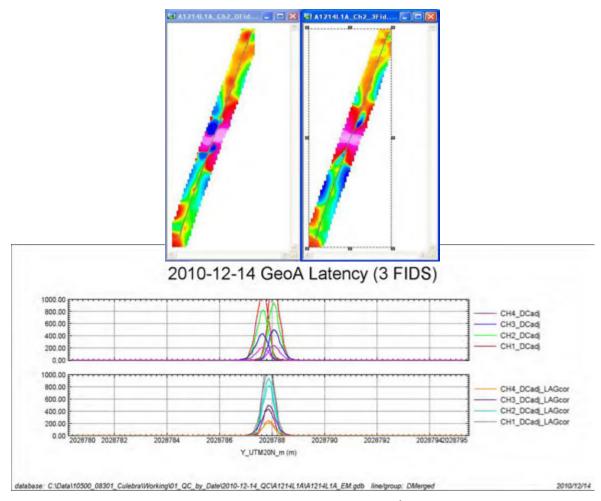


Figure 8 – 2-Line Test Example (December 14th, 2010)

3.1.1.8 Dynamic Repeatability Test

The purpose of this test was to document that data quality was consistent and sufficient

for detection of the MEC items of interest, being a replacement for the previously used 2% repeat line test. A standard test item (e.g. a small, flat plate, response less than 500 units) was to be placed within the grid and then the grid was to be surveyed as per normal with the location of the dynamic repeatability item noted and its response determined during processing. Test item anomaly characteristics (peak response and size) shall be repeatable with an allowable variation of $\pm -25\%$. This test should be performed once per grid or dataset, or group of data, usually twice per day depending on field production.

Two dynamic repeatability tests were run on December 16th, 2010. However, they were not collected as part of the GPO grid itself because the background response was too high and all available clear areas in the GPO had been seeded with items. Instead, the tests were collected as stand-alone "mini grids", but in the manner of a regular dynamic repeatability test. The results of the tests are shown in Table 4:

Table 4 – Dynamic Repeatability Tests, December 16th, 2010

Dynamic Response							
Test 1 Filename:	A1216K1A	Test 2 Filename:	A1216K2A				
CH1 Response:	1460.40	CH1 Response:	1270.60				
CH2 Response:	950.70	CH2 Response:	828.00				
CH3 Response:	490.40	CH3 Response:	440.30				
CH4 Response:	224.60	CH4 Response:	198.50				
CH1 % Change:	0.00%	CH1 % Change:	-13.00%				
CH2 % Change:	0.00%	CH2 % Change:	-12.91%				
CH3 % Change:	0.00%	CH3 % Change:	-10.22%				
CH4 % Change:	0.00%	CH4 % Change:	-11.62%				
•							

Based on the evaluating the dynamic responses during the GPO and from prior projects using the same test item, ARM has determined that the dynamic response baseline value for the upcoming work should be 440 mV on channel 3, the same channel evaluated for static background and spike response evaluations in order to maintain consistency. If the test item (due to loss or replacement) and/or test item response changes appreciably, ARM will notify USAESCH Geophysicist as soon as possible.

3.1.1.9 Data Position Check

At the beginning of each day, a known local survey point was to have its position recorded and compared to the location of the known point to ensure survey positioning is within the tolerance of the navigation system (Acceptance criterion: 4 inches or

10.12cm). However, because RTK-DGPS was not used for this GPO survey, a sub-meter GPS unit was used in its place. For the purposes of a positional check, the four corners of the GPO were recorded to file on three separate occasions. Table 5 shows the combined offsets of position checks 1 and 2 as compared with position check 3:

Table 5 – Position Checks and Offsets

Corner	Check 1 Easting (m)	Check 1 Northing (m)	Check 3 Easting (m)	Check 3 Northing (m)	Easting Offset (m)	Northing Offset (m)	Combined Offset
SE	254347.58	2028802.08	254347.57	2028802.35	0.01	-0.27	0.27
SW	254317.21	2028804.51	254317.41	2028804.40	-0.20	0.11	0.23
NW	254320.97	2028834.27	254319.76	2028834.80	1.21	-0.53	1.32
NE	254350.60	2028832.01	254350.51	2028832.08	0.09	-0.07	0.11
Corner	Check 2 Easting (m)	Check 2 Northing (m)	Check 3 Easting (m)	Check 3 Northing (m)	Easting Offset (m)	Northing Offset (m)	Combined Offset
SE	254347.82	2028801.79	254347.57	2028802.35	0.25	-0.57	0.62
SW	254317.42	2028805.04	254317.41	2028804.40	0.01	0.64	0.64
NW	254320.43	2028834.63	254319.76	2028834.80	0.66	-0.18	0.69
NE	254350.66	2028831.88	254350.51	2028832.08	0.14	-0.20	0.25

As can be seen from Table 5, the combined offsets (offsets in a straight line) are all in the region of +/-0.6m or less (within the acceptable bounds for the instrument) with the exception of one measurement of the NW corner which is 1.3m offset. As noted previously, the GPO was surrounded on all four sides with tall vegetation with vegetation remaining within the grid and it is likely that this one measurement can be considered an isolated occurrence as this magnitude of offset was not repeated on any of the other days or occupation time frames.

3.1.2 Background survey

Following brush cutting and layout of the GPO, a background survey was conducted in order to determine the extent of any pre-existing response in the grid and to locate clear areas in which to seed the items. The background survey was performed using the EM61 in wheeled mode with GPS positioning. Coverage of the grid was not 100% complete due to residual vegetation (some of which was later removed in order to emplace seed items with a backhoe), which caused both physical gaps and gaps due to poor GPS signal from residual canopy. This anticipated to be typical for parts of the production transects areas, where there is tall vegetation either side of the transect. Further discussion of the

background survey can be found in Section 3.3.1.

3.1.3 Seeded Surveys

Following seeding of the GPO on December 15th, 2010, surveys of the GPO were conducted using all three of the instrument-navigational-method combinations: Litter mode GPS, litter mode time fiducials and wheeled mode wheel fiducials.

Data was collected in parallel lines of alternating direction, at the modified design lane spacing of 2.5 feet apart. As discussed in Section 2.1.2, the deviation from the work plan arose from the practical limitations of vegetation removal determined during the TPP process. Once the 2.5 foot spacing surveys were completed, ARM planned to collect an additional run at 2.0 foot spacing to ensure all items were detected, but due to the inclement weather and required travel logistics during the afternoon of December 16th and the morning of December 17th, another pass could not be completed. As the seeded GPO results will show in Section 3.3.2, the additional pass would not have been necessary as all items were sufficiently detectable at the revised design lane spacing of 2.5 feet.

Because of the numerous responses of unknown source scattered across the grid, only the anomalies due to the seeded items were selected for evaluation.

3.2 DATA DOWNLOAD AND PROCESSING

Data was collected using both EM61MK2A and NAV61 software on the Allegro field computer. File conversion was performed in DAT61 and Trackmaker61, with all other processing being done in Geosoft Oasis Montaj.

3.2.1 File Naming Conventions

Raw files were named according to the following convention:

<System/Team><Month and Day><Survey/QC File Type>, where, for QC files, the following names are observed:

S1A – AM Static Test, Attempt 1 (additional attempts labeled B, C...)

S2A – PM Static Test, Attempt 1 (additional attempts labeled B, C...)

L1A – Latency Test, Attempt 1 (additional attempts labeled B, C., additional tests 2, 3)

P1A – Positional Test, Attempt 1 (additional attempts labeled B, C., additional tests 2, 3)

K1A – Standalone Kinematic Test No. 1, Attempt 1 (additional attempts labeled B, C...)

6LA – Six Line Test

e.g. A1216S1A is the AM static file for Team/System A on December 16th

Production Files are generally named according to <Grid/Transect><Subsection of Grid/Transect><Attempt>

e.g. 3rd Grid of the day, 2nd subsection (e.g. switched operators), restarted due to line path error would be named "C2B"

3.2.2 Importing and Positioning of the Data

Raw data files (*.P61 and *.R61) were copied from the Allegro to a CF card and from there to a field laptop, from where they were transferred to the ARM FTP site for backup and transfer to the offsite data processor. At all times through the GPO activities, backups of the data were retained on the Allegro, the field laptop and the ARM FTP site.

3.2.2.1 GPS Data Collected in NAV61

Raw GPS Data, collected in NAV61 (*.P61), were converted to ASCII format using Trackmaker61. The resulting *.XYZ files, with integral GPS positioning, were then imported into Geosoft using a script to consistently name the database columns and set the Eastings and Northings to NAD83 UTM Zone 20th meters.

3.2.2.2 GPS Data Collected in EM61MK2A

A number of QC files with GPS positioning were collected in EM61MK2A. These *.R61 files were converted to *.M61, each reading positioned with respect to the integral 1Hz GPS string and then exported to ASCII format *.XYZ file in DAT61. The *.XYZ files were then imported into Geosoft for further processing

3.2.2.3 Wheel and Time Fiducials Collected in EM61MK2A

Fiducial data, though collected by different methods, were treated in the same manner. The raw data files were converted and opened in DAT61 and the markers in the data (start/end points of the line and control points where the fiducial marker button had been pressed) positioned with respect to the field notes, ensuring that the length and direction of each line segment was correct. Once the positioning of each file had been checked, the data was exported to ASCII *.XYZ format and imported into Geosoft for further processing.

3.2.3 Filtering and/or DC Adjusting of the Data

Upon import to Geosoft, the data for each survey was viewed in profile mode to check for noise, drift and overall response. Filtering to remove instrument drift was achieved by means of a non-linear drift filter, the settings of which were dependant on the data. Typical settings, depending on the aggressiveness of the filter required and the amount of anomalous response in the profile, were either Low: 0, High: 65 and Window 250 or Low: 0, High: 80 and Window 500.

3.2.4 Lag Correction of the Data

The daily 2-line QC test was used to determine the amount of correction needed to fix any "chevronning" in the data due to time delays between sampling the response and recording the data to file. This correction value was then applied to the data in Geosoft and its effect assessed in mapview and adjusted if necessary. Lag values applied to the data were +3 fiducials (data points) for the GPS data and +6 fiducials for both fiducially positioned files.

3.2.5 Overlap Removal within the Data

Overlap removal was performed, as necessary, in the GPS positioned data. No overlap removal was required for the fiducially positioned data.

3.2.6 Warping of the Data

Because of the nature of fiducially-positioned navigation, both the time fiducial and wheel fiducial data had to be warped to real-world coordinates. The positions were translated using a 4-point warp consisting of the recorded GPO corners. Because of the residual canopy in the grid affecting the accuracy of the GPS-positioned pass, it was also found to be necessary to warp the GPS pass. In this case, the data was warped by means of the anomalies corresponding to the corner pins and the recorded locations of the GPO corners.

3.2.7 Gridding of the data

Grids of the drift-filtered and lag-corrected data were made using the minimum curvature method with a cell size of 0.104m and a blanking distance of 0.52m. The grids were displayed in color-contoured map form and a color scale selected to highlight the anomalies of interest.

3.2.8 Additional Data Analyses

3.2.8.1 Target Selection

On the three seeded GPO passes, targets were selected using the UX-Detect add-on package in Oasis Montaj. Because of the extent of the pre-existing responses, only the anomalies corresponding to the buried seeds were picked as targets. Targets were manually selected using the Blakely method and the target properties (SNR, Signal Strength and Size) calculated. Targets were then exported to ASCII *.XYZ and dig sheets generated for each of the three GPO passes.

3.3 DISCUSSION OF THE GPO RESULTS

3.3.1 Background Pass

The grid of the background GPO pass can be seen in Figure 9:

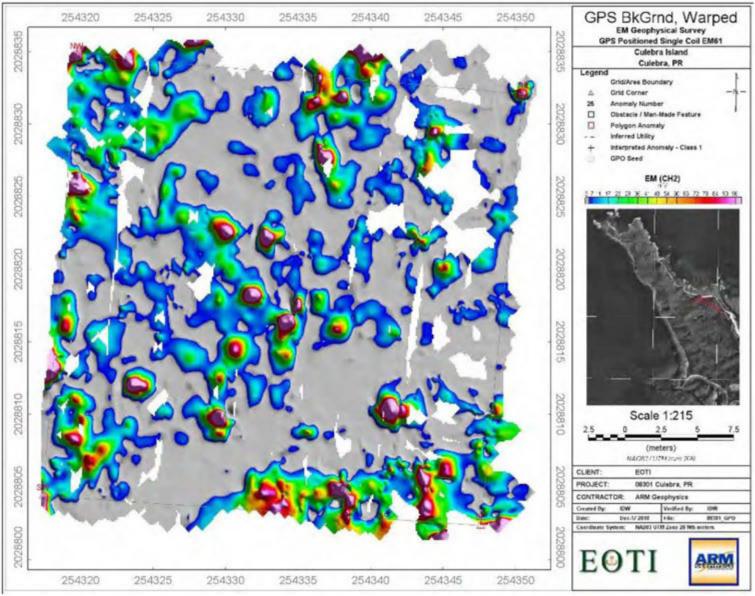


Figure 9 – GPO Background Survey

As can be seen, the grid was relatively noisy and the full seeding plan could not be implemented. Due to logistical considerations, the GPO could not be re-located during this mobilization; however, enough clear, response-free area was in the GPO grid to allow seeding of eight items. Five clear or relatively clear, areas were selected for seeding and the coordinates of the corners of these areas transferred to the field crew and staked out to facilitate seeding.

3.3.2 Seeded Passes

To aid in target picking, the color-contoured grid of the background survey was displayed in semi-transparent mode over the top of each seeded survey. An example of this comparison can be seen in

Figure 10.

Figure 11 to

Figure 13 shows the three seeded GPO passes with target and seed locations displayed:

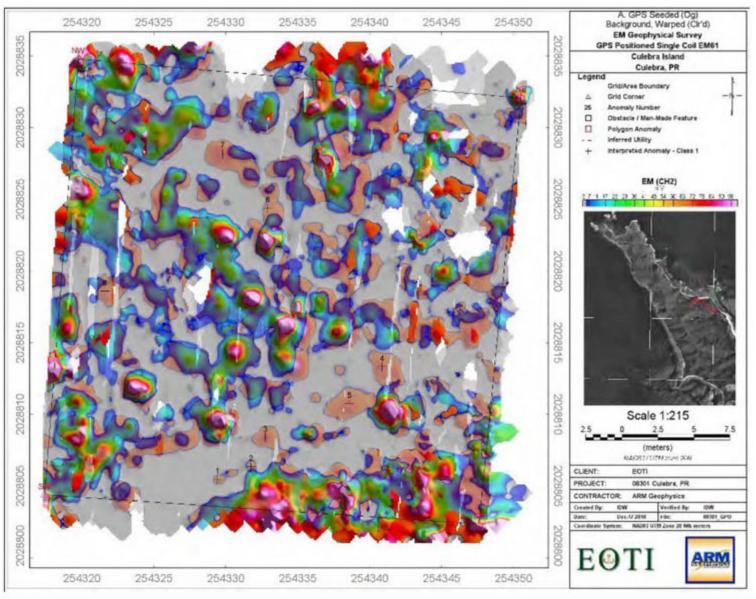


Figure 10 – GPO Background (Colored, Semi-Transparent) Displayed Over Seeded GPS Pass (Orange)

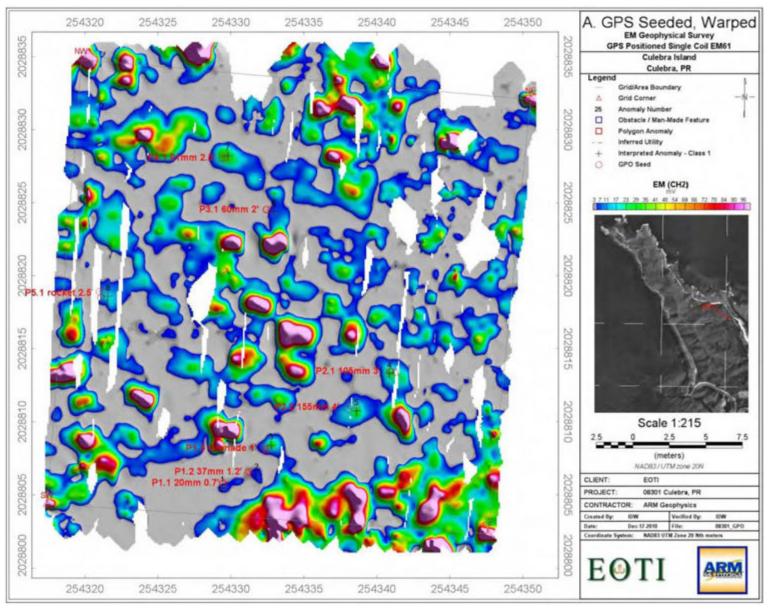


Figure 11 – Seeded GPO; GPS, Litter Mode

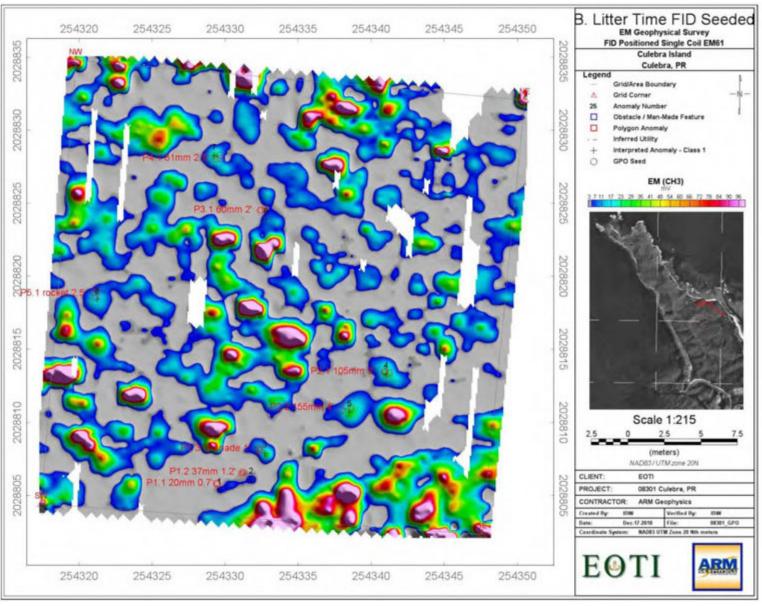


Figure 12 – Seeded GPO; Time Fiducial, Litter Mode

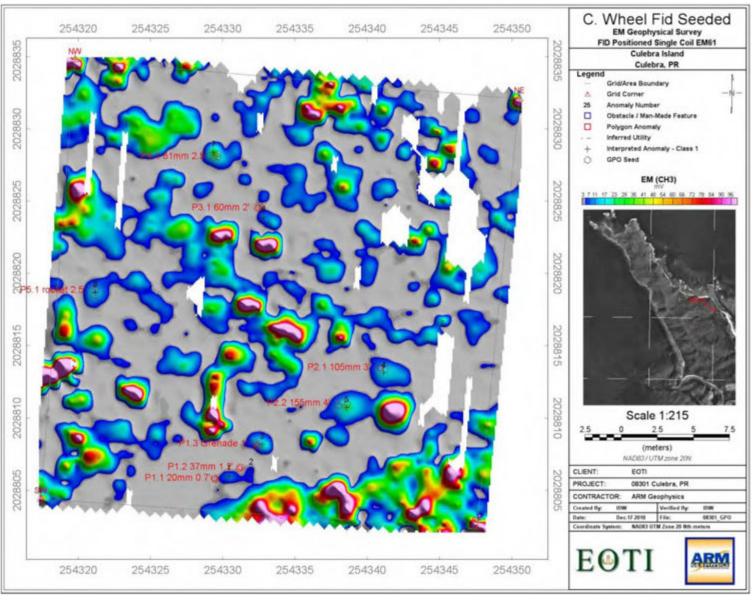


Figure 13 – Seeded GPO; Wheel Fiducial

3.3.2.1 Threshold Value Analysis

All seeds were successfully detected at amplitude levels appropriate to target selection in production data, as can be seen in Table 6:

Table 6 – Seed Responses, Sorted by GPO Pass

	Seed	Item	Depth (ft)	Ch1 (mV)	Ch2 (mV)	Ch3 (mV)	Ch4 (mV)
GPS	1-1	20mm	0.7	14.99	9.91	4.97	2.48
	1-2	37mm	1.2	11.34	6.96	3.67	1.63
	1-3	grenade	1.0	46.43	28.87	13.48	5.15
	2-1	105mm	3.0	38.46	24.43	12.28	5.72
	2-2	155mm	4.0	34.5	24.6	13.73	7.29
	3-1	60mm	2.0	11.8	8.2	4.72	2.43
	4-1	81mm	2.5	42.02	28.73	15.93	7.11
	5-1	2.75" rocket	2.5	28.7	19.07	10.4	4.9
Time FID	1-1	20mm	0.7	8.97	6.27	3.22	1.36
	1-2	37mm	1.2	10.89	6.56	3.51	1.62
	1-3	grenade	1.0	39.93	24.64	12.21	4.77
	2-1	105mm	3.0	37.37	24.62	13.06	6.27
	2-2	155mm	4.0	37.15	25.75	14.57	7.13
	3-1	60mm	2.0	13.78	9.56	5.48	2.9
	4-1	81mm	2.5	35.43	23.73	12.36	5.29
	5-1	2.75" rocket	2.5	25.53	17.25	9.72	4.73
Wheel FID	1-1	20mm	0.7	15.67	10.69	5.44	2.48
	1-2	37mm	1.2	9.14	6.09	3.14	1.41
	1-3	grenade	1.0	28.91	18.78	9.72	4.09
	2-1	105mm	3.0	28.17	18.51	10.03	4.73
	2-2	155mm	4.0	34.71	23.69	13.2	6.26
	3-1	60mm	2.0	15.94	10.86	6.24	3.06
	4-1	81mm	2.5	38.67	25.77	13.36	5.59
	5-1	2.75" rocket	2.5	21.34	14.52	7.98	4.07

Ch2 was selected as the channel to report due to the lack of external noise evident in the data. Ch2 results are summarized in Table 7.

Table 7	- Ch2 Re	esults by	Seed	and	GPO	Pass

GPO\Seed	1.1	1.2	1.3	2.1	2.2	3.1	4.1	5.1
GPS	9.91	6.96	28.87	24.43	24.6	8.2	28.73	19.07
Time FID	6.27	6.56	24.64	24.62	25.75	9.56	23.73	17.25
Wheel FID	10.69	6.09	18.78	18.51	23.69	10.86	25.77	14.52

Due to the tight constraints on seeding and the relative inaccuracy of the sub-meter GPS used to stake out the seeding locations, seed 3.1 was inadvertently located close to a pre-existing anomaly. The response of this seed was somewhat masked by this anomaly, however, as can be seen from

Figure 10, the post seeding anomaly is both a different shape and larger than the pre-seed anomaly and the response of the combined anomaly was such that it would have been selected were this a production grid.

As can be seen from Table 7, the lowest response for a seeded item was 6.09mV on Ch2 for the 37mm at 1.2 feet. Because of this and the consistency in results across the three surveys, ARM is confident in recommending a 5.0mV cutoff for selection of anomalies on Ch2. This threshold, with a built-in 1.0mV buffer, will allow selection of all targets within the GPO and, by extension, allow selection of items down to 20mm and 37mm in their least detectable orientation at or close to maximum depth in production areas.

Because all items were seeded horizontally and close to maximum depth, this recommended threshold is significantly lower than it would have been, were all items in their vertical position. By extension, and considering the responses present in the background GPO pass, there will likely be a large number of targets selected in production areas corresponding to geology or other items ,not-of-interest". Should the anticipated depth of the smaller items (20mm, 37mm) be revised upwards, the picking threshold would be able to be raised in-line with the measured curves for ordnance items as all items in the GPO were buried in their least favorable orientation (horizontal).

3.3.2.2 Tau Value Analysis

Analysis of seed item Tau (time constant) values has also been performed, both internally, against an unsorted threshold pick of one of the data sets, and against the modeled data [Tabulated Results; EM61-MK2 Response to Standard Munitions Items (NRL/MR/6110-08-9155)] for items corresponding to seeded items in this GPO. Note: The modeled responses for the 20mm were not tabulated in this dataset. Figure 14 shows the results of

this analysis for Tau Ch1-3 plotted against Tau 2-3; the modeled results being for a "D" Mode rather than a "4-Channel" Mode EM61 precluded a comparison of Tau values involving Ch4. As can be seen, the measured values for the horizontal seeded items (worst-case orientation) fall in a relatively restricted area, offering the potential for discrimination against the blind, threshold-only picks (Blakely test, 5.0mV threshold, no sorting). However, when the modeled best-case (vertical) and worst-case (horizontal) values are plotted, the potential tau value range is seen to increase significantly.

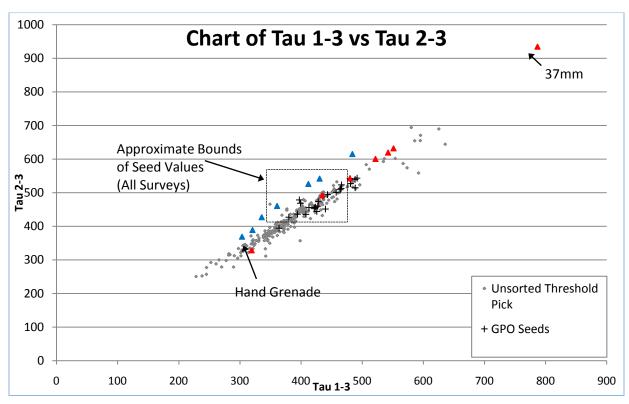


Figure 14 – Chart of Tau 1-3 against Tau 2-3

As clearly demonstrated in Figure 14, if the range suggested by the GPO results were used to restrict items on the digsheets, it would be likely that certain real items, particularly 37mm, would be excluded. The limitations, particularly related to small-sized (and generally small response) ordnance items, is a common problem that has been documented over time and as recently as the results from the trials at Camp Butner. However, in an attempt to utilize as much available information as possible without limiting the results, ARM recommends a four class system to prioritize the intrusive investigations as follows:

Class 1 – above threshold, within boundaries of Tau Range 1;

Class 2 – above threshold, within boundaries Tau Range 2;

Class 3 – between 5mV and 300mV and within boundaries of Tau Range 3; and Class 4 – all remaining above threshold residual targets.

Class 1 captures all of the items seeded within the GPO while Class 2 captures all the items modeled from the NRL tables, with the exception of a single isolated example (37mm, horizontal). Class 3 extends the range to include the 37mm outlier while limiting the amplitude range to the maximum modeled for the 37mm (vertical) at ground surface to restrict the potential inclusion of larger amplitude clutter. Class 4 includes all remaining anomalies above the amplitude threshold that do not fall into Class 1-3. All of the classes" tau ranges are represented visually in Figure 15 shown below:

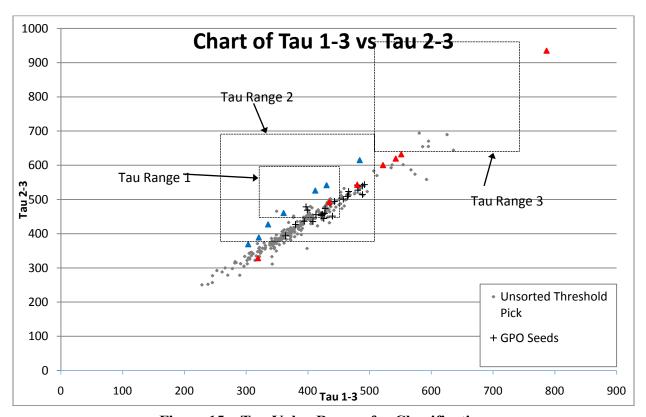


Figure 15 – Tau Value Ranges for Classification

The Tau ranges, as graphically shown in Figure 15, are numerically defined as follows:

<u>Tau Range 1:</u> Tau 1-3: 360 to 495 and Tau 2-3; 390 to 545 (Rounded up/down to nearest 5);

<u>Tau Range 2:</u> Tau 1-3: 290 to 555 and Tau 2-3; 310 to 650 (Buffer of +/- 15); and

Tau Range 3: Tau 1-3: 555 to 800 and Tau 2-3; 600 to 950 (Buffer of +/- 15).

3.3.3 Production-Area Geophysics Recommendations

All three methods implemented were successful in identifying the seeded items. However, because of the anticipated vegetation and canopy in the production areas, the fiducial methods are likely to prove more accurate and useful as long as transect stakes are located accurately (within the accuracy of the GPS system) and the real-world positions are known, in order to both warp the data to the project coordinate system (NAD83 UTM Zone 20m) and to overlay the data on a large-scale map. Due to the extensive canopy cover, reacquisition operations will have to employ the system of measuring distances between transect stakes, particularly in areas of extreme canopy coverage whereby consistent GPS coverage is not realistic along the entire transect. Additionally, of the two fiducial methods, wheel fiducials are generally considered to be more accurate than time fiducials as they are not dependant on constant velocity being maintained between control points. This increased accuracy needs to be weighed against the greater ease of collection over rough terrain afforded by the two-person litter carried mode.

For open-sky situations, where GPS coverage is good, but assuming rough terrain, the systems should be ranked in order of preference as follows:

- 1. GPS, 2-person litter mode
- 2. Time Fiducials, two-person litter mode / Wheel Fiducials (depending on severity of terrain)

For areas where canopy is an issue, fiducials should be considered as the navigation method of choice; however, the recommended carrying mode would be dependent on the the terrain.

3.4 DISCUSSION OF THE INSTRUMENT-AIDED REACQUISITION RESULTS

3.4.1 Digital Instrument Recorded Response Checking

After the items were seeded in the GPO, ARM checked the seed locations (by sweeping the immediate area surrounding the known seed locations) for the peak responses in order to validate EM61 response-depth relationships as compared to the expected values as catalogued in the NRL report (and as compared to the GPO surveys). The peak responses were captured for the primary interpretation channel in order to simulate reacquisition activities for areas where analogue instruments could be hindered. Table 8

compares the average GPO survey response (derived from Table 7) to the re-occupied instrument response.

Table 8 - GPO CH2 Response versus Instrument CH2 Response for each seed.

GPO\Seed	1.1	1.2	1.3	2.1	2.2	3.1	4.1	5.1
GPO Resp.	9	7	24	23	25	10	26	17
INST. Resp.	9	6	18	20	20	5	20	20
Item Type	20mm	37mm	grenade	105mm	155mm	60mm	81mm	2.75"
Depth (ft)	0.7	1.2	1.0	3.0	4.0	2.0	2.5	2.5

As can be seen from Table 8, there are a few discrepancies (between the two sets of responses) but nothing out of the ordinary given the site conditions. As a matter of practicality, however, the EM61 is expected to be a secondary reacquire instrument and the analogue instruments are expected to be the primary reacquire instrument due to both the inherent flexibility of analogue system and greater ease of mobility for the operators across the site. The EM61 can be used to supplement reacquire activities or sort out any confusing areas. The analog instruments, discussed next, are also expected to be used in areas where terrain or other features may not safely allow the use of the EM61 instrumentation for data acquisition. Residual areas will be documented accordingly.

3.4.2 Analogue Instrument Audible Response Checking

After the items were seeded in the GPO, EOTI checked the seed locations for the peak responses in order to validate analog instruments audibility (and inferred detection) in order to validate the utilization of tested instruments for use as either a primary instrument or a supplementary instrument during data acquisition and reacquire operations. EOTI evaluated two different analog instruments, which included a White's XLT and a White's DFX 300. The White's XLT operates at a single frequency of 6.5 Khz, while the White's DFX 300 transmits at two frequencies – 3 KHz and 15KHz. The instruments were evaluated in the GPO and in a separate geophysical test strip. The test strip, shown in Figure 16, is 6 ft by 15ft.

Table 9 provides the size, position, and depth of each seed item included in the geophysical test strip. Location shown in the table (x,y) are given in inches and are measured from the Southwest corner of the test strip. All items are oriented horizontally with the top of the item at the depth shown in the table. The test strip is located in the same general area as the magazine and the GPO and the coordinates for its corners are:

SW - 665613.03N 834829.21E NW - 6656024.89N 834820.54E

SE - 6656017.79N 834832.97E SW - 6656028.07N 834823.44E

Table 9 – List of Seeds – Geophysical Test Strip

		ocoping sieu		1	
Seed		Size	X	Υ	Z
#	Seed Description	(inches)	(inches)	(inches)	(inches)
1	Pipe	4.5 x 12	33	132	36
2	Rotating Band from 3" Projectile	3/4 x 9.5	50	84	6
3	Pipe	1 x 4	18	48	5
4	Pipe	1 1/4 x 4	48	24	4
5	Pipe	2 1/4 x 8	14	168	9
6	81mm (body only)	3 1/5 x 8	12	96	8
7	76mm Projo Nose with partial nose fuze	3 x 1 1/2	36	72	6
8	120mm Mortar piece	4 1/2 x 7	48	156	14

Figure 16 – Geophysical Test Strip used to Evaluate Analog instruments

Both instruments were able to detect all but the first (and deepest) seed item in the Geophysical Test Strip. The two analog instruments were also tested on the GPO and were able to clearly and consistently detect the seed items buried at one foot and shallower. Deeper anomalies were not detected by either analog instrument.

4.0 **CONCLUSIONS**

In conclusion, ARM mobilized two qualified geophysicists to Culebra Island between December 13th and December 17th, 2010 to conduct GPO activities in association with EOTI. One background (pre-seeding) survey was completed on December 14th followed by GPO seeding on December 15th and finally three post-seeded surveys were completed on December 16th. The post-seed surveys utilized the mobilized crew of two geophysicists to complete litter mode and wheeled mode surveys with GPS and fiducial positioning methods. Regardless of positioning method demonstrated, the EM61 sensor data acquisition at the revised design lane spacing of 2.5 feet was proven to adequately capture and detect all items seeded within the confines of the GPO grid at the worse-case seeded orientation and depth.

For maximum efficiency in variable-canopied terrain, if all of the transect areas are to be digitally sampled, ARM recommends the use of fiducial methods over GPS. If, however, large and connected transect sections are available with unencumbered view of the sky, a mix of GPS and fiducial methods should be employed. For accuracy of position, Wheel fiducials are to be preferred over Time fiducials, however, the ease of movement over very rough terrain with the EM61 in two-person ,litter" carried mode should not be discounted.

Finally, ARM recommends that the interpretation of the acquired data begin with a starting threshold of 5.0 mV on channel 2 and increase this threshold, if feasible, based on the preliminary intrusive investigation results, once a catalogue of items is available to supplement the current GPO results. ARM also recommends the use of four categories of classification system based on a combination of threshold and Tau value analysis to further prioritize anomalies for intrusive investigation. During preliminary investigations, all locations may have to be intrusively investigated until the results of the GPO are validated by intrusive investigation results in the field. Once validated, however, ARM plans to weight the first two priorities higher than the last two.

Although the analog instruments proved less effective at locating anomalies deep (near 11 times diameter) at the most challenging orientation (horizontal), they can be effective in collecting the data required along the transects. The primary purpose of the transect data is to identify the location of previous targets or impact areas. These areas are reasonably expected to have high concentration of MD, most of which is expected between the surface and the maximum penetration depth of the munitions. It is therefore expected that a significant amount of MD would be detected near the surface with the analog instruments in these areas of concern. An added advantage to using a "mag and dig" technique with analog instruments is the elimination of the reacquisition step. Many of the

transect segments will be collected in the fiducial mode and the transect paths change directionality often in order to avoid restrictive terrain or vegetation marked by the biologist. This will make it very challenging and time consuming to accurately reacquire selected anomalies.

Lastly, all of the raw, preliminarily processed, and final processed data were posted to EOTI's FTP site on Monday December 20th, 2010, prior to subsequent review by the USAESCH. The databases associated with the deliverables will be made available on EOTI's FTP site once completed.

APPENDIX A: Reference Tables

Exhibit A-1: Table of Ordnance Penetration/Detection (Excerpted from USACE Guidance Document)

EM 1110-1-4009 23 Jun 00

Table 7.3 Ordnance Penetration/Detection

	Depth	of Penetr (ft) ^{1,2}	ation	Typical Max Det	ection Depth
Ordnance Item	Sand	Loam	Clay	Magnetometry	TDEM ⁵
14.5 mm Trainer/Spotter, M1813A1	0.2	0.3	0.4	0.3	0.5
20mm, M56A4	2.3	3.0	4.6	0.4	0.7
22 mm Subcal for 81 mm mortar	1.4	1.9	2.8	0.5	0.8
35 mm Subcal M73	0.5	0.7	1.0	0.9	1.3
37 mm, M63	3.9	5.2	7.9	1.0	1.3
40 mm, M822 (AA)	2.3	3.0	4.5	1.1	1.4
40 mm, M677 (Mk 19)	0.2	0.3	0.4	1.1	1.4
40 mm, M381 (M203/M79)	0.2	0.3	0.4	1.1	1.4
Mk 118 Bomblet	1.9	2.4	3.7	1.5	1.8
Mk 23 3 lb. Practice Bomb	2.7	3.5	5.4	1.7	2.0
57 mm, M306A1	2.7	3.6	5.5	1.7	2.0
M9 Rifle Grenade	0.1	0.2	0.2	1.7	2.0
2.25" Rocket, Mk 4	4.0	5.2	8.0	1.7	2.0
60 mm, M49A1 (charge 4)	1.1	1.5	2.3	1.9	2.2
2.36" Rocket, M6A1	0.4	0.5	0.8	1.9	2.2
66 mm, M72 LAW	0.9	1.2	1.8	2.1	2.4
66 mm TPA, M74	0.7	0.9	1.4	2.1	2.4
BLU-3/B,-27/B,-28/B	2.2	2.9	4.4	2.3	2.5
2.75" Rocket, Practice	8.1	10.7	16.3	2.3	2.5
6 lb. Incendiary Bomb	3.4	4.4	6.7	2.4	2.6
75 mm, M48	4.9	6.4	9.8	2.5	2.7
75 mm, M310	3.9	5.1	7.8	2.5	2.7
81 mm, M43A1 (charge 8)	2.7	3.5	5.4	2.8	2.9
83 mm SMAW Mk 3	2.8	3.6	5.6	2.9	3.0

7-10

EM 1110-1-4009 23 Jun 00

Table 7.3 Ordnance Penetration/Detection (Continued)

	Depth	of Penetr (ft) ^{1,2}	ation	Typical Max Detection Depth (ft)		
Ordnance Item	Sand	Loam	Clay	Magnetometry	TDEM ⁵	
84 mm, M136 (AT4)	2.5	3.7	5.0	2.9	3.0	
3.5" Rocket, M28	0.8	1.1	1.7	3.2	3.2	
90 mm, M371A1	2.0	2.7	4.1	3.2	3.2	
25 lb. Frag Bomb ³	2.1	2.8	4.3	3.2	3.2	
AN-M41A1 20 lb. Practice Bomb	5.0	6.6	10.0	3.3	3.3	
105 mm, M1 (charge 7)	7.7	10.1	15.4	4.0	3.8	
106 mm, M344A1	6.5	8.5	13.0	4.0	3.8	
4.2" Mortar, M3 (max charge)	4.1	5.4	8.3	4.1	3.9	
Dragon Guided Missile	0.9	1.1	1.7	4.3	4.0	
155 mm, M107	14.0	16.4	28.0	6.7	5.6	
8", M106 (charge 8)	16.4	24.2	36.9	9.7	7.3	
M38A2 100 lb. Practice Bomb	8.6	11.3	15.2	9.9	7.4	

¹Penetration depths include the following "worst-case" conditions assumptions: impact velocity is equal to maximum velocity of round; impact is perpendicular to ground surface; munition decelerates subsurface in a straight line; munition does not deform upon impact. Typical penetration depth for any individual item will usually be significantly less.

²Actual detection depth may vary based on field conditions and be either lower or deeper.

³All bombs are assumed to have an impact velocity of 1135 feet per second.

⁴Maximum depth of penetration assuming a velocity of 500 fps.

⁵Time Domain Electromagnetics Rev 1-5/11/99

Exhibit A-2:
Tables of EM61 Response as a Function
of Depth Below EM61 Coil
(Excerpted from NRL Report)

Predicted EM61-MK2 Response to a Small Surrogate

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate	3 (mV)	Gate 4 [D] (mV)	
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation
42	378.3	43.6	263.3	24.2	155.1	10.8	72.9	3.8
43	350.7	40.4	244.1	22,4	143.8	10.0	67.6	3.5
44	325.2	37.5	226.3	20.8	133.3	9.3	62.7	3.3
45	301.8	34.8	210.0	19,3	123.7	8.6	58.2	3.0
46	280.1	32.3	194.9	17.9	114.8	8.0	54.0	2.8
47	260.1	30.0	181.0	16.6	106.7	7,4	50.1	2.6
48	241.7	27.9	168.2	15.4	99.1	6.9	46.6	2.4
49	224.7	25.9	156.4	14.4	92.1	6.4	43.3	2.3
50	208.9	24.1	145.4	13.4	85.7	6.0	40.3	2.1
51	194.4	22.4	135.3	12.4	79.7	5.5	37.5	2.0
52	181.0	20.9	126.0	11.6	74.2	5.2	34.9	1.8
53	168.6	19.4	117.3	10.8	69.1	4.8	32.5	1.7
54	157.1	18.1	109.3	10.0	64.4	4.5	30.3	1.6
55	146.4	16.9	101.9	9.4	60.0	4.2	28.2	1.5
56	136.6	15.8	95.1	8.7	56.0	3.9	26.3	1.4
57	127.5	14.7	88.7	8.1	52.3	3.6	24.6	1.3
58	119.0	13.7	82.8	7.6	48.8	3.4	22.9	1.2
59	111.2	12.8	77.4	7.1	45.6	3.2	21.4	1.1
60	103.9	12.0	72.3	6.6	42.6	3.0	20.0	1.0
61	97.2	11.2	67.6	6.2	39.8	2.8	18.7	1.0
62	90.9	10.5	63.3	5.8	37.3	2.6	17.5	0.9
63	85.1	9.8	59.2	5.4	34.9	2.4	16.4	0.9
64	79.7	9.2	55.5	5.1	32.7	2.3	15.4	0.8
65	74.7	8.6	52.0	4.8	30.6	2.1	14.4	0.8
66	70.0	8.1	48.7	4.5	28.7	2.0	13.5	0.7
67	65.6	7.6	45.7	4.2	26.9	1.9	12.7	0.7
68	61.6	7.1	42.9	3.9	25.2	1.8	11.9	0.6
69	57.8	6.7	40.2	3.7	23.7	1.6	11.1	0.6
70	54.3	6.3	37.8	3.5	22.3	1.5	10.5	0.6
71	51.0	5.9	35.5	3.3	20.9	1.5	9.8	0.5
72	47.9	5.5	33.4	3.1	19.7	1.4	9.2	0.5
73	45.1	5.2	31.4	2.9	18.5	1.3	8.7	0.5
74	42.4	4.9	29.5	2.7	17.4	1.2	8.2	0.4
75	39.9	4.6	27.8	2.6	16.4	1.1	7.7	0.4
76	37.6	4.3	26.2	2.4	15.4	1.1	7.3	0.4
77	35.4	4.1	24.7	2.3	14.5	1.0	6.8	0.4
78	33.4	3.9	23.2	2.1	13.7	1.0	6.4	0.3
79	31.5	3.6	21.9	2.0	12.9	0.9	6.1	0.3

Predicted EM61-MK2 Response to a 37-mm Projectile

Distance of	Gate	1 (mV)	Gate :	2 (mV)	Gate	3 (mV)	Gate 4 [D] (mV)	
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation
42	287.3	77.4	223.5	41.1	162.1	19.0	168.4	22.9
43	266.3	71.7	207.2	38.1	150.3	17.6	157.0	21.4
44	247.0	66.5	192.1	35.3	139.4	16.3	146.6	19.9
45	229.2	61.7	178.3	32.7	129.3	15.2	136.8	18.6
46	212.7	57.3	165.5	30.4	120.1	14.1	127.8	17.4
47	197.6	53.2	153.7	28.2	111.5	13.1	119.4	16.2
48	183.6	49.4	142.8	26.2	103.6	12.1	111.7	15.2
49	170.6	46.0	132.7	24.4	96.3	11.3	104.5	14.2
50	158.7	42.7	123.4	22.7	89.6	10.5	97.7	13.3
51	147.7	39.8	114.9	21.1	83.3	9.8	91.5	12.4
52	137.5	37.0	106.9	19.6	77.6	9.1	85.7	11.7
53	128.0	34.5	99.6	18.3	72.3	8.5	80.3	10.9
54	119.3	32.1	92.8	17.0	67.3	7.9	75.3	10.2
55	111.2	30.0	86.5	15.9	62.8	7.4	70.6	9.6
56	103.7	27.9	80.7	14.8	58.5	6.9	66.3	9.0
57	96.8	26.1	75.3	13.8	54.6	6.4	62.2	8.5
58	90.4	24.3	70.3	12.9	51.0	6.0	58.5	8.0
59	84.4	22.7	65.7	12.1	47.7	5.6	54.9	7.5
60	78.9	21.3	61.4	11.3	44.5	5,2	51.7	7.0
61	73.8	19.9	57.4	10.5	41.6	4.9	48.6	6.6
62	69.0	18.6	53.7	9.9	39.0	4.6	45.7	6.2
63	64.6	17.4	50.3	9.2	36.5	4.3	43.0	5.8
64	60.5	16.3	47.1	8.6	34.2	4.0	40.5	5.5
65	56.7	15.3	44.1	8.1	32.0	3.7	38.2	5.2
66	53.1	14.3	41.3	7.6	30.0	3.5	36.0	4.9
67	49.8	13.4	38.8	7.1	28.1	3.3	34.0	4.6
68	46.8	12.6	36.4	6.7	26.4	3.1	32.0	4.4
69	43.9	11.8	34.1	6.3	24.8	2.9	30.2	4.1
70	41.2	11.1	32.1	5.9	23.3	2.7	28.6	3.9
71	38.7	10.4	30.1	5.5	21.9	2.6	27.0	3.7
72	36.4	9.8	28.3	5.2	20.6	2.4	25.5	3.5
73	34.2	9.2	26.6	4.9	19.3	2.3	24.1	3.3
74	32.2	8.7	25.1	4.6	18.2	2.1	22.8	3.1
75	30.3	8.2	23.6	4.3	17.1	2.0	21.6	2.9
76	28.6	7.7	22.2	4.1	16.1	1.9	20.4	2.8
77	26.9	7.2	20.9	3.8	15.2	1.8	19.3	2.6
78	25.4	6.8	19.7	3.6	14.3	1.7	18.3	2.5
79	23.9	6.4	18.6	3.4	13.5	1.6	17.4	2.4
80	22.6	6.1	17.6	3.2	12,7	1,5	16.5	2.2
81	21.3	5.7	16.6	3.0	12.0	1.4	15.6	2.1

Predicted EM61-MK2 Response to a Hand Grenade

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4 [D] (mV)	
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation
42	271.8	75.4	165.3	38.5	66.4	17.1	68.9	20.6
43	251.9	69.9	153.2	35.7	61.5	15.9	64.3	19.2
44	233.6	64.9	142.1	33.1	57.1	14.7	60.0	17.9
45	216.8	60.2	131.8	30,7	52.9	13.6	56.0	16.8
46	201.2	55.9	122,4	28.5	49.1	12.7	52.3	15.7
47	186.9	51.9	113.7	26.5	45.6	11.8	48.9	14.6
48	173.6	48.2	105.6	24.6	42.4	10.9	45.7	13.7
49	161.4	44.8	98.2	22.9	39.4	10.2	42.8	12.8
50	150.1	41.7	91.3	21.3	36.7	9.5	40.0	12.0
51	139.7	38.8	84.9	19.8	34.1	8.8	37.5	11.2
52	130.0	36.1	79.1	18.4	31.8	8.2	35.1	10.5
53	121.1	33.6	73.7	17.2	29.6	7.6	32.9	9.8
54	112.8	31.3	68.6	16.0	27.6	7.1	30.8	9.2
55	105.2	29.2	64.0	14.9	25.7	6.6	28.9	8.6
56	98.1	27.2	59.7	13.9	24.0	6.2	27.1	8.1
57	91.6	25.4	55.7	13.0	22.4	5.8	25.5	7.6
58	85.5	23.7	52.0	12.1	20.9	5.4	23.9	7.2
59	79.9	22.2	48.6	11.3	19.5	5.0	22.5	6.7
60	74.7	20.7	45.4	10.6	18.2	4.7	21.1	6.3
61	69.8	19.4	42,5	9.9	17.0	4.4	19.9	6.0
62	65.3	18.1	39.7	9.3	15.9	4.1	18.7	5.6
63	61.1	17.0	37.2	8.7	14.9	3.8	17.6	5.3
64	57.2	15.9	34.8	8.1	14.0	3.6	16.6	5.0
65	53.6	14.9	32.6	7.6	13.1	3.4	15.6	4.7
66	50.3	14.0	30.6	7.1	12.3	3.2	14.7	4.4
67	47.1	13.1	28.7	6.7	11.5	3.0	13.9	4.2
68	44.2	12.3	26.9	6.3	10.8	2.8	13.1	3.9
69	41.5	11.5	25.3	5.9	10.1	2.6	12.4	3.7
70	39.0	10.8	23.7	5.5	9.5	2.5	11.7	3.5
71	36.6	10.2	22.3	5.2	9.0	2.3	11.0	33
72	34.4	9.6	21.0	4.9	8.4	2.2	10.4	3.1
73	32.4	9.0	19.7	4.6	7.9	2.0	9.9	3.0
74	30.5	8.5	18.5	4.3	7.4	1.9	9.3	2.8
75	28.7	8.0	17.5	4.1	7.0	1.8	8.8	2.6
76	27.0	7.5	16.4	3,8	6.6	1.7	8.4	2.5
77	25.5	7.1	15.5	3.6	6.2	1.6	7.9	2.4
78	24.0	6.7	14.6	3.4	5,9	1.5	7.5	2.2
79	22.6	6.3	13,8	3.2	5.5	1.4	7.1	2.1
80	21.4	5.9	13.0	3.0	5.2	1.3	6.7	2.0
81	20.2	5.6	12.3	2.9	4.9	1.3	6.4	1.9

Predicted EM61-MK2 Response to a 105-mm Projectile

Distance of	Gate 1	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4	[D] (mV)
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation
132	39.7	21,0	28.2	12.9	17.5	7.4	27.6	13.5
133	38.1	20.2	27.1	123	16.8	7.1	26.5	13.0
134	38.6	19.4	26.0	11.9	18.2	6.8	25.6	12.5
135	35.2	18.6	25.0	11.4	15.5	6.6	24.6	12.0
136	33.8	17.9	24.0	10.9	14.9	6.3	23.7	11.6
137	32.5	17.2	23.1	10.5	14.4	6.0	22.9	11.2
138	31.2	16.5	22.2	10.1	13.8	5.8	22.1	10.8
139	30.0	15.9	21.3	9.7	13.3	5.6	21.3	10.4
140	28.9	15.3	20.5	9.4	12.8	5.4	20.5	10.0
141	27.8	14.7	19.7	9.0	12.3	5.2	19.8	9.7
142	26.7	14.2	19.0	8.7	11.8	5.0	19.1	9.3
143	25.7	13.6	18.3	8.3	11.4	4,8	18.4	9.0
144	24.8	13.1	17.5	8.0	11.0	4.6	17.8	8.7
145	23.8	12.6	16.9	7.7	10.5	4.4	17.2	8.4
146	23.0	12.2	16.3	7.4	10,2	4.3	16.6	8.1
147	22.1	11.7	15.7	7.2	9.8	4.1	16.0	7.8
148	21.3	11.3	15.1	6.9	9.4	4.0	15.4	7.6
149	20.5	10.9	14.6	6.7	9.1	3.8	14.9	7.3
150	19.8	10.5	14.1	5.4	8.8	3.7	14.4	7.0
151	19.1	10.1	13.6	6.2	8.4	3.6	13.9	6.8
152	18.4	9.8	13.1	6.0	8.1	3.4	13.5	6.6
153	17.8	9.4	12.6	5.8	7.9	3.3	13.0	6.4
154	17.1	9.1	12.2	5.5	7.6	3.2	12.6	6.2
155	16.5	8.8	11.7	5.4	7.3	3.1	12.2	6.0
156	16.0	8.5	11.3	5.2	7.1	3.0	11.8	5.8
157	15.4	8.2	10.9	5.0	6.8	2.9	11.4	5.6
158	14.9	7.9	10.6	4.8	6.6	2.8	11.0	5.4
159	14.4	7.8	10.2	4.7	6.4	2.7	10.7	5.2
160	13.9	7.4	9.9	4.5	6.1	2.6	10.3	5.0
161	13.4	7.1	9.5	4.3	5.9	2.5	10.0	4.9
162	12.9	6.9	9.2	42	5.7	2.4	9.7	4.7
163	12.5	6.6	8.9	4.1	5.5	2.3	9.4	4.6
164	12.1	6.4	8.6	3.9	5.3	2.3	9.1	4.4
165	11.7	6.2	8.3	3.8	5.2	2.2	8.8	4.3
166	11.3	6.0	8.0	3.7	5.0	2.1	8.5	4.2
167	10.9	5.8	7.8	3.5	4.8	2.0	8.3	4.0
168	10.6	5.6	7.5	3.4	4.7	2.0	8.0	3.9
169	10.2	5.4	7.3	3.3	4.5	1.9	7.8	3.8
170	9.9	5.2	7.0	3.2	4.4	1.8	7.5	3.7
171	9.6	5.1	6.8	3.1	4.2	1,8	7.3	3.6
172	9.3	4.9	6.6	3.0	4.1	1.7	7.1	3.5
173	9.0	4.8	6.4	2.9	4.0	1.7	6.9	3.4
174	8.7	4.6	6.2	2.8	3.8	1.6	6.7	3.3
175	8.4	4.5	6.0	2.7	3.7	1.6	6.5	3.2
176	8.1	4.3	5.8	2.6	3.6	1.5	6.3	3.1

Predicted EM61-MK2 Response to a 155-mm Projectile

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4 [D] (mV)		
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	
132	91.6	62.5	64.8	40.2	39.9	24.7	62.8	45.0	
133	87.9	60.0	62.2	38.6	38.3	23.7	60.4	43.3	
134	84.4	57.6	59.8	37.0	36.8	22.7	58.2	41.7	
135	81.1	55.4	57.A	35.6	35.4	21.8	56.1	40.2	
136	78.0	53.2	55.2	34.2	34.0	21.0	54.0	38,7	
137	74.9	51.1	53.0	32.9	32.7	20.2	52.1	37.3	
138	72.0	49.2	51.0	31.6	31.4	19.4	50.2	36.0	
139	69,3	47.3	49.0	30.4	30.2	18.7	48.4	34.7	
140	66.6	45.5	47.2	29.2	29.1	17.9	46.7	33.4	
141	64.1	43.8	45.4	28.1	28.0	17.3	45.0	32.3	
142	61.7	42.1	43.7	27.1	26.9	16.6	43.4	31.1	
143	59.4	40.5	42.0	26.0	25.9	16.0	41.9	30.0	
144	57.2	39.0	40.5	25,1	24.9	15.4	40.5	29.0	
145	55.0	37.6	39.0	24.1	24.0	14.8	39.1	28.0	
146	53.0	36.2	37.5	23.2	23.1	14.3	37.7	27.0	
147	51.1	34.9	36.1	22.4	22.3	13.7	36.4	26.1	
148	49.2	33.6	34.8	21.6	21.5	13.3	35.2	25.2	
149	47.4	32.4	33.6	20.8	20.7	12.8	34,0	24.3	
150	45.7	31.2	32.3	20.0	19.9	12.3	32.8	23.5	
151	44.1	30.1	31.2	19.3	19.2	11.9	31.7	22.7	
152	42.5	29.0	30.1	18.6	18.5	11.4	30.7	22.0	
153	41.0	28.0	29.0	18.0	17.9	11.0	29.6	21.2	
154	39.5	27.0	28.0	17.3	17.2	10.7	28.7	20.5	
155	38.2	26.0	27.0	16.7	16.6	10.3	27.7	19.9	
156	36.8	25.1	26.1	16.1	16.1	9.9	26.8	19.2	
157	35.5	24.3	25.2	15.6	15.5	9.6	25.9	18.6	
158	34.3	23.4	24.3	15.0	15.0	9.2	25.1	18.0	
159	33.1	22.6	23.5	14.5	14.5	8.9	24.3	17.4	
160	32.0	21.8	22.7	14.0	14.0	8.6	23.5	16.8	
161	30.9	21.1	21.9	13.6	13.5	8.3	22.8	16.3	
162	29.9	20.4	21.1	13.1	13.0	8.0	22.0	15.8	
163	28.9	19.7	20.4	12.7	12.6	7.8	21.3	15.3	
164	27.9	19.0	19.7	12.2	12.2	7.5	20.7	14.8	
185	27.0	18.4	19.1	11.8	11.8	7.3	20.0	14.3	
186	26.1	17.8	18,5	11.4	11.4	7.0	19.4	13.9	
167	25.2	17.2	17.9	11.1	11.0	6.8	18.8	13.5	
168	24.4	16.7	17.3	10.7	10.6	6.6	18.2	13.1	
169	23.6	16.1	16.7	10.3	10.3	6.4	17.7	12.7	
170	22.8	15.6	16.2	10.0	10.0	6.2	17.1	12.3	
171	22.1	15.1	15.6	9.7	9.6	5.9	16.6	11.9	
172	21.4	14.6	15.1	9.4	9.3	5.8	16,1	11.5	
173	20.7	14.1	14.7	9.1	9.0	5.6	15.6	11.2	
174	20.0	13.7	14.2	8.8	8.7	5.4	15.1	10.9	
175	19.4	13.2	13.7	8.5	8.5	5.2	14.7	10.5	
176	18.8	12.8	13.3	8.2	8.2	5.1	14.3	10.2	

Predicted EM61-MK2 Response to a 155-mm Projectile

Distance of	Gate '	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4 [D] (mV)		
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientatio	
177	18.2	12.4	12.9	8.0	7.9	4.9	13.8	9.9	
178	17.6	12.0	12.5	7.7	7.7	4.7	13.4	9.6	
179	17.1	11.7	12.1	7.5	7.5	4.6	13.0	9.3	
180	16.6	11.3	11.7	7.3	7.2	4.5	12.7	9.1	
151	16.1	11.0	11.4	7.0	7.0	4.3	12.3	6.8	
182	15.6	10.6	11.0	8.8	6.8	4.2	11.9	8.6	
183	15.1	10.3	10.7	6.6	6.6	4.1	11,6	8.3	
184	14.6	10.0	10.4	6.4	6.4	3.9	11.3	8.1	
185	14.2	9.7	10.0	6.2	6.2	3.8	10.9	7.8	
186	13.8	9.4	9.7	6.0	6.0	3.7	10.6	7.6	
187	13.4	9.1	9.5	5.9	5.8	3.6	10.3	7.4	
188	13.0	8.8	9.2	5.7	5.7	3.5	10.0	7.2	
189	12.6	8.6	8.9	5.5	5.5	3.4	9.8	7.0	
190	12.2	8.3	8.8	5.3	5.3	3.3	9.5	8.8	
191	11.9	8.1	8.4	5.2	5.2	3.2	9.2	6.6	
192	11.5	7.9	8.1	5.0	5.0	3.1	9.0	6.4	
193	11.2	7.6	7.9	4.9	4.9	3.0	8.7	6,2	
194	10.8	7.4	7.7	4.8	4.7	2.9	8.5	6.1	
195	10.5	7.2	7.5	4.6	4.6	2.8	8.3	5.9	
196	10.2	7.0	7.2	4.5	4.5	2.8	8.0	5.8	
197	9.9	6.8	7.0	4.4	4.3	2.7	7.8	5.6	
198	9.7	6.6	6.8	4.2	4.2	2.6	7.6	5.4	
199	9.4	6.4	6.6	4.1	4.1	2.5	7.4	5.3	
200	9.1	6.2	6.5	4.0	4.0	2.5	7.2	5.2	
201	8.9	6.1	6.3	3.9	3.9	2.4	7.0	5.0	
202	8.6	5.9	6.1	3.8	3.8	2.3	6.8	4.9	
203	8.4	5.7	5.9	3.7	3.7	2.3	6.7	4.8	
204	8.2	5.6	5.8	3.6	3.6	2.2	6.5	4.6	
205	7.9	5.4	5.6	3.5	3.5	2.1	6.3	4.5	
206	7.7	5.3	5.5	3.4	3.4	2.1	6.1	4.4	
207	7.5	5.1	5.3	3.3	3.3	2.0	6.0	4.3	
208	7.3	5.0	5.2	3.2	3.2	2.0	5.8	4.2	
209	7.1	4.8	5.0	3.1	3.1	1.9	5.7	4.1	
210	6.9	4.7	4.9	3.0	3.0	1.9	5,5	4.0	
211	6.7	4.6	4.8	2.9	2.9	1.8	5.4	3.9	
212	6.5	4.5	4.6	2.9	2.9	1.8	5.3	3.8	
213	6.4	4.3	4.5	2.8	2.8	1.7	5.1	3.7	
214	6.2	4.2	4.4	2.7	2.7	1.7	5.0	3.6	
215	6.0	4.1	4.3	2.6	2.6	1.6	4.9	3.5	
216	5.9	4.0	4.2	2.6	2.6	1.6	4.8	3.4	
217	5.7	3.9	4.1	2.5	2.5	1.5	4.8	3.3	
218	5.6	3.8	3.9	2.4	2.4	1.5	4.5	3.2	
219	5.4	3.7	3.8	2.4	2.4	1.5	4.4	3.1	
220	5.3	3.6	3.7	2.3	2.3	1.4	4.3	3.1	
221	5.2	3.5	3.7	2.3	2.3	1.4	4.2	3.0	

Predicted EM61-MK2 Response to a 60-mm Mortar

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate	3 (mV)	Gate 4 [D] (mV)		
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	
84	84.7	22.6	58.9	13.4	35.7	7.6	47.1	11.6	
85	80.1	21.3	55.7	12.7	33.8	7.2	44.7	11.0	
86	75.7	20.2	52.7	12.0	32.0	6.8	42.5	10.4	
87	71,6	19.1	49.8	11.3	30.2	6.4	40.4	9.9	
88	67.8	18.1	47.2	10.7	28.6	6.1	38.4	9.4	
89	64.2	17.1	44.7	10.2	27.1	5.7	36.5	9.0	
90	8.08	16.2	42.3	9.6	25.7	5.4	34.8	8.5	
91	57.7	15.4	40.1	9.1	24.3	5.2	33.1	8.1	
92	54.7	14.6	38.0	8.6	23.1	4.9	31.5	7.7	
93	51.8	13.8	36.1	8.2	21.9	4.6	30.0	7.4	
94	49.2	13.1	34.2	7.8	20,8	4.4	28.6	7.0	
95	46.7	12.4	32.5	7.4	19.7	4.2	27.3	6.7	
96	44.3	11.8	30.8	7.0	18.7	4.0	26.0	6.4	
97	42.1	11.2	29.3	6.7	17.8	3.8	24.8	6.1	
98	40.0	10.7	27.8	6.3	16.9	3.6	23.7	5.8	
99	38.0	10.1	26.5	6.0	16.1	3.4	22.6	5.6	
100	36.2	9.6	25.2	5.7	15.3	3.2	21.6	5.3	
101	34.4	9.2	23.9	5.4	14.5	3.1	20.6	5.1	
102	32.7	8.7	22.8	5.2	13.8	2.9	19.7	4.8	
103	31.2	8.3	21.7	4.9	13.2	2.8	18.8	4.6	
104	29.7	7.9	20.6	4.7	12.5	2.7	18.0	4.4	
105	28,3	7.5	19.7	4.5	11.9	2.5	17.2	4.2	
106	26.9	7.2	18.7	4.3	11.4	2.4	16.4	4.0	
107	25.7	6.8	17.9	4.1	10.8	2.3	15.7	3.9	
108	24.5	6.5	17.0	3.9	10.3	2.2	15.0	3.7	
109	23.3	6.2	16.2	3.7	9.9	2.1	14,4	3.5	
110	22.3	5.9	15.5	3.5	9.4	2.0	13.8	3.4	
111	21.3	5.7	14.8	3.4	9.0	1.9	13.2	3.2	
112	20.3	5.4	14.1	3.2	8.6	1.8	12.6	3.1	
113	19.4	5.2	13.5	3.1	8.2	1.7	12.1	3.0	
114	18.5	4.9	12.9	2.9	7.8	1.7	11.6	2.9	
115	17.7	4.7	12.3	2.8	7.5	1.6	11.1	2.7	
116	16.9	4.5	11.8	2.7	7.1	1.5	10.7	2.6	
117	16.2	4.3	11.2	2.6	6.8	1.4	10.2	2.5	
118	15.5	4.1	10.8	2.4	6.5	1.4	9.8	2.4	
119	14.8	3.9	10.3	2.3	6.2	1.3	9.4	2.3	
120	14.2	3.8	9.8	2.2	6.0	1.3	9.1	2.2	
121	13.5	3.6	9.4	2.1	5.7	1.2	8.7	2.1	
122	13.0	3.5	9.0	2.1	5.5	1.2	8.4	2.1	
123	12.4	3.3	8.6	2.0	5.2	1.1	8.0	2.0	
124	11.9	3.2	8.3	1.9	5.0	1.1	7.7	1.9	
125	11.4	3.0	7.9	1.8	4.8	1.0	7.4	1,8	

Predicted EM61-MK2 Response to a 81-mm Mortar

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4 [D] (mV)		
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	
84	283.7	29.9	185.3	16.4	100.8	8.6	132.8	13.1	
85	268.2	28.2	175.2	15.6	95.3	8.1	126.1	12.5	
86	253.7	26.7	165.7	14.7	90.1	7.7	119.8	11.8	
87	240.1	25.3	156.8	13.9	85.3	7.3	113.9	11.2	
88	227.2	23.9	148.4	13.2	80.7	6.9	108.3	10.7	
89	215.2	22.6	140.6	12.5	76.4	6.5	103.0	10.2	
90	203.8	21.5	133.2	11.8	72.4	5.2	98,0	9.7	
91	193.2	20.3	126.2	11.2	68.6	5.8	93.3	9.2	
92	183.2	19.3	119.6	10.6	65.1	5.5	88.8	8.8	
93	173.7	18.3	113.5	10.1	61.7	5.3	84.6	8.4	
94	164.8	17.4	107.7	9.6	58.5	5.0	80.6	8.0	
95	156.4	16.5	102.2	9.1	55.6	4.7	76.9	7.6	
96	148.5	15.6	97.0	8.6	52.8	4.5	73.3	7.2	
97	141.1	14.9	92.2	8.2	50.1	4.3	69.9	6.9	
98	134.1	14.1	87.6	7.8	47.6	4.0	66.7	6.6	
99	127.4	13.4	83.2	7.4	45.3	3.9	63.6	6.3	
100	121.2	12.8	79.1	7.0	43.0	3.7	60.8	6.0	
101	115.3	12.1	75.3	6.7	40.9	3.5	58.0	5.7	
102	109.7	11.5	71.8	6.4	39.0	3.3	55.4	5.5	
103	104.4	11.0	68.2	6.0	37.1	3.2	53.0	5.2	
104	99.4	10.5	64.9	5.8	35.3	3.0	50.6	5.0	
105	94.7	10.0	61.8	5.5	33.6	2.9	48.4	4.8	
106	90.2	9.5	58.9	5.2	32.0	2.7	46.3	4.6	
107	86.0	9.1	56.2	5.0	30.5	2.6	44.3	4.4	
108	82.0	8.6	53.6	4.7	29.1	2.5	42.4	4.2	
109	78.2	8.2	51.1	4.5	27.8	2.4	40.6	4.0	
110	74.6	7.9	48.7	4.3	26.5	2.3	38.8	3.8	
111	71.2	7.5	46.5	4.1	25.3	2.1	37.2	3.7	
112	68.0	7.2	44.4	3.9	24.1	2.1	35.6	3.5	
113	64.9	6.8	42.4	3.8	23.1	2.0	34.2	3.4	
114	62.0	6.5	40.5	3.6	22.0	1.9	32.7	3.2	
115	59.2	6.2	38.7	3.4	21.0	1.8	31.4	3.1	
116	56.6	6.0	37.0	3.3	20.1	1.7	30.1	3.0	
117	54.1	5.7	35.4	3.1	19.2	1.6	28.9	2.9	
118	51.8	5.5	33.8	3.0	18.4	1.6	27.7	2.7	
119	49.5	5.2	32.4	2.9	17.6	1.5	26.6	2.6	
120	47.4	5.0	31.0	2.8	16.8	1.4	25.5	2.5	
121	45.4	4.8	29.6	2.6	16.1	1.4	24.5	2.4	
122	43.5	4.6	28.4	2.5	15.4	1.3	23.6	2.3	
123	41.6	4.4	27.2	2.4	14.8	1.3	22.6	2.2	
124	39.9	4.2	26.0	2.3	14.2	1.2	21.7	2.1	
125	38.2	4.0	25.0	2.2	13.6	1.2	20.9	2.1	

Predicted EM61-MK2 Response to a 81-mm Mortar

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate :	3 (mV)	Gate 4 [D] (mV)		
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	
126	36.6	3.9	23.9	2.1	13.0	1.1	20.1	2.0	
127	35.1	3.7	22.9	2.0	12.5	1.1	19.3	1.9	
128	33.7	3.5	22.0	1.9	12.0	1.0	18.6	1.8	
129	32.3	3,4	21.1	1.9	11.5	1.0	17.9	1.8	
130	31.0	3.3	20.2	1.8	11.0	0.9	17.2	1.7	
131	29.7	3,1	19.4	1.7	10.6	0.9	16.6	1.6	
132	28.6	3.0	18.7	1.7	10.1	0.9	15.9	1.6	
133	27.4	2.9	17.9	1.6	9.7	8.0	15.4	1.5	
134	26.3	2.8	17.2	1.5	9.4	8.0	14.8	1.5	
135	25.3	2.7	16.5	1.5	9.0	8.0	14.2	1.4	
136	24.3	2.6	15.9	1.4	8.6	0.7	13.7	1.4	
137	23.4	2.5	15.3	1.4	8.3	0.7	13.2	1.3	
138	22.5	2.4	14.7	1.3	8.0	0.7	12.8	1.3	
139	21.6	2.3	14.1	1.3	7.7	0.7	12.3	1.2	
140	20.8	2.2	13.6	1.2	7.4	0.6	11.9	1.2	
141	20.0	2.1	13.1	1.2	7.1	0.6	11.4	1.1	
142	19.2	2.0	12.6	1.1	6.8	0.6	11.0	1.1	
143	18.5	1.9	12.1	1.1	6.6	0.6	10.6	1.0	
144	17.8	1.9	11.6	1.0	6.3	0.5	10.3	1.0	
145	17.2	1.8	11.2	1.0	6.1	0.5	9.9	1.0	
146	16.5	1.7	10.8	1.0	5.9	0.5	9.6	0.9	
147	15.9	1.7	10.4	0.9	5.7	0.5	9.3	0.9	
148	15.3	1.6	10.0	0.9	5.5	0.5	8.9	0.9	
149	14.8	1.6	9,7	0.9	5.3	0.5	8.6	0.9	
150	14.3	1.5	9.3	8.0	5.1	0.4	8.3	0.8	
151	13.7	1.4	9.0	0.8	4.9	0.4	8.1	0.8	
152	13.3	1.4	8.7	0.8	4.7	0.4	7.8	0.8	
153	12.8	1.3	8.4	0.7	4.5	0.4	7.5	0.7	
154	12.3	1.3	8.1	0.7	4.4	0.4	7.3	0.7	
155	11.9	1.3	7.8	0.7	4.2	0.4	7.0	0.7	
156	11.5	1.2	7.5	0.7	4.1	0.3	6.8	0.7	
157	11.1	1.2	7.2	0.6	3.9	0.3	6.6	0.6	
158	10.7	1.1	7.0	0.6	3.8	0.3	6.4	0.6	
159	10.3	1.1	6.8	0.6	3.7	0.3	6.2	0.6	
160	10.0	1.1	6.5	0.6	3.5	0.3	6.0	0.6	
161	9.6	1.0	6.3	0.6	3.4	0.3	5.8	0.6	
162	9.3	1.0	6.1	0.5	3.3	0.3	5.6	0.6	
163	9.0	0.9	5.9	0.5	3.2	0.3	5.4	0.5	
164	8.7	0.9	5.7	0.5	3.1	0.3	5.3	0.5	
165	8,4	0.9	5.5	0.5	3.0	0.3	5.1	0.5	
166	8.1	0.9	5.3	0.5	2.9	0.2	4.9	0.5	
167	7.9	0.8	5.1	0.5	2.8	0.2	4.8	0.5	

Predicted EM61-MK2 Response to a 2.75-in Rocket Warhead

Distance of	Gate	1 (mV)	Gate	2 (mV)	Gate	3 (mV)	Gate 4 [D] (mV)	
Target Center Below Lower Coil (cm)	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation	Most Favorable Orientation	Least Favorable Orientation
84	406.6	32.9	276.6	17.3	159.2	8.6	209.7	13.1
85	384.4	31.1	261.5	16.4	150.5	8.1	199.2	12.5
86	363.6	29.4	247.4	15.5	142.4	7.7	189.3	11.9
87	344.0	27.8	234.1	14.7	134.7	7.3	179.9	11.3
88	325.6	26.3	221.6	13.9	127.5	6.9	171.1	10.7
89	308.4	24.9	209.8	13.2	120.8	6.5	162.7	10.2
90	292.1	23.6	198.8	12.5	114.4	6.2	154.9	9.7
91	276.8	22.4	188.4	11.8	108.4	5.9	147.4	9.2
92	262.5	21.2	178.6	11.2	102.8	5.6	140.4	8.8
93	248.9	20.1	169.4	10.6	97.5	5.3	133.7	8.4
94	236.2	19.1	180.7	10.1	92.5	5.0	127.4	8.0
95	224.2	18.1	152.5	9.6	87.8	4.7	121.4	7.6
96	212.8	17.2	144.8	9.1	83.4	4.5	115.8	7.3
97	202.2	16.3	137.6	8.6	79.2	4.3	110.4	6.9
98	192.1	15.5	130.7	8.2	75.2	4.1	105.4	6.6
99	182.6	14.8	124.2	7.8	71.5	3.9	100.5	6.3
100	173.6	14.0	118.1	7.4	68.0	3.7	96.0	6.0
101	165.2	13.4	112.4	7.0	64.7	3.5	91.7	5.7
102	157.2	12.7	106.9	6.7	61.5	3.3	87.6	5.5
103	149.6	12.1	101.8	6.4	58.6	3.2	83.7	5.2
104	142.4	11.5	96.9	6.1	55.8	3.0	80.0	5.0
105	135.7	11.0	92.3	5.8	53.1	2.9	76.5	4.8
106	129.3	10.5	88.0	5.5	50.6	2.7	73.1	4.6
107	123.2	10.0	83.8	5.3	48.3	2.6	70,0	4.4
108	117.5	9.5	79.9	5.0	46.0	2.5	67.0	4.2
109	112.1	9.1	76.2	4.8	43.9	2,4	64.1	4.0
110	106.9	8.6	72.7	4.6	41.9	2.3	61.4	3.8
111	102.0	8.2	69.4	4.4	40.0	2.2	58.8	3.7
112	97.4	7.9	66.3	4.2	38.1	2.1	56.3	3.5
113	93.0	7.5	63.3	4.0	36.4	2.0	54.0	3.4
114	88.9	7.2	60.5	3.8	34.8	1.9	51.7	3.2
115	84.9	6.9	57.8	3.6	33.3	1.8	49.6	3.1
116	81.2	6.6	55.2	3.5	31.8	1.7	47.6	3.0
117	77.6	6.3	52.8	3.3	30.4	1.6	45.6	2.9
118	74.2	6.0	50.5	3.2	29.1	1.6	43.8	2.7
119	71.0	5.7	48.3	3.0	27.8	1.5	42.0	2.6
120	67.9	5.5	46.2	2.9	26.6	1.4	40.3	2.5
121	65.0	5.3	44.2	2.8	25.5	1.4	38.7	2.4
122	62.3	5.0	42.4	2.7	24.4	1.3	37.2	2.3
123	59.6	4.8	40.6	2.5	23.4	1.3	35.7	2.2
124	57.1	4.6	38.9	2.4	22.4	1.2	34.3	2.2
125	54.7	4.4	37.2	2.3	21.4	1.2	33.0	2.1

APPENDIX B: Photos

	Table B-1 GPO Seed Items
Seed ID – 1-1 Nominal Diameter – 20mm Depth – 7.5 inches EM61 – 9mV White's XLT – Detect White's DFX 300 – Detect	Line 1 Jan 1 Jan 1 December 1 December 1 Jan 1 December 1 December 1 Jan 1
Seed ID – 1-2 Nominal Diameter – 37mm Depth – 14.5 inches EM61 – 6mV White's XLT – N/D White's DFX 300 – N/D	I final AN I sound 2 Executive AN I sound 2 Executive AN I sound 3 Executiv
Seed ID – 1-3 Nominal Diameter – 57mm Depth – 12 inches EM61 – 18mV White's XLT – Detect White's DFX 300 – Detect	Items of the James of Description of Earliest Property of the
Seed ID – 2-1 Nominal Diameter – 105mm Depth – 36 inches EM61 – 20mV White's XLT – N/D White's DFX 300 – N/D	Therefore 105 we Rep. Entity Rectify R
Seed ID – 2-2 Nominal Diameter – 155mm Depth – 48 inches EM61 – 20mV White's XLT – N/D White's DFX 300 –N/D	Therefore 155 am Project There is the state of the state

Seed ID – 3-1 Nominal Diameter – 60mm Depth – 24 inches EM61 – 5mV White's XLT – N/D White's DFX 300 – N/D

Seed ID – 4-1 Nominal Diameter – 81mm Depth – 30 inches EM61 – 20mV White's XLT – N/D White's DFX 300 – N/D

Seed ID – 5-1 Nominal Diameter – 70mm Depth – 30 inches EM61 – 20mV White's XLT – N/D White's DFX 300 –N/D

Tabl	e B-2 Analog Test Strip Seed Items
Seed ID – 1 Description – Pipe Size – 4.5in x 12in Depth – 36 inches White's XLT – N/D White's DFX 300 – N/D	Pipe 45x/2* 32x/32xxx. #2
Seed ID – 2 Description – 3in Projectile Rotating Band Size – 0.75in x 9.5in Depth – 6 inches White's XLT – Detect White's DFX 300 – Detect	Rotating Band 50" x 8 4" 46" # 22
Seed ID – 3 Description – Pipe Size – 1in x 4in Depth – 5 inches White's XLT – Detect White's DFX 300 – Detect	P. pe. 1"x4" 11"x48"x5" #3
Seed ID – 4 Description – Pipe Size – 1.25in x 4in Depth – 4 inches White's XLT – Detect White's DFX 300 – Detect	Pipe 1%"x4" 48"x24"x4" #4 11.26.2010

Seed ID – 5 Description – Pipe Size – 2.25in x 8in Depth – 9 inches White's XLT – Detect White's DFX 300 – Detect	11.25,2010
Seed ID – 6 Description – 81mm Mortar Size – 3.2in x 8in Depth – 8 inches White's XLT – Detect White's DFX 300 – Detect	81mn Mortar Body 12"x96"x8" 416
Seed ID – 7 Description – 76mm Projectile Nose Size – 3in x 1.5in Depth – 6 inches White's XLT – Detect White's DFX 300 – Detect	76 m Proje Nose/raze 36"× 72"×6" #77
Seed ID – 8 Description – 120mm Base Size – 4.5in x 7in Depth – 14 inches White's XLT – Detect White's DFX 300 – Detect	120am Bortor Base. 42x156"x14" #8

Appendix B: MEC Investigation Data

Target_ID	Location	MRS_ID	Dig_team	Dig_date	Anomaly_Type	Description	Depth	Final_X	Final_Y
17a-3-4	17a	4	1	25-Feb-11	CD	smallarms	6	840320.4751	6652118.796
17a-7-3	17a	4	1	25-Feb-11	CD	barbed wire	0	840907.2713	6652125.594
18a-9-13	18a	4	1	25-Feb-11	CD	55 gal drum	0	840843.4559	6651862.656
18a-9-16	18a	4	1	25-Feb-11	CD	barbed wire	10	840950.6612	6651843.922
18a-9-15	18a	4	1	25-Feb-11	CD	scrapmetal	8	840913.2839	6651855.959
18a-9-14	18a	4	1	25-Feb-11	CD	s rapmetal	8	840889.3969	6651864.738
18a-8-9	18a	4	1	25-Feb-11	CD	scrap metal	6	840749.3817	6651845.198
18a-8-8	18a	4	1	25-Feb-11	CD	scrap pit	12	840676.4814	6651855.869
18a-8-12	18a	4	1	25-Feb-11	CD	scrapmetal	11	840760.0612	6651852.873
18a-8-11	18a	4	1	25-Feb-11	CD	s rapmetal	6	840741.1024	6651853.537
18a-8-10	18a	4	1	25-Feb-11	CD	smallarms	10	840753.9126	6651851.377
18a-7-7	18a	4	1	25-Feb-11	CD	barbed wire pit	6	840656.7047	6651855.877
18a-7-6	18a	4	1	25-Feb-11	CD	scrapmetal	8	840567.5542	6651848.227
18a-7-3	18a	4	1	25-Feb-11	CD	barbed wire	6	840492.962	6651844.025
18a-7-2	18a	4	1	25-Feb-11	CD	scrapmetal	6	840420.8633	6651844.938
18a-7-1	18a	4	1	25-Feb-11	CD	scrap metal	8	840418.3575	6651838.855
18a-13-22	18a	4	1	25-Feb-11	CD	small pieces barbed wire pit	6	841815.0292	6651837.104
18a-13-21	18a	4	1	25-Feb-11	CD	small pieces barbed wire pit	6	841825.2871	6651825.168
						end			
18a-7-5	18a	4	1	25-Feb-11	CD	scrapmetal	6	840529.9994	6651841.679
18a-13-20	18a	4	1	25-Feb-11	CD	grounding rod	4	841868.9742	6651841.084
18a-11-18	18a	4	1	25-Feb-11	CD	trashpit end	0	841228.4215	6651845.311
18a-10-17	18a	4	1	25-Feb-11	CD	scrap metal pile	0	841089.9391	6651864.622
18a-10-18	18a	4	1	25-Feb-11	CD	trashpit start goes for approx.100feet	0	841113.9109	6651857.961
19a-4-4	19a	4	1	28-Feb-11	CD	nailbed	3	841362.9669	6651597.058
19a-5-3	19a	4	1	28-Feb-11	CD	barbedwire	6	841587.1887	6651589.984
19a-5-2	19a	4	1	28-Feb-11	CD	rebar	2	841615.7377	6651597.736
19a-4-5	19a	4	1	28-Feb-11	CD	trashpit	6	841331.4331	6651595.641
19a-5-1	19a	4	1	28-Feb-11	CD	trashpit	6	841661.1213	6651592.319
20a-4-2	20a	4	1	28-Feb-11	CD	barbed wire fence	0	841570.1041	6651341.046
20a-5-1	20a	4	1	28-Feb-11	CD	horse	4	841728.0015	6651329.604
20a-4-3	20a	4	1	28-Feb-11	CD	barbed wire fence	0	841414.0945	6651346.289
20a-1-6	20a	4	1	28-Feb-11	CD	barbed wire fence	0	840774.4165	6651342.395
20b-1-5	20b	4	1	28-Feb-11	CD	barbed wire	1	840817.5506	6651328.287
21a-3-2	21a	4	1	28-Feb-11	CD	old barbed wire fence line end	2	841621.0855	6651092.338
21a-3-3	21a	4	1	20 Fab 11	CD		2	941547 0166	6651005 564
				28-Feb-11	CD	oldfence line start	0	841547.9166	6651095.564
21a-3-1 22b-1-7	21a 22b-1	5	1	28-Feb-11 18-Feb-11	CD	barbed wire/trashpit smallarms	8	841667.2238	6651082.551 6651069.326
22b-1-7 22b-2-3		5	1			small arms	7	849392.0006	
22b-2-3	22b-2 22b-2	5	1	18-Feb-11	CD	small arms	8	849544.4278	6651073.654
		5	1	18-Feb-11	CD CD		8	849509.0709	6651090.141
22b-2-5 22b-2-6	22b-2	5	1	18-Feb-11		small arms	7	849494.4568	6651072.948
	22b-2 22b-3	5	1	18-Feb-11	CD CD	smallarms small arms	6	849418.0945 849771.5431	6651070.453
22b-3-1 23b-1-3	23b-1	5	1	18-Feb-11 18-Feb-11	CD	barbed wire fence	3	850617.0942	6651071.477 6650808.844
23b-1-4	23b-1 23b-1	5	1		CD		6		
23b-1-4 23b-1-8	23b-1 23b-1	5	1	18-Feb-11	CD	cable left in place	8	850634.3184	6650822.07
		-		18-Feb-11	-	smallarms	2	850758.8192	6650812.824
23b-1-1	23b-1	5	1	18-Feb-11	CD	barbed wire fence small metal scrap pit		850590.4866	6650799.005
23b-2-9 23b-2-11	23b-2	5	1	18-Feb-11	CD CD	decorative metal	6 7	850841.9524 850858.052	6650824.984 6650817.639
	23b-2			18-Feb-11					
23b-2-10	23b-2	5	1	18-Feb-11	CD	pipe fitting Barbed Wire	10	850858.9635	6650816.537
24A-1-001	24A-1	5	1	22-Nov-10	CD	Steel Bar	0 127	848092.078	6650572.171 6650571.311
24A-4-001	24A-4		1	22-Nov-10	CD	Barbed Wire	0.127	847507.4172	
24A-6-001	24A-6	5	1	22-Nov-10	CD	barbed Wire barbed wire fence	0.1524	847045.1751	6650572.718
24b-1-3	24b-1	5	1	18-Feb-11	CD	steel rod	1	851649.8365	6650555.511 6650562.412
24b-2-2	24b-2	5	1	18-Feb-11	CD		8	851703.2968	
24b-4-1 25A-1-001	24b-4	5	1	18-Feb-11	CD	shotgun shells (3)	3	852072.2792	6650561.621
	25A-1	5	1	19-Nov-10 19-Nov-10	CD	Barbed Wire	0.0762	847963.2246	6650322.924
25A-1-002 25A-1-003	25A-1	5			CD	Barbed Wire	0.0508	847960.5218	6650322.586
	25A-1		1	19-Nov-10 19-Nov-10	CD	Barbed Wire Metal Plate	0.0762	847954.2715	6650321.741 6650322.772
25A-1-004	25A-1	5	1		CD		0.1016	847871.6343	
25A-5-001	25A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0508	847162.1189	6650322.759
25A-4-001	25A-4	5	1	19-Nov-10	CD	Metal Plate	0.0254	847399.6356	6650321.75
25A-4-002	25A-4	5	1	19-Nov-10	CD	Barbed Wire	0.0254	847393.9164	6650322.423
26A-1-006	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0500	847944.9119	6650066.854
26A-1-007	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0508	847961.7801	6650065.383
26A-1-005	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.127	847951.4781	6650065.496
26A-1-004	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0762	847955.8933	6650066.628
26A-1-003 26A-1-002	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.1016	847968.4595	6650065.949
	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0254	847965.9802	6650065.849

26A-1-001	26A-1	5	1	19-Nov-10	CD	Barbed Wire	0.0254	847882.735	6650065.51
6A-1-008	26A-1	5	1	19-Nov-10	CD	Barbed Wire		847928.9494	6650065.835
6A-3-001	26A-3	5	1	19-Nov-10	CD	Pull Tab	0.0508	847419.6977	6650067.065
5c-5-1	26c-5	5	1	15-Feb-11	CD	small arms projectile	10	854737.9579	6650068.081
6c-6-2	26c-6	5	1	15-Feb-11	CD	pepsi can	4	854908.8328	6650086.421
5c-6-3	26c-6	5	1	15-Feb-11	CD	aluminum madalia can	12	854923.9064	6650075.577
		5	1						
6c-6-5	26c-6	5	1	15-Feb-11	CD	rebar	13	854976.0072	6650108.048
6c-6-6	26c-6	5	1	15-Feb-11	CD	bolt/small arms projectile	8	855004.3641	6650105.153
6c-7-9	26c-7	5	1	15-Feb-11	CD	scrap metal	6	855119.1587	6650101.183
5c-7-10	26c-7	5	1	15-Feb-11	CD	screw	6	855177.8545	6650082.713
6c-7-11	26c-7	5	1	15-Feb-11	CD	nail	7	855181.0308	6650082.371
6c-7-7	26c-7	5	1	15-Feb-11	CD	rebar	6	855050.7751	6650098.582
'A-06-001	27A-06	5	1	11-Nov-10	CD	Barbed Wire	0.0508	846700.5106	6649816.592
7A-10-002	27A-10	5	1	11-Nov-10	CD	Barbed Wire	0.0254	845985.1656	6649815.572
7A-10-001	27A-10	5	1	11-Nov-10	CD	Barbed Wire	0.0254	846059.7933	6649816.116
7A-14-001	27A-14	5	1	11-Nov-10	CD	Vehicle Filter	0.1016	845216.9712	6649815.754
7A-15-001	27A-15	5	1	11-Nov-10	CD	Barbed Wire	0.127	845059.1421	6649815.732
A-15-001 A-15-002	27A-15	5	1	11-Nov-10	CD				
		5				Barbed Wire	0.0508	845052.0125	6649816.151
A-15-003	27A-15		1	11-Nov-10	CD	Barbed Wire	0.1524	845039.8503	6649816.571
rc-8-18	27c-8	5	1	15-Feb-11	CD	barbed wire	5	855025.8804	6649821.772
c-8-19	27c-8	5	1	15-Feb-11	CD	scrap metal	6	855026.3003	6649827.64
rc-8-21	27c-8	5	1	15-Feb-11	CD	barbed wire	9	855010.4623	6649842.126
rc-8-17	27c-8	5	1	15-Feb-11	CD	scrapmetal	6	855019.6757	6649815.734
7c-8-16	27c-8	5	1	15-Feb-11	CD	horse shoe	10	855421.5978	6649827.026
7c-8-20	27c-8	5	1	15-Feb-11	CD	small arms	8	855020.4301	6649834.554
7c-9-15	27c-9	5	1	15-Feb-11	CD	barbed wire fence	0	855456.5325	6649818.297
7c-9-5	27c-9	5	1	15-Feb-11	CD	horseshoe	10	855618.5037	6649799.514
7c-9-6	27c-9	5	1	15-Feb-11	CD	scrapmetal	9	855607.5513	6649802.314
7c-9-3	27c-9	5	1	15-Feb-11	CD	scrap metal	8	855637.2997	6649795.042
7c-9-2	27c-9	5	1	15-Feb-11	CD	small arms cartridge casing	9	855634.4518	6649803.191
'c-9-14	27c-9	5	1	15-Feb-11	CD	nail	8	855550.269	6649818.222
7c-9-13	27c-9	5	1	15-Feb-11	CD	nail	6	855560.6416	6649810.646
7c-9-12	27c-9	5	1	15-Feb-11	CD	iron	7	855564.7834	6649808.9
7c-9-11	27c-9	5	1	15-Feb-11	CD	scrap metal	11	855581.8412	6649808.809
7c-9-1	27c-9	5	1	15-Feb-11	CD	scrap metal	8	855649.212	6649809.001
'c-9-10	27c-9	5	1	15-Feb-11	CD	scrap metal	9	855590.8359	6649802.037
7c-9-10 7c-9-8	27c-9	5	1	15-Feb-11	CD	scrap metal	10	855599.4306	6649804.958
7c-9-8 7c-9-7		5	1			·	7		
	27c-9			15-Feb-11	CD	scrapmetal		855607.3171	6649802.075
8A-12-001	28A-12	5	1	13-Dec-10	CD	Barbed Wire	0	845483.7428	6649567.372
8A-3-002	28A-3	5	1	13-Dec-10	CD	Steel Piece	0.0254	847251.7929	6649565.459
8A-3-001	28A-3	5	1	13-Dec-10	CD	Alum Can	0.0762	847279.9179	6649566.241
3A-6-001	28A-6	5	1	13-Dec-10	CD	Debris Pile	0	846753.8763	6649564.938
9A-9-001	29A-9	5	1	03-Nov-10	CD	Chain (12")	0.127	847404.3813	6649313.377
9c-11-4	29c-11	5	1	14-Feb-11	CD	scrap metal	9	856051.7192	6649308.496
9c-12-11	29c-12	5	1	14-Feb-11	CD	scrap metal	10	856108.6645	6649325.953
9c-13-13	29c-13	5	1	14-Feb-11	CD	scrap metal	8	856118.2752	6649326.863
9c-13-14	29c-13	5	1	14-Feb-11	CD	scrap metal	7	856125.2337	6649333.073
DA-1-001	30A-1	5	1	02-Nov-10	CD	Wire	0.0254	847673.7724	6649058.671
0A-10-001	30A-10	5	1	05-Nov-10	CD	Rebar and Fence Post	0	845849.8804	6649059.145
0A-10-001 0A-2-001	30A-10	5	1	02-Nov-10	CD	Alum Can	0.0762	847571.2081	6649058.197
DA-2-001 DA-7-001	30A-2 30A-7	5	1	05-Nov-10	CD	Alum Can	0.0762	846574.4629	6649059.145
							0.0254		
0c-7-1	30C-7	5	1	02-Mar-11	CD	Barbed Wire Fence	0.0500	855088.5464	6649020.03
IA-1-001	31A-1	5	1	05-Nov-10	CD	Sheet Metal	0.0508	846007.73	6648822.606
1A-3-001	31A-3	5	1	05-Nov-10	CD	Sheet Metal	0	846559.9303	6648822.137
1A-3-002	31A-3	5	1	05-Nov-10	CD	Alum Wire	0	846375.0052	6648821.435
1A-5-006	31A-5	5	1	05-Nov-10	CD	Pipe (fixed)	0	846785.1176	6648822.372
A-5-001	31A-5	5	1	05-Nov-10	CD	Alum Can	0.0508	846954.3592	6648821.435
A-5-002	31A-5	5	1	05-Nov-10	CD	Sheet Metal	0.0508	846845.0427	6648821.201
A-5-003	31A-5	5	1	05-Nov-10	CD	Sheet Metal	0.0254	846817.1869	6648822.137
A-5-004	31A-5	5	1	05-Nov-10	CD	Sheet Metal	0.0762	846801.9715	6648822.606
.A-5-005	31A-5	5	1	05-Nov-10	CD	Steel Bar	0.0762	846798.2262	6648823.074
LA-6-001	31A-6	5	1	05-Nov-10	CD	Sheet Metal	0.0762	847077.9547	6648820.967
lc-1-3	31c-1	5	1	11-Feb-11	CD	barbed wire	0.1524	853864.6979	6648807.841
lc-1-3	31c-1	5	1	11-Feb-11	CD	smallarms	0.1324	853977.5725	6648816.669
lc-1-1	31c-1	5	1	11-Feb-11	CD	polestaple	0.2032	853818.5954	6648816.044
lc-1-7	31c-1	5	1	11-Feb-11	CD	smallarms	0.1778	853928.238	6648820.734
1c-1-2	31c-1	5	1	11-Feb-11	CD	small arms	0.1778	853844.8643	6648821.893
1c-1-6	31c-1	5	1	11-Feb-11	CD	small arms	0.2032	853916.5604	6648811.737
1c-1-4	31c-1	5	1	11-Feb-11	CD	small arms	0.2032	853879.0572	6648804.635
1c-11-37	31c-11	5	1	11-Feb-11	CD	barbed wire	0.127	855669.9146	6648796.171

31c-11-36	31c-11	5	1	11-Feb-11	CD	barbed wire fence.debris field end	0	855653.2726	6648804.313
31c-12-38	31c-12	5	1	11-Feb-11	CD	barbed wire fence/debris field end	0	856065.1804	6648795.021
1c-13-44	31c-13	5	1	11-Feb-11	CD	barbed wire	0.1778	856301.7844	6648820.784
1c-13-42	31c-13	5	1	11-Feb-11	CD	barbed wire pit	0.2794	856298.7681	6648824.696
lc-15-15	31c-15	5	1	10-Feb-11	CD	scrap metal pile covers approx 10'x10'area across	0	856684.7334	6648849.878
lc-15-9	31c-15	5	1	10-Feb-11	CD	spike	0.254	856840.6076	6648842.859
lc-15-8	31c-15	5	1	10-Feb-11	CD	Scrap metal	0.2286	856846.8047	6648843.63
Lc-15-7	31c-15	5	1	10-Feb-11	CD	masterlock	0.2032	856838.3406	6648841.918
1c-15-6	31c-15	5	1	10-Feb-11	CD	scrap metal	0.1778	856854.4562	6648854.433
1c-15-6 1c-15-5	31c-15	5	1	10-Feb-11	CD	sheet metal	0.1778	856860.4551	6648857.87
1c-15-3 1c-15-2	31c-15	5	1	10-Feb-11	CD	nail	0.0702	856873.9036	6648851.165
1c-15-2 1c-15-13	31c-15	5	1	10-Feb-11	CD		0.1324		
	31c-15	5	1		CD	bottlecap	0.1016	856796.6337	6648854.847
1c-15-11a 1c-15-10	31c-15	5	1	10-Feb-11	CD	scrap metal small arms cartridgecasing	0.234	856801.9943 856821.0828	6648853.449 6648853.878
10 15 10	310 13				CD	Sman arms cartriagecasing	0.1770	030021.0020	0040033.070
1c-15-1	31c-15	5	1	10-Feb-11	CD	hook	0.1524	856883.8627	6648842.868
1c-15-3	31c-15	5	1	10-Feb-11	CD	bottlecap	0.1778	856873.9419	6648854.252
1c-2-34	31c-2	5	1	08-Feb-11	CD	barbed wire	0.254	854405.1708	6648813.468
1c-2-20	31c-2	5	1	11-Feb-11	CD	small arms	0.3556	854037.2077	6648789.952
1c-2-15	31c-2	5	1	11-Feb-11	CD	small arms	0.2032	853989.4096	6648796.662
1c-2-16	31c-2	5	1	11-Feb-11	CD	smallarms	0.1524	853983.2845	6648815.629
1c-2-14a	31c-2	5	1	11-Feb-11	CD	barbedwire	0.1524	853983.4045	6648811.329
1c-3-3a	31c-3	5	1	08-Feb-11	CD	fence staple	0.1524	854395.1757	6648814.198
1c-3-32	31c-3	5	1	08-Feb-11	CD	small arms	0.1524	854398.18	6648813.979
1c-4-40	31c-4	5	1	08-Feb-11	CD	post nails(3)	0.254	854460.0253	6648811.514
1c-4-40 1c-4-42	31c-4	5	1	08-Feb-11	CD	small arms carrridge casing	0.127	854794.1736	6648812.99
				00.51		, ,			
1c-5-43	31c-5	5	1	08-Feb-11	CD	barbed wire pit	0.0508	853721.0002	6648306.552
1c-7-32	31c-7	5	1	11-Feb-11	CD	barbed wire fence	0	855139.2518	6648819.175
1c-8-36	31c-8	5	1	11-Feb-11	CD	barbed wirefence debris field start	0.0254	855426.7192	6648805.613
1c-8-33	31c-8	5	1	11-Feb-11	CD	barbed wire fence start	0	855285.2763	6648819.903
1c-8-35	31c-8	5	1	11-Feb-11	CD	barbed wire fence stop	0	855365.7751	6648810.79
2A-4-002	32A-4	5	1	05-Nov-10	CD	Scrap Metal	0.0762	846977.0289	6648572.934
2A-4-001	32A-4	5	1	05-Nov-10	CD	Alum Can	0.0254	846977.2463	6648571.63
2c-1-6	32c-1	5	1	09-Feb-11	CD	barbed wire	0.3048	853871.1701	6648565.879
2c-1-5	32c-1	5	1	09-Feb-11	CD	smallarms	0.1524	853948.0273	6648570.796
2c-1-7	32c-1	5	1	09-Feb-11	CD	barbed wire fence left in	0.3302	853793.4892	6648559.823
2-4244	22- 42	-		40 5-1-44	CD.	place	0.2022	054634.3543	6640562420
2c-13-14	32c-13	5	1	10-Feb-11	CD	shotgun shell	0.2032	854624.2512	6648562.138
2c-14-15	32c-14	5	1	10-Feb-11	CD	barbed wire fence	0	856488.4998	6648554.245
2c-2-17	32c-2	5	1	09-Feb-11	CD	nail	0.3048	854123.7757	6648557.529
2c-2-14	32c-2	5	1	09-Feb-11	CD	nail	0.2032	854111.028	6648564.771
2c-2-13	32c-2	5	1	09-Feb-11	CD	nail	0.1524	854110.0758	6648562.603
2c-2-12a	32c-2	5	1	09-Feb-11	CD	nail	0.2032	854096.1247	6648561.445
2c-2-12	32c-2	5	1	09-Feb-11	CD	chain fence left in pkace	0	854097.0881	6648559.859
2c-2-10	32c-2	5	1	09-Feb-11	CD	barbed wire	0.3302	854026.7523	6648549.23
2c-2-2	32c-2	5	1	09-Feb-11	CD	rebar metal fence post left in	0.2032	853980.7549	6648561.246
2c-2-16	32c-2	5	1	09-Feb-11	CD	place	0.4572	854108.5371	6648559.777
2c-2-3	32c-2	5	1	09-Feb-11	CD	small arms	0.254	853964.9747	6648561.805
2c-2-15	32c-2	5	1	09-Feb-11	CD	canlid	0.1778	854112.5806	6648559.424
2c-4-8	32c-4	5	1	10-Feb-11	CD	fencepole left in place and rebar	0	854560.3389	6648568.264
2c-6-9	32c-6	5	1	10-Feb-11	CD	fencepole	0	854829.199	6648560.32
2c-7-12	32c-7	5	1	10-Feb-11	CD	small arms	0.1524	855126.9019	6648593.189
3c-1-3	33c-1	5	1	09-Feb-11	CD	nail	0.2032	853719.657	6648310.141
3c-1-17	33c-1	5	1	09-Feb-11	CD	nails	0.2032	853984.3099	6648307.877
3c-1-4	33c-1	5	1	09-Feb-11	CD	(5) digs construction debris	0.2032	853726.9451	6648305.631
3c-1-5	33c-1	5	1	09-Feb-11	CD	(7) digs nails	0.2032	853735.4317	6648304.496
3c-1-15	33c-1	5	1	09-Feb-11	CD	small arms cartridgecasing	0.1778	853849.9198	6648303.495
3c-1-14	33c-1	5	1	09-Feb-11	CD	nail	0.1524	853834.2753	6648301.025
3c-1-13	33c-1	5	1	09-Feb-11	CD	small arms cartridge casing	0.1524	853832.8999	6648306.673
3c-1-6	33c-1	5	1	09-Feb-11	CD	nail	0.1778	853751.4201	6648306.719
3c-1-0 3c-1-12	33c-1	5	1	09-Feb-11	CD	tape measure piece	0.1778	853821.5884	6648308.509
3c-1-11	33c-1	5	1	09-Feb-11	CD	small arms cartridge casing	0.2032	853819.256	6648306.964

33c-1-10	33c-1	5	1	09-Feb-11	CD	small arms cartridge casing	0.1524	853807.005	6648307.662
33c-1-2	33c-1	5	1	09-Feb-11	CD	bottlecap	0.1778	853713.3637	6648310.946
3c-1-1	33c-1	5	1	09-Feb-11	CD	nail	0.2032	853719.0345	6648311.239
3c-1-7	33c-1	5	1	09-Feb-11	CD	nails(2)	0.1524	853764.4654	6648304.8
3c-1-8	33c-1	5	1	09-Feb-11	CD	rebar left in place	0.3048	853767.1229	6648304.586
3c-1-9a	33c-1	5	1	09-Feb-11	CD	small arms cartridge casing	0.1778	853789.4825	6648302.975
3c-2-17	33c-2	5	1	09-Feb-11	CD	budweiser beer can	0.1778	854139.6691	6648315.086
3c-3-18	33c-3	5	1	09-Feb-11	CD	(2)small arms cartridge	0.3048	854265.1699	6648316.128
5B-1-001	35B-1	5	1	14-Jan-11	CD	casing Horseshoe	0.0508	852992.6848	6647822.342
5B-15-001	35B-15	5	1	14-Jan-11	CD	Small Arms	0.0254	850653.5869	6647820.261
5B-16-001	35B-15	5	1	14-Jan-11	CD	Barbed Wire	0.0762	850429.813	6647820.952
5B-7-001	35B-10 35B-7	5	1	14-Jan-11	CD	Barbed Wire	0.0702	852383.9596	6647820.974
5B-7-001 5B-7-002	35B-7	5	1	14-Jan-11	CD	Barbed Wire Fence	0.0308	852328.8499	6647822.758
B-8-001	35B-8	5	1	14-Jan-11	CD	Small Arms	0.0508	852198.6555	6647821.509
		5	1						
B-8-002	35B-8			14-Jan-11	CD	Small Arms	0.0254	852138.5521	6647823.115
B-1-001	36B-1	5	1	13-Jan-11	CD	Barbed Wire	0.0254	853459.4467	6647570.858
B-10-001	36B-10	5	1	13-Jan-11	CD	Barbed Wire Fence	0	851762.1612	6647572.99
B-11-002	36B-11	5	1	14-Jan-11	CD	Barbed Wire	0.0508	851411.4766	6647572.279
B-11-001	36B-11	5	1	14-Jan-11	CD	Barbed Wire	0.1016	851450.2047	6647569.792
B-12-001	36B-12	5	1	14-Jan-11	CD	Scrap Metal	0.0254	851211.4406	6647572.279
B-14-001	36B-14	5	1	14-Jan-11	CD	Small Arms	0.0254	850810.3028	6647572.279
B-2-001	36B-2	5	1	13-Jan-11	CD	Small Arms	0.0254	853350.7238	6647571.924
'B-10-001	37B-10	5	1		CD	Barbed Wire Fence	0	850945.0298	6647316.369
'B-11-001	37B-11	5	1	13-Jan-11	CD	Barbed Wire Fence	0	851170.3842	6647317.138
'B-20-001	37B-20	5	1	13-Jan-11	CD	Nail	0.0508	853068.9764	6647319.061
'B-21-001	37B-21	5	1	13-Jan-11	CD	Barbed Wire	0.0127	853268.9496	6647322.907
'B-3-001	37B-3	5	1	12-Jan-11	CD	Bed Frame & Sheet Metal	0	849669.0466	6647320.984
B-9-001	37B-9	5	1	13-Jan-11	CD	Barbed Wire	0.0254	850869.2707	6647322.907
'B-9-002	37B-9	5	1	13-Jan-11	CD	Barbed Wire	0.0254	850869.2707	6647322.907
Sc-2-1	38c-2	5	1	08-Mar-11	CD	barbed wire fence	0	855129.2136	6647066.495
c-4-2	38c-4	5	1	08-Mar-11	CD	nailpit	2	855652.979	6647052.846
c-6-3	38c-6	5	1	08-Mar-11	CD	barved wire fenceline	0	855996.4336	6647053.305
Sc-7-4	38c-7	5	1	08-Mar-11	CD	horseshoe	12	856094.8479	6647061.71
Sc-7-5	38c-7	5	1	08-Mar-11	CD	barbed wire fenceline	0	856189.346	6647048.126
c-6-1	39c-6	5	1	10-Mar-11	CD	barbed wire	0	855722.092	6646839.108
)c-6-2	39c-6	5	1	10-Mar-11	CD	barbed wire fenceline	0	855941.9397	6646814.159
c-0-2 c-2-1	40c-2	5	1	09-Mar-11	CD	barbed wire pit	5	855027.4668	6646557.175
b-1-5	41b-1	5	1	17-Feb-11	CD	small arms	8	852465.3632	6646316.117
			1				8		
2 b-1-7	42 b-1	5		15-Feb-11	CD	nail		850435.8774	6646044.888
2b-1-2	42b-1		1	15-Feb-11	CD	bottle opener	9	850380.5996	6646045.579
2b-1-3	42b-1	5	1	15-Feb-11	CD	nail	8	850399.5134	6646045.827
2b-1-4	42b-1	5	1	15-Feb-11	CD	nail	8	850402.9865	6646046.087
2b-1-5	42b-1	5	1	15-Feb-11	CD	nail	9	850402.9725	6646040.335
!b-1-6	42b-1	5	1	15-Feb-11	CD	steel band	10	850409.0438	6646040.259
.b-1-7	42b-1	5	1	15-Feb-11	CD	scrapmetal ornamental	8	850434.3601	6646048.419
2b-1-9	42b-1	5	1	15-Feb-11	CD	nail	10	850454.9474	6646053.006
2b-1-1	42b-1	5	1	15-Feb-11	CD	small armscartridge casing/stove burner grate part	9	850408.026	6646037.487
2b-2-2	42b-2	5	1	17-Feb-11	CD	small arms	8	852529.0186	6646068.9
2b-3-12	42b-3	5	1	15-Feb-11	CD	datacable	0	850772.4396	6645997.454
b-3-4	42b-3	5	1	17-Feb-11	CD	small arms cartridge casing	7	852772.2131	6646065.567
2b-4-15	42b-4	5	1	15-Feb-11	CD	screw	10	850979.0879	6646012.795
2b-5-6	42b-5	5	1	17-Feb-11	CD	small arms cartridge casing	7	853201.9973	6646059.851
!b-6-7	42b-6	5	1	17-Feb-11	CD	small arms projectile	8	853359.7271	6646052.619
b-7-17	42b-7	5	1	15-Feb-11	CD	rebar	0	851559.6775	6646019.413
b-7-16	42b-7	5	1	15-Feb-11	CD	scrapmetal	6	851488.723	6646047.544
b-2-9	43b-2	5	1	17-Feb-11	CD	small arms	8	852598.4778	6645795.456
b-3-7	43b-3	5	1	17-Feb-11	CD	smallarms	8	853016.6973	6645803.626
b-3-6	43b-3	5	1	17-Feb-11	CD	smallarms	7	853025.626	6645805.452
b-3-5	43b-3	5	1	17-Feb-11	CD	small arms	6	853026.9526	6645814.457
b-4-5	43b-4	5	1	17-Feb-11	CD	small arms	6	853036.7688	6645813.245
b-4-3	43b-4	5	1	17-Feb-11 17-Feb-11	CD	small arms	8	853084.438	6645809.927
10-4-T	43b-4 43b-4	5	1	17-Feb-11 17-Feb-11	CD	smallarms	8		6645812.579
h 4 2	450-4	כ	1	11-LGD-11	CD	2111411411112	Ó	853065.9651	0043812.579
		-	4	17 Feb 44	CC	ana alla mas a	c	0000447734	CCAFOAF OOO
3b-4-2 3b-4-4 3b-4-3	43b-4 43b-4	5	1	17-Feb-11 17-Feb-11	CD CD	smallarms smallarms	8	853044.7724 853057.6548	6645815.083 6645818.616

43b-5-1	43b-5	5	1	16-Feb-11	CD	smallarms	6	853294.4325	6645815.425
44b-2-1	44b-2	5	1	16-Feb-11	CD	barbed wire	0	852639.0308	6645555.187
44b-3-2	44b-3	5	1	16-Feb-11	CD	scrap metal	6	852751.6486	6645547.548
44b-5-9	44b-5	5	1	16-Feb-11	CD	small arms	8	853218.9374	6645557.894
44b-5-8	44b-5	5	1	16-Feb-11	CD	small arms	7	853213.1726	6645559.358
44b-5-16	44b-5	5	1	16-Feb-11	CD	small arms	6	853272.521	6645551.172
44b-5-14	44b-5	5	1	16-Feb-11	CD	smallarms	8	853228.514	6645556.019
44b-5-15	44b-5	5	1	16-Feb-11	CD	small arms	9	853228.6063	6645554.141
44b-5-10	44b-5	5	1	16-Feb-11	CD	small arms	7	853219.5089	6645557.342
44b-5-11	44b-5	5	1	16-Feb-11	CD	smallarms	8	853217.4454	6645558.821
44b-5-13	44b-5	5	1	16-Feb-11	CD	smallarms	7	853227.9217	6645559.538
45b-2-29	45b-2	5	1	16-Feb-11	CD	barbed wiire pit	12	852454.6601	6645304.22
45b-2-28	45b-2	5	1	16-Feb-11	CD	small arms	7	852496.4059	6645294.255
45b-3-23	45b-3	5	1	16-Feb-11	CD	smallarms	6	853080.0384	6645284.805
45b-3-27	45b-3	5	1	16-Feb-11	CD	horse shoe	5	852982.9043	6645300.545
45b-3-22	45b-3	5	1	16-Feb-11	CD	smallarms	8	853095.8659	6645283.336
45b-4-10	45b-4	5	1	16-Feb-11	CD	small arms	10	853228.3317	6645327.702
45b-4-9	45b-4	5	1	16-Feb-11	CD	small arms	9	853232.4009	6645324.745
45b-4-17	45b-4	5	1	16-Feb-11	CD	hotrock	12	853176.6297	6645318.355
45b-4-21	45b-4	5	1	16-Feb-11	CD	smallarms	10	853120.3708	6645286.724
45b-4-5	45b-4	5	1	16-Feb-11	CD	smalll arms	12	853267.4813	6645313.591
45b-4-1	45b-4	5	1	16-Feb-11	CD	smallarms	8	853313.5676	6645303.875
46b-1-2	46b-1	5	1	16-Feb-11	CD	barbed wire fence	0	852725.695	6645047.215
46b-1-1	46b-1	5	1	16-Feb-11	CD	can	8	852719.8947	6645059.76
							12	852855.0288	
46b-2-4	46b-2	5	1	16-Feb-11	CD	cable			6645035.069
BM-1-001	BM-1	5	1	28-Feb-11	CD		0.3048	854060.0214	6651171.128
17a-7-2	17a	4	1	25-Feb-11	Geo	hotsoil	6	840947.3616	6652108.617
22b-1-8	22b-1	5	1	18-Feb-11	Geo	hotrock	10	849348.8923	6651053.276
22b-1-9	22b-1	5	1	18-Feb-11	Geo	hotrock	9	849306.7706	6651055.983
22b-2-2	22b-2	5	1	18-Feb-11	Geo	hotrock	8	849579.09	6651075.581
23b-1-7	23b-1	5	1	18-Feb-11	Geo	hotrock	7	850755.9931	6650822.668
23b-1-6	23b-1	5	1	18-Feb-11	Geo	hotrock	8	850740.9405	6650825.884
23b-1-5	23b-1	5	1	18-Feb-11	Geo	hotrock	8	850730.2007	6650817.905
23b-1-2	23b-1	5	1	18-Feb-11	Geo	hotrock	8	850600.0655	6650806.635
23b-2-12	23b-2	5	1	18-Feb-11	Geo	hotrock	6	850880.3609	6650788.903
24b-1-6	24b-1	5	1	18-Feb-11	Geo	hotrock	12	851523.2916	6650558.544
28c-10-1	28c-10	5	1	14-Feb-11	Geo	hotrock	6	855746.5457	6649544.478
28c-8-5	28c-8	5	1	14-Feb-11	Geo	hotrock	8	855340.2406	6649562.18
28c-9-4	28c-9	5	1	14-Feb-11	Geo	hotrock	0	855400.9536	6649566.39
28c-9-3	28c-9	5	1	14-Feb-11	Geo	hotsoil	8	855414.6647	6649562.224
29c-11-2	29c-11	5	1	14-Feb-11	Geo	hotrock	8	855719.0513	6649300.214
29c-9-1	29c-9	5	1	14-Feb-11	Geo	hotsoil	12	855511.1659	6649291.232
31c-1-12		5	1				0.2286		
	31c-1			11-Feb-11	Geo	hotrock		853948.6172	6648817.998
31c-1-10	31c-1	5	1	11-Feb-11	Geo	hotrock	0.3048	853935.0519	6648810.659
31c-1-13a	31c-1	5	1	11-Feb-11	Geo	hotrock	0.1778	853977.0753	6648813.89
31c-1-5	31c-1	5	1	11-Feb-11	Geo	hotrock	0.254	853895.3118	6648818.964
31c-1-8	31c-1	5	1	11-Feb-11	Geo	hotrock	0.254	853927.8108	6648804.997
31c-13-39	31c-13	5	1	11-Feb-11	Geo	hotrock	0.3048	856170.7563	6648807.576
31c-13-40	31c-13	5	1	11-Feb-11	Geo	hotrock	0.254	856203.9759	6648814.368
31c-13-41	31c-13	5	1	11-Feb-11	Geo	hotrock	0.2032	856213.54	6648811.525
31c-13-45	31c-13	5	1	11-Feb-11	Geo	hotrock	0.3302	856353.9362	6648824.738
31c-13-48	31c-13	5	1	11-Feb-11	Geo	hotrock	0.254	856392.3881	6648838.429
31c-13-46	31c-13	5	1	11-Feb-11	Geo	hotdirt	0.3048	856387.3998	6648827.895
31c-14-49	31c-14	5	1	11-Feb-11	Geo	hotrock	0.254	856493.1054	6648836.937
31c-15-11	31c-15	5	1	10-Feb-11	Geo	hotrock	0.2286	856814.7385	6648850.566
31c-2-10	31c-2	5	1	08-Feb-11	Geo	hot rocks	0.254	854345.407	6648815.906
31c-2-13	31c-2	5	1	08-Feb-11	Geo	hotrock	0.3302	854352.9431	6648817.387
31c-2-14	31c-2	5	1	11-Feb-11	Geo	hotrock	0.254	853976.7082	6648816.922
31c-2-14 31c-2-17	31c-2	5	1		Geo	hotrock	0.254	853970.7082	6648810.466
31c-2-17 31c-2-18		5	1	11-Feb-11	Geo	hotdirt	0.3302		6648802.025
	31c-2			11-Feb-11				854010.9884	
31c-2-19	31c-2	5	1	11-Feb-11	Geo	hotdirt	0.381	854021.3572	6648794.146
31c-2-21	31c-2	5	1	11-Feb-11	Geo	hotdirt	0.3048	854048.9889	6648797.979
31c-2-23	31c-2	5	1	11-Feb-11	Geo	hotrock	0.254	854048.584	6648793.322
31c-2-26	31c-2	5	1	11-Feb-11	Geo	hotrock	0.2286	854140.0038	6648802.114
31c-2-27	31c-2	5	1	11-Feb-11	Geo	hotdirt	0.3048	854142.5385	6648792.032
31c-2-28	31c-2	5	1	11-Feb-11	Geo	hotrock	0.254	854178.5185	6648811.504
31c-2-29	31c-2	5	1	11-Feb-11	Geo	hotrock	0.2286	854181.8887	6648817.456
31c-2-24	31c-2	5	1	11-Feb-11	Geo	hot rocks (5)	0.2286	854061.1375	6648793.711
31c-3-21	31c-3	5	1	08-Feb-11	Geo	hotrocks	0.254	854369.6534	6648812.578
31c-3-34a	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854399.1696	6648809.849
31c-3-23a	31c-3	5	1	08-Feb-11	Geo	hotrock	0.3048	854377.2983	6648813.512
31c-3-25	31c-3	5	1	08-Feb-11	Geo	hotroock	0.1524	854379.102	6648814.397
	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854382.8796	6648811.263

31c-3-27	31c-3	5	1	08-Feb-11	Geo	hotrock	0.254	854382.502	6648813.447
31c-3-27 31c-3-28	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1778	854382.1986	6648812.3
31c-3-28a	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854387.0202	6648814.057
31c-3-29	31c-3	5	1	08-Feb-11	Geo	hoock	0.3302	854389.8143	6648815.536
31c-3-3	31c-3	5	1	08-Feb-11	Geo	hor rocks	0.2032	854277.7435	6648810.875
31c-3-30a	31c-3	5	1	08-Feb-11	Geo	hotrock	0.0254	854395.1763	6648809.596
31c-3-23	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.2794	854374.3691	6648815.122
31c-3-34	31c-3	5	1	08-Feb-11	Geo	hotrock	0.2032	854401.5614	6648816.177
31c-3-24	31c-3	5	1	08-Feb-11	Geo	hotrock	0.3048	854377.7405	6648811.871
31c-3-35	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1778	854408.8006	6648812.393
31c-3-36	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854421.3675	6648809.21
31c-3-4	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.3048	854290.6163	6648813.682
31c-3-4a	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.254	854284.3567	6648812.549
31c-3-5	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854287.0104	6648812.031
31c-3-5a	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.1778	854289.8205	6648819.444
31c-3-6	31c-3	5	1	08-Feb-11	Geo	hotrocks	0.1778	854297.6724	6648813.776
31c-3-8	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.1524	854331.2796	6648814.508
31c-3-9	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.3048	854343.5109	6648812.237
31c-3-33	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1016	854400.5979	6648813.101
31c-3-11	31c-3	5	1	08-Feb-11	Geo	hot rock	0.2032	854347.9	6648816.42
31c-3-20	31c-3	5	1	08-Feb-11	Geo	hotrock	0.2032	854371.1791	6648809.713
31c-3-2	31c-3	5	1	08-Feb-11	Geo	hot rock	0.1524	854280.633	6648810.718
31c-3-1	31c-3	5	1	08-Feb-11	Geo	hot soil	0.2032	854273.2336	6648810.931
31c-3-19	31c-3	5	1	08-Feb-11	Geo	hotrock	0.3048	854367.5758	6648817.568
31c-3-22	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.1524	854371.4429	6648816.975
31c-3-18	31c-3	5	1	08-Feb-11	Geo	hot rock	0.1524	854366.1025	6648815.346
31c-3-17	31c-3	5	1	08-Feb-11	Geo	hot rock	0.3556	854364.7322	6648816.756
31c-3-16	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1778	854360.4799	6648818.928
31c-3-15	31c-3	5	1	08-Feb-11	Geo	hotrock	0.1524	854358.8527	6648818.282
31c-3-14	31c-3	5	1	08-Feb-11	Geo	hot rocks	0.2032	854355.1381	6648821.84
31c-3-12	31c-3	5	1	08-Feb-11	Geo	hot rock	0.1524	854349.8891	6648813.61
31c-3-31	31c-3	5	1	11-Feb-11	Geo	hotdirt	0.3048	854228.0161	6648811.252
31c-3-30	31c-3	5	1	11-Feb-11	Geo	hotrock	0.1778	854194.4181	6648815.908
31c-4-38	31c-4	5	1	08-Feb-11	Geo	hotrock	0.2032	854452.7868	6648815.358
31c-4-37	31c-4 31c-4	5	1	08-Feb-11	Geo	hotrock	0.2032	854439.1413	6648810.866
31c-4-41 31c-4-39	310-4	5	1	08-Feb-11	Geo	hotrock	0.1524	854499.0477	6648805.943
31c-4-39 31c-8-35a	31c-8	5	1	08-Feb-11 11-Feb-11	Geo Geo	hotrock hotrock	0.2286 0.254	854455.4639 855402.8701	6648821.379 6648812.993
32c-1-6a	32c-1	5	1	09-Feb-11	Geo	hotrock	0.3048	853844.7716	6648568.206
32c-1-0a	32c-1	5	1	09-Feb-11	Geo	hotdirt	0.508	853784.0701	6648565.026
32c-1-9	32c-1	5	1	09-Feb-11	Geo	hot dirt	0.5588	853769.9531	6648564.475
32c-10-12	32c-10	5	1	10-Feb-11	Geo	hotrock	0.254	855911.7612	6648566.609
32c-13-15	32c-13	5	1	10-Feb-11	Geo	hotrock	0.3048	856336.4499	6648561.944
32c-2-1	32c-2	5	1	09-Feb-11	Geo	hotrock	0.1524	854000.2579	6648557.794
32c-2-4	32c-2	5	1	09-Feb-11	Geo	hotrock	0.254	853964.495	6648565.081
32c-2-2a	32c-2	5	1	10-Feb-11	Geo	hotrock	0.2032	854236.8999	6648586.394
32c-3-11	32c-3	5	1	09-Feb-11	Geo	hotdirt	0.4572	854077.7137	6648550.412
32c-3-1	32c-3	5	1	10-Feb-11	Geo	hotrock	0.254	854213.6161	6648588.076
32c-3-5	32c-3	5	1	10-Feb-11	Geo	hotrock	0.254	854214.9256	6648586.425
32c-3-6	32c-3	5	1	10-Feb-11	Geo	hotrock	0.254	854287.5652	6648600.961
32c-3-7	32c-3	5	1	10-Feb-11	Geo	hotrock	0.254	854445.9845	6648593.905
32c-3-2	32c-3	5	1	10-Feb-11	Geo	hotrock	0.254	854243.2923	6648584.256
32c-4-6	32c-4	5	1	10-Feb-11	Geo	hotrock	0.254	854366.9664	6648568.671
32c-7-11	32c-7	5	1	10-Feb-11	Geo	hotrock	0.254	855111.9975	6648599.066
32c-7-10	32c-7	5	1	10-Feb-11	Geo	hotrock	0.2032	854994.6419	6648574.005
33c-1-9	33c-1	5	1	09-Feb-11	Geo	hotrock	0.254	853773.4126	6648308.14
33c-1-6a	33c-1	5	1	09-Feb-11	Geo	hot rocks (2)	0.1524	853746.3913	6648306.902
33c-1-16	33c-1	5	1	09-Feb-11	Geo	hotrock	0.3048	853872.1053	6648306.488
41b-1-6	41b-1	5	1	17-Feb-11	Geo	hotrock	7	852407.4053	6646296.617
41b-5-3	41b-5	5	1	17-Feb-11	Geo	hot soil	10	852688.4542	6646296.02
42b-1-10	42b-1	5	1	15-Feb-11	Geo	hotrock	8	850473.7122	6646041.328
42b-4-14	42b-4	5	1	15-Feb-11	Geo	hotrock	6	850866.3391	6645991.377
44b-3-3	44b-3	5	1	16-Feb-11	Geo	hotrock	10	852900.9535	6645569.543
44b-4-6	44b-4	5	1	16-Feb-11	Geo	hotrock	10	853039.8997	6645558.489
44b-4-5	44b-4	5	1	16-Feb-11	Geo	hotrock	9	853015.9344	6645561.269
44b-5-7	44b-5	5	1	16-Feb-11	Geo	hotrock	7	853195.7562	6645563.268
45b-2-25	45b-2	5	1	16-Feb-11	Geo	hotrocks (3)	7	853061.1356	6645280.802
45b-3-28	45b-3	5	1	16-Feb-11	Geo	hotrock	8	852947.5443	6645307.827
45b-3-29	45b-3	5	1	16-Feb-11	Geo	hotrock	8	852848.415	6645325.894
45b-3-26	45b-3	5	1	16-Feb-11	Geo	hotsoil	12	853044.7599	6645298.625
45b-4-12	45b-4	5	1	16-Feb-11	Geo	hotrock	10	853209.5989	6645332.718
45b-4-7	45b-4	5	1	16-Feb-11	Geo	hotrock	9	853254.9743	6645312.355
45b-4-6	45b-4	5	1	16-Feb-11	Geo	hotrock	8	853244.403	6645304.01

45b-4-4	45b-4	5	1	16-Feb-11	Geo	hoock	8	853286.6803	6645290.284
45b-4-20	45b-4	5	1	16-Feb-11	Geo	hotrock	10	853128.3581	6645291.892
15b-4-2	45b-4	5	1	16-Feb-11	Geo	hotrock	9	853290.9464	6645307.79
45b-4-18	45b-4	5	1	16-Feb-11	Geo	hotrock	11	853152.6509	6645306.121
45b-4-16	45b-4	5	1	16-Feb-11	Geo	hotrock	10	853203.9789	6645331.88
45b-4-15	45b-4	5	1	16-Feb-11	Geo	hoock	11	853198.9061	6645328.552
45b-4-11	45b-4	5	1	16-Feb-11	Geo	hotrock	9	853222.259	6645332.318
45b-4-13	45b-4	5	1	16-Feb-11	Geo	hotrock	8	853206.0964	6645330.098
45b-4-14	45b-4	5	1	16-Feb-11	Geo	hotrock	9	853200.0304	6645333.473
46b-1-3	46b-1	5	1	16-Feb-11		hotrock	8	852716.8492	6645052.048
40D-T-2	400-1	3	1	10-1-60-11	Geo	HOUGER	0	032/10.0492	0043032.046
12A-4-001	12A-4	7	1	24-Nov-10	MD	Expended Flare	0.01	868388.0144	6649991.454
17a-7-1	17a	4	1	25-Feb-11	MD	frag	2	841023.2306	6652094.942
23b-2-13	23b-2	5	1	18-Feb-11	MD	frag	8	850903.36	6650801.512
24A-5-001	24A-5	5	2	22-Nov-10	MD	30 cal carts	0.5	847261.7986	6650572.547
24A-5-002	24A-5	5	2	22-Nov-10	MD	30 cal carts	0.5	847134.3892	6650572.547
26c-7-8	26c-7	5	1	15-Feb-11	MD	frag	7	855071.5181	6650092.572
28A-9-001	28A-9	7	1	28-Oct-10	MD	20mm	0	864612.1109	6650451.68
29A-10-001	29A-10	5	1	04-Nov-10	MD	81mm Mortar	0	847584.5835	6649313.573
29c-10-3	29c-10	5	1	14-Feb-11	MD	frag	8	855750.4699	6649292.377
29c-10-3 29c-12-10	29c-10 29c-12	5	1	14-Feb-11	MD	frag	8	856102.9014	6649322.876
29c-12-10 29c-12-7	29c-12	5	1		MD	frag	6		
				14-Feb-11		frag		856098.285	6649328.322
29c-12-9	29c-12	5	1	14-Feb-11	MD	frag	10	856099.3408	6649329.52
29c-12-8	29c-12	5	1	14-Feb-11	MD	fRag	12	856099.4301	6649327.399
29c-12-6	29c-12	5	1	14-Feb-11	MD	frag	8	856095.174	6649319.945
31c-1-11	31c-1	5	1	11-Feb-11	MD	4.2" mortar base	0.2032	853936.3885	6648811.187
31c-2-25	31c-2	5	1	11-Feb-11	MD	mortar frag	0.2032	854065.6167	6648795.835
32c-3-4	32c-3	5	1	10-Feb-11	MD	81mm mortar frag/tailboom	0.3048	854241.859	6648589.905
35B-9-001	35B-9	5	1	14-Jan-11	MD	81mm Frag (5) Pounds	0.1524	851903.5595	6647821.19
3A-1-001	3A-1	7	1	18-Nov-10	MD	Partial Rotating band	0.75	869726.6609	6650549.81
41b-4-1	41b-4	5	1	17-Feb-11	MD	frag	8	852948.3433	6646309.856
42b-2-3	42b-2	5	1	17-Feb-11	MD	frag	8	852724.0443	6646061.263
43b-2-10	43b-2	5	1	17-Feb-11	MD	81mm mortar frag	14	852581.3603	6645809.413
4A-3-001	4A-3	7	1	18-Nov-10	MD	PTTF Fuze expended	0	869343.3246	6650731.464
4A-5-001	4A-5	7	1	18-Nov-10	MD	Brass Frag	0	869169.9599	6650910.354
	4A-5	7	1		MD	-	0		
4A-5-002				18-Nov-10		Brass Frag		869165.125	6650917.261
4A-5-003	4A-5	7	1	18-Nov-10	MD	Brass Frag	0	869062.902	6651022.937
4A-6-004	4A-6	7	1	18-Nov-10	MD	Brass Frag	0	868971.0394	6651116.872
1A-6-005	4A-6	7	1	18-Nov-10	MD	Brass Frag	0	868983.4719	6651103.749
1A-6-003	4A-6	7	1	18-Nov-10	MD	Brass Frag	0	868980.7091	6651106.512
1A-6-002	4A-6	7	1	18-Nov-10	MD	lead bullet	0	868946.865	6651143.809
4A-6-001	4A-6	7	1	18-Nov-10	MD	Brass Frag	0	869033.202	6651052.637
1A-6-006	4A-6	7	1	18-Nov-10	MD	Brass Frag	0	868956.5348	6651134.139
1A-7-001	4A-7	7	1	24-Nov-10	MD	Brass Frag	0.0508	868901.2791	6651190.086
4A-7-002	4A-7	7	1	24-Nov-10	MD	Partial Fuze body	0.0508	868892.3	6651198.374
4A-8-001	4A-8	7	1	18-Nov-10	MD	Shotgun shell	0.0508	868703.0493	6651395.222
8A-1-001	8A-1	7	1	18-Nov-10	MD	Partial Fuze body	0.0508	869332.1144	6649878.549
8A-4-001	8A-4	7	1	24-Nov-10	MD	Frag from 3" Projectile	0.381	868878.1528	6650348.832
8A-5-001	8A-5	7	1	24-Nov-10	MD	Frag from 3" Projectile	0.381	868829.6251	6650399.761
8A-6-001	8A-6	7	1	24-Nov-10	MD	Lead bullet	0.381	868664.5697	6650570.521
28A-9-003	28A-9	7	1	28-Oct-10	MEC	warhead (HEAT) live, rocket nose	0	864593.6833	6650471.274
28A-9-002	28A-9	7	1	28-Oct-10	MEC	Mk 8 Demo hose	0	864601.3809	6650463.11
13b-4-na	43b-4	5	1	16-Feb-11	na	stoppoint	0	853093.2767	6645799.887
27AA-1-001	27AA-1	5	1	22-Nov-10	0	- Lopponit	0.3048	843918.5865	6649817.299
27AA-1-001 27AA-1-003	27AA-1 27AA-1	5	1	22-Nov-10 22-Nov-10	0		0.3048	844026.7502	6649816.312
27AA-1-003 27AA-1-002	27AA-1 27AA-1		1	22-Nov-10 22-Nov-10	0		0.3048	843929.9	6649816.653
37B-7-001	37B-7	5		12-Jan-11	0	Hot Dirt	0.3048	850505.8577	6647321.753
			1				0.3040		
41B-9-001	41B-9	5	1	10-Dec-10	0	Hot Rock		850276.3929	6646321.28

Appendix C: MC Investigation Data D / Ž &Ž Ž Ž Ž

Appendix D: Photo Log

Photograph 1: MC Sample MRS04 SS 01

Photograph 2: MC Sample MRS04 SS 02

Photograph 3: MC Sample MRS04 SS 03

Photograph 4: MC Sample MRS04 SS 04

Photograph 5: MC Sample MRS04 SS 05

Photograph 6: MC Sample MRS04 SD 01

Photograph 7: MC Sample MRS04 SD 03

Photograph 8: MC Sample MRS04 BKG 01

Photograph 9: MC Sample MRS04 BKG 02

Photograph 11: MC Sample MRS05 SS 01

Photograph 12: MC Sample MRS05 SS 03

Photograph 13: MC Sample MRS05 SS 04

Photograph 14: MC Sample MRS05 SS 05

Photograph 15: MC Sample MRS05 SS 06

Photograph 16: MC Sample MRS05 SS 07

Photograph 17: MC Sample MRS05 SS 08

Photograph 18: MC Sample MRS05 SS 09

Photograph 19: MC Sample MRS05 SS 11

Photograph 20 MC Sample MRS05 SS 12

Photograph 21: MC Sample MRS05 SS 13

Photograph 22 MC Sample MRS05 SD 01

Photograph 23 MC Sample MRS05 SD 02

Photograph 24: MC Sample MRS05 BKG 01

Photograph 25: MC Sample MRS05 BKG 02

Photograph 26: MC Sample MRS05 BKG 03

Photograph 27: MC Sample MRS05 BKG 04

Photograph 28: MC Sample MRS07 SS 01

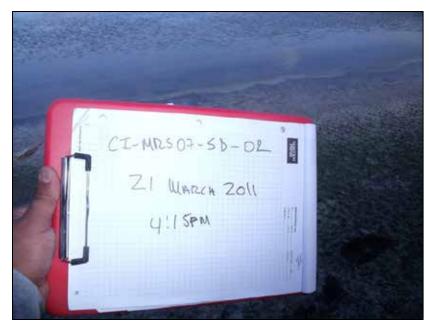
Photograph 29: MC Sample MRS07 SS 02

Photograph 30: MC Sample MRS07 SS 03

Photograph 31: MC Sample MRS07 SS 04

Photograph 32: MC Sample MRS07 SS 05

Photograph 33: MC Sample MRS07 SS 06



Photograph 35: MC Sample MRS07 SS 08

Photograph 36: MC Sample MRS07 SD 01

Photograph 37: MC Sample MRS07 SD 02

Photograph 38: MC Sample MRS07 BKG 01

Photograph 39: MC Sample MRS07 BKG 02

Photograph 40: MC Sample MRS07 BKG 03

Photograph 41: Transect in MRS 07 during MC sampling

Photograph 42: View of the beach and the western portion of MRS 07 on Culebrita

Photograph 43: View of Cayo Botella (right) from Culebrita (MRS 07)

Photograph 44: Recreational trail looking west near the southern boundary of MRS 07

Photograph 45: Lagoon in western portion of MRS 07 near sediment sampling locations looking east

Photograph 46: Transect in MRS 05 during MC sampling

Photograph 47: Flamenco Beach in MRS 04 looking east

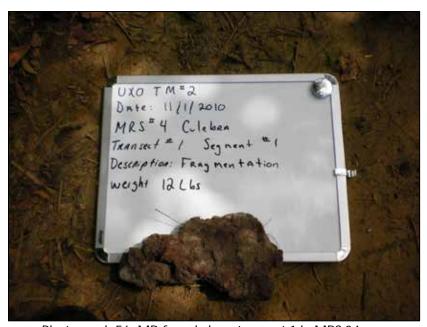
Photograph 48: Transect in MRS 04 during MC sampling

Photograph 49: View south from MRS 05

Photograph 50: View of the southwestern face of Cayo Lobo (MRS 02)

Photograph 51: MD found along transect 05A in MRS 07

Photograph 52: Brush cutting in MRS 07


Photograph 53: Transect in MRS 07 recently cleared of brush

Photograph 54: Mk8 Demolition Hose (MEC) found along transect 29A

Photograph 55: Mk5 MOD 0 Rocket Nose (MEC) found along transect 29A in MRS 07

Photograph 56: MD found along transect 1 in MRS 04

Photograph 57: MD found along transect 2 in MRS 04

Photograph 58: Beginning of transect 1 in MRS 04

Photograph 59: Field crew member conducting daily magnetometer check

Photograph 60: Cleared GPO location

Photograph 61: DGM equipment in DPO

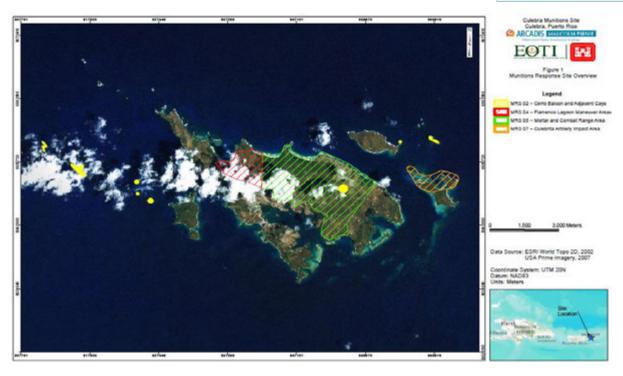
Photograph 62: Beginning of transect 27A in MRS 05

Photograph 63: Cultural debris found along transect 27A in MRS 05

Photograph 64: Tank located near transect 28A in MRS 07

Photograph 65: View along transect 46B in MRS 05

Appendix E: MEC HA


MEC HA	Summary Information		
Cit- ID.	VDQ 00 (Q)		Comments
Site ID:	MRS 02 (Cays)		
Date:	9/9/2011		
	ntify the single specific area to be assessed in this hazard assessment. F	rom this point forward, all	
	to "site" or "MRS" refer to the specific area that you have defined.		
	a unique identifier for the site:		
The Cays			
worksheet	ist of information sources used for this hazard assessment. As you are c s, use the "Select Ref(s)" buttons at the ends of each subsection to selec n sources from the list below. Title (include version, publication date)		
RCI. IVO.			
1	Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011		
	Final Work Plan, Remedial Investigation / Feasibility		
_	Study at the Culebra Island Site, Puerto Rico, Februa	ry	
2	2010		
	Site Specific Final Report. UXO Construction Support,		
_	Culebra Island Wildlife Refuge, Culebra Island, Puert		
	Rico, 2004.		
	Final FUDS Inventory Project Report. 1991.		
5		_	
6		_	
7 8		_	
9			
10			
11			
12			
12			
R Rriofly	describe the site:		
-	nclude units): 39.5 acres		
`	unitions-related use:		
Target A			
	and-use activities (list all that occur):		
	ped, tresspassers (recreation), USFW workers		
	inges to the future land-use planned?	No	
	the basis for the site boundaries?		
		001 . 1111	
	tory Project Report (INPR) was signed on 24 December 1 bra Island site as a FUDS, defining a site boundary, a		
	No. IO2PR006800 (USACE, 1991).	ind assigning robs	
	rtain are the site boundaries?		
01 11011 00	Tall and the site southwards.		
_, ,			
	daries are fairly certain.		
	s) for Part B: nedial Investigation at the Culebra Island Site,		
	co, September 2011	f(s)	
rueito Ki	Co, September 2011		
C. Histor	ical Clearances		
		surface clearance	
	arance occurred:	Jarrace Creatance	
2. II a dic	a. What year was the clearance performed?	200	
	aa. your mad the dearance performed.	200	
	b. Provide a description of the clearance activity (e.g., extent, depth, ar related items removed, types and sizes of removed items, and whether		
	used):		

Surface clearance conducted on Cayo Lobo in 2006.

Reference(s) for Part C: **Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011**

Select Ref(s)

D. Attach maps of the site below (select 'Insert/Picture' on the menu bar.)

Site ID: MRS 02 (Cays)
Date: 9/9/2011

Cased Munitions Information

						Is			Minimum Depth for		
item No.	Munition Type (e.g., mortar, projectile, etc.)		Munition Size Units	Mark/ Model	Energetic Material Type	Munition	Fuzing Type	Fuze Condition	Munition	Location of Munitions	Comments (include rationale for munitions that are "subsurface only")
					High					Subsurface	one West of Cayo Ballena, two West of
1	Bombs	500	lb		Explosive				0	Only	Cayo Geniqui
2	Torpedoes			MK 27					0	Subsurface Only	East of Cayo Geniqui
3	Bombs			MK 76	Spotting Charge				0	Surface and Subsurface	Cayo del Agua
4	Artillery	76	mm		Low Explosive Filler in a fragmenting round				0	Surface and Subsurface	Cayo del Agua
_		100	.,		Spotting			. ,	٥	Surface and Subsurface	
5	Bombs	100	al		Charge	Yes		Armed	U	Subsurface Surface and	
6	Bombs	1000	lb			Yes		Armed	0	Subsurface	
7	Mortars	81	mm		High Explosive	Yes		Armed	0	Surface and Subsurface	
8	Fuzes			M151					0.5	Surface and Subsurface	Cayo Lobo
9	Bombs	25	1b		Spotting Charge				0.5	Surface and Subsurface	Cayo Lobo
	Bombs	5	1b		Spotting Charge				0.5	Surface and Subsurface	Cayo Lobo
11											
12											
13 14											
15											
16											
17											
18											
19											
20											

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

Bulk Explosive Information

	Diosive Illiorillation		
Item No.	Explosive Type	Comments	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Reference(s) for table above:

Site ID: MRS 02 (Cays)
Date: 9/9/2011

Activities Currently Occurring at the Site

Activity No.	Activity	Number of people per year who participate in the activity	person spends	Contact Time (receptor	Maximum intrusive depth (ft)	Comments
	1 Undeveloped	0	0	0	0	
	2 Site workers	5	40	200	1	
	Recreational users (trespassers) 4 5 6 7	75	20	1,500	0	
	9					
1						
1						
1						
Total Potential Contact Time (receptor hrs/yr): 1,700 Maximum intrusive depth at site (ft): 1						

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

MRS 02 (Cays) 9/9/2011 Site ID: Date:

Planned Remedial or Removal Actions

Response	Response Action Description	Expected Resulting Minimum MEC Depth (ft)	Expected Resulting Site Accessibility	Will land use activities change if this response action is implemented?	What is the expected scope of cleanup?	Comments
1		= эры (гој				
2						
3						
4						
5						
6						
	o the 'Summary Info' worksheet, no future la No' in Column E, the land use activities will b			ives where you		

Reference(s) for table above: **Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011** Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

MRS 02 (Cays) 9/9/2011

Site ID:

Date:

Energetic Material Type Input Factor Categories

The following table is used to determine scores associated with the energetic materials. Materials are listed in order from most hazardous to least hazardous.

	Baseline	Surface	Subsurface
	Conditions	Cleanup	Cleanup
High Explosive and Low Explosive Filler in Fragmenting			
Rounds	100	100	100
White Phosphorus	70	70	70
Pyrotechnic	60	60	60
Propellant	50	50	50
Spotting Charge	40	40	40
Incendiary	30	30	30

The most hazardous type of energetic material listed in the 'Munitions, Bulk Explosive Info' Worksheet falls under the category 'High Explosive and Low Explosive Filler in Fragmenting Rounds'.

Baseline Conditions: 100 Surface Cleanup: 100 Subsurface Cleanup: 100

Location of Additional Human Receptors Input Factor Categories

- 1. What is the Explosive Safety Quantity Distance (ESQD) from the Explosive Siting Plan or the Explosive Safety Submission for the MRS?
- 2. Are there currently any features or facilities where people may congregate within the MRS, or within the ESQD arc?

Select MEC(s)

Score

0 0

0

Please describe the facility or feature.

MEC Item(s) used to calculate the ESQD for current use activities

Item #4. Artillery (76mm)

Item #6. Bombs (1000lb)

The following table is used to determine scores associated with the location of additional human receptors (current use activities):

Surface Subsurface 30

	Daociii.c	ouucc	oubouucc	
	Conditions	Cleanup	Cleanup	
Inside the MRS or inside the ESQD arc	30	30		30
Outside of the ESQD arc	0	0		0

4. Current use activities are 'Outside of the ESQD arc', based on Question 2.'

Baseline Conditions:

Surface Cleanup: Subsurface Cleanup:

5. Are there future plans to locate or construct features or facilities where people may congregate within the MRS, or within the ESQD arc?

6. Please describe the facility or feature.

MEC Item(s) used to calculate the ESQD for future use activities

Select MEC(s)

Baseline Surface Subsurface Conditions Cleanup Cleanup

Inside the MRS or inside the ESQD arc 30 30 30 0

7. Please answer Question 5 above to determine the scores.

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Site Accessibility Input Factor Categories

The following table is	used to determine	scores associated	with s	ite acc	essibility:	

The following table is u	sed to determine scores associated wil	tn site access	idility:	
		Baseline	Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
	No barriers to entry, including			
Full Accessibility	signage but no fencing	80	80	80
	Some barriers to entry, such as			
Moderate Accessibility	barbed wire fencing or rough terrain	55	55	55
	Significant barriers to entry, such as			
	unguarded chain link fence or			
	requirements for special			
Limited Accessibility	transportation to reach the site	15	15	15
	A site with guarded chain link fence			
	or terrain that requires special			
Very Limited	equipment and skills (e.g., rock			
Accessibility	climbing) to access	5	5	5

Current Use Activities

Select the category that best describes the site accessibility under the current use scenario:

Very Limited Accessibility

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Future Use Activities

Select the category that best describes the site accessibility under the future use scenario:

Surface Cleanup:

Subsurface Cleanup:

Reference(s) for above information:

After Action Report Remedial Investigation Field Work, Sierra Army Depot MRS, Sierra

Army Depot (SIAD), Herlong California, December 2011

Select Ref(s)

Score

5

5

5

Response Alternative No. 1:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 2: Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Subsurface Cleanup:

Response Alternative No. 3:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Response Alternative No. 4:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 5:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanum

Subsurface Cleanup:

Response Alternative No. 6:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions: Surface Cleanup:

Potential Contact Hours Input Factor Categories

The following table is used to determine scores associated with the total potential contact time:

-		Baseline	Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
Many Hours	≥1,000,000 receptor-hrs/yr	120	90	30
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	20
Few Hours	10,000 to 99,999 receptor-hrs/yr	40	20	10
Very Few Hours	<10,000 receptor-hrs/yr	15	10	5

Current Use Activities:

Input factors are only determined for baseline conditions for current use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is:

Based on the table above, this corresponds to a input factor score for baseline conditions of:

Future Use Activities:

Input factors are only determined for baseline conditions for future use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is: Based on the table above, this corresponds to a input factor score of:

Response Alternative No. 1:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surrace Cleanup:

Subsurface Cleanup:

Response Alternative No. 2:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 3:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions

Surface Cleanup:

Subsurface Cleanu

Response Alternative No. 4:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

receptor 1,700 hrs/yr

15 Score

#NAME? hrs/yr

#NAME? Score

Score

Score

Score

Baseline Conditions

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 5:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of: Baseline Conditions:

Surface Cleanup: Subsurface Cleanup:

Response Alternative No. 6:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact TimeBased on the table above, this corresponds to input factor scores of: Baseline Conditions:

Score

Score

Surface Cleanup: Subsurface Cleanup:

Amount of MEC Input Factor Categories

The following table is u	sed to determine scores associated wit	th the Amour Baseline	it of MEC: Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
Target Area	Areas at which munitions fire was directed	180	120	30
OB/OD Area	Sites where munitions were disposed of by open burn or open detonation methods. This category refers to the core activity area of an OB/OD area. See the "Safety Buffer Areas" category for safety fans and kickoults.	180	110	30
Function Test Range	Areas where the serviceability of stored munitions or weapons systems are tested. Testing may include components, partial functioning or complete functioning of stockpile or developmental items.	165	90	25
Burial Pit	The location of a burial of large quantities of MEC items.	140	140	10
Maneuver Areas	Areas used for conducting military exercises in a simulated conflict area or war zone	115	15	5
Firing Points	The location from which a projectile, grenade, ground signal, rocket, guided missile, or other device is to be ignited, propelled, or released.	75	10	5
Safety Buffer Areas	Areas outside of target areas, test ranges, or OB/OD areas that were designed to act as a safety zone to contain munitions that do not hit targets or to contain kick-outs from OB/OD areas.	30	10	5
Storage	Any facility used for the storage of military munitions, such as earth-covered magazines, above-ground magazines, and open-air storage areas.	25	10	5
Explosive-Related Industrial Facility	Former munitions manufacturing or demilitarization sites and TNT production plants	20	10	5
				_

Select the category that best describes the most hazardous amount of MEC:	Score
Target Area	
Baseline Conditions:	180
Surface Cleanup:	120
Subsurface Cleanup:	30

Minimum MEC Depth Relative to the Maximum Intrusive Depth Input Factor Categories Current Use Activities

The shallowest minimum MEC depth, based on the 'Cased Munitions Information' Worksheet:

1 ft

1 ft

The table below is used to determine scores associated with the minimum MEC depth relative to the maximum intrusive depth:

Baseline	Surface	Subsurface
Conditions	Cleanup	Cleanup
	·	·
240	150	95
240	50	25
150	N/A	95
50	N/A	25
	240 240 150	

Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth will overlap after cleanup. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.' For 'Current Use Activities', only Baseline Conditions are considered.

Deepest intrusive depth: 1 ft Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth overlaps. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.'. For 'Future 240 Score Use Activities', only Baseline Conditions are considered. Response Alternative No. 1: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' #NAME? ft Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** ft #NAME? Score Response Alternative No. 2: #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. ft **Maximum Intrusive Depth** #NAME? Score Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 3: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** ft **#NAME?** Score Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' #NAME? ft Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** #NAME? Score Response Alternative No. 5: #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** #NAME? Score

Future Use Activities

Surface Cleanup: Subsurface Cleanup: Response Alternative No. 6:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Maximum Intrusive Depth

#NAME? ft

Score

#NAME?

Migration Potential Input Factor Categories

Is there any physical or historical evidence that indicates it is possible for natural physical forces in the area (e.g., frost heave, erosion) to expose subsurface MEC items, or move surface or subsurface MEC items?

If "yes", describe the nature of natural forces. Indicate key areas of potential migration (e.g.,

overland water flow) on a map as appropriate (attach a map to the bottom of this sheet, or as a separate worksheet).

wave action, erosion

The following table is used to determine scores associated with the migration potential:

Conditions	Cleanup	Cleanup	
30	30		10
10	10		10
	30	30 30	

Based on the question above, migration potential is 'Possible.'

Baseline Conditions: 30 Surface Cleanup: 30 10 Subsurface Cleanup:

Reference(s) for above information:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

Score

Score

MEC Classification Input Factor Categories

Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS.

The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO.

the OB/OD Area is DMM?

Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet:

 $\cdot \ \text{Submunitions}$

- · Rifle-propelled 40mm projectiles (often called 40mm grenades)
- · Munitions with white phosphorus filler
- · High explosive anti-tank (HEAT) rounds
- · Hand grenades
- · Fuzes
- Mortars

At least one item listed in the 'Munitions, Bulk Explosive Info' Worksheet was identified as

The following table is used to determine scores associated with MEC classification categories:

		Baseline	Surface	Subsurface
	UXO	Conditions	Cleanup	Cleanup
UXO Special Case		180	180	180
UXO		110	110	110
Fuzed DMM Special Case		105	105	105
Fuzed DMM		55	55	55
Unfuzed DMM		45	45	45
Bulk Explosives		45	45	45

Based on your answers above, the MEC classification is 'UXO'.

Baseline Conditions: 110 Surface Cleanup: 110 Subsurface Cleanup: 110

MEC Size Input Factor Categories

The following table is used to determine scores associated with MEC Size:

Baseline Surface Subsurface Description Conditions Cleanup Cleanup

Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move

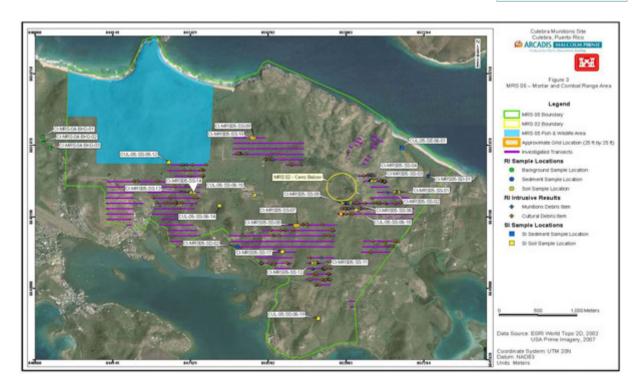
40 40 40 Small and initiate a detonation

ft

All munitions weigh more than 90
lbs; too large to move without
Large equipment 0 0 0
Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: Surface Cleanup: Subsurface Cleanup: 0 0 0

MEC HA Summary Information	
	Comments
Site ID: MRS 02 (Cerro Balcon)	
Date: 9/9/2011	
Please identify the single specific area to be assessed in this hazard assessment. From this point references to "site" or "MRS" refer to the specific area that you have defined.	forward, all
A. Enter a unique identifier for the site:	
Cerro Balcon	
Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below.	
Ref. No. Title (include version, publication date)	
1 Site, Puerto Rico, September 2011	
2 Study at the Culebra Island Site, Puerto Rico, February	
Final SI Report, Parsons, September 2007	
Final FUDS Inventory Project Report. 1991.	
5	
6	
7	
8	
9	
10	
11	
12	
B B L B L L L L L L L L L L L L L L L L	
B. Briefly describe the site:	
 Area (include units): Past munitions-related use: 	
Target Area	
3. Current land-use activities (list all that occur):	
Residential, Undeveloped, Construction	
4. Are changes to the future land-use planned?	
5. What is the basis for the site boundaries?	
An Inventory Project Report (INPR) was signed on 24 December 1991, estab the Culebra Island site as a FUDS, defining a site boundary, and assigning Project No. IO2PRO06800 (USACE, 1991).	
6. How certain are the site boundaries?	
The boundaries are fairly certain.	
Reference(s) for Part B:	
Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Select Ref(s)	
C. Historical Clearances	
1. Have there been any historical clearances at the site? Yes, surface clearances at the site?	arance
2. If a clearance occurred:	
a. What year was the clearance performed?	2006

b. Provide a description of the clearance activity (e.g., extent, depth, amount of munitions-related items removed, types and sizes of removed items, and whether metal detectors were used):


inch common MK3, MOD 7s, Fuze model 1898, and 81mm mortars

Reference(s) for Part C:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

D. Attach maps of the site below (select 'Insert/Picture' on the menu bar.)

Site ID: MRS 02 (Cerro Balcon)
Date: 9/9/2011

Cased Munitions Information

Item No.	Munition Type (e.g., mortar, projectile, etc.)	Munition Size	Munition Size Units		Energetic Material Type	Is Munition Fuzed?	Fuzing Type	Fuze Condition	Minimum Depth for Munition (ft)	Location of Munitions	Comments (include rationale for munitions that are "subsurface only")
1	Artillery	3	inches	MK 3, MOD 7	High Explosive	Yes			0.5	Subsurface Only	From Ellis 2006 NTCRA, Cerro Balcon. Location is set at subsurface since a surface removal has been conducted.
2	Fuzes			1898	High Explosive	Yes			0.5	Subsurface Only	From Ellis 2006 NTCRA, Cerro Balcon. Location is set at subsurface since a surface removal has been conducted.
3	Mortars	81	mm	M43	High Explosive	No			0.5	Subsurface Only	From Ellis 2006 NTCRA, Cerro Balcon. Location is set at subsurface since a surface removal has been conducted.
4					1					- 1	
5											

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

	plosive Information Explosive Type	Comments	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Reference(s) for table above:

Site ID: MRS 02 (Cerro Balcon)

Date: 9/9/2011

Activities Currently Occurring at the Site

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

MRS 02 (Cerro

Site ID: Balcon) Date: 9/9/2011

Energetic Material Type Input Factor Categories

The following table is used to determine scores associated with the energetic materials. Materials are listed in order from most hazardous to least hazardous.

	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
High Explosive and Low Explosive Filler in Fragmenting			•
Rounds	100	100	100
White Phosphorus	70	70	70
Pyrotechnic	60	60	60
Propellant	50	50	50
Spotting Charge	40	40	40
Incendiary	30	30	30

The most hazardous type of energetic material listed in the 'Munitions, Bulk Explosive Info' Worksheet falls under the category 'High Explosive and Low Explosive Filler in Fragmenting

Score

Baseline Conditions:	100
Surface Cleanup:	100
Subsurface Cleanup:	100

Location of Additional Human Receptors Input Factor Categories

- 1. What is the Explosive Safety Quantity Distance (ESQD) from the Explosive Siting Plan or the Explosive Safety Submission for the MRS?
- 2. Are there currently any features or facilities where people may congregate within the MRS, or within the ESQD arc?

3. Please describe the facility or feature.

MEC Item(s) used to calculate the ESQD for current use activities

Item #1. Artillery (3inches, High Explosive)

Them #3. Mortars (81mm, Low Explosive Filler in a fragmenting round)
The following table is used to determine scores associated with the location of additional human receptors (current use activities):

Select MEC(s)

	Baseline	Surface	Subsurface
	Conditions	Cleanup	Cleanup
Inside the MRS or inside the ESQD arc	30	30	30
Outside of the ESQD arc	0	0	0
rent use activities are 'Inside the MRS or inside	the ESQD a	rc', based	on Question

4. Curr

Baseline Conditions: Surface Cleanup: Subsurface Cleanup: 30 30

5. Are there future plans to locate or construct features or facilities where people may congregate within the MRS, or within the ESQD arc?

MEC Item(s) used to calculate the ESQD for future use activities

Select MEC(s)

The following table is used to determine scores associated with the location of additional human receptors (future use activities):

Baseline Conditions		
	30	3

Inside the MRS or inside the ESQD arc

7. Please answer Ouestion 5 above to determine the scores.

Baseline Conditions:

Site Accessibility Input Factor Categories

The following table is used to determine scores associated with site accessibility:

	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
Full Accessibility	No barriers to entry, including signage but no fencing	80	80	80
Moderate Accessibility	Some barriers to entry, such as barbed wire fencing or rough terrain	55	55	55
Limited Accessibility	Significant barriers to entry, such as unguarded chain link fence or requirements for special transportation to reach the site	15	15	15
Very Limited	A site with guarded chain link fence or terrain that requires special equipment and skills (e.g., rock			
Accessibility	climbing) to access	5	5	5

Current Use Activities Score

Select the category that best describes the site accessibility under the current use scenario:

Baseline Conditions:

Surface Cleanup: Subsurface Cleanup:

Future Use Activities

Select Ref(s)

55

55 55

Response Alternative No. 1:
Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Response Alternative No. 2:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Response Alternative No. 3:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Baseline Conditions: Surface Cleanup:

Response Alternative No. 4:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 5:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 6:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue. Baseline Conditions

Potential Contact Hours Input Factor Categories

The following table is used to determine scores associated with the total potential contact time:

The following capie is as	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup	
Many Hours	≥1,000,000 receptor-hrs/yr	120			30
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	2	20
Few Hours Very Few Hours	10,000 to 99,999 receptor-hrs/yr <10,000 receptor-hrs/yr	40 15	20 10	1	10 5

Current Use Activities:

Input factors are only determined for baseline conditions for current use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is:

Based on the table above, this corresponds to a input factor score for baseline conditions of:

Future Use Activities

'Current and Future Activities' Worksheet, the Total Potential Contact Time is:

Based on the table above, this corresponds to a input factor score of:

Response Alternative No. 1:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time Based on the table above, this corresponds to input factor scores of:

Response Alternative No. 2:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Surface Cleanup:

Response Alternative No. 3:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Response Alternative No. 4:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Response Alternative No. 5:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Response Alternative No. 6:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

receptor #NAME? hrs/yr #NAME? Score

#NAME? hrs/yr #NAME? Score

Score

Score

Score

Amount of MEC Input Factor Categories

The following table is used to determine scores associated with the Amount of MEC: Baseline Surface Subsurface					
	Description	Conditions	Cleanup	Cleanup	
Target Area	Areas at which munitions fire was directed	180	120	30	
OB/OD Area	Sites where munitions were disposed of by open burn or open detonation methods. This category refers to the core activity area of an OB/OD area. See the "Safety Buffer Areas" category for safety fans and kickouts.	180	110	30	
Function Test Range	Areas where the serviceability of stored munitions or weapons systems are tested. Testing may include components, partial functioning or complete functioning of stockpile or developmental items.	165	90	25	
Burial Pit	The location of a burial of large quantities of MEC items.	140	140	10	
Maneuver Areas	Areas used for conducting military exercises in a simulated conflict area or war zone	115	15	5	
Firing Points	The location from which a projectile, grenade, ground signal, rocket, guided missile, or other device is to be ignited, propelled, or released.	75	10	5	
Safety Buffer Areas	Areas outside of target areas, test ranges, or OB/OD areas that were designed to act as a safety zone to contain munitions that do not hit targets or to contain kick-outs from OB/OD areas.	30	10	5	
Storage	Any facility used for the storage of military munitions, such as earth-covered magazines, above-ground magazines, and open-air storage areas.	25	10	5	
Explosive-Related Industrial Facility	Former munitions manufacturing or demilitarization sites and TNT production plants	20	10	5	
Select the category tha	t best describes the most hazardous	amount of I	MEC:	Score	

Target Area
Baseline Conditions:
Surface Cleanup: 180 120 30 Subsurface Cleanup:

Minimum MEC Depth Relative to the Maximum Intrusive Depth Input **Factor Categories** Current Use Activities

The shallowest minimum MEC depth, based on the 'Cased Munitions Information' Worksheet:

The deepest intrusive depth:
The table below is used to determine scores associated with the minimum MEC depth relative to the

·	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.	240	150	95
Baseline Condition: MEC located surface and subsurface, After Cleanup: Intrusive depth does not overlap with subsurface MEC.	240	50	25
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with minimum MEC depth.	150	N/A	95
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth does not overlap with minimum MEC depth.	50	N/A	. 25

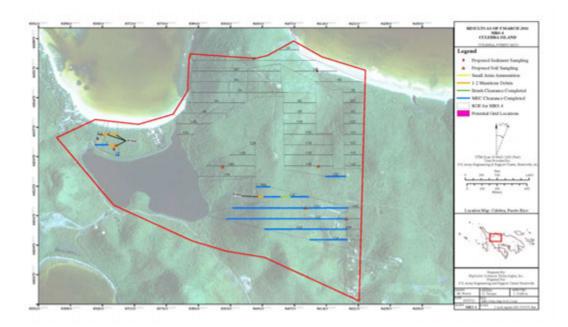
Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth will overlap after cleanup. MECs are located only subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with minimum MEC depth.' For 'Current Use Activities', only Baseline Conditions are considered.

0.5 ft 2 ft

Score

Response Alternative No. 1: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions'	#NAME?	ft
Worksheet. Please complete the table before returning to this section.		
Maximum Intrusive Depth		ft
#NAME?		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup:	Score	
Subsurace Cleanup: **Response Alternative No. 2: **Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): **Not enough information has been entered in the 'Planned Remedial or Removal Actions'		ft
Worksheet. Please complete the table before returning to this section.		
Maximum Intrusive Depth		ft
#NAME?		
Baseline Conditions:	Score	
Surface Cleanup: Subsurface Cleanup:		
Response Alternative No. 3: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft
Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.		
Maximum Intrusive Depth		ft
#NAME?		
#NAME? Baseline Conditions:	Score	
Baseline Conditions: Surface Cleanup:	Score	
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Afternative No. 4:	Score #NAME?	ft
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions'		ft
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):		ft
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup:	#NAME?	
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Not enough information has been entered in the 'Planned Remedial or Removal Actions'	#NAME? Score #NAME?	
Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.	#NAME? Score #NAME?	ft
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Not enough information has been entered in the 'Planned Remedial or Removal Actions'	#NAME? Score #NAME?	ft
Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.	#NAME? Score #NAME?	ft
Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.	#NAME? Score #NAME?	ft ft
Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth #NAME? Baseline Conditions: Surface Cleanup: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. Maximum Intrusive Depth	#NAME? Score #NAME?	ft

Not enough information has been entered to determine the input factor category.


MEC HA	Summary Information		
C'L ID	luna od		Comments
Site ID:	MRS 04		
Date:	9/9/2011		
	ntify the single specific area to be assessed in this hazard assessment. From	this point forward, all	
references	to "site" or "MRS" refer to the specific area that you have defined.		
A. Enter	a unique identifier for the site:		
Flamingo	Lagoon Manuever Area		
Provide a	ist of information sources used for this hazard assessment. As you are com	pleting the	
worksheet	s, use the "Select Ref(s)" buttons at the ends of each subsection to select the	ne applicable	
informatio	n sources from the list below.		
Ref. No.	Title (include version, publication date)		
	Draft Remedial Investigation at the Culebra Island		
1	Site, Puerto Rico, September 2011		
	Final Work Plan, Remedial Investigation / Feasibility		
	Study at the Culebra Island Site, Puerto Rico, February		
2	2010		
	Site Specific Final Report. UXO Construction Support,		
	Culebra Island Wildlife Refuge, Culebra Island, Puerto		
3	Rico, 2004.		
4	Final FUDS Inventory Project Report. 1991.		
5			
6			
7			
8			
9			
10			
11			
12			
B. Briefly	describe the site:		
-	nclude units): 550 acres		
•	unitions-related use:		
Target F			
	t land-use activities (list all that occur):		
	oped, residential, recreational, site workers		
		No	
	s the basis for the site boundaries?		
	story Project Report (INPR) was signed on 24 December 1992 bra Island site as a FUDS, defining a site boundary, and		
	No. IO2PRO06800 (USACE, 1991).	assigning rops	
_	ertain are the site boundaries?		
0. 110W CC	stain are the site boundaries.		
	daries are fairly certain.		
	(s) for Part B:		
	rk Plan, Remedial Investigation / Feasibility Study at Select Ref(s)	.	
the Culeb	ora Island Site, Puerto Rico, February 2010		
	ical Clearances		
	•	rface clearance	
2. If a cle	arance occurred:		
	a. What year was the clearance performed?	2008	
	b. Provide a description of the clearance activity (e.g., extent, depth, amount		
	related items removed, types and sizes of removed items, and whether me	tal detectors were	
	used):		

Removal action on Flamenco beach only.

Reference(s) for Part C:
Draft Remedial Investigation at the Culebra Island Site,
Puerto Rico, September 2011
Final Work Plan, Remedial Investigation / Feasibility Study at
the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

D. Attach maps of the site below (select 'Insert/Picture' on the menu bar.)

Site ID: MRS 04 Date: 9/9/2011

Cased Munitions Information

Item No.	Munition Type (e.g., mortar, projectile, etc.)	Munition Size	Munition Size Units	Mark/ Model	Energetic Material Type	Is Munition Fuzed?	Fuzing Type	Fuze Condition		Location of Munitions	Comments (include rationale for munitions that are "subsurface only")
					High					Subsurface	
1	Artillery	5	inches		Explosive				0.2	Only	No MEC identified
2											during the RI or
3											previous
4											investigations. Only
5											MD - included here as
6											indication of MEC.
/											
8											
9											
10 11											
12											
13											
14											
15											
16											
17											
18											
19											
20											

Reference(s) for table above:

After Action Report Remedial Investigation Field Work, Sierra Army Depot MRS, Sierra Army Depot (SIAD), Herlong California, December 2011

Select Ref(s)

Bulk Explosive Information

Bulk Explosive Illioillation							
Item No.	Explosive Type	Comments					
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

Reference(s) for table above:

Site ID: MRS 04 Date: 9/9/2011

Activities Currently Occurring at the Site

Activity No.	Activity		Number of people per year who participate in the activity	_	Contact Time (receptor	Maximum intrusive depth (ft)	Comments
	1 Undeveloped		0	0	0	0	
	2 Recreational		50,000	16	800,000	0	
	3 Residential		50	0.760	438 000	2	Estimated based on typical residential
					,		use.
	4 Site Workers		25	40	1,000	0	
	5						
	6						
	7						
	8						
	9						
1	.0						
1	.1						
1	.2						
		Total Potentia	al Contact Time (r Maxi		1,239,000 depth at site (ft):		

Reference(s) for table above: Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Site ID: MRS 04
Date: 9/9/2011

Energetic Material Type Input Factor Categories

The following table is used to determine scores associated with the energetic materials. Materials are listed in order from most hazardous to least hazardous.

	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
High Explosive and Low Explosive Filler in Fragmenting			
Rounds	100	100	100
White Phosphorus	70	70	70
Pyrotechnic	60	60	60
Propellant	50	50	50
Spotting Charge	40	40	40
Incendiary	30	30	30

The most hazardous type of energetic material listed in the 'Munitions, Bulk Explosive Info' Worksheet falls under the category 'High Explosive and Low Explosive Filler in Fragmenting Rounds'.

Score

Baseline Conditions: 100
Surface Cleanup: 100
Subsurface Cleanup: 100

Location of Additional Human Receptors Input Factor Categories

1. What is the Explosive Safety Quantity Distance (ESQD) from the Explosive Siting Plan or the Explosive Safety Submission for the MRS?

2370 feet

2. Are there currently any features or facilities where people may congregate within the MRS, or within the ESQD arc?

3. Please describe the facility or feature.

Residents

MEC Item(s) used to calculate the ESQD for current use activities

Select MEC(s)

5-inch 54 Mk41

The following table is used to determine scores associated with the location of additional human receptors (current use activities):

Baseline Surface Subsurface Conditions Cleanup

Inside the MRS or inside the ESQD arc 30 30 30 00tside of the ESQD arc 0 0 0

4. Current use activities are 'Inside the MRS or inside the ESQD arc', based on Question 2.'

2.'ScoreBaseline Conditions:30Surface Cleanup:30Subsurface Cleanup:30

5. Are there future plans to locate or construct features or facilities where people may congregate within the MRS, or within the ESQD arc?

6. Please describe the facility or feature.

MEC Item(s) used to calculate the ESQD for future use activities

Select MEC(s)

The following table is used to determine scores associated with the location of additional human receptors (future use activities):

Baseline Surface Subsurface Conditions Cleanup Cleanup

7. Please answer Question 5 above to determine the scores. Raseline Conditions:

Site Accessibility Input Factor Categories

The following table is used to determine scores associated with site accessibility:

The following table is a	Bas		Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
Full Accessibility	No barriers to entry, including signage but no fencing	80	80	80
Moderate Accessibility	Some barriers to entry, such as barbed wire fencing or rough terrain Significant barriers to entry, such as	55	55	55
Limited Accessibility	unguarded chain link fence or requirements for special transportation to reach the site A site with guarded chain link fence	15	15	15
Very Limited Accessibility	or terrain that requires special equipment and skills (e.g., rock climbing) to access	5	5	5

Current Use Activities Score

Select the category that best describes the site accessibility under the current use scenario:

Moderate Accessibility	
Baseline Conditions:	55
Surface Cleanup:	55
Subsurface Cleanup:	55

Future Use Activities

Select the category that best describes the site accessibility under the future use scenario

select the category that best describes the site accessibility under the ruture use scenario.	
Moderate Accessibility	
Baseline Conditions:	55
Surface Cleanup:	55
Subsurface Cleanup:	55

Reference(s) for above information:

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

Response Alternative No. 1:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 2:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup

Subsurface Cleanup:

Response Alternative No. 3:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 4:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 5:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Response Alternative No. 6:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Potential Contact Hours Input Factor Categories

The following table is used to determine scores associated with the total potential contact time:

J	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup	
Many Hours	≥1,000,000 receptor-hrs/yr	120		30	0
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	20	0
Few Hours Very Few Hours	10,000 to 99,999 receptor-hrs/yr <10,000 receptor-hrs/yr	40 15		1(!	0 5

Current Use Activities:

Input factors are only determined for baseline conditions for current use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is: Based on the table above, this corresponds to a input factor score for baseline conditions of:

Future Use Activities:

Input factors are only determined for baseline conditions for future use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is:

Based on the table above, this corresponds to a input factor score of:

Response Alternative No. 1:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanur

Response Alternative No. 2:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 3:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 4:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 5:

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

receptor **1,239,000** hrs/yr

120 Score

receptor #NAME? hrs/yr

#NAME? Score

Score

Score

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Response Alternative No. 6:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of: Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Amount of MEC Input Factor Categories

-							
The following table is	used to determine scores associated w	Baseline	Surface	Subsurface			
	Description	Conditions	Cleanup	Cleanup			
Target Area	Areas at which munitions fire was directed	180	120	30			
	Sites where munitions were disposed						
	of by open burn or open detonation						
OB/OD Area	methods. This category refers to	180	110	30			
OD/OD AICE	the core activity area of an OB/OD area. See the "Safety Buffer Areas"	100	110	30			
	category for safety fans and kick-						
	outs.						
	Areas where the serviceability of stored munitions or weapons						
	systems are tested. Testing may						
Function Test Range	include components, partial	165	90	25			
	functioning or complete functioning						
	of stockpile or developmental items.						
Burial Pit	The location of a burial of large	140	140	10			
	quantities of MEC items. Areas used for conducting military						
Maneuver Areas	exercises in a simulated conflict area	115	15	5			
	or war zone						
	The location from which a projectile,						
Firing Doints	grenade, ground signal, rocket,	75	10	-			
Firing Points	guided missile, or other device is to	/5	10	5			
	be ignited, propelled, or released.						
	Areas outside of target areas, test						
	ranges, or OB/OD areas that were						
Safety Buffer Areas	designed to act as a safety zone to contain munitions that do not hit	30	10	5			
	targets or to contain kick-outs from						
	OB/OD areas.						
	Any facility used for the storage of						
Storage	military munitions, such as earth- covered magazines, above-ground	25	10	5			
Storage	magazines, and open-air storage	23	10	3			
	areas.						
Explosive-Related	Former munitions manufacturing or demilitarization sites and TNT	20	10	5			
Industrial Facility	production plants						
Select the category th	at best describes the <i>most hazardou</i>	e amount of	MEC:		Score		
Target Area	at best describes the most hazardou .	• amount or	MLC.				
Baseline Conditions:						180	
Surface Cleanup: Subsurface Cleanup:						120 30	
Subsurface Clearlup.						30	
Minimum MEC D	epth Relative to the Maximu	m Intrusiv	ve Depth	Input			
Factor Categorie							
Current Use Activiti	ies						
The shallowest minimu	um MEC depth, based on the 'Cased Mu	unitions Infor	mation' Wo	rksheet:		0 ft	
The deepest intrusive	depth:					2 ft	
The table below is used to determine scores associated with the minimum MEC depth relative to							
the maximum intrusive	e aeptn:	Baseline	Surface	Subsurface			
		Conditions	Cleanup	Cleanup			
	EC located surface and subsurface.						
After Cleanup: Intrusiv MEC.	ve depth overlaps with subsurface	240	150	95			
PILC.		2-10	130	33			

Baseline Condition: MEC located surface and subsurface,			
After Cleanup: Intrusive depth does not overlap with subsurface MEC.	240	50	25
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with			
minimum MEC depth.	150	N/A	95
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth does not overlap			
with minimum MEC depth.	50	N/A	25

Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth will overlap after cleanup. MECs are located only subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with minimum MEC depth.' For 'Current Use Activities', only Baseline Conditions are considered.

Future Use Activities Deepest intrusive depth: **1** ft Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth overlaps. MECs are located only subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with minimum MEC depth.'. For 'Future Use 150 Score Activities', only Baseline Conditions are considered. Response Alternative No. 1: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. ft **Maximum Intrusive Depth #NAME?** Score Baseline Conditions: Response Alternative No. 2: #NAME? ft Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. ft **Maximum Intrusive Depth #NAME?** Score Baseline Conditions: Response Alternative No. 3: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** ft **#NAME?** Score Baseline Conditions: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

#NAME?

Score

ft

Baseline Conditions: Surface Cleanup:

Maximum Intrusive Depth

Subsurface Cleanup:

Response Alternative No. 5:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft
Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Maximum Intrusive Depth

ft

#NAME?

Baseline Conditions:

Surface Cleanup: Subsurface Cleanup: Response Alternative No. 6:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):

Not enough information has been entered in the 'Planned Remedial or Removal Actions'
Worksheet. Please complete the table before returning to this section.

#NAME? ft

Maximum Intrusive Depth

ft

#NAME?

Possible Unlikely Score

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Migration Potential Input Factor Categories

Is there any physical or historical evidence that indicates it is possible for natural physical forces in the area (e.g., frost heave, erosion) to expose subsurface MEC items, or move surface or subsurface MEC items?

If "yes", describe the nature of natural forces. Indicate key areas of potential migration (e.g., overland water flow) on a map as appropriate (attach a map to the bottom of this sheet, or as a separate worksheet).

The following table is used to determine scores associated with the migration potential:

Baseline	Surface	Subsurface
Conditions	Cleanup	Cleanup
30	30	10
10	10	10

Based on the question above, migration potential is 'Unlikely.'ScoreBaseline Conditions:10Surface Cleanup:10Subsurface Cleanup:10

Reference(s) for above information:

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

MEC Classification Input Factor Categories

Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS.

The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO.

Has a technical assessment shown that MEC in the OB/OD Area is DMM?

Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet:

No

- $\cdot \ \text{Submunitions}$
- · Rifle-propelled 40mm projectiles (often called 40mm grenades)
- · Munitions with white phosphorus filler
- · High explosive anti-tank (HEAT) rounds
- · Hand grenades
- · Fuzes
- · Mortars

None of the items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'fuzed'.

The following table is used to determine scores associated with MEC classification categories:

		Baseline	Surface	Subsurface
	UXO	Conditions	Cleanup	Cleanup
UXO Special Case		180	180	180
UXO		110	110	110
Fuzed DMM Special Case		105	105	105
Fuzed DMM		55	55	55
Unfuzed DMM		45	45	45
Bulk Explosives		45	45	45

Based on your ans Baseline Conditions: Surface Cleanup: Subsurface Cleanup:	wers above, the MEC classification	is 'UXO'.			Score	110 110 110
•	Factor Categories sused to determine scores associated w	ith MFC Size				
The following table is	asea to determine secres associated w	Baseline	Surface	Subsurface		
	Description	Conditions	Cleanup	Cleanup		
	Any munitions (from the 'Munitions,					
	Bulk Explosive Info' Worksheet)					
	weigh less than 90 lbs; small enough	ì				
	for a receptor to be able to move				_	
Small	and initiate a detonation	40	40	40)	
	All munitions weigh more than 90					
	lbs; too large to move without					
Large	equipment	0	0) ()	
	ons above and the types of munitions at sheet), the MEC Size Input Factor is:	t the site (see	'Munitions,	, Bulk	Large	
•					Score	
Baseline Conditions:						0
Surface Cleanup:						0
Subsurface Cleanup:						0

Response Alternative No. 6:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

#NAME? ft

Maximum Intrusive Depth

#NAME?

Baseline Conditions:

Migration Potential Input Factor Categories Is there any physical or historical evidence that indicates it is possible for natural physical forces in the area (e.g., frost heave, erosion) to expose subsurface MEC items, or move surface or subsurface MEC items?

Score

describe the nature of natural forces. Indicate key areas of potential migration (e.g. overland water flow) on a map as appropriate (attach a map to the bottom of this sheet, or as a

The following table is used to determine scores associated with the migration potential:

	Baseline	Surface	Subsurface	
	Conditions	Cleanup	Cleanup	
Possible	30	30	10	
Unlikely	10	10	10	

Based on the question above, migration potential is 'Unlikely.' Score Baseline Conditions: 10 Surface Cleanup: 10 Subsurface Cleanup: 10

Reference(s) for above information:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

MEC Classification Input Factor Categories

Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS.

The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO.

Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet:

- · Submunitions
 - · Rifle-propelled 40mm projectiles (often called 40mm grenades) · Munitions with white phosphorus filler
 - · High explosive anti-tank (HEAT) rounds
 - · Hand grenades

 - Mortars

At least one item listed in the 'Munitions, Bulk Explosive Info' Worksheet was identified as

The following table is used to determine scores associated with MEC classification categories:

		Baseline	Surface	Subsurface
	UXO Special Case	Conditions	Cleanup	Cleanup
UXO Special Case		180	180	180
UXO		110	110	110
Fuzed DMM Special Case		105	105	105
Fuzed DMM		55	55	55
Unfuzed DMM		45	45	45
Bulk Explosives		45	45	45

Based on your answers above, the MEC classification is 'UXO Special Case'. Baseline Conditions: 180 Surface Cleanup: Subsurface Cleanup: 180

MEC Size Input Factor Categories

Subsurface Cleanup:

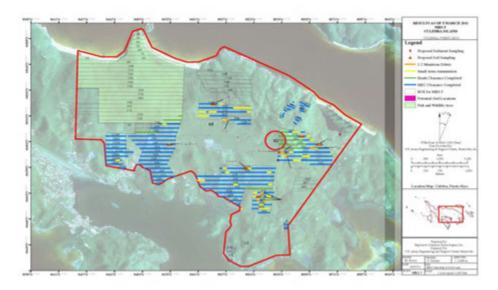
The following table is used to determine scores associated with MEC Size:

Surface Subsurface Description Conditions Cleanup Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough

for a receptor to be able to move 40 Small 40 40 and initiate a detonation All munitions weigh more than 90 lbs; too large to move without Large equipment n n

Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is:

0


Baseline Conditions: Surface Cleanup:

MEC HA Summary Information Comments Site ID: 9/9/2011 Date: Please identify the single specific area to be assessed in this hazard assessment. From this point forward, all references to "site" or "MRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Mortar and Combat Range Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources Title (include version, publication date) Draft Remedial Investigation at the Culebra Island ${f 1}$ Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 6 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2,842 acres 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, residential, recreational, USFWS area, construction 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. IO2PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Select Ref(s)

Puerto Rico, September 2011

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

C. Historical Clearances		
 Have there been any historical clearances at the site? 	No, none	
2. If a clearance occurred:		
a. What year was the clearance performed?		
 b. Provide a description of the clearance activity (e.g., exteritems removed, types and sizes of removed items, and where 		
terno removed, e, per una orzeo el removed terno, una vine	and medical deceders were about.	
Reference(s) for Part C:		
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010	Select Ref(s)	
D. Attach maps of the site below (select 'Insert/Picture' on the	he menu bar.)	

Cased Munitions Information

Item No.	Munition Type (e.g., mortar, projectile, etc.)	Munition Size	Munition Size Units	Mark/ Model	Energetic Material Type	Fuzing Type	Fuze Condition		Location of Munitions	Comments (include rationale for munitions that are "subsurface only")
1	Mortars	3	inches		High Explosive			0	Surface and Subsurface	No MEC identified
	Mortars		inches		High Explosive				Surface and Subsurface	during the RI or previous investigations. Only
3	Mortars	81	mm		High Explosive			0		MD - included here as indication of MEC.
5										
6 7 8										
9 10										
11 12										
13 14										
15 16 17										
18 19										
20										

Reference(s) for table above:

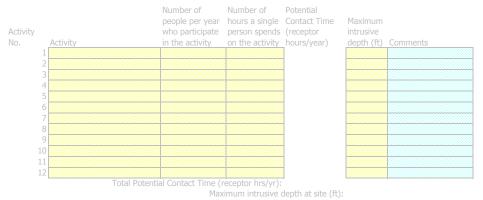
Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

	Diosive Information Explosive Type	Comments	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Reference(s) for table above:

Site ID: Date: MRS 05 9/9/2011


Activities Currently Occurring at the Site

		No	Number of	Data Wal		
		Number of	hours per year			
		people per year	a single	Contact Time	Maximum	
Activity		who participate			intrusive	
No.	Activity	in the activity	on the activity	hours/year)	depth (ft)	Comments
	1 Undeveloped	0	0	0	0	
	2 Recreational	25,000	16	400,000	0	
	Residential	25	8,760	219,000	2	
	4 Site Workers	25	40	1,000	2	
	5					
	6					
	7					
	8					
	9					
1	0					
1	1					
1	2					
	Total Potent	ial Contact Time (r				-1
		Max	imum intrusive	depth at site (ft):	2	

Reference(s) for table above:
Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

This worksheet needs to be completed for each remedial/removal action alternative listed in the 'Remedial-Removal Action' worksheet that will cause a change in land use.

Land Use Activities Planned After Response Alternative #1:

Reference(s) for table above:

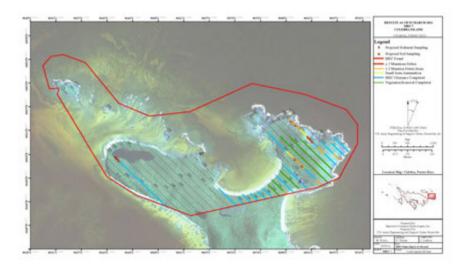
Site ID: MRS 05
Date: 9/9/2011

Energetic Material Type Input Factor Categories
The following table is used to determine scores associated with the

The following table is used to determine scores associated v	vith the energ	etic materia	ıls. Materials		
are listed in order from most hazardous to least hazardous.	Baseline	Surface	Subsurface		
	Conditions	Cleanup	Cleanup		
High Explosive and Low Explosive Filler in Fragmenting	COHUIUOHS	Cicanup	Cleanup		
Rounds	100	100	100		
White Phosphorus	70	70	70		
Pyrotechnic	60	60	60		
Propellant	50	50	50		
Spotting Charge	40	40	40		
Incendiary	30	30	30		
The most hazardous type of energetic material listed in Worksheet falls under the category 'High Explosive and Rounds'.				Score	
Baseline Conditions:				100	
Surface Cleanup:				100	
Subsurface Cleanup:				100	
Location of Additional Human Receptors Inp. 1. What is the Explosive Safety Quantity Distance (ESQD) f Explosive Safety Submission for the MRS? 2. Are there currently any features or facilities where people within the ESQD arc?	rom the Explo	sive Siting I	Plan or the	1617 feet	
Please describe the facility or feature.					
residents					
MEC Item(s) used to calculate the ESQD for current use act	ivities				
MEC Item(s) used to calculate the ESQD for current use act	ivities				
4.2-inch The following table is used to determine scores associated v receptors (current use activities): Inside the MRS or inside the ESQD arc Outside of the ESQD arc	Baseline Conditions	Surface Cleanup) 3	Subsurface Cleanup		
4. Current use activities are 'Inside the MRS or insid	e the ESQD a	arc', based	on Question		
2.' Baseline Conditions: Surface Cleanup: Subsurface Cleanup:				30 30 30 30	
5. Are there future plans to locate or construct features or within the MRS, or within the ESQD arc?	facilities where	e people ma	ay congregate		
6. Please describe the facility or feature.					
MEC Item(s) used to calculate the ESQD for future use activ	vities			Select MEC(s)	
The following table is used to determine scores associated v receptors (future use activities):	vith the location Baseline Conditions	Surface	Subsurface Cleanup		
Inside the MRS or inside the ESQD arc Outside of the ESQD arc	3(0 30		
7. Please answer Question 5 above to determine the Baseline Conditions: Surface Cleanup: Subsurface Cleanup:	scores.			Score	

Comments

	Input Factor Categories								
The following table is us	sed to determine scores associated wi	th site acces Baseline	ssibility: Surfa	ce Sul	osurface				
	Description	Conditions			anup				
Full Accessibility	No barriers to entry, including		0	80	80				
I dil Accessibility	signage but no fencing	d		00	80				
Moderate Accessibility	Some barriers to entry, such as barbed wire fencing or rough terrain	5	5	55	55				
,	Significant barriers to entry, such as								
	unguarded chain link fence or requirements for special								
Limited Accessibility	transportation to reach the site	1	5	15	15				
	A site with guarded chain link fence								
Very Limited	or terrain that requires special equipment and skills (e.g., rock								
Accessibility	climbing) to access		5	5	5				
Current Use Activi	ties					Score			
	t best describes the site accessibility u	nder the cu	rrent us	e scenario	0:				
Moderate Accessib Baseline Conditions:	ility						55		
Surface Cleanup:							55		
Subsurface Cleanup:							55		
Future Use Activity	ies								
Select the category that	t best describes the site accessibility u	nder the fut	ure use	scenario	:	1			
Moderate Accessib Baseline Conditions:	ility						55		
Surface Cleanup:							55		
Subsurface Cleanup:							55		
Reference(s) for above									
Final Work Plan, Ren Puerto Rico, Februar	nedial Investigation / Feasibility	Study at th	ne Cule	bra Islai	nd Site,	Select R	tef(s)		
	,								
Response Alternat									
Please enter site acc Worksheet to contin	essibility information in the 'Plan	ned Reme	dial or	Remova	I Actions'				
Baseline Conditions:	uc.								
Surface Cleanup:									
Subsurface Cleanup:									
Response Alternat	rive No. 2:								
Please enter site acc Worksheet to contin	essibility information in the 'Plan	ned Reme	dial or	Remova	I Actions'				
Baseline Conditions:	ue.								
Surface Cleanup:									
Subsurface Cleanup:									
Response Alternat	rive No. 3:								
Please enter site acc	essibility information in the 'Plan	ned Reme	dial or	Remova	l Actions'				
Worksheet to contin Baseline Conditions:	ue.								
Surface Cleanup:									
Subsurface Cleanup:									
Response Alternat	ive No. 4								
Please enter site acc	essibility information in the 'Plan	ned Reme	dial or	Remova	l Actions'				
Worksheet to contin	ue.								
Baseline Conditions: Surface Cleanup:									
Subsurface Cleanup:									
Dognonge Alter	ino No. Er								
Response Alternat Please enter site acc	TIVE NO. 5: essibility information in the 'Plan	ned Reme	dial or	Remova	I Actions'				
Worksheet to contin									
Baseline Conditions: Surface Cleanup:									
Subsurface Cleanup:									
Response Alternat	rive No. 6: essibility information in the 'Plan	nod Pow -	dial ar	Domesse	I Action-!				
Worksheet to contin		neu Keille	uidi Uľ	Kelliova	ACLIUITS				
Baseline Conditions:									
Surface Cleanup: Subsurface Cleanup:									
эдээнтасе стеанир:									


The following table is	s used to determine scores associated wi	ith the total po	otential con	tact time: Subsurfa	e e		
Many Hours	Description ≥1,000,000 receptor-hrs/yr	Conditions 120	Cleanup	Cleanup	30		
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	ı	20		
Few Hours /ery Few Hours	10,000 to 99,999 receptor-hrs/yr <10,000 receptor-hrs/yr	40 15			10 5		
Current Use Activi	ities:						
Current and Future	y determined for baseline conditions for Activities' Worksheet, the Total Potential bove, this corresponds to a input factor s ies:	Contact Time	is:		2	620,000 70	receptor hrs/yr Score
Current and Future A	y determined for baseline conditions for a Activities' Worksheet, the Total Potential bove, this corresponds to a input factor stive No. 1:	Contact Time		ed on the		#NAME? #NAME?	
	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
Total Potential Con Based on the table a Baseline Conditions: Burface Cleanup: Bubsurface Cleanup: Bubsurface Alternation	bove, this corresponds to input factor so	ores of:				Score	
	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
Total Potential Cor Based on the table a Baseline Conditions: Burface Cleanup: Bubsurface Cleanup: Response Alternation	bove, this corresponds to input factor so	ores of:			1	Score	
	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
otal Potential Columbia de la columbia del columbia del columbia de la columbia del columbia del columbia de la columbia del columbia d	bove, this corresponds to input factor so	ores of:				Score	
lot enough inforn	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
Total Potential Collased on the table all laseline Conditions: furface Cleanup: subsurface Cleanup: Response Alternations	bove, this corresponds to input factor so	ores of:			4	Score	
_	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
Total Potential Con Based on the table as Baseline Conditions: Burface Cleanup: Bubsurface Cleanup: Response Alternation	bove, this corresponds to input factor so	ores of:				Score	
	nation has been entered in the 'Plan e complete the table before returni			oval Acti	ons'		
Total Potential Con Based on the table a Baseline Conditions: Surface Cleanup:	ntact Time bove, this corresponds to input factor so	ores of:			5	Score	

The following table is u								
	used to determine scores associated wit	th the Amour	t of MFC					
	isca to actermine scores associated with	Baseline	Surface	Subsurface				
	Description	Conditions	Cleanup	Cleanup				
Target Area	Areas at which munitions fire was	180	120)	30			
raiget Airea	directed	100	12.	,	30			
	Sites where munitions were disposed of by open burn or open detonation							
	methods. This category refers to the							
OB/OD Area	core activity area of an OB/OD area.	180	110)	30			
	See the "Safety Buffer Areas"							
	category for safety fans and kick-							
	outs.							
	Areas where the serviceability of							
	stored munitions or weapons systems are tested. Testing may							
Function Test Range	include components, partial	165	90)	25			
	functioning or complete functioning							
	of stockpile or developmental items.							
	The location of a burial of large							
Burial Pit	quantities of MEC items.	140	140)	10			
	Areas used for conducting military							
Maneuver Areas	exercises in a simulated conflict area	115	15	5	5			
	or war zone							
	The location from which a projectile,							
	grenade, ground signal, rocket,							
Firing Points	guided missile, or other device is to	75	10)	5			
	be ignited, propelled, or released.							
	Areas outside of target areas, test							
	ranges, or OB/OD areas that were							
Safety Buffer Areas	designed to act as a safety zone to contain munitions that do not hit	30	10)	5			
	targets or to contain kick-outs from							
	OB/OD areas.							
	Any facility used for the storage of							
	military munitions, such as earth-							
Storage	covered magazines, above-ground	25	10)	5			
	magazines, and open-air storage							
	areas. Former munitions manufacturing or							
Explosive-Related	demilitarization sites and TNT	20	10)	5			
Industrial Facility	production plants							
Coloct the category th	at best describes the <i>most hazardous</i>	amount of I	AEC:		Sco	ura.		
Target Area	it best describes the <i>most nazardous</i>	allioulit of i	ILC.		300	76		
Baseline Conditions:						180		
Surface Cleanup:								
Januace cicanup.						120		
Subsurface Cleanup:						120 30		
Subsurface Cleanup:				_				
Subsurface Cleanup: Minimum MEC D	epth Relative to the Maximu	m Intrusiv	ve Deptl	ı Input				
Subsurface Cleanup: Minimum MEC D Factor Categorie	s	m Intrusiv	ve Deptl	ı Input				
Subsurface Cleanup: Minimum MEC D Factor Categorie	s	m Intrusiv	ve Deptl	ı Input				
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti	s s ies			·		30		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu	is ies um MEC depth, based on the 'Cased Mu			·				
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive	is ies um MEC depth, based on the 'Cased Mu	initions Inform	nation' Wo	rksheet:	ne	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive of the table below is use	ies Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t	nitions Inforr he minimum	nation' Wo	rksheet: n relative to th	ne	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive on the table below is use	ies Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t	nitions Inforr he minimum Baseline	mation' Wo MEC depth Surface	rksheet: relative to the Subsurface	ne	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive in the table below is use maximum intrusive department.	ies Jum MEC depth, based on the 'Cased Mu depth: d to determine scores associated with to	nitions Inforr he minimum	mation' Wo MEC depth Surface	rksheet: n relative to th	ne	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME	in MEC depth, based on the 'Cased Mu depth: d to determine scores associated with toth: CC located surface and subsurface.	nitions Inforr he minimum Baseline	mation' Wo MEC depth Surface	rksheet: relative to the Subsurface	ne	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusive	ies Jum MEC depth, based on the 'Cased Mu depth: d to determine scores associated with to	nitions Inform the minimum Baseline Conditions	mation' Wo MEC deptr Surface Cleanup	rksheet: n relative to the Subsurface Cleanup	ne 95	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive of the table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusive MEC.	ires Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t pth: EC located surface and subsurface. re depth overlaps with subsurface	nitions Inforr he minimum Baseline	mation' Wo MEC deptr Surface Cleanup	rksheet: n relative to the Subsurface Cleanup		30 0 ft		
Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive in the table below is use maximum intrusive del Baseline Condition: MEAtter Cleanup: Intrusive MeC. Baseline Condition: ME	in MEC depth, based on the 'Cased Mu depth: d to determine scores associated with toth: CC located surface and subsurface.	nitions Inform the minimum Baseline Conditions	mation' Wo MEC deptr Surface Cleanup	rksheet: n relative to the Subsurface Cleanup		30 0 ft		
Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusiv MEC. Baseline Condition: ME After Cleanup: Intrusiv	ires Jum MEC depth, based on the 'Cased Mu depth: d to determine scores associated with to pth: EC located surface and subsurface. We depth overlaps with subsurface EC located surface and subsurface,	nitions Inform the minimum Baseline Conditions	mation' Wo MEC depth Surface Cleanup	rksheet: n relative to ti Subsurface Cleanup		30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusiv MEC. Baseline Condition: ME After Cleanup: Intrusiv subsurface MEC.	ires Jum MEC depth, based on the 'Cased Mu depth: d to determine scores associated with to pth: EC located surface and subsurface. We depth overlaps with subsurface EC located surface and subsurface,	initions Inform the minimum Baseline Conditions 240	mation' Wo MEC depth Surface Cleanup	rksheet: n relative to ti Subsurface Cleanup	95	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive of the table below is use maximum intrusive dependence of the table below is use maximum intrusive dependence of the table below is use maximum intrusive dependence of the table below is use maximum intrusive dependence of the table below is used to the table below in the tab	ires Jam MEC depth, based on the 'Cased Mudepth: d to determine scores associated with topth: EC located surface and subsurface. We depth overlaps with subsurface. EC located surface and subsurface, We depth does not overlap with	nnitions Inform the minimum Baseline Conditions 240	mation' Wo MEC depth Surface Cleanup 150	rksheet: n relative to the Subsurface Cleanup	95 25	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimum. The deepest intrusive of the table below is use maximum intrusive delegation of the Cleanup: Intrusive MEC. Baseline Condition: ME After Cleanup: Intrusive usbsurface MEC. Baseline Condition: ME Condition or After Cleanup: MEC. Baseline Condition: ME Condition or After Cleanup: MEC.	ires Im MEC depth, based on the 'Cased Mudepth: d to determine scores associated with toth: IC located surface and subsurface. Re depth overlaps with subsurface, Re depth does not overlap with IC located only subsurface. Baseline Innup: Intrusive depth overlaps with	initions Inform the minimum Baseline Conditions 240	mation' Wo MEC depth Surface Cleanup 150	rksheet: n relative to the Subsurface Cleanup	95	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimum. The deepest intrusive of the table below is use maximum intrusive del table to the table below is use maximum intrusive MEC. Baseline Condition: ME After Cleanup: Intrusive subsurface MEC. Baseline Condition: ME Condition or After Cleaninimum MEC depth. Baseline Condition: ME	ires Im MEC depth, based on the 'Cased Mudepth: Id to determine scores associated with topth: EC located surface and subsurface. In depth overlaps with subsurface are depth overlaps with subsurface, we depth does not overlap with EC located only subsurface. Baseline inup: Intrusive depth overlaps with EC located only subsurface. Baseline	nnitions Inform the minimum Baseline Conditions 240	mation' Wo MEC depth Surface Cleanup 150	rksheet: n relative to the Subsurface Cleanup	95 25	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive of the table below is use maximum intrusive del Baseline Condition: MEAfter Cleanup: Intrusive MEC. Baseline Condition: MEAfter Cleanup: Intrusive Subsurface MEC. Baseline Condition: MEC Cleanup: Intrusive Subsurface MEC. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth.	in MEC depth, based on the 'Cased Mu depth: d to determine scores associated with toth: Colocated surface and subsurface. We depth overlaps with subsurface and subsurface. Colocated surface and subsurface, we depth does not overlap with subsurface. Colocated surface and subsurface, we depth does not overlap with subsurface. Baseline inup: Intrusive depth overlaps with subsurface. Baseline inup: Intrusive depth does not overlap inup: Intrusive depth does not overlap inup: Intrusive depth does not overlap	he minimum Baseline Conditions 240 240	mation' Wo MEC depth Surface Cleanup 150 50	rksheet: n relative to the Subsurface Cleanup	95 25 95	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive of the table below is use maximum intrusive del Baseline Condition: MEAfter Cleanup: Intrusive MEC. Baseline Condition: MEAfter Cleanup: Intrusive Subsurface MEC. Baseline Condition: MEC Cleanup: Intrusive Subsurface MEC. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth. Baseline Condition: MEC Condition or After Cleanupinimum MEC depth.	in MEC depth, based on the 'Cased Mu depth: d to determine scores associated with toth: Colocated surface and subsurface. We depth overlaps with subsurface and subsurface. Colocated surface and subsurface, we depth does not overlap with subsurface. Colocated surface and subsurface, we depth does not overlap with subsurface. Baseline inup: Intrusive depth overlaps with subsurface. Baseline inup: Intrusive depth does not overlap inup: Intrusive depth does not overlap inup: Intrusive depth does not overlap	nnitions Inform the minimum Baseline Conditions 240	mation' Wo MEC depth Surface Cleanup 150 50	rksheet: n relative to the Subsurface Cleanup	95 25	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusiv MEC. Baseline Condition: ME After Cleanup: Intrusiv subsurface MEC. Baseline Condition: ME Condition or After Clea minimum MEC depth. Baseline Condition: ME Condition or After Clea with minimum MEC de with minimum MEC de with minimum MEC de	ires Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t pth: Clocated surface and subsurface. We depth overlaps with subsurface the depth overlaps with subsurface to located surface and subsurface, we depth does not overlap with Clocated only subsurface. Baseline inup: Intrusive depth overlaps with Clocated only subsurface. Baseline inup: Intrusive depth does not overlap pth.	nitions Inform he minimum Baseline Conditions 240 240 150	mation' Wo MEC depth Surface Cleanup 150 50 N//	rksheet: n relative to the Subsurface Cleanup	95 25 95	30 0 ft		
Subsurface Cleanup: Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimu. The deepest intrusive of the table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusive MEC. Baseline Condition: ME After Cleanup: Intrusive Subsurface MEC. Baseline Condition: ME Condition or After Clea minimum MEC depth. Baseline Condition: ME Condition or After Clea with minimum MEC de Because the shallove	ires Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t pth: CC located surface and subsurface. Re depth overlaps with subsurface EC located surface and subsurface, Re depth does not overlap with EC located only subsurface. Baseline Inup: Intrusive depth overlaps with EC located only subsurface. Baseline Inup: Intrusive depth overlaps with EC located only subsurface. Baseline Inup: Intrusive depth does not overlap pth. Vest minimum MEC depth is less the	he minimum Baseline Conditions 240 240 50	nation' Wo MEC depth Surface Cleanup 15(N// N//	rksheet: n relative to the Subsurface Cleanup O A A Repest	95 25 95 25	30 0 ft		
Minimum MEC D Factor Categorie Current Use Activiti The shallowest minimum Hec D The shallowest minimum	ires Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t pth: Clocated surface and subsurface. We depth overlaps with subsurface the depth overlaps with subsurface to located surface and subsurface, we depth does not overlap with Clocated only subsurface. Baseline inup: Intrusive depth overlaps with Clocated only subsurface. Baseline inup: Intrusive depth does not overlap pth.	he minimum Baseline Conditions 240 250 250 250 250 250 250 250 250 250 25	mation' Wo MEC depth Surface Cleanup 150 N// N// Lo the de ECs are lo	rksheet: n relative to the subsurface Cleanup One of the subsurface Cleanup One of the subsurface Cleanup One of the subsurface Cleanup	95 25 95 25	30 0 ft		
Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive of the table below is use maximum intrusive del maximum intrusive del maximum intrusive. Baseline Condition: MEA fter Cleanup: Intrusive MEC. Baseline Condition: ME Acter Cleanup: Intrusive MEC. Baseline Condition: ME Condition or After Cleaminimum MEC depth. Baseline Condition: ME Condition or After Cleawith minimum MEC depth. Baseline Condition: ME Condition or After Cleawith minimum MEC depth. Because the shallowintrusive depth, the the surface and sub Therefore, the categoria.	in MEC depth, based on the 'Cased Mu depth: d to determine scores associated with toth: Colocated surface and subsurface. We depth overlaps with subsurface and subsurface. We depth overlaps with subsurface, we depth does not overlap with subsurface. Baseline in the subsurface and subsurface, we depth does not overlap with subsurface. Baseline in the subsurface and subsurface. Baseline in the subsurface and subsurface. Baseline in the subsurface and subsurface asset in the subsurface and subsurface. Baseline in the subsurface and subsurface asset in the subsurface after subsurface, based on the 'Munitions, I sourface, based on the 'Munitions, I sourface and subsurface.	he minimum Baseline Conditions 240 240 150 50 san or equal cleanup. M Baseline Conditions	mation' Wo MEC depth Surface Cleanup 150 N// N// to the de ECs are Ic tive Info' V in MEC loof	rksheet: n relative to the Subsurface Cleanup One of the Subs	95 25 95 25 th	30 0 ft		
Minimum MEC D Factor Categorie Current Use Activiti The shallowest minim. The deepest intrusive The table below is use maximum intrusive del Baseline Condition: ME After Cleanup: Intrusiv MEC. Baseline Condition: ME After Cleanup: Intrusiv MEC. Baseline Condition: ME Condition or After Cleaninimum MEC depth. Baseline Condition: ME Condition or After Clea Minimum MEC depth. Baseline Condition: ME Condition or After Clea With minimum MEC de With minimum MEC de Because the shallow Intrusive depth, the the surface and sub Therefore, the category Intrusive depth, the Therefore, the category Intrusive depth, the Therefore, the category Intrusive depth, the Businates After Clea Subsurface. After Cleaning Intrusive depth, the Therefore, the category Intrusive depth, the Intrusive depth t	ires Im MEC depth, based on the 'Cased Mu depth: d to determine scores associated with t pth: Ic located surface and subsurface. Ic located surface and subsurface, Ic located only subsurface. In located only subsurface, In located	initions Inform he minimum Baseline Conditions 240 150 50 san or equal cleanup. Maulk Explosine conditions	mation' Wo MEC depth Surface Cleanup 150 N// N// to the de ECs are Ic tive Info' V in MEC loof	rksheet: n relative to the Subsurface Cleanup One of the Subs	95 25 95 25 th	30 0 ft		

MEC HA Summary Information

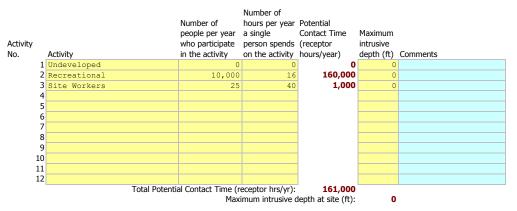
Site Div. MSS 07 Divisor 9/9/2011 Please identify the single specific area to be assessed in this hazard assessment. From this point forward, all references to "ste" or "NRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Culebrita Artillery impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Data Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plann, Remedial Investigation / Peasibility Study at the Culebra Island Site, Puerto Rico, Pebruary 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004 4 Final PUBS Inventory Project Report. 1991. 5 6 7 7 8 8 9 10 10 11 11 12 B. Briefly describe the site: 1. Area (include units): 375 acres 2. Past munitions-related use: 1 Area (include units): 375 acres 3. Current land-use activities (list all that occur): 1 Underveloped, recreation, USPMA 4. Are changes to the future land-use planned? 2 No 3. What is the boundaries? 2 An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a PUBS, defining a site boundary, and assigning PUBS Project No. OICPROMESON (DSRAC, 1991). 5 6 The boundaries are fairly certain. Reference(s) for Part B: The boundaries are fairly certain. Reference(s) for Part B. Prinal Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, September 2011 Final Mork Plan, Remedial Investigation of Select Ref(s) Final Mork Plan, Remedial Investigation of Select Ref(s)			Comments
Please identify the single specific area to be assessed in this hazard assessment. From this point forward, all references to "ste" or "NRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Culebrita Artillery Impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2100 Site Specific Final Report. UNO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 375 acres 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undevaloped, recreation, USPWA 4. Are changes to the future land-use planned? No 1. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Called A. Red Remedial Investigation of Feasibility Study at	Site ID: MRS 07		
references to "ste" or "MRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Culebrita Artillery Impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Darfat Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USEWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INRR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102rR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Darfat Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	Date: 9/9/2011		
references to "ste" or "MRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Culebrita Artillery Impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Darfat Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USEWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INRR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102rR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Darfat Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
references to "ste" or "MRS" refer to the specific area that you have defined. A. Enter a unique identifier for the site: Culebrita Artillery Impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Darfat Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USEWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INRR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102rR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Darfat Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	Di id	. Heir brand arrange	
A. Enter a unique identifier for the site: Culebrita Artillery Impact Area Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (Include version, publication date) Draft Remedial Investigation at the Culebra Island 1 site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, Pebruary 2 2010 Site Specific Final Report. UNC Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 10 10 11 11 11 12			
Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Provide a list of information publication date) Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Provide a list of information sources are the ends of each subsection to select the applicable information sources from the list of the control of the cont		nat you have defined.	
Provide a list of information sources used for this hazard assessment. As you are completing the worksheets, use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island 1 site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, Pebruary 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 6 7 8 9 9 10 10 11 11 11 28. Briefly describe the site: 1 Area (include units): 2 Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USPWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (IMPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 5. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: The boundaries are fairly certain. Reference(s) for Part B: The boundaries are fairly certain. Reference(s) Replan, Remedial Investigation / Feasibility Study at			
use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island 1 site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, Pebruary 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INFR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PROG6800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	Culebrita Artillery Impact Area		
use the "Select Ref(s)" buttons at the ends of each subsection to select the applicable information sources from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island 1 site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, Pebruary 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INFR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PROG6800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, 2004. Final FUDS Inventory Project Report. 1991. B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? S. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102FR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	Provide a list of information sources used for this hazard	d assessment. As you are completing the worksheets,	
from the list below. Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, 2004. Final FUDS Inventory Project Report. 1991. B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? S. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102FR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	use the "Select Ref(s)" buttons at the ends of each sub	section to select the applicable information sources	
Ref. No. Title (include version, publication date) Draft Remedial Investigation at the Culebra Island 1 Site, Puetro Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puetro Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 9 10 11 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitons-related use: 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PROGESON (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Draft Remedial Investigation at the Culebra Island 1 Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 10 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, February 2 2010 Rico, 2004. Final FUDS Inventory Project Report. 1991. Final FUDS Inventory Project Report (Inventory Project Report (Inven		the Culebus Telend	
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2 2010 Site Specific Final Report. UNO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INFR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Study at the Culebra Island Site, Puerto Rico, Pebruary 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Widlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 9 10 11 11 12 12 12 12 12 12 12 12 12 12 12			
2 2010 Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto 3 Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Site Specific Final Report. UXO Construction Support, Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 7 8 8 9 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at		, Puerto Rico, February	
Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? No 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR06800 (USACE, 1991) 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	2 2010		
Culebra Island Wildlife Refuge, Culebra Island, Puerto Rico, 2004. 4 Final FUDS Inventory Project Report. 1991. 5 6 7 8 9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? No 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR06800 (USACE, 1991) 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	Site Specific Final Report. UXO	Construction Support,	
# Final FUDS Inventory Project Report. 1991. Final FUDS Inventory Project Report. 1991.	Culebra Island Wildlife Refuge,	Culebra Island, Puerto	
B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	3 Rico, 2004.		
B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	4 Final FUDS Inventory Project Rep	ort. 1991.	
7 8 9 9 10 10 11 11 12	5		
8 9 10 11 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. IO2PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	6		
9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. IO2PRO06800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	7		
9 10 11 12 B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. IO2PRO06800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	8		
B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Select Ref(s) Final Work Plan, Remedial Investigation / Feasibility Study at			
### B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: #### Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR06800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
B. Briefly describe the site: 1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	12		
1. Area (include units): 2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	D. Duinfly, demails the site.		
2. Past munitions-related use: Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. I02PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	•		
Target Area 3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at		375 acres	
3. Current land-use activities (list all that occur): Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. I02PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Undeveloped, recreation, USFWA 4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. I02PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
4. Are changes to the future land-use planned? 5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	•		
5. What is the basis for the site boundaries? An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
An Inventory Project Report (INPR) was signed on 24 December 1991, establishing the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. I02PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at		No	
the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	5. What is the basis for the site boundaries?		
the Culebra Island site as a FUDS, defining a site boundary, and assigning FUDS Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	An Inventory Project Report (INPR) was si	gned on 24 December 1991, establishing	
Project No. 102PR006800 (USACE, 1991). 6. How certain are the site boundaries? The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
The boundaries are fairly certain. Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at	6. How certain are the site boundaries?		
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Reference(s) for Part B: Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Rico, September 2011 Final Work Plan, Remedial Investigation / Feasibility Study at			
Final Work Plan, Remedial Investigation / Feasibility Study at		nd Site, Puerto	
the Culebra Island Site, Puerto Rico, February 2010			
	the Culebra Island Site, Puerto Rico, February 20	010	

C. Historical Clearances	
 Have there been any historical clearances at the site? 	No, none
2. If a clearance occurred:	
a. What year was the clearance performed?	
b. Provide a description of the clearance activity (e.g., exten	nt, depth, amount of munitions-related
items removed, types and sizes of removed items, and wheth	her metal detectors were used):
Reference(s) for Part C:	
Draft Remedial Investigation at the Culebra Island Site, Puerto	
Rico, September 2011	Select Ref(s)
Final Work Plan, Remedial Investigation / Feasibility Study at	
the Culebra Island Site, Puerto Rico, February 2010	
D. Attach maps of the site below (select 'Insert/Picture' on the	e menu bar.)

Cased Munitions Information

									Minimum		
						Is			Depth for		Comments (include rationale
	Munition Type (e.g., mortar,		Munition		Energetic Material			Fuze		Location of	for munitions that are
Item No.	projectile, etc.)	Size	Size Units	Mark/ Model		Fuzed?	Fuzing Type	Condition	(ft)	Munitions	"subsurface only")
					High					Surface and	
1	Demolition Charges			hose	Explosive	UNK	UNK	UNK	0	Subsurface	RI field work
				warhead (HEAT) live, rocket	High					Surface and	
2	Rockets			nose	Explosive	Yes	UNK	Armed	0	Subsurface	RI field work
3	Bombs				High Explosive					Surface and Subsurface	EE/CA, Cayo Botella
4	Artillery	6	inches							Surface and Subsurface	EE/CA, Cayo Botella
5	Pyrotechnic			Spotting charge, MK 4						Surface and Subsurface	EE/CA, Cayo Botella
6	Artillery	20	mm	HEI	High Explosive					Surface and Subsurface	EE/CA, NTCRA
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											

Reference(s) for table above:


Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Select Ref(s)

	plosive Information Explosive Type	Comments	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Reference(s) for table above:

Activities Currently Occurring at the Site

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

9/9/2011 Date: **Energetic Material Type Input Factor Categories** The following table is used to determine scores associated with the energetic materials. Materials are listed in order from most hazardous to least hazardous. Baseline Surface Subsurface Conditions Cleanup Cleanup High Explosive and Low Explosive Filler in Fragmenting 100 100 100 Rounds White Phosphorus 70 70 Pyrotechnic 60 60 60 Propellant 50 50 50 40 40 40 Spotting Charge 30 30 30 Incendiary The most hazardous type of energetic material listed in the 'Munitions, Bulk Explosive Info' Worksheet falls under the category 'High Explosive and Low Explosive Filler in Fragmenting Score Rounds'. Baseline Conditions: 100 Surface Cleanup: 100 Subsurface Cleanup: 100 **Location of Additional Human Receptors Input Factor Categories** 1. What is the Explosive Safety Quantity Distance (ESQD) from the Explosive Siting Plan or the Explosive Safety Submission for the MRS? 2510 feet 2. Are there currently any features or facilities where people may congregate within the MRS, or within the ESQD arc? MEC Item(s) used to calculate the ESQD for current use activities Item #1. Demolition Charges (High Explosive) Select MEC(s) Item #2. Rockets (High Explosive) Item #6. Artillery (20mm, High Explosive) The following table is used to determine scores associated with the location of additional human receptors (current use activities): Surface Baseline Subsurface Conditions Cleanup Cleanup Inside the MRS or inside the ESQD arc 30 30 30 Outside of the ESQD arc 0 0 0 4. Current use activities are 'Outside of the ESQD arc', based on Question 2.' Score Baseline Conditions: 0 Surface Cleanup: 0 Subsurface Cleanup: 0 5. Are there future plans to locate or construct features or facilities where people may congregate 6. Please describe the facility or feature MEC Item(s) used to calculate the ESQD for future use activities Select MEC(s) The following table is used to determine scores associated with the location of additional human receptors (future use activities): Baseline Surface Subsurface Conditions Cleanup Cleanup Inside the MRS or inside the ESQD arc Outside of the ESQD arc Score

7. Please answer Question 5 above to determine the scores.

MRS 07

Site ID:

Baseline Conditions:

Site Accessibility Input Factor Categories

The following table is used to determine scores associated with site accessibility:

	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
Full Accessibility	No barriers to entry, including signage but no fencing	80	80	80
Moderate Accessibility	Some barriers to entry, such as barbed wire fencing or rough terrain	55	55	55
Limited Accessibility	Significant barriers to entry, such as unguarded chain link fence or requirements for special transportation to reach the site	15	15	15
Very Limited Accessibility	A site with guarded chain link fence or terrain that requires special equipment and skills (e.g., rock climbing) to access	5	5	5

Current Use Activities	Score
Cuiteiil USE Activities	3001

Select the category that best describes the site accessibility under the current use scenario:

Moderate Accessibility	
Baseline Conditions:	55
Surface Cleanup:	55
Subsurface Cleanup:	55

Future Use Activities

Select the category that best describes the site accessibility under the future use scenario:	
Moderate Accessibility	
Baseline Conditions:	
Surface Cleanup:	
Subsurface Cleanup:	

Reference(s) for above information:
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site,
Puerto Rico, February 2010

Select Ref(s)

Response Alternative No. 1:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Subsurface Cleanup:

Response Alternative No. 2:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Subsurface Cleanup:

Response Alternative No. 3:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Subsurface Cleanup:

Response Alternative No. 4:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 5:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Baseline Conditions:

Subsurface Cleanup:

Response Alternative No. 6:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions'

Worksheet to continue.

Surface Cleanup:

Subsurface Cleanup:

Potential Contact Hours Input Factor Categories

The following table is used to determine scores associated with the total potential contact time:

3	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
Many Hours	≥1,000,000 receptor-hrs/yr	120	90	30
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	20
Few Hours Very Few Hours	10,000 to 99,999 receptor-hrs/yr <10,000 receptor-hrs/yr	40 15	20 10	10 5

Current Use Activities:

Input factors are only determined for baseline conditions for current use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is: Based on the table above, this corresponds to a input factor score for baseline conditions of:

receptor **161,000** hrs/yr 70 Score

Input factors are only determined for baseline conditions for future use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is: Based on the table above, this corresponds to a input factor score of:

#NAME? hrs/yr #NAME? Score

Response Alternative No. 1:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Baseline Conditions:

Surface Cleanup:

Response Alternative No. 2:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Baseline Conditions:

Surface Cleanup:

Response Alternative No. 3:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Response Alternative No. 4:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Surface Cleanup:

Response Alternative No. 5:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Baseline Conditions:

Response Alternative No. 6:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Score

Score

Score

Score

Amount of MEC Input Factor Categories

The following	table i	c used to	dotormina	ccoroc	accociated	with	tha A	mount o	F MEC.
The following	table i	s usea to	determine s	scores	associateu	with	une A	imount c) IYIEC:

The following table is	used to determine scores associated w	ith the Amou Baseline	nt of MEC: Surface	Subsurface
	Description	Conditions		Cleanup
Target Area	Areas at which munitions fire was directed	180	120	30
OB/OD Area	Sites where munitions were disposed of by open burn or open detonation methods. This category refers to the core activity area of an OB/OD area. See the "Safety Buffer Areas" category for safety fans and kick-outs.	180	110	30
Function Test Range	Areas where the serviceability of stored munitions or weapons systems are tested. Testing may include components, partial functioning or complete functioning of stockpile or developmental items.	165	90	25
Burial Pit	The location of a burial of large quantities of MEC items.	140	140	10
Maneuver Areas	Areas used for conducting military exercises in a simulated conflict area or war zone	115	15	5
Firing Points	The location from which a projectile, grenade, ground signal, rocket, guided missile, or other device is to be ignited, propelled, or released.	75	10	5
Safety Buffer Areas	Areas outside of target areas, test ranges, or OB/OD areas that were designed to act as a safety zone to contain munitions that do not hit targets or to contain kick-outs from OB/OD areas.	30	10	5
Storage	Any facility used for the storage of military munitions, such as earth-covered magazines, above-ground magazines, and open-air storage areas.	25	10	5
Explosive-Related Industrial Facility	Former munitions manufacturing or demilitarization sites and TNT production plants	20	10	5

Select the category that best describes the <i>most hazardous</i> amount of MEC:	Score
Target Area	
Baseline Conditions:	180
Surface Cleanup:	120
Subsurface Cleanup:	30

Minimum MEC Depth Relative to the Maximum Intrusive Depth Input Factor Categories Current Use Activities

The shallowest minimum MEC depth,	, based on the 'Cased	Munitions Information	Worksheet:
The deepest intrusive depth:			

The table below is used to determine scores associated with the minimum MEC depth relative to the maximum intrusive depth:

the maximum inclusive depair.	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.	240	150	95
Baseline Condition: MEC located surface and subsurface, After Cleanup: Intrusive depth does not overlap with subsurface MEC.	240	50	25
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth overlaps with minimum MEC depth.	150	N/A	95
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth does not overlap with minimum MEC depth.	50	N/A	25

Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth will overlap after cleanup. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.' For 'Current Use Activities', only Baseline Conditions are considered.

0 ft 0 ft

Future Use Activities Deepest intrusive **1** ft Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth overlaps. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.'. For 'Future Use Activities', only Baseline Conditions are considered. 240 Score Response Alternative No. 1: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. #NAME? ft **Maximum Intrusive Depth** #NAME? Score Surface Cleanup: Response Alternative No. 2: #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** ft #NAME? Score Surface Cleanup: Response Alternative No. 3: #NAME? ft Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. **Maximum Intrusive Depth** #NAME? Baseline Conditions: Surface Cleanup: Response Alternative No. 4: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section. ft **Maximum Intrusive Depth** #NAME? Score Baseline Conditions: Response Alternative No. 5: Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): #NAME? ft Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

#NAME? Score ft

#NAME? ft

Response Alternative No. 6:

Maximum Intrusive Depth

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

#NAME?

Migration Potential Input Factor Categories

Is there any physical or historical evidence that indicates it is possible for natural physical forces in the area (e.g., frost heave, erosion) to expose subsurface MEC items, or move surface or subsurface MEC items?

Score

e nature of natural forces. Indicate key areas of potential migration (e.g., overland water flow) on a map as appropriate (attach a map to the bottom of this sheet, or as a

The following table is used to determine scores associated with the migration potential:

	Baseline	Surrace	Subsurface
	Conditions	Cleanup	Cleanup
Possible	30	30	10
Unlikely	10	10	10

Based on the question above, migration potential is 'Unlikely.'

Baseline Conditions: 10 Surface Cleanup: 10 Subsurface Cleanup: 10

Reference(s) for above information:

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

MEC Classification Input Factor Categories

Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS.

The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO.

Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet:

- · Submunitions
 - · Rifle-propelled 40mm projectiles (often called 40mm grenades)
 - Munitions with white phosphorus filler
 High explosive anti-tank (HEAT) rounds
 - · Hand grenades
 - $\cdot \ \mathsf{Fuzes}$
 - Mortars

At least one item listed in the 'Munitions, Bulk Explosive Info' Worksheet was identified as

The following table is used to determine scores associated with MEC classification categories:

		Baseline	Surrace	Subsurface
	UXO	Conditions	Cleanup	Cleanup
UXO Special Case		180	180	180
UXO		110	110	110
Fuzed DMM Special Case		105	105	105
Fuzed DMM		55	55	55
Unfuzed DMM		45	45	45
Bulk Explosives		45	45	45

Based on your answers above, the MEC classification is 'UXO'.

Baseline Conditions: 110 Surface Cleanup: 110 Subsurface Cleanup: 110

MEC Size Input Factor Categories

The following table is used to determine scores associated with MEC Size: Baseline Surface

Subsurface Conditions Cleanup Cleanup Description Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to Small move and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without equipment 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is:

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

0

0

Future Use Activities			
Deepest intrusive		_	
depth: Because the shallowest minimum MEC depth is less than or equal to the deepest	1	ft	
intrusive depth, the intrusive depth overlaps. MECs are located at both the surface and			
subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the			
category for this input factor is 'Baseline Condition: MEC located surface and			
subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.'. For 'Future			
Use Activities', only Baseline Conditions are considered.	240	Score	
Response Alternative No. 1:			
Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft	
Not enough information has been entered in the 'Planned Remedial or Removal Actions'			
Worksheet. Please complete the table before returning to this section.			
		0	
Maximum Intrusive Depth		ft	
#NAME?			
	Score		
Baseline Conditions:			
Surface Cleanup:			
Subsurface Cleanup:			
Response Alternative No. 2:			
Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft	
Not enough information has been entered in the 'Planned Remedial or Removal Actions'			
Worksheet. Please complete the table before returning to this section.			
Maximum Inhusiya Donth		e-	
Maximum Intrusive Depth		ft	
#NAME?			
	Score		
Baseline Conditions:			
Surface Cleanup:			
Subsurface Cleanup:			
Response Alternative No. 3:			
Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft	
Not enough information has been entered in the 'Planned Remedial or Removal Actions'			
Worksheet. Please complete the table before returning to this section.			
Martin and the state of the sta		ft	
Maximum Intrusive Depth		IL	
#NAME?			
	Score		
Baseline Conditions:			
Surface Cleanup:			
Subsurface Cleanup:			
Response Alternative No. 4:			
Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft	
Not enough information has been entered in the 'Planned Remedial or Removal Actions'			
Worksheet. Please complete the table before returning to this section.			
Market and the state of the sta		Δ.	
Maximum Intrusive Depth		ft	
#NAME?			
	Score		
Baseline Conditions:			
Surface Cleanup:			
Subsurface Cleanup:			
Response Alternative No. 5:			
Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):	#NAME?	ft	
Not enough information has been entered in the 'Planned Remedial or Removal Actions'			
Worksheet. Please complete the table before returning to this section.			
Manipular Tahuning Panth		Α.	
Maximum Intrusive Depth		ft	
#NAME?			
	Score		
Baseline Conditions:			
Surface Cleanup:			

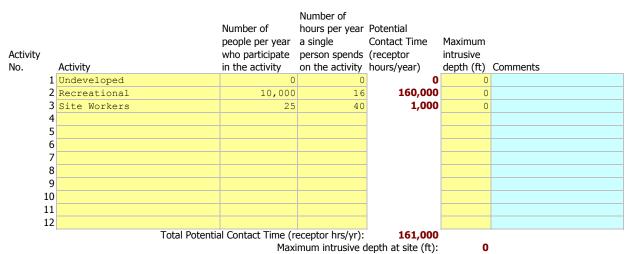
Advantaged. Present control to the control formed and present actions of the control formed and control form					
Meadman Intrusive Depth			#NAME?	ft	
Reaches Conditions: Granter Centre: Migration Potential Input Factor Categories Is been any hysiol or historical evidence that indicates it is received for natural physical forces in the error (e.g., frost heavy, condon) to expose substration KFC brent, or more surface or substration or more surface or substration KFC brent, or more substration					
Migration Potential Input Factor Categories Is there any physical or historical electrons that increase is possible for natural physical process in Migration Potential input Factor Categories If there any physical or historical electrons that increase is possible for natural physical process in Migration Potential in	Worksheet Freuse complete the table before retaining t	to this section.			
Magration Potential Input Factor Categories Is there are physical or historical evidence that indicates is possible for returnal physical forces in the area (e.g., frost hew, ensotin) to open substance NEC tens, or move surface or subsurface NEC tens, or move subsurface NE	Maximum Intrusive Depth			ft	
Magration Potential Input Factor Categories Is there are physical or historical evidence that indicates is possible for returnal physical forces in the area (e.g., frost hew, ensotin) to open substance NEC tens, or move surface or subsurface NEC tens, or move subsurface NE					
Magration Potential Input Factor Categories Is there are physical or historical evidence that indicates is possible for returnal physical forces in the area (e.g., frost hew, ensotin) to open substance NEC tens, or move surface or subsurface NEC tens, or move subsurface NE					
Magration Potential Input Factor Categories Is there are physical or historical evidence that indicates is possible for returnal physical forces in the area (e.g., frost hew, ensotin) to open substance NEC tens, or move surface or subsurface NEC tens, or move subsurface NE					
Magration Potential Input Factor Categories Is there are physical or historical evidence that indicates is possible for returnal physical forces in the area (e.g., frost hew, ensotin) to open substance NEC tens, or move surface or subsurface NEC tens, or move subsurface NE	#NAME?				
Migration Potential Input Factor Categories there any physical or historical evidence that indicates it is possible for natural physical forces in the term of providence that indicates it is possible for natural physical forces in the term of providence with the migration potential is of the short of th			Score		
Milipration Potential Input Factor Categories Is there any physical or historical evidence that incidents it is possible for natural physical forces in the earn (e.g., from them, creation) to compare submitted (terms, or more surface or subsartice (terms, or more surface). The following table is used to determine scores associated with the milyration potential: Baseline Surface Conditions The following table is used to determine scores associated with the milyration potential: Baseline Conditions The following table is used to determine scores associated with the milyration potential: Baseline Conditions The following table is used to determine scores associated with the milyration potential is fullikely. Score Baseline Conditions The following table is used to determine scores associated with the milyration potential is fullikely. Score Baseline Conditions The following table is used to determine scores associated with the milyration potential is fullikely. Score Baseline Conditions The following table is used to determine scores associated with the culebra Island Sites, between the following table is used to determine scores associated with MEC categories and the following table is used to determine scores associated with MEC desirication categories. The Amount of MEC category is Target Area. It cannot be automatically assumed that the MEC fears from this MES. The Amount of MEC category is Target Area. It cannot be automatically assumed that the MEC teams from this intelligence of the following table is used to determine scores associated with MEC desirication categories. The Amount of MEC categories and the MEC area of the Control of the Membrane scores associated with MEC desirication categories. The following table is used to determine scores associated with MEC desirication categories. Baseline Collegions The following table is used to determine scores associated with MEC	Baseline Conditions:				
Migration Potential Input Factor Categories is there any physical relations of evidence in the industries is the possibility of the process in the area (e.g., front heave, existor) to expose subsurface NEC tens, or more surface or subsurface (e.g., front heave, existor) to expose subsurface NEC tens, or more surface or subsurface (e.g., front heave, existor) to expose subsurface (e.g., front heave, existor) to expose subsurface or determine scores associated with the migration potential: The following table is used to determine scores associated with the migration potential: State of the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, migration potential is 'Unlikely.' Based on the question above, the least potential potentia					
Is there are physical or Instancial evidence that indicates it is possible for natural physical forces in the area (e.g., fine these, erroson) to precise substance MCF terms, or more surface or subsurface MCF, terms, or more surface or subsurface MCF, terms or the surface or obtained forces. Indicate key area of potential imparton (e.g., considered water from) as map as appropriate (attach a map to the bottom of this key). The following bible is used to determine scores associated with the migration potential: Basedine Surface Subsurface Conditions Cleanup Cleanup Possible Only 10 10 10 10 10 10 10 10 10 10 10 10 10					
the area (e.g., frost heave, croson) to expose subsurized NEC terms, or more surface or subsurized NeC terms of cented in expose or developed important (e.g., and a substantial of the control of the co		saible for make and about all formers in			
Michael Mich					
overland water flow) on a map as appropriate (attach a map to the bottom of the sheet, or as a separate workhand). The following table is used to determine scores associated with the migration potential: Based on the question above, migration potential is 'Unilkely.' Based on other question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential is 'Unilkely.' Based on the question above, migration potential for the Culebra Island Site, Purper to Ruis Poliverury 2010 MEC Classification Input Factor Categories Cased munitions information has been inputed into the Munitions, Bulk Explosive Info' Worksheet therefore, bulk explosives of not comprise all MCE for this MRS. The 'Amount of MCC 'category is Target Area.' It. cannot be automatically assumed that the MCE classification in this category or are July.' The Amount of MCC 'category is Target Area.' It. cannot be automatically assumed that the MCE classification with white phosphorus filler 'High explosive info' worksheet were identified as 'Amount of MCC 'categories' in the MCE of the CMCD 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Amount of MCC 'categories' info Worksheet were identified as 'Categ		icins, or move surface or sussainace			
The following table is used to determine scores associated with the migration potentials such as Sufface Subsurface Conditions Cleanup Cleanup Possible 030 30 30 10 0 0 0 0 0 0 0 0 0 0 0 0 0					
The following table is used to determine scores associated with the migration potential: Baseline Surface Subsurface Conditions Control Surface Subsurface Conditions Control Surface Subsurface Control Surface Control Surface Surface Subsurface Control Surface Control Surface Surface Subsurface Control Surface		the bottom of this sheet, or as a			
Basedine Conditions Canaly Ceanup: Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Basedine Conditions. Sulface Cleanup: 10 Substantian Ceanup: 10 Sulface Cleanup: 110 Sulface C	separate worksneet).			1	
Basedine Conditions Canaly Ceanup: Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Based on the question above, migration potential is 'Unlikely'. Basedine Conditions. Sulface Cleanup: 10 Substantian Ceanup: 10 Sulface Cleanup: 110 Sulface C	The following table is used to determine scores associated with t	he migration potential:		1	
Possible 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10					
Unilkely 10 10 10 10 10 10 10 10 10 10 10 10 10	Cc				
Based on the question above, migration potential is 'Unlikely.' Baseline Conditions: Subsurface Cleanup: 10 Subsurface Cleanup: 110 Select Ref(x) MEC Classification Input Factor Categories Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet, therefore, bulk explosives do not comprise all MECs for this MRS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens from this category are DMN. Therefore, the conservative assumption is that the MEC intens in this MES are UXO. Are any of the municions listed in the *Municions, Bulk Explosive Info' Worksheet were identified as 'Target'. In the Mec' Intens from the *Municions from the *Mu					
Baseline Conditions: 10 Subsurface Cleanup: 10 Select Ref(s) MEC Classification Input Factor Categories Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MES. The 'Amount of MEC' Category is Target Arra': It cannot be automatically assumed that the MEC items from this category are DMN. Therefore, the conservative assumption is that the MEC instance is those than MEC in the OBOO Area is DMM? Are any of the munition listed in the Ministrions, Bulk Explosive Info' Worksheet: 10 Subsurface Cannot in the MES are UXO. 10 Subsurface Info Memory Info	Unlikely	10 10 10)		
Baseline Conditions: 10 Subsurface Cleanup: 10 Select Ref(s) MEC Classification Input Factor Categories Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MES. The 'Amount of MEC' Category is Target Arra': It cannot be automatically assumed that the MEC items from this category are DMN. Therefore, the conservative assumption is that the MEC instance is those than MEC in the OBOO Area is DMM? Are any of the munition listed in the Ministrions, Bulk Explosive Info' Worksheet: 10 Subsurface Cannot in the MES are UXO. 10 Subsurface Info Memory Info	Based on the question above migration notential is 'Unli	kelv.'	Score		
Surface Cleanup: Subsurface Cleanup: 10 Reference(s) for above information: Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Purchard Rice, February 2010 MEC Classification Input Factor Categories Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, but explosives do not comprise all MECs for this MRS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items from this category and the munitions little in the Munitions, Bulk Explosive Info' Worksheet: In Submundices In Submundi					
Reference(s) for above information: Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puetro Rice, Petruary 2010 MEC Classification Input Factor Categories Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet, therefore, bulk explosives do not comprise all MECs for this MRS. The 'Annount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC lemen this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from this category are DMM. Therefore, the conservative assumption is that the MEC lemen from the Memory are DMM. Therefore, the conservative assumption is that the MEC lemen from the MEC all the MEC and the MEC and the MEC all the MEC and			10		
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Petrota Rice, February 2010 MEC Classification Input Factor Categories Cased munitions information has been inputed into the "Munitions, Bulk Explosive Info" Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS. The 'Amount of MEC category is Target Area.' It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC lies in this MRS are UXO. Has a technical assessment shown that MEC in the OBVO Area is DMM? Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Suffle-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive and trank (HEAT) rounds - Hand grenades - Huand grenades - Huand grenades - Huand grenades - Huand grenades - Mortars None of the homs listed in the "Munitions, Bulk Explosive Info' Worksheet were identified as "Tuzed." UXO Conditions Cleanup Cleanup UXO Conditions Cleanup UXO 110 100 100 UXO Conditions Cleanup UXO 110 100 100 UXO Special Case UXO 110 100 100 UXO Special Case UXO 110 100 100 UXO 110 100 UXO Special Case - 100 100 UXO 110 100 UXO Special Case - 100 100 UXO 110 100 UXO Special Case - 100 100 UXO 110 100 UXO	Subsurface Cleanup:		10		
Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Petrota Nico, February 2010 MEC Classification Input Factor Categories Cased munitions information has been inputed into the "Munitions, Bulk Explosive Info" Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC limits in this MRS are UXO. Has a technical assessment shown that MEC in the OBVOD Area is DMM? Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Rifle-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Fuzes - Mortans None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Tuzedr'. Tuzed Tuzed PMM Special Case UXO Conditions Clearup Cleanup UXO Special Case UXO Conditions Cleanup UXO Conditions Cleanup UXO Special Case - 105 105 105 105 105 105 105 105 105 105	Reference(s) for above information:				
MEC Classification Input Factor Categories Cased munitions information has been inputed into the "Munitions, Bulk Explosive Info" Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO. Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet: Submunitions RiPe-propelled 40mm projectiles (often called 40mm grenades) - Worthors with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Places - Words - Word		dy at the Culebra Island Site.		. 1	
Cased munitions information has been inputed into the *Munitions, Bulk Explosive Info' Worksheet, therefore, bulk explosives do not comprise all MECs for this MBS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MBS are UXO. Has a technical assessment shown that MEC in the OBCO Area is DMM? Are any of the munitions listed in the Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Rifle propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (*HEAT) rounds - Hand grenades - Huge and the state of the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* None of the items listed in the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* WO Special Case UXO Special Case Subsurface UXO Conditions Cleanup UXO Special Case Info Info Info Info Info Info Info Info			Select Ref(5)	
Cased munitions information has been inputed into the *Munitions, Bulk Explosive Info' Worksheet, therefore, bulk explosives do not comprise all MECs for this MBS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MBS are UXO. Has a technical assessment shown that MEC in the OBCO Area is DMM? Are any of the munitions listed in the Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Rifle propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (*HEAT) rounds - Hand grenades - Huge and the state of the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* None of the items listed in the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* WO Special Case UXO Special Case Subsurface UXO Conditions Cleanup UXO Special Case Info Info Info Info Info Info Info Info					
Cased munitions information has been inputed into the *Munitions, Bulk Explosive Info' Worksheet, therefore, bulk explosives do not comprise all MECs for this MBS. The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MBS are UXO. Has a technical assessment shown that MEC in the OBCO Area is DMM? Are any of the munitions listed in the Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Rifle propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (*HEAT) rounds - Hand grenades - Huge and the state of the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* None of the items listed in the *Munitions, Bulk Explosive Info' Worksheet were identified as *Vazeof.* WO Special Case UXO Special Case Subsurface UXO Conditions Cleanup UXO Special Case Info Info Info Info Info Info Info Info	MEC Classification Input Factor Categories				
Worksheet; therefore, bulk explosives do not comprise all MECS for this MRS. The 'Amount of MEC' category is Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO. Has a technical assessment shown that MEC in the OBYOD Area is DMM? Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet: - Submunitions - Rifle-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Fuzes - Mortars None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'Notars' None of the Items listed in the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than the 'Notars' info Items listed in the 'Notars' info Items listed		Munitions, Bulk Explosive Info			
the MEC items from this Category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO. Has a technical assessment shown that MEC in the OB/OD Area is DMM? Are any of the munitions listed in the "Munitions, Bluk Explosive Info" Worksheet: - Submunitions - Riffie-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Fuzes - Nortars None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: The following table is used to determine scores associated with MEC desired in the Munitions of the Items of the Munitions of the Munitions of the Munitions of the Munitions of the Mechanism of the Munitions of the M					
the MEC items from this Category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO. Has a technical assessment shown that MEC in the OB/OD Area is DMM? Are any of the munitions listed in the "Munitions, Bluk Explosive Info" Worksheet: - Submunitions - Riffle-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Fuzes - Nortars None of the Items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: The following table is used to determine scores associated with MEC along the company of the comp	The 14 course of 14 miles of 1				
that the MEC items in this MRS are UXO. Has a technical assessment shown that MEC in the OBCO Area is DMM7 Are any of the munitions listed in the "Munitions, Bulk Explosive Info" Worksheet: Submunitions Rifle-propelled 40mm projectiles (often called 40mm grenades) Rifle-propelled 40mm projectiles (often called 40mm grenades) Rifle propelled 40mm projectiles (often called 40mm grenades) Rifle projectiles (often called 40mm grenades) Rifle Rifle projectiles (often called 40mm grenades) Rifle Rif					
Has a technical assessment shown that MEC in the OBYOD Area is DAM? Are any of the munitions listed in the "Auntions, Bulk Explosive Info" Worksheet: Submunitions - Submunitions - Rifle propiled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explose and Hank (HEAT) rounds - Hand grenades - Fuzes - Wortars None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "fuzed". The following table is used to determine scores associated with MEC classification categories: Baseline - UXO Conditions - Baseline - UXO Conditions - Baseline - UXO Conditions - Baseline - Baseline - Baseline - Baseline - Baseline - Baseline Conditions: - Baseline - Baseline Conditions: - Baseline -		ne conservative assumption is			
- Submunitions - Rifle-propelled 40mm projectiles (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive ant-tank (HEAT) rounds - Hand grenades - Fuzes - Mortars None of the Items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "trizad". The following table is used to determine scores associated with MEC classification categories: - Baseline Sufface Subsurface - UXO Conditions Cleanup Cleanup - UXO Special Case - UXO Conditions Cleanup Cleanup - UXO Special Case - UXO Conditions Cleanup Cleanup - UXO Special Case - UXO 110 110 110 - Fuzed DIMN Special Case - UXO 110 110 110 - Fuzed DIMN Special Case - UXO 110 110 110 - Fuzed DIMN Special Case - UXO 110 110 110 - Fuzed DIMN Special Case 105 105 105 - Fuzed DIMN 45 45 45 45 - Baseline Conditions: - UXO 110 110 110 110 - UXO 110 110 110 - UXO 110 110 110 110 110 - UXO 110 110 110 110 110 - UXO 110 110 110 110 110 110 - UXO 110 110 110 110 110 110 110 - UXO 110 110 110 110 110 110 110 110 110 11		a is DMM?			
- Rifle-propelled 40mm projecties (often called 40mm grenades) - Munitions with white phosphorus filler - High explosive anti-tank (HEAT) rounds - Hand grenades - Fuzes - Fuzes - Whortars - None of the items listed in the "Munitions, Bulk Explosive Info' Worksheet were identified as - Yuzed? - Wortars - W	Are any of the munitions listed in the 'Munitions, Bulk Explosive	Info' Worksheet:	No		
Munitions with white phosphorus filler High explosive anti-tank (HEAT) rounds Hand grenades Fuzes Fuzes Mortars None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: Baseline UXO Conditions Surface Subsurface UXO Gonditions Cleanup UXO Special Case UXO Conditions UXO 110 110 110 Fuzed DMM Special Case 180 180 180 UXO 110 110 110 Fuzed DMM 555 55 55 Unifuzed DMM 45 45 45 45 Unifuzed DMM 45 55 55 Unifuzed DMM 45 45 45 Unifuzed DMM 45 55 55 Unifuzed DMM 45 55 55 Unifuzed DMM 45 55 55 Unifuzed DMM 45 55 65 Unifuzed DMM 45 56 45 45 Unifuzed DMM 46 56 45 45 Unifuzed DMM 46 56 45 45 45 Unifuzed DMM 47 45 45 45 45 Unifuzed DMM 47 45 45 45 45 Unifuzed DMM 47 40 40 Unifuzed DMM 48 45 45 45 45 Unifuzed DMM 48 40 40 40 40 40 40 40 40 40 40 40 40 40					
High explosive anti-tank (HEAT) rounds Hand grenades Fuzes Wortars None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: Baseline UXO Conditions Cleanup UXO Special Case UXO 110 110 110 110 110 110 110 110 110 11		called 40mm grenades)			
Hand grenades - Fuzes - Mortars None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: Baseline Surface Subsurface UXO Conditions Cleanup Cleanup UXO Special Case UXO 110 110 110 110 Fuzed DMM Special Case 105 105 105 Fuzed DMM 55 55 55 Unfuzed DMM 45 45 45 45 Bulk Explosives 45 45 45 Baseline Conditions: Surface Cleanup: Baseline Surface Cleanup: Subsurface Cleanup Any munitions (from the "Munitions, Baseline Conditions of Cleanup Cleanup Cleanup All munitions weigh nore than 90 lbs; small enough for a receptor to be able to move and initiate a detonation 41 bis too large to move without carge equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see "Munitions, Bulk Explosive Info" Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 0 0 0 Based on the definitions above and the types of munitions at the site (see "Munitions, Bulk Explosive Info" Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 0 0 0 Based on the definitions above and the types of munitions at the site (see "Munitions, Bulk Explosive Info" Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 0 0 0					
Fuzes Mortars None of the items listed in the 'Munitions, Bulk Explosive Info' Worksheet were identified as 'fuzea'. The following table is used to determine scores associated with MEC classification categories: UXO Conditions Cleanup UXO Special Case UXO Conditions Cleanup UXO Special Case UXO 110 110 110 110 Fuzed DMM Special Case 105 105 105 Fuzed DMM Special Case 105 105 Fuzed DMM Special Case 105 105 105 Fuzed DMM Special Case 105 105 Fuzed DMM Special Case 105 105 105 Fuzed DMM Special Case 105 105 Fuzed DMM Special Case 105 105 Fuzed DMM Special Case 105 105 105 105 106 107 107 107 107 107 107 107		•			
None of the items listed in the "Munitions, Bulk Explosive Info" Worksheet were identified as "tuzed". The following table is used to determine scores associated with MEC classification categories: Baseline Surface Subsurface UXO Conditions Cleanup Cleanup UXO Special Case 180 180 180 UXO Special Case 110 110 110 Fuzed DMM Special Case 105 105 105 Fuzed DMM 55 55 55 55 Unfuzed DMM 45 45 45 45 Based on your answers above, the MEC classification is 'UXO'. Based on your answers above, the MEC classification is 'UXO'. Based on your answers above, the MEC classification is 'UXO'. Based no your answers above, the MEC classification is 'UXO'. Ba					
The following table is used to determine scores associated with MEC classification categories: DXO Conditions Cleanup Cleanup Cleanup					
The following table is used to determine scores associated with MEC classification categories: DXO Conditions Cleanup Cleanup Cleanup		o' Worksheet were identified as			
Baseline Oxforditions Surface Cleanup Cleanup UXO Conditions (Trom the Munitions, Bulk Explosive Info Worksheet) weigh less than 90 lbs; small and initiate a detonation 40 All munitions weigh more than 90 lbs; too large to move without Large equipment of the Munitions, Baseline Conditions: Baseline Conditions: UXO Conditions Surface Cleanup: Score Baseline Conditions: Description Conditions, Surface Cleanup: Any munitions (from the Munitions, Bulk Explosive Info Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without Large equipment 0 0 0 0 Dased on the definitions above and the types of munitions, at the site (see "Munitions, Bulk Explosive Info" Worksheet), the MEC Size Input Factor is: Baseline Conditions: UXO Conditions Surface Cleanup: Surface Cleanup: Surface Cleanup Cleanup Surface Cleanup Surface Cleanup Surface Cleanup Cleanup Surface Cleanup Surface Cleanup Cleanup Cleanup Large Example Conditions weigh more than 90 lbs; small enough for a receptor to be able to move Based on the definitions above and the types of munitions at the site (see "Munitions, Bulk Explosive Info" Worksheet), the MEC Size Input Factor is: Baseline Conditions: Baseline Conditions: O Surface Cleanup: Cleanup	None of the items listed in the 'Munitions, Bulk Explosive Inf				
UXO Conditions Cleanup Cleanup UXO Special Case 180 180 180 180 180 180 180 180 180 180					
UXO Special Case	'fuzed'. The following table is used to determine scores associated with N				
DXO	'fuzed'. The following table is used to determine scores associated with N Ba	seline Surface Subsurface			
Fuzed DMM Special Case 105 105 105 105	'fuzed'. The following table is used to determine scores associated with N BB UXO CC	aseline Surface Subsurface onditions Cleanup Cleanup	1		
Fuzed DMM	'fuzed'. The following table is used to determine scores associated with N Ba UXO Cc UXO Special Case	aseline Surface Subsurface onditions Cleanup Cleanup 180 180 180			
Unfuzed DMM	'fuzed'. The following table is used to determine scores associated with N Ba UXO CC UXO Special Case UXO	aseline Surface Subsurface onditions Cleanup Cleanup 180 180 180 110 110 110)		
Based on your answers above, the MEC classification is 'UXO'. Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Cleanup Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 0 0 0 0 0 0 0 0 0 0 0 0	"fuzed". The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case	seline Surface Subsurface onditions Cleanup Cleanup 180 180 180 110 110 110 105 105 105) 5		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Conditions Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation All munitions weigh more than 90 lbs; too large to move without aequipment Large Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 Surface Cleanup: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	'fuzed'. The following table is used to determine scores associated with N Ba UXO CC UXO Special Case UXO VXO Special Case UXO Special Case UXO UXO SPECIAL CASE UXO UXO SPECIAL CASE UXO	seline Surface Subsurface onditions Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55) 5 5		
Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Conditions Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation All munitions weigh more than 90 lbs; too large to move without aequipment Large Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 Surface Cleanup: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	'fuzed'. The following table is used to determine scores associated with N Ba UXO Cc UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM	seeline Surface Subsurface onditions Cleanup Cleanup 180 180 180 180 110 110 110 110 15 55 55 55 55 45 45 45 45) 5 5		
Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Cleanup Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without Large equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: 0 Surface Cleanup:	'fuzed'. The following table is used to determine scores associated with N Be UXO CO UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives	seline Surface notitions Surface Cleanup Cleanup Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45) 5 5 5		
Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small All munitions weigh more than 90 lbs; too large to move without Large Equipment Description All munitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: Surface Surface Surface Surface Subsurface Cleanup Cleanup Cleanup Leanup Leanup Large Large Score Score Surface Oleanup Surface Subsurface Cleanup Leanup Leanup Large Score Score Surface Oleanup Cleanup	"Tuzed". The following table is used to determine scores associated with N Ba UXO CC UXO Special Case UXO Evized DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I	seline Surface notitions Surface Cleanup Cleanup Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45	Score		
MEC Size Input Factor Categories The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Description Conditions Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment Large Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: O Surface Surface Subsurface Cleanup Surface Cleanup Learup Large Score Baseline Conditions: O Surface Cleanup	The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'the Baseline Conditions:	seline Surface notitions Surface Cleanup Cleanup Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45	Score		
The following table is used to determine scores associated with MEC Size: Baseline Description Conditions Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 Surface Subsurface Cleanup Cleanup Lerge Subsurface Cleanup Lerge Subsurface Subsurface Cleanup	"fuzed". The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'the Special Conditions: Surface Cleanup:	seline Surface notitions Surface Cleanup Cleanup Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45	Score 110		
Baseline Surface Cleanup Baseline Surface Subsurface Conditions Cleanup Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: 0 Surface Cleanup: 0 Baseline Conditions: 0 Surface Subsurface Cleanup Cleanup Cleanup Leanup Large Score	"fuzed". The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'UB Baseline Conditions: Surface Cleanup: Subsurface Cleanup:	seline Surface notitions Surface Cleanup Cleanup Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45	Score 110		
Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without Large equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: 0 Surface Cleanup: Cleanup	"fuzed". The following table is used to determine scores associated with N BR UXO CO UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'U Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories	seline Surface Subsurface Cleanup Cleanup 180 180 180 180 180 180 190 190 190 190 190 190 190 190 190 19	Score 110		
Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 Surface Cleanup: 0 0	The following table is used to determine scores associated with N Be UXO Co UXO Special Case UXO Co UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'U Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N	seline Surface Cleanup Cleanup 180 180 180 180 180 110 110 110 110 110	Score 110		
Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without Large equipment 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: Surface Cleanup: 0 0 0 0 0 0 0 0 0 0 0 0 0	"Tuzed". The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BB	sseline Surface Orditions Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45 UXO'. WEC Size: steline Surface Subsurface	Score 110		
Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 lbs; too large to move without Large equipment 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: Surface Cleanup: 0 0 0 0 0 0 0 0 0 0 0 0 0	"Tuzed". The following table is used to determine scores associated with N BB UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Subsurface Cleanup: The following table is used to determine scores associated with N Ba	sseline Surface Orditions Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45 UXO'. WEC Size: steline Surface Subsurface	Score 110		
for a receptor to be able to move Small and initiate a detonation 40 40 40 All munitions weigh more than 90 Ibs; too large to move without Large equipment 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: Surface Cleanup: 0 40 40 40 40 40 40 40 40 40	The following table is used to determine scores associated with N Be UXO Co UXO Special Case UXO Co UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'U Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N Be Description Co	sseline Surface Orditions Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45 UXO'. WEC Size: steline Surface Subsurface	Score 110		
Small and initiate a detonation 40 40 40 All munitions weigh more than 90 Ibs; too large to move without Large equipment 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: Surface Cleanup: 0 40 40 40 40 40 40 40 40 40	"fuzed". The following table is used to determine scores associated with M BB UXO CC UXO Special Case UXO CC UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'the Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with M BB BB C C C C C C C C C C C C C C C C	sseline Surface Orditions Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45 UXO'. WEC Size: steline Surface Subsurface	Score 110		
All munitions weigh more than 90	"The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'U Baseline Conditions: Surface Cleanup: Surface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough	sseline Surface Orditions Subsurface Cleanup Cleanup 180 180 180 110 110 110 105 105 105 55 55 55 45 45 45 45 45 45 UXO'. WEC Size: steline Surface Subsurface	Score 110		
Ibs; too large to move without equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: Score Surface Cleanup: 0 0	"Truzed". The following table is used to determine scores associated with N B B UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N B Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move	sseline Surface Cleanup Subsurface Cleanup 180 180 180 180 110 110 110 110 105 105 105 105 55 55 55 55 45 45 45 45 UXO*. 45 45 45	Score 110 110		
Large equipment 0 0 0 0 Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: Surface Cleanup: 0 0	"fuzed." The following table is used to determine scores associated with M BB BB UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Unfuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with M BB C Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation	sseline Surface Cleanup Subsurface Cleanup 180 180 180 180 110 110 110 110 105 105 105 105 55 55 55 55 45 45 45 45 UXO*. 45 45 45	Score 110 110		
Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk Explosive Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: 0 Surface Cleanup: 0	The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Surface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90	sseline Surface Cleanup Subsurface Cleanup 180 180 180 180 110 110 110 110 105 105 105 105 55 55 55 55 45 45 45 45 UXO*. 45 45 45	Score 110 110		
Info' Worksheet), the MEC Size Input Factor is: Score Baseline Conditions: Surface Cleanup: 0 0	The following table is used to determine scores associated with N B UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N Ba Description Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without	Suseline Surface Subsurface Cleanup	Score 110 110		
Baseline Conditions: 0 Surface Cleanup: 0	The following table is used to determine scores associated with N UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I Baseline Conditions: Surface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N Be Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment	Susce Surface Subsurface Cleanup Cle	Score 110 110		
Baseline Conditions: 0 Surface Cleanup: 0 Surface C	The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Surface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment Based on the definitions above and the types of munitions at the	Susce Surface Subsurface Cleanup Cle	Score 110 110		
Surface Cleanup: 0	The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I' Baseline Conditions: Surface Cleanup: Surface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment Based on the definitions above and the types of munitions at the	Susce Surface Subsurface Cleanup Cle	Score 110 110		
	The following table is used to determine scores associated with N BR BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Cc Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without Large Based on the definitions above and the types of munitions at the Info' Worksheet), the MEC Size Input Factor is:	Susce Surface Subsurface Cleanup Cle	Score 110 110 110 110 Large Score		
	The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'I Baseline Conditions: Surface Cleanup: Surface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment Based on the definitions above and the types of munitions at the Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions:	Susce Surface Subsurface Cleanup Cle	Score 110 110 110 110 Large Score		
	The following table is used to determine scores associated with N BR UXO CC UXO Special Case UXO Special Case UXO Fuzed DMM Special Case Fuzed DMM Special Case Fuzed DMM Bulk Explosives Based on your answers above, the MEC classification is 'to Baseline Conditions: Surface Cleanup: Subsurface Cleanup: Subsurface Cleanup: MEC Size Input Factor Categories The following table is used to determine scores associated with N BR Description CC Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move and initiate a detonation All munitions weigh more than 90 lbs; too large to move without equipment Based on the definitions above and the types of munitions at the Info' Worksheet), the MEC Size Input Factor is: Baseline Conditions: Surface Cleanup:	Susce Surface Subsurface Cleanup Cle	Score 110 110 110 110 Large Score 0 0		

Cased Munitions Information

						Is			Minimum Depth for		Comments (include rationale
	Munition Type (e.g., mortar,	Munition	Munition		Energetic Material	Munition		Fuze	Munition	Location of	for munitions that are
Item No.	projectile, etc.)	Size	Size Units	Mark/ Model	Туре	Fuzed?	Fuzing Type	Condition	(ft)	Munitions	"subsurface only")
					High					Surface and	
1	Demolition Charges			hose	Explosive	UNK	UNK	UNK	0	Subsurface	RI field work
				warhead (HEAT) live, rocket	High					Surface and	
2	Rockets			nose	Explosive	Yes	UNK	Armed	0	Subsurface	RI field work
	Bombs			MK76	High Explosive	100	oni.	112	J	Surface and Subsurface	EE/CA, Cayo Botella
_				-	1					Surface and	, , , , , , , , , , , , , , , , , , , ,
4	Artillery	6	inches							Subsurface	EE/CA, Cayo Botella
5	Pyrotechnic			Spotting charge, MK 4						Surface and Subsurface	EE/CA, Cayo Botella
6	Artillery	20	mm	HEI	High Explosive					Surface and Subsurface	EE/CA, NTCRA
7											
8											
9											
10											
11 12											
13											
14											
15											
16											
17											
18											
19											
20											

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011


Select Ref(s)

Bulk Explosive Information

Item No.	Explosive Type	Comments	
1			
2			

Activities Currently Occurring at the Site

Reference(s) for table above:

Draft Remedial Investigation at the Culebra Island Site, Puerto Rico, September 2011

Energetic Material Type Input Factor Categories

The following table is used to determine scores associated with the energetic materials. Materials are listed in order from most hazardous to least hazardous.

	Baseline Conditions	Surface Cleanup	Subsurface Cleanup
High Explosive and Low Explosive Filler in Fragmenting			
Rounds	100	100	100
White Phosphorus	70	70	70
Pyrotechnic	60	60	60
Propellant	50	50	50
Spotting Charge	40	40	40
Incendiary	30	30	30

The most hazardous type of energetic material listed in the 'Munitions, Bulk Explosive Info' Worksheet falls under the category 'High Explosive and Low Explosive Filler in Fragmenting Rounds'.

Score

Baseline Conditions: 100
Surface Cleanup: 100
Subsurface Cleanup: 100

Location of Additional Human Receptors Input Factor Categories

1. What is the Explosive Safety Quantity Distance (ESQD) from the Explosive Siting Plan or the Explosive Safety Submission for the MRS?

2510 feet

Select MEC(s)

2. Are there currently any features or facilities where people may congregate within the MRS, or within the ESQD arc?

3. Please describe the facility or feature.

MEC Item(s) used to calculate the ESQD for current use activities

Item #1. Demolition Charges (High Explosive)

Item #2. Rockets (High Explosive)

Item #6. Artillery (20mm, High Explosive)

The following table is used to determine scores associated with the location of additional human receptors (current use activities):

(current use activities):	Baseline Conditions		Subsurface Cleanup
Inside the MRS or inside the ESQD arc	30	30	30
Outside of the ESQD arc	0	0	0

4. Current use activities are 'Outside of the ESQD arc', based on Question 2.'

Baseline Conditions:
Surface Cleanup:

Subsurface Cleanup:
5. Are there future plans to locate or construct features or facilities where people may congregate within the MRS, or within the ESQD arc?

6. Please describe the facility or feature.

Score

0 0 0

MEC Item(s) used to calculate the ESQD for future use activities

Select MEC(s)

The following table is used to determine scores associated with the location of additional human receptors (future use activities):

30 30 30 0 0 0

Baseline

7. Please answer Question 5 above to determine the scores.

Inside the MRS or inside the ESQD arc

Outside of the ESQD arc

Score

Site Accessibility Input Factor Categories

The following table is used to determine scores associated with site accessibility:

The following table is a	isca to determine scores associated W	Baseline	Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
	No barriers to entry, including			
Full Accessibility	signage but no fencing	80	80	80
	Some barriers to entry, such as			
Moderate Accessibility	barbed wire fencing or rough terrain	55	55	55
	Significant barriers to entry, such as unquarded chain link fence or			
	requirements for special			
Limited Accessibility	transportation to reach the site	15	15	15
	A site with guarded chain link fence			
	or terrain that requires special			
Very Limited	equipment and skills (e.g., rock			
Accessibility	climbing) to access	5	5	5

Consumer Han Antivition	Cooro
Current Use Activities	Score

Select the category that best describes the site accessibility under the current use scenario:

Moderate Accessibility	
Baseline Conditions:	55
Surface Cleanup:	55
Subsurface Cleanup:	55

Future Use Activities

Select the category that best describes the site accessibility under the future use scenario:

belief the category that best describes the site accessibility ander the ratare use sections.	
Moderate Accessibility	
Baseline Conditions:	55
Surface Cleanup:	55
Subsurface Cleanup:	55

Reference(s) for above information:

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

Response Alternative No. 1:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 2:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup

Subsurface Cleanup:

Response Alternative No. 3:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 4:

Please enter site accessibility information in the 'Planned Remedial or Removal Actions' Worksheet to continue.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 5:

Potential Contact Hours Input Factor Categories

The following table is used to determine scores associated with the total potential contact time:

5	Description	Baseline Conditions	Surface Cleanup	Subsurface Cleanup	
Many Hours	≥1,000,000 receptor-hrs/yr	120	90	. 30)
Some Hours	100,000 to 999,999 receptor hrs/yr	70	50	20)
Few Hours	10,000 to 99,999 receptor-hrs/yr	40	20	10)
Very Few Hours	<10,000 receptor-hrs/yr	15	10	5	5

Current Use Activities:

Input factors are only determined for baseline conditions for current use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is:

Based on the table above, this corresponds to a input factor score for baseline conditions of:

161,000 hrs/yr **70** Score

Future Use Activities:

Input factors are only determined for baseline conditions for future use activities. Based on the 'Current and Future Activities' Worksheet, the Total Potential Contact Time is: Based on the table above, this corresponds to a input factor score of:

receptor hrs/yr Score

receptor

Response Alternative No. 1:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 2:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 3:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 4:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup

Response Alternative No. 5:

Not enough information has been entered in the 'Planned Remedial or Removal Actions' Worksheet. Please complete the table before returning to this section.

Total Potential Contact Time

Based on the table above, this corresponds to input factor scores of:

Score

Amount of MEC Input Factor Categories

The following table is t	ased to determine scores associated wi	Baseline	Surface	Subsurface
	Description	Conditions	Cleanup	Cleanup
Target Area	Areas at which munitions fire was directed	180	120	30
OB/OD Area	Sites where munitions were disposed of by open burn or open detonation methods. This category refers to the core activity area of an OB/OD area. See the "Safety Buffer Areas" category for safety fans and kickouts.	180	110	30
Function Test Range	Areas where the serviceability of stored munitions or weapons systems are tested. Testing may include components, partial functioning or complete functioning of stockpile or developmental items.	165	90	25
Burial Pit	The location of a burial of large quantities of MEC items.	140	140	10
Maneuver Areas	Areas used for conducting military exercises in a simulated conflict area or war zone	115	15	5
Firing Points	The location from which a projectile, grenade, ground signal, rocket, guided missile, or other device is to be ignited, propelled, or released.	75	10	5
Safety Buffer Areas	Areas outside of target areas, test ranges, or OB/OD areas that were designed to act as a safety zone to contain munitions that do not hit targets or to contain kick-outs from OB/OD areas.	30	10	5
Storage	Any facility used for the storage of military munitions, such as earth-covered magazines, above-ground magazines, and open-air storage areas.	25	10	5
Explosive-Related Industrial Facility	Former munitions manufacturing or demilitarization sites and TNT production plants	20	10	5
Select the category that best describes the most hazardous amount of MEC:				So

Select the category that best describes the <i>most hazardous</i> amount of MEC:	Score
Target Area	
Baseline Conditions:	180
Surface Cleanup:	120
Subsurface Cleanup:	30

Minimum MEC Depth Relative to the Maximum Intrusive Depth Input Factor Categories Current Use Activities

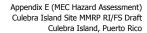
The shallowest minimum MEC depth, based on the 'Cased Munitions Information' Worksheet:

0 ft

The deepest intrusive depth:

0 ft

The table below is used to determine scores associated with the minimum MEC depth relative to the maximum intrusive depth: $\frac{1}{2}$


Baseline Surface Subsurface Conditions Cleanup Cleanup

Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface			
MEC.	240	150	95
Baseline Condition: MEC located surface and subsurface,			
After Cleanup: Intrusive depth does not overlap with			
subsurface MEC.	240	50	25
Baseline Condition: MEC located only subsurface. Baseline			
Condition or After Cleanup: Intrusive depth overlaps with	450		0.5
minimum MEC depth.	150	N/A	95
Baseline Condition: MEC located only subsurface. Baseline Condition or After Cleanup: Intrusive depth does not overlap			
with minimum MEC depth.	50	N/A	25

Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth will overlap after cleanup. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.' For 'Current Use Activities', only Baseline Conditions are considered.

240 Score

Future Use Activities

Deepest intrusive

depth:

Because the shallowest minimum MEC depth is less than or equal to the deepest intrusive depth, the intrusive depth overlaps. MECs are located at both the surface and subsurface, based on the 'Munitions, Bulk Explosive Info' Worksheet. Therefore, the category for this input factor is 'Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.'. For 'Future Use Activities', only Baseline Conditions are considered.

Response Alternative No. 1:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Maximum Intrusive Depth

ft

240 Score

ft

1 ft

Not enough information has been entered to calculate this input factor.

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanur

Response Alternative No. 2:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet): ft

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

Maximum Intrusive Depth

ft

Not enough information has been entered to calculate this input factor.

Score

Score

Baseline Conditions:

Surrace Cleanup:

Subsurface Cleanup:

Response Alternative No. 3:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):

Not enough information has been entered in the 'Planned Remedial or Removal Actions'

Worksheet. Please complete the table before returning to this section.

ft

ft

Maximum Intrusive Depth

Not enough information has been entered to calculate this input factor.

Score

Baseline Conditions:

Surface Cleanup:

Subsurface Cleanup:

Response Alternative No. 4:

Expected minimum MEC depth (from the 'Planned Remedial or Removal Actions' Worksheet):

Not enough information has been entered in the 'Planned Remedial or Removal Actions'
Worksheet. Please complete the table before returning to this section.

Maximum Intrusive Depth

ft

ft

Not enough information has been entered to calculate this input factor.

Score

Baseline Conditions:

Maximum Intrusive Depth

ft

Not enough information has been entered to calculate this input factor.

Score

Baseline Conditions: Subsurface Cleanup:

Migration Potential Input Factor Categories

Is there any physical or historical evidence that indicates it is possible for natural physical forces in the area (e.g., frost heave, erosion) to expose subsurface MEC items, or move surface or subsurface MEC items?

If "yes", describe the nature of natural forces. Indicate key areas of potential migration (e.g., overland water flow) on a map as appropriate (attach a map to the bottom of this sheet, or as a

The following table is used to determine scores associated with the migration potential:

	Daseillie	Surface	Subsurface	
	Conditions	Cleanup	Cleanup	
Possible	30	30		10
Unlikely	10	10		10

Based on the question above, migration potential is 'Unlikely.'	Score
Baseline Conditions:	10
Surface Cleanup:	10
Subsurface Cleanup:	10

Reference(s) for above information:

Final Work Plan, Remedial Investigation / Feasibility Study at the Culebra Island Site, Puerto Rico, February 2010

Select Ref(s)

MEC Classification Input Factor Categories

Cased munitions information has been inputed into the 'Munitions, Bulk Explosive Info' Worksheet; therefore, bulk explosives do not comprise all MECs for this MRS.

The 'Amount of MEC' category is 'Target Area'. It cannot be automatically assumed that the MEC items from this category are DMM. Therefore, the conservative assumption is that the MEC items in this MRS are UXO.

Are any of the munitions listed in the 'Munitions, Bulk Explosive Info' Worksheet:

- - Submunitions · Rifle-propelled 40mm projectiles (often called 40mm grenades)
 - · Munitions with white phosphorus filler
 - · High explosive anti-tank (HEAT) rounds
 - · Hand grenades
 - · Fuzes
 - Mortars

At least one item listed in the 'Munitions, Bulk Explosive Info' Worksheet was identified as 'fuzed'

The following table is used to determine scores associated with MEC classification categories:

		Baseline	Surface	Subsurface
	UXO	Conditions	Cleanup	Cleanup
UXO Special Case		180	180	180
UXO		110	110	110
Fuzed DMM Special Case		105	105	105
Fuzed DMM		55	55	55
Unfuzed DMM		45	45	45
Bulk Explosives		45	45	45

Based on your answers above, the MEC classification is 'UXO'.	Score
Baseline Conditions:	110
Surface Cleanup:	110
Subsurface Cleanup:	110

MEC Size Input Factor Categories

The following table is used to determine scores associated with MEC Size:

Surface Subsurface Conditions Cleanup Cleanup

Any munitions (from the 'Munitions, Bulk Explosive Info' Worksheet) weigh less than 90 lbs; small enough for a receptor to be able to move

Description

and initiate a detonation

40

0

40 40

0

All munitions weigh more than 90 lbs; too large to move without

equipment

Based on the definitions above and the types of munitions at the site (see 'Munitions, Bulk

Explosive Info' Worksheet), the MEC Size Input Factor is:

Large Score

0

Baseline Conditions: Surface Cleanup: Subsurface Cleanup:

Small

Large

0 0

0

Scoring Summary

Site ID: MRS 07	a. Scoring Summary for Current Use Activities	
Date: 9/9/2	Response Action Cleanup:	No Response Action
Input Factor	Input Factor Category	Score
I. Energetic Material Type	High Explosive and Low Explosive Filler in Fragmenting Rounds	100
II. Location of Additional Human Receptors	Outside of the ESQD arc	0
III. Site Accessibility	Moderate Accessibility	55
IV. Potential Contact Hours	100,000 to 999,999 receptor hrs/yr	70
V. Amount of MEC	Target Area	180
VI. Minimum MEC Depth Relative to Maximum Intrus Depth	/e Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.	240
VII. Migration Potential	Unlikely	10
VIII. MEC Classification	UXO	110
IX. MEC Size	Large	0'
	Total Score	765
	Hazard Level Category	2

Site ID:	MRS 07	b. Scoring Summary for Future Use Activities	
Date:	9/9/2011	Response Action Cleanup:	No Response Action
	Input Factor	Input Factor Category	Score
I. Ene	ergetic Material Type	High Explosive and Low Explosive Filler in Fragmenting Rounds	100
II. Location of	Additional Human Receptors		
III.	. Site Accessibility	Moderate Accessibility	55
IV. Pot	tential Contact Hours		
V.	Amount of MEC	Target Area	180
VI. Minimum MEC De	epth Relative to Maximum Intrusive Depth	Baseline Condition: MEC located surface and subsurface. After Cleanup: Intrusive depth overlaps with subsurface MEC.	240
VII.	Migration Potential	Unlikely	10
VIII.	MEC Classification	UXO	110
	IX. MEC Size	Large	0
		Total Score	695
		Hazard Level Category	3

MEC HA Hazard Level Determination		
Site ID: MRS 07		
Date: 9/9/2011		
	Hazard Level Category	Score
a. Current Activities	2	765
b. Future Use Activities	N/A	N/A
c. Response Alternative 1:		
d. Response Alternative 2:		
e. Response Alternative 3:		
f. Response Alternative 4:		
g. Response Alternative 5:		
h. Response Alternative 6:		
Characteristics of	the MRS	
Is critical infrastructure located within the MRS or within the ESQD arc?	N	lo
Are cultural resources located within the MRS or within the ESQD		
arc?	N	lo
Are significant ecological resources located within the MRS or within the ESQD arc?	Y	es

Appendix F: MRSPP

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 02 - Cayo Lobo and Cayo Yerba

Component: U.S. Army

Installation/Property Name: Culebra Island Site

Location (City, County, State): Culebra Island, Puerto Rico

PRDF/FRMD: Site Name/Project Name (Project No.): Culebra Island Site

Date Information Entered/Updated: 19 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	q RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):

q Groundwater	q Sediment (human receptor)
ü Surface soil	■ Surface Water (ecological receptor)
q Sediment (ecological receptor)	■ Surface Water (human receptor)

Note: Pre-detonation surface soil samples collected by Ellis during a 2006 clearance at Cayo Lobo were used for the MC evaluation.

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The MRS includes, Cayo Lobo and Cayo Yerba. The two cays consist of approximately 46 acres. The Navy conducted fleet maneuvers and fleet landing exercises (FLEX) between 1923 and 1941. During these exercises, the cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for outdoor site workers, trespassers, and biota for MEC in the surface and subsurface on the cays. Potentially complete pathways exist for outdoor site workers and trespassers for MC in the surface water and sediment through ingestion or dermal contact on the cavs.

Description of Receptors (Human and Ecological): The current human receptors at the site are trespassers and onsite workers on the cays. Ecological receptors include a variety of species at the site.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with **all** the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions*, *small arms ammunition*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellants	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	■ UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Based on historic uses of the sites, the types of Munitions used at the MRS include: **Bombs:** GP: Mk 81; Mk 82; Mk 83; Mk 84 GP, **Practice Bomb**: MK 76, 100 lb. bomb, **Rocket:** 5-inch Zuni; 5-inch; Tiny Tim 11.75-inch Mk 1 mod 0; general rockets **Practice Rocket:** Mk 8, 2.75- inch **Projectiles:** HEI Projectile: 20mm; 76mm; 105mm HE Projectile: M1; 155mm; 75mm; 37mm AP: 8-inch Mk 21; 16-inch Mk 5; 7-inch; 8-inch; 3-inch; 6- inch; 12-inch shell; 3-inch shell 5-inch Flat Nose; 5-inch common; 5-inch HE; 5-inch Naval; 6-inch; 4-inch shrapnel; 3-inch HE; 3-inch shrapnel; 14- inch projectile; 12-inch **Mortar**: 81mm HE and practice; 3-inch, HE MK1; 4.2-inch HE M329A1, **Torpedo**: General Navy **Aircraft flares.**

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

The Navy conducted fleet maneuvers and fleet landing exercises (FLEX) between 1923 and 1941. During these exercises, the cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Several previous investigations at this MRS have confirmed the presence of MEC and MD items. Numerous MEC items were found on Cayo Lobo during a 2006 NTCRA on the surface and in the subsurface.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of parts of the MRS are accessible).	f the MRS (i.e., all
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the entire MRS.	MRS, but not the
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of t is no surveillance (e.g., by a guard) to ensure that t effectively preventing access to all parts of the MRS	the barrier is
Barrier to MRS access is complete and monitored	There is a barrier preventing access to all parts of t is active, continual surveillance (e.g., by a guard, vi ensure that the barrier is effectively preventing access the MRS.	ideo monitoring) to
EASE OF ACCESS	RECTIONS: Record the single highest score from the right (maximum score = 10).	above in the box to 10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

Access to the cays is prohibited by USFWS however trespassers have been known to gain access for recreational use.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>©</u>
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

The majority of the site is currently a wildlife refuge with protected areas for several species.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile. The cays are not populated.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited

structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

Cayo Lobo and Cayo Yerba are uninhabited. There are very few inhabited structures on the southern coast of Culebra within 2 miles of either Cayo Lobo or Cayo Yerba.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	4

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The land use on the Cayo Lobo and Cayo Yerba is undeveloped; however, .there are recreational activities conducted on Culebra within 2 miles of the cays.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms *ecological resources* and *cultural resources* are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	w There are ecological resources present on the MRS.	3
Cultural resources present	■ There are cultural resources present on the MRS.	3
No ecological or cultural resources present	W There are no ecological resources or cultural resources present on the MRS.	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species.

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
Explosive Hazard Factor Data Ele	ements		
Munitions Type	Table 1	25	35
Source of Hazard	Table 2	10	33
Accessibility Factor Data Elemer	nts		
Location of Munitions	Table 3	25	
Ease of Access	Table 4	10	40
Status of Property	Table 5	5	
Receptor Factor Data Elements			
Population Density	Table 6	1	
Population Near Hazard	Table 7	1	
Types of Activities/Structures	Table 8	4	9
Ecological and/or Cultural Resources	Table 9	3	
EHE	MODULI	E TOTAL	84
EHE Module Total	EHE	Module R	ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47		F	
less than 38	G		
	Evaluation Pending		ding
Alternative Module Ratings	No Longer Required		uired
	No Known or Suspected Explosive Hazard		
EHE MODULE RATING B			

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) W Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	■ The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

No evidence of CWM has been found at MRS 02 – Cayo Lobo and Cayo Yerba.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20
Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

ig the CHE Module Rating	Source	Score	Value
CWM Hazard Factor Data Elemer	nts		
CWM Configuration	Table 11	0	
Sources of CWM	Table 12		0
Accessibility Factor Data Elemer	nts		
Location of CWM	Table 13		
Ease of Access	Table 14	1	
Status of Property	Table 15	1	
Receptor Factor Data Elements			
Population Density	Table 16	-	
Population Near Hazard	Table 17	1	
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
CHE MODULE TOTAL			0
CHE Module Total	CHE	Module R	ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		Е	
38 to 47		F	
less than 38		G	
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
	No Known or Suspected CWM Hazard		
CHE MODULE RATING	NO KNOWN OR SUSPECTED CWM HAZARD		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No groundwater sample	s were collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ntaminant
100 > CHF > 2	M (Medium)	CHF = \(\frac{1}{2} \)	ortaninant
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle the Classification	· ·	r <u>ay Factor</u> o the groundwater migratory pathway at the N cription	MRS. Value
Evident	Analytical data or observable evidence indicates	that contamination in the groundwater is present at,	Н
Potential	moving toward, or has moved to a point of exposure. Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle to	Receptor F he value that corresponds most closely to		
Classification	Des	cription	Value
dentified	There is a threatened water supply well downgra source of drinking water or source of water for ot (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current her beneficial uses such as irrigation/agriculture	Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		М
_imited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the = H).	
	No Kno	wn or Suspected Groundwater MC Hazard	$\sqrt{}$

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
No surface water samples were collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	-	
DIRECTIONS: Circle t	Migratory Pathw he value that corresponds most closely to	ay Factor the surface water migratory pathway at the	MRS.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu	hat contamination in the surface water is present at,	Н	
Potential	Contamination in surface water has moved only s		М	
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
DIRECTIONS: Circle t	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.			
Classification		cription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)			
No Known or Suspected Surface Water (Human Endpoint) MC Hazard				

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
No sediment samples were collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	CHF = Z		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle the	· ·	ay Factor the sediment migratory pathway at the MRS	S. Value	
Evident	Analytical data or observable evidence indicates	that contamination in the sediment is present at,	Н	
Potential	moving toward, or has moved to a point of exposure. Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		M	
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS. Classification Description				
Identified	Identified receptors have access to sediment to v	· · · · · · · · · · · · · · · · · · ·	Н	
Potential	Potential for receptors to have access to sedimen	nt to which contamination has moved or can move.	М	
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum val			
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	√	

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
No surface water samples were collected.				
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	CHF = \(\sum_{Intermediate of the Control of		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ay Factor the surface water migratory pathway at the	MRS.	
Classification	Desc	cription	Value	
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the surface water is present at, ure.	Н	
Potential	move but is not moving appreciably, or informatic or Confined.	slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	M	
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification	Desc	cription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface move.		М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =			
	N 16 0 10 1	W	1	

No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard

 $\sqrt{}$

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

PATHWAY FACTOR

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
	No sediment sample:	s were collected.	
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ontaminant]
100 > CHF > 2	M (Medium)	CHF = \(\frac{1}{2} \)	
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).		
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.			
Classification	De	scription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined		nant migration from the source via the sediment to a presence of geological structures or physical controls).	L
MIGRATORY	DIRECTIONS: Record the single high	hest value from above in the box to the	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

right (maximum value = H).

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Maximum Concentration (mg/kg) Contaminant Comparison Value (mg/kg) Ratio 0.141 **Antimony** 22 3.1 Barium 52 15.000 0.003 Chromium 30 100.000 0.000 Copper 83 3,100 0.027 **CHF Value CHF Scale Sum the Ratios** 0.190 $CHF = \sum_{m=1}^{\infty} [Maximum Concentration of Contaminant]$ CHF > 100 H (High) 100 > CHF > 2 M (Medium)

[Comparison Value for Contaminant] 2 > CHF L (Low) CONTAMINANT **DIRECTIONS:** Record the CHF Value from above in the box to the right L **HAZARD FACTOR** (maximum value = H).

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification Description		Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

No Known or Suspected Surface Soil MC Hazard

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the

previous tables. Indicate the **media** in which these contaminants are present. Then record all **contaminants**, their **maximum concentrations** and their **comparison values** (from Appendix B of the Primer) in the table below. Calculate and record the **ratio** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Surface Soil	Lead	4.2	400	0.011
Surface Soil	Mercury	0.021	23	0.001
Surface Soil	Zinc	150	23,000	0.007

Note: Surface soil samples were collected by Ellis Environmental during clearance activities at Cayo Lobo. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007).

 Table 3.4 of the final site inspection i	topo. ((a. so. 1.s) = 50.7).	

Table 28Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-		<u> </u>		
Surface Water/Human Endpoint (Table 22)	-			-	
Sediment/Human Endpoint (Table 23)			1		
Surface Water/Ecological Endpoint (Table 24)	ł	1-		1	
Sediment/Ecological Endpoint (Table 25)					
Surface Soil (Table 26)		L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only)

G

3 (
Combination	Rating
ннн	Α
ННМ	В
HHL	
НММ	С
HML	3
MMM	D
HLL	F
MML	E
MLL	F
LLL	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
J	No Known or Suspected MC Hazard

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS **Rating** at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending Evaluation Pending		Evaluation Pending		
No Longer	Required	No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard		No Known or Suspected MC Hazar			
N	MRS PRIORITY or ALTERNATIVE MRS RATING			3	3

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 02 – Cerro Balcon

Component: U.S. Army

Installation/Property Name: Culebra Island Site

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island Site PRDF/FRMD:

Date Information Entered/Updated: 19 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	q RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):

q Groundwater	q Sediment (human receptor)
ü Surface soil	Surface Water (ecological receptor)
q Sediment (ecological receptor	q Surface Water (human receptor)

Note: Pre-detonation surface soil samples collected by Ellis during a 2006 clearance at Cerro Balcon were used for the MC evaluation.

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The MRS includes Cerro Balcon located within MRS 05 on Culebra. Cerro Balcon is a 38 acre former mortar range.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for residents, construction/utility workers, trespassers, outdoor site workers, and biota for MEC in the surface and subsurface at Cerro Balcon. Potentially complete pathways exist for residents, construction/utility workers, trespassers, and outdoor site workers for MC in the surface water and sediment through ingestion or dermal contact at Cerro Balcon.

Description of Receptors (Human and Ecological): The current human receptors at the site are residents, construction/utility workers, trespassers, outdoor site workers at Cerro Balcon. Ecological receptors include a variety of species at the site.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture 	30
High explosive (used or damaged)	poses an explosive hazard. UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: S Damaged by burning or detonation S Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	■ UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided. Cerro Balcon was historically used as a mortar range target.

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	■ The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	■ The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

Cerro Balcon was used as a mortar range.

LOCATION OF MUNITIONS

Table 3

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with all the locations where munitions are known or suspected to be present at the MRS.

Note: The terms confirmed, surface, subsurface, small arms ammunition, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	■ There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are	0

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

DIRECTIONS: Record the single highest score from above in the box

to the right (maximum score = 25).

present.

25

Previous investigations at Cerro Balcon have confirmed the presence of MEC and MD items. Numerous MEC items were found during a 2006 NTCRA on the surface and in the subsurface.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

Cerro Balcon contains residential and undeveloped properties

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

The majority of Cerro Balcon is residential land and undeveloped land.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of

inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures within two miles of Cerro Balcon.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The land use on Cerro Balcon is residential and undeveloped land.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	w There are ecological resources present on the MRS.	3
Cultural resources present	w There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

There are no known threatened or endangered species at Cerro Balcon..

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
Explosive Hazard Factor Data Ele	ements		
Munitions Type	Table 1	25	35
Source of Hazard	Table 2	10	30
Accessibility Factor Data Elemen	nts		
Location of Munitions	Table 3	25	
Ease of Access	Table 4	10	40
Status of Property	Table 5	5	
Receptor Factor Data Elements			
Population Density	Table 6	1	
Population Near Hazard	Table 7	5	44
Types of Activities/Structures	Table 8	5	11
Ecological and/or Cultural Resources	Table 9	0	
EHE	MODULE	E TOTAL	86
EHE Module Total	EHE Module Rating		ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47		F	
less than 38	G		
	Eva	lluation Pend	ding
Alternative Module Ratings	No I	_onger Requ	uired
	No Known or Suspected Explosive Hazard		
EHE MODULE RATING		В	

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) W Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	■ The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space

provided.

No evidence of CWM has been found at Cerro Balcon.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemer	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12	1	0
Accessibility Factor Data Elemen	nts		
Location of CWM	Table 13	-1	
Ease of Access	Table 14	-	
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
CHE	MODULE	TOTAL	0
CHE Module Total	CHE	Module R	ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47		F	
less than 38		G	
	Eva	lluation Pen	ding
Alternative Module Ratings	No Longer Required		uired
]	No Know	n or Suspec	ted CWM
CHE MODULE RATING		WN OR SUS WM HAZAR	

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No groundwater sample	es were collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ntaminantl
100 > CHF > 2	M (Medium)	CHF = \(\frac{1}{2} \)	main and
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
		o the groundwater migratory pathway at the N	
Classification		that contamination in the groundwater is present at,	Value
Evident	moving toward, or has moved to a point of expos		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		M
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value :	hest value from above in the box to the = H).	
DIRECTIONS: Circle t	Receptor F he value that corresponds most closely to	actor the groundwater receptors at the MRS.	
Classification		cription	Value
Identified	There is a threatened water supply well downgra source of drinking water or source of water for of (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current ther beneficial uses such as irrigation/agriculture	Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		М
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value :	hest value from above in the box to the = H).	
	No Kno	wn or Suspected Groundwater MC Hazard	

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No surface water sample	es were collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ontaminant]
100 > CHF > 2 2 > CHF	M (Medium) L (Low)	[Comparison Value for Conta	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	- '	
DIRECTIONS: Circle 1	Migratory Pathw the value that corresponds most closely to	vay Factor the surface water migratory pathway at the	MRS.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of exposu	that contamination in the surface water is present at, ure.	Н
Potential	Contamination in surface water has moved only s		М
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		
DIRECTIONS: Circle t	Receptor For the value that corresponds most closely to	actor the surface water receptors at the MRS.	
Classification		cription	Value
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface move.		M
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR	DIRECTIONS: Record the single high	ast value from above in the boy to	

No Known or Suspected Surface Water (Human Endpoint) MC Hazard

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
	No sediment samples	were collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)	CHF = <u>S</u>	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	M
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	

No Known or Suspected Sediment (Human Endpoint) MC Hazard

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No surface water sample	es were collected.	
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	Maximum Concentration of Concentrat	ontaminantl
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	ontaminant _j
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ray Factor the surface water migratory pathway at the	MRS.
Classification		cription	Value
Evident	moving toward, or has moved to a point of expos		Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contamir to a potential point of exposure (possibly due to t controls).	nant migration from the source via the surface water he presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =		
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.			
Classification		cription	Value
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =		
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard			

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
	No sediment sample:	s were collected.		
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Valu (maximum value = H).	_		
	Migratory Pathway Factor			

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	M
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Antimony	2	22	0.091
Barium	60	15,000	0.004
Chromium	110	100,000	0.001
Copper	110	3,100	0.035
CHF Scale	CHF Value	Sum the Ratios	0.166
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification	Description			
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н		
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description			
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	M		
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L		

No Known or Suspected Surface Soil MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the

appropriate media-specific tables. **Note:** Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Surface Soil	Lead	9	400	0.026
Surface Soil	Mercury	0.047	23	0.002
Surface Soil	Zinc	150	23,000	0.007

Note: Surface soil samples were collected by Ellis Environmental during clearance activities at Cerro Balcon. The surface soil data are presented in Table 5.4 of the Final Site Inspection Report (Parsons, 2007).

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)	1			ļ	
Sediment/Human Endpoint (Table 23)			-		
Surface Water/Ecological Endpoint (Table 24)	ŀ	2-			
Sediment/Ecological Endpoint (Table 25)					
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

G

HHE Ratings (for reference only)				
Combination	Rating			
ннн	Α			
ННМ	В			
HHL				
НММ	С			
HML	_			
MMM	D			
HLL	F			
MML	E			
MLL	F			
LLL	G			
Alternative Module Patings	Evaluation Pending			
Alternative Module Ratings	No Longer Required			

No Known or Suspected MC Hazard

Table 29MRS Priority

DIRECTIONS: In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending Evaluation Pending Evaluation Pend			n Pending		
No Longer	No Longer Required		No Longer Required		Required
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard			No Known or Susp	pected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING				;	3

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 02 - Remaining Cays (Los Gemelos, Cayo Lobitto, Cayo Raton, Cayo Del

Aqua, Cayo Ballena, Cayo Geniqui, and Cayo Sombrerito)

Component: U.S. Army

Installation/Property Name: Culebra Island Site

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island Site

PRDF/FRI	MD.		
FINDI /I IN	VID.		

Date Information Entered/Updated: 19 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	q RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):

q Groundwater	q Sediment (human receptor)
q Surface soil	■ Surface Water (ecological receptor)
q Sediment (ecological receptor)	q Surface Water (human receptor)

Note: No sampling was conducted at the remaining cays during the RI. No samples have been collected on the remaining cays in previous studies.

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The MRS includes, Cayo Ballena, Cayo Lobito, Cayo Del Agua (a.k.a. Water Key), Cayo Raton, Los Gemelos (a.k.a. Twin Rock), Cayos Geniqui (a.k.a. Palada Cay), and Cayo Sombrerito. The remaining cays consist of approximately 43 acres. The Navy conducted fleet maneuvers and fleet landing exercises (FLEX) between 1923 and 1941. During these exercises, the cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for outdoor site workers, trespassers, and biota for MEC in the surface and subsurface on the cays. Potentially complete pathways exist for outdoor site workers and trespassers for MC in the surface water and sediment through ingestion or dermal contact on the cays.

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Description of Receptors (Human and Ecological): The current human receptors at the site are trespassers and onsite workers on the cays. Ecological receptors include a variety of species at the site.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with **all** the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score		
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 			
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25		
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20		
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15		
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: S Damaged by burning or detonation S Deteriorated to the point of instability. 	15		
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10		
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: \$ Have not been damaged by burning or detonation \$ Are not deteriorated to the point of instability. 	10		
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5		
Riot control	W UXO or DMM containing a riot control agent filler (e.g., tear gas).	3		
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2		
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0		
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25		

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Based on historic uses of the sites, the types of Munitions used at the MRS include: **Bombs:** GP: Mk 81; Mk 82; Mk 83; Mk 84 GP, **Practice Bomb**: MK 76, 100 lb. bomb, **Rocket:** 5-inch Zuni; 5-inch; Tiny Tim 11.75-inch Mk 1 mod 0; general rockets **Practice Rocket:** Mk 8, 2.75- inch **Projectiles:** HEI Projectile: 20mm; 76mm; 105mm HE Projectile: M1; 155mm; 75mm; 37mm AP: 8-inch Mk 21; 16-inch Mk 5; 7-inch; 8-inch; 3-inch; 6- inch; 12-inch shell; 3-inch shell 5-inch Flat Nose; 5-inch common; 5-inch HE; 5-inch Naval; 6-inch; 4-inch shrapnel; 3-inch HE; 3-inch shrapnel; 14- inch projectile; 12-inch **Mortar**: 81mm HE and practice; 3-inch, HE MK1; 4.2-inch HE M329A1, **Torpedo**: General Navy **Aircraft flares.**

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	■ The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

The Navy conducted fleet maneuvers and fleet landing exercises (FLEX) between 1923 and 1941. During these exercises, the cays were heavily bombarded with high-explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Several previous investigations at this MRS have confirmed the presence of MEC and MD items. Numerous MEC items were found on Cayo del Agua during a 1997 EE/CA on the surface and in the subsurface.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

Access to the cays is prohibited by USFWS however trespassers have been known to gain access for recreational use.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>©</u>
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

The majority of the MRS is currently a wildlife refuge with protected areas for several species.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile. The cays are not populated.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures on the northern portion of Culebra which are within two miles of Cayo Sombreritto.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score		
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5		
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4		
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.			
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.			
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1		
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5		

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The land use on the remaining cays is undeveloped; however, .there are residential, recreational and commercial activities conducted on Culebra and Culebrita within 2 miles of the remaining cays.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms *ecological resources* and *cultural resources* are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	w There are ecological resources present on the MRS.	3
Cultural resources present	■ There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species.

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value	
Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	25	35	
Source of Hazard	Table 2	10	33	
Accessibility Factor Data Elemen	nts			
Location of Munitions	Table 3	25		
Ease of Access	Table 4	10	40	
Status of Property	Table 5	5		
Receptor Factor Data Elements	-		-	
Population Density	Table 6	1		
Population Near Hazard	Table 7	5	4.4	
Types of Activities/Structures	Table 8	5	14	
Ecological and/or Cultural Resources	Table 9	3		
EHE	MODULI	E TOTAL	89	
EHE Module Total EHE Module Rati		ating		
92 to 100		Α		
82 to 91		В		
71 to 81		С		
60 to 70		D		
48 to 59		Е		
38 to 47		F		
less than 38	G			
	Eva	aluation Pen	ding	
Alternative Module Ratings	No Longer Required			
	No Known or Suspected Explosive Hazard			
EHE MODULE RATING B				

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) W Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	■ The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space

provided.

No evidence of CWM has been found at MRS 02 - Remaining Cays.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20
Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemen	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12		U
Accessibility Factor Data Elemen	nts		
Location of CWM	Table 13		
Ease of Access	Table 14		
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16	1	
Population Near Hazard	Table 17	-	
Types of Activities/Structures	Table 18	1	
Ecological and/or Cultural Resources	Table 19		
CHE	MODULE	TOTAL	0
CHE Module Total	CHE	Module R	ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59	E		
38 to 47	F		
less than 38	G		
Evaluation Pendin		ding	
Alternative Module Ratings	No Longer Required		
	No Known or Suspected CWM Hazard		
CHE MODULE RATING	NO KNOWN OR SUSPECTED CWM HAZARD		

Tables 21-27

No environmental media (groundwater, surface water, sediment, or surface soil) samples were collected or analyzed from MRS 02 – Remaining Cays. As a result, the HHE Module has not been evaluated. Tables 21 through 27 have therefore been intentionally omitted and the HHE score will remain "Evaluation Pending" until analytical data becomes available.

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-1		<u> </u>	1	
Surface Water/Human Endpoint (Table 22)				-1	
Sediment/Human Endpoint (Table 23)			1		
Surface Water/Ecological Endpoint (Table 24)		<u>)</u>		ł	
Sediment/Ecological Endpoint (Table 25)			-	-	
Surface Soil (Table 26)					

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only) Combination Rating HHH Α HHM В HHL С **HMM HML** D MMM HLL Ε MML F MLL LLL G **Evaluation Pending** No Longer Required Alternative Module Ratings

No Known or Suspected MC Hazard

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	Ш	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending Evaluation Pending		Evaluation Pending			
No Longer	No Longer Required		No Longer Required		r Required
	No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard		No Known or Susp	pected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING			;	3	

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 04 - Flamingo Lagoon Maneuver Area

Component: U.S. Army

Installation/Property Name: Culebra Island

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island PRDF/FRMD:

Date Information Entered/Updated: 20 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	ü RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):

q Groundwater	ü Sediment (human receptor)
ü Surface Soil	q Surface Water (ecological recep □ o □)
ü Sediment (ecological receptor)	■ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The 505-acre MRS 04 includes Flamingo Lagoon and the hillside east of the lagoon. Records show that Combat Range #2, located on the south side of Flamingo Beach, was used for direct and indirect fire of small arms and 81mm mortars from firing positions on the hillside within MRS 04 during FLEX #4 in 1938. Firing positions for 75mm projectiles used during FLEX #5 in 1939 were also located.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for residents, construction/utility workers, trespassers, outdoor site workers, recreationists/visitors, and biota for MEC in the surface and subsurface. Incomplete pathways exist for all human and ecological receptors for MC.

Description of Receptors (Human and Ecological): The current human receptors include residents, construction/utility

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

workers, trespassers, outdoor site workers, and recreationists/visitors. Ecological receptors include a variety of species.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture 	30
High explosive (used or damaged)	poses an explosive hazard. UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	■ UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided

Historically, 81mm HE and practice mortars and 75mm shrapnel mortars were used at MRS 04. During the RI/FS fieldwork, only unidentified frag and small arms were found at the site. No MEC was found during the RI/FS field work.

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond

with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are

defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

The 550-acre MRS 04 includes Flamingo Lagoon and the hillside east of the lagoon. Records show that Combat Range #2, located on the south side of Flamingo Beach, was used for direct and indirect fire of small arms and 81mm mortars from firing positions on the hillside within MRS 04 during FLEX #4 in 1938. Firing positions for 75mm projectiles used during FLEX #5 in 1939 were also located.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

MD was found within MRS 04 during the RI/FS. A 5 inch projectile was found along Flamenco Beach in MRS 04 during the 2008 NTCRA.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	
Barrier to MRS access is complete and monitored	W There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

MRS 04 contains private property and beaches accessible to the public.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>©</u>
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

No portion of MRS 4 is under DoD control. It is either privately owned or property managed either by DNER.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures within two miles of MRS 04.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification Description		Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The land use on MRS 04 is mainly residential, recreational, and undeveloped land.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms *ecological resources* and *cultural resources* are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species.

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value	
Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	25	35	
Source of Hazard	Table 2	10	30	
Accessibility Factor Data Elemen	nts			
Location of Munitions	Table 3	25		
Ease of Access	Table 4	10	40	
Status of Property	Table 5	5		
Receptor Factor Data Elements	-	-		
Population Density	Table 6	1		
Population Near Hazard	Table 7	5	40	
Types of Activities/Structures	Table 8	5	13	
Ecological and/or Cultural Resources	Table 9	3	<u> </u>	
EHE	MODULE	E TOTAL	88	
EHE Module Total EHE Module Ratio		ating		
92 to 100	А			
82 to 91	В			
71 to 81		С		
60 to 70	D			
48 to 59	Е			
38 to 47	F			
less than 38	G			
	Evaluation Pending		ding	
Alternative Module Ratings	No Longer Required			
	No Known or Suspected Explosive Hazard			
EHE MODULE RATING		В	-	

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

No evidence of CWM has been found at MRS 04.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemen	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12		0
Accessibility Factor Data Elemen	nts		
Location of CWM	Table 13	-1	
Ease of Access	Table 14	-	
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
СНЕ	MODULE	TOTAL	0
CHE Module Total CHE Module Rati		ating	
92 to 100		Α	
82 to 91		В	
71 to 81	С		
60 to 70		D	
48 to 59	E		
38 to 47	F		
less than 38	G		
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
g.	No Known or Suspected CWM Hazard		
CHE MODULE RATING NO KNOWN OR SUSPECT CWM HAZARD			

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value(g/L)	Ratios	
	No groundwater sample	s were collected.		
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).			
Migratory Pathway Factor				

DIRECTIONS: Circle the value that corresponds most closely to the groundwater migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS.

Classification	Description	Value
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).	Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).	М
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	

No Known or Suspected Groundwater MC Hazard

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No surface water sample	es were collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle t	Migratory Pathw he value that corresponds most closely to	ay Factor the surface water migratory pathway at the	MRS.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu	hat contamination in the surface water is present at,	Н
Potential	Contamination in surface water has moved only s		М
Confined	Information indicates a low potential for contamina a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		
DIRECTIONS: Circle t	Receptor Face that corresponds most closely to		
Classification	Desc	cription	Value
Identified	Identified receptors have access to surface water	•	Н
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)		
No Known or Suspected Surface Water (Human Endpoint) MC Hazard			

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Antimony	2.54	22	0.115
Barium	65.9	15,000	0.004
Chromium	12.1	100,000	0.000
Copper	120	3,100	0.039
CHF Scale	CHF Value	Sum The Ratios	0.570
CHF > 100	H (High)	- Maximum Concentration of Co	ontominant]
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	
2 > CHF	L (Low)	[Comparison Value for Conta	aminant]
CONTAMINANT	DIRECTIONS: Record the CHE Value	from above in the boy to the right	

DIRECTIONS: Record the CHF Value from above in the box to the right CONTAMINANT HAZARD FACTOR maximum value = H).

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

No Known or Suspected Sediment (Human Endpoint) MC Hazard

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
No surface water samples were collected.			
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	- Maximum Concentration of Co	ontaminant]
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	intl
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ray Factor the surface water migratory pathway at the	MRS.
Classification	Desc	cription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the surface water is present at, ure.	Н
Potential		slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М
Confined	Information indicates a low potential for contamin to a potential point of exposure (possibly due to t controls).	ant migration from the source via the surface water he presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		
DIRECTIONS: Circle th	Receptor Fane value that corresponds most closely to	actor the surface water receptors at the MRS.	
Classification	Desc	cription	Value
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =		
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard			

HHE Module: Sediment - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Antimony	2.54	22	0.115
Barium	65.9	15,000	0.004
Chromium	12.1	100,000	0.000
Copper	120	3,100	0.039
CHF Scale	CHF Value	Sum the Ratios	0.570
CHF > 100	H (High)	[Maximum Cancentration of Co	antominantl
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT	DIRECTIONS: Record the CHE Value	e from above in the box to the right	

CONTAMINANT HAZARD FACTOR | DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	П
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	M
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Antimony	4.97	22	0.225
Barium	218	15,000	0.015
Chromium	18.7	100,000	0.000
Copper	95.8	3,100	0.031
CHF Scale	CHF Value	Sum the Ratios	0.308
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)	CHF = <u>Z</u>	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		L

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	<u>u</u>
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

No Known or Suspected Surface Soil MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Lead	159	400	0.398
Sediment	Mercury	0.227	23	0.010
Sediment	Zinc	95.5	23,000	0.004
Surface Soil	Lead	10.5	400	0.026
Surface Soil	Mercury	0.0312	23	0.001
Surface Soil	Zinc	230	23,000	0.010

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-				
Surface Water/Human Endpoint (Table 22)					
Sediment/Human Endpoint (Table 23)	L	L	_	LLL	G
Surface Water/Ecological Endpoint (Table 24)	1			-	
Sediment/Ecological Endpoint (Table 25)	1	L	L	LLL	G
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

Combination Rating HHH HHM В HHL С **HMM HML** D MMM HLL Ε MML MLL F LLL **Evaluation Pending**

HHE Ratings (for reference only)

Alternative Module Ratings

No Longer Required

No Known or
Suspected MC
Hazard

G

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS **Rating** at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	Е	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending		Pending	Evaluation Pending	
No Longer Required		No Longer	Required	No Longer Required	
No Known or Suspected Explosive Hazard		No Known or Su Haza		No Known or Susp	pected MC Hazard
MRS PRIORITY or ALTERNATIVE MRS RATING				;	3

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 05 - Mortar and Combat Range Area

Component: U.S. Army

Installation/Property Name: Culebra Island

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island PRDF/FRMD:

Date Information Entered/Updated: 21 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	ü RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):.

q Groundwater	ü Sediment (human receptor)
ü Surface soil	q Surface Water (ecological receptor)
ü Sediment (ecological receptor)	q Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The MRS includes most of the landmass between Resaca Beach and Carenero Point, totaling approximately 2,317 acres. Historical training records indicate that many of the hills in this area may have been used for direct fire. MRS 05 includes two 1936 combat training areas leased for combat, target, and sweep-of-fire range training. Small arms and 81mm mortars may have been used at Combat Range #1 in 1937 during FLEX #4. A 1924 standing barrage training area is also included in the MRS.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for residents, construction/utility workers, trespassers, outdoor site workers, recreationists/visitors, and biota for MEC in the surface and subsurface. Incomplete pathways exist for all human and ecological receptors for MC.

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Description of Receptors (Human and Ecological): The current human receptors include residents, construction/utility workers, trespassers, outdoor site workers, and recreationists/visitors. Ecological receptors include a variety of species.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture 	30
High explosive (used or damaged)	poses an explosive hazard. UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	W UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Historical munitions used at MRS 05 include 81mm HE and practice mortars and 75mm practice mortars. Frag from 81mm mortars and other unidentified sources were found during the RI/FS field work. Small arms casings were also found. No MEC was found during the RI/FS field work.

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond

with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	■ The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

Historical training records indicate that many of the hills in this area may have been used for direct fire. MRS 05 includes two 1936 combat training areas leased for combat, target, and sweep-of-fire range training. Small arms and 81mm mortars may have been used at Combat Range #1 in 1937 during FLEX #4. A 1924 standing barrage training area is also included in the MRS.

LOCATION OF MUNITIONS

Table 3

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
evidence) Subsurface, physical constraint Small arms (regardless of location)	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are 	2

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

DIRECTIONS: Record **the single highest score** from above in the box

to the right (maximum score = 25).

10

MD was found within MRS 05 during the RI/FS. No MEC was found during the RI or previous investigations.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

MRS 05 is primarily privately owned land. It is accessible to the public.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>©</u>
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

Most of MRS 05 is privately owned. DNER manages the property along the beaches on the northeastern side of the site. No property is under DoD control.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures within 2 miles of MRS 05.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The main land uses on MRS 05 is residential, recreational, and undeveloped.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms *ecological resources* and *cultural resources* are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	■ There are ecological resources present on the MRS.	3
Cultural resources present	■ There are cultural resources present on the MRS.	3
No ecological or cultural resources present	W There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species.

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
Explosive Hazard Factor Data Ele	ements		
Munitions Type	Table 1	25	25
Source of Hazard	Table 2	10	35
Accessibility Factor Data Elemen	nts		
Location of Munitions	Table 3	10	
Ease of Access	Table 4	10	25
Status of Property	Table 5	5	
Receptor Factor Data Elements			
Population Density	Table 6	1	
Population Near Hazard	Table 7	5	4.4
Types of Activities/Structures	Table 8	5	14
Ecological and/or Cultural Resources	Table 9	3	
EHE MODULE TOTAL			74
EHE Module Total	EHE Module Rating		ating
92 to 100		Α	
82 to 91		В	
71 to 81	C		
60 to 70	D		
48 to 59	Е		
38 to 47	F		
less than 38	G		
	Eva	luation Pen	ding
Alternative Module Ratings	No Longer Required		
	No Known or Suspected Explosive Hazard		
EHE MODULE RATING		С	

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the **CWM Configuration** classifications in the space provided.

No evidence of CWM has been found at MRS 05.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemen	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12	-1	0
Accessibility Factor Data Elemen	nts		
Location of CWM	Table 13		
Ease of Access	Table 14		
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
CHE	MODULE	E TOTAL	0
CHE Module Total	otal CHE Module Rating		ating
92 to 100		Α	
82 to 91		В	
71 to 81	С		
60 to 70	D		
48 to 59	Е		
38 to 47	F		
less than 38	G		
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
	No Known or Suspected CWM Hazard		
CHE MODULE RATING	NO KNOWN OR SUSPECTED CWM HAZARD		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios		
Groundwater samples were not collected.					
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	CHF = [Maximum Concentration of Co	ontaminantl		
100 > CHF > 2	M (Medium)	CHF = \(\sum_{\text{Comparison}} Value for Conta	min outl		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater migratory pathway at the MRS.					
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
PAINWAT FACTOR	ilgni (maximum value =	: n _j .			
DIRECTIONS: Circle th	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS.				
Classification	Desc	cription	Value		
Identified	There is a threatened water supply well downgramers source of drinking water or source of water for oth (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current ner beneficial uses such as irrigation/agriculture	Н		
Potential	There is no threatened water supply well downgror potentially usable for drinking water, irrigation, aquifer).	adient of the source and the groundwater is currently or agriculture (equivalent to Class I, IIA, or IIB	M		
Limited	There is no potentially threatened water supply w is not considered a potential source of drinking w Class IIIA or IIIB aquifer, or where perched aquife		L		
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =				
	No Kno	wn or Suspected Groundwater MC Hazard			

HHE Module: Surface Water - Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
	Surface water samples w	vere not collected.		
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]	
2 > CHF	L (Low)	[Comparison Value for Conta	minantl	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).			
		the surface water migratory pathway at the		
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification		cription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface with move.	water to which contamination has moved or can	M	
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)			
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard		

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Barium	196	15,000	0.013	
Chromium	14.3	100,000	0.000	
Copper	149	3,100	0.048	
Lead	6.29	400	0.016	
CHF Scale	CHF Value	Sum The Ratios	0.080	
CHF > 100 100 > CHF > 2	H (High) M (Medium) CHF = \(\sum_{\text{ind}} [Maximum Concentration of Concentra			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR DIRECTIONS: Record the CHF Value from above in the box to the right maximum value = H).				
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.				

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L	

No Known or Suspected Sediment (Human Endpoint) MC Hazard

HHE Module: Surface Water - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L) Comparison Value (g/L)				
Surface water samples were not collected.					
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	— Maximum Concentration of Co	ontaminantl		
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	· "		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
	· ·	the surface water migratory pathway at the			
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle th	Receptor Fame value that corresponds most closely to	actor the surface water receptors at the MRS.			
Classification	Des	cription	Value		
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L		
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the = H).			
	No Known or Suspected Surface	ce Water (Ecological Endpoint) MC Hazard			

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Barium	196	15,000	0.013	
Chromium	14.3	100,000	0.000	
Copper	149	3,100	0.048	
Lead	6.29	400	0.016	
CHF Scale	CHF Value	Sum the Ratios	0.080	
CHF > 100	H (High)	[Maximum Concentration of Co	ntaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{n} $	Ontaminantj	
2 > CHF	L (Low)	[Comparison Value for Contaminant		
CONTAMINANT HAZARD FACTOR DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).			L	

(maximum value = H).

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		

Migratory Pathway Factor

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L	

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio	
Antimony	7.57	22	0.344	
Barium	958	15,000	0.063	
Chromium	66.7	100,000	0.000	
Copper	171	3,100	0.055	
CHF Scale	CHF Value	Sum the Ratios	0.512	
CHF > 100	H (High)	[Maximum Concentration of Co	ontominant]	
100 > CHF > 2	M (Medium)	$CHF = \sum_{i} \text{IMaximum Concentration of } Concentration Co$	Jillailillaill	
2 > CHF	L (Low)	[Comparison Value for Contaminar		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).			

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description		
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М	
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L	

No Known or Suspected Surface Soil MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the

Note: Do not add ratios from different media.

appropriate media-specific tables.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Mercury	0.0129	23	0.000
Sediment	Zinc	73.3	23,000	0.003
Surface Soil	Lead	17.3	400	0.043
Surface Soil	Mercury	0.0434	23	0.002
Surface Soil	Zinc	127	23,000	0.005

Table 28Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-				
Surface Water/Human Endpoint (Table 22)	-		-		
Sediment/Human Endpoint (Table 23)	L	L	L	LLL	G
Surface Water/Ecological Endpoint (Table 24)					
Sediment/Ecological Endpoint (Table 25)	L		L	LLL	G
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Ratings (for reference only)		
Combination	Rating	
ННН	А	
ННМ	В	
HHL	0	
НММ	С	
HML	D	
MMM	D	
HLL	E	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
J	No Known or Suspected MC Hazard	

HHE MODULE RATING

Ε

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
C	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending Evaluation Pending		Evaluation Pending			
No Longer	Required	No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard		No Known or Susp	pected MC Hazard		
MRS PRIORITY or ALTERNATIVE MRS RATING				4	

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: MRS 7 - Culebrita Artillery Impact Area

Component: U.S. Army

Installation/Property Name: Culebra Island

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island PRDF/FRMD:

Date Information Entered/Updated: 21 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	ü RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):.

q Groundwater	ü Sediment (human receptor)
ü Surface soil	■ Surface Water (ecological receptor)
ü Sediment (ecological receptor)	q Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

MRS 07 includes the northern portion of Culebrita as well as Cayo Botella (a.ka. Ladrone Cay). The Marines used this 375-acre area as an artillery impact area between 1936 and the late 1940s. The United States and the United Kingdom used Cayo Botella for an aircraft bombing/rocket target in 1969. Munitions included 20mm projectiles, Mk 44 and Mk 45 flares, live and practice bombs up to 500 pounds, and 2.75-inch rockets as well as British bombs and rockets.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for outdoor site workers, recreationists/visitors, and biota for MEC in the surface and subsurface. Potentially complete pathways exist for outdoor site workers and recreationists/visitors for MC in the surface and subsurface soil through ingestion, dermal contact, and inhalation.

Description of Receptors (Human and Ecological): The current human receptors at the installation are limited to outdoor

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

site workers and recreationists/visitors. Ecological receptors include a variety of species at the site.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture 	30
High explosive (used or damaged)	poses an explosive hazard. UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	W UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Based on historical research the following munitions were used at this MRS: **Bombs:** GP Bomb: Mk 82, 500-pound **Rocket:** 5-inch Zuni; **Projectile:** 75mm; 20mm HEI Mkl; 75mm. Two MEC items were found during RI/FS field work: MK5 MOD O Rocket nose and Mk8 demo hose. Various frag and small arms also were found at the site during the RI/FS field work.

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond

with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	■ The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

The Marines used this 375-acre area as an artillery impact area between 1936 and the late 1940s. The United States and the United Kingdom used Cayo Botella for an aircraft bombing/rocket target in 1969. Munitions included 20mm projectiles, Mk 44 and Mk 45 flares, live and practice bombs up to 500 pounds, and 2.75-inch rockets as well as British bombs and rockets.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Two MEC items were found during RI/FS field work: MK5 MOD O Rocket nose and Mk8 demo hose. Various frag and small arms also were found at the site during the RI/FS field work. Historically additional MEC has been found on both Culebrita and Cayo Botella.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	W There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

There is no barrier to access the site; however, the site is only accessible by boat.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>©</u>
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

This MRS is managed by the USFWS.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile. Culebrita and Cayo Botella are uninhabited.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures within 2 miles of MRS 07 located on Culebra. Culebrita and Cayo Botella are uninhabited.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	4

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

Culebrita beaches and trails are used recreationally and many boats visit the island each year.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species. The Culebrita Lighthouse (dedicated as a Historical Monument of the United States) is located on Culebrita but outside of the MRS boundary.

Table 10
Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value		
Explosive Hazard Factor Data El	Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	25	35		
Source of Hazard	Table 2	10	30		
Accessibility Factor Data Elemen	nts				
Location of Munitions	Table 3	25			
Ease of Access	Table 4	10	40		
Status of Property	Table 5	5			
Receptor Factor Data Elements	-				
Population Density	Table 6	1			
Population Near Hazard	Table 7	5	4.4		
Types of Activities/Structures	Table 8	3	14		
Ecological and/or Cultural Resources	Table 9	3			
EHE MODULE TOTAL 89					
EHE Module Total	EHE Module Rating		ating		
92 to 100	А				
82 to 91	В				
71 to 81		С			
60 to 70		D			
48 to 59	E				
38 to 47	F				
less than 38	G				
	Evaluation Pending		ding		
Alternative Module Ratings	No Longer Required		uired		
	No Known or Suspected Explosive Hazard				
EHE MODULE RATING	EHE MODULE RATING B				

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

No evidence of CWM has been found at MRS 07.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemen	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12	-1	0
Accessibility Factor Data Elemer	nts		
Location of CWM	Table 13	-	
Ease of Access	Table 14	-1	
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
CHE	MODULE	E TOTAL	0
CHE Module Total	CHE Module Total CHE Module Ratin		ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59	E		
38 to 47	F		
less than 38	G		
	Evaluation Pending		ding
Alternative Module Ratings	No Longer Required		uired
	No Known or Suspected CWM Hazard		
CHE MODULE RATING	NO KNOWN OR SUSPECTED		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios
	No groundwater samplin	g was conducted.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	- Maximum Concentration of Co	ntaminant
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	:
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle the	·	o the groundwater migratory pathway at the N	IRS.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).	
DIRECTIONS: Circle to	Receptor F he value that corresponds most closely to	actor the groundwater receptors at the MRS.	
Classification	Des	cription	Value
Identified	source of drinking water or source of water for of (equivalent to Class I or IIA aquifer).		Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		М
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value :	hest value from above in the box to the = H).	
	No Kno	wn or Suspected Groundwater MC Hazard	

HHE Module: Surface Water - Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
No surface water sampling was conducted.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	Maximum Concentration of Co	enteminent]	
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	intarrillaritj	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle t	Migratory Pathw he value that corresponds most closely to	ay Factor the surface water migratory pathway at the	MRS.	
Classification	Desc	ription	Value	
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu	hat contamination in the surface water is present at, ire.	Н	
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М	
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification		ription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface with move.	water to which contamination has moved or can	М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum valu			

No Known or Suspected Surface Water (Human Endpoint) MC Hazard

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

PATHWAY FACTOR

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard

with human endpoints present in the sediment, select the box at the bottom of the table.			
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Antimony	1.97	22	0.089
Barium	369	15,000	0.025
Chromium	12.6	100,000	0.000
Copper	151	3,100	0.048
CHF Scale	CHF Value	Sum The Ratios	0.220
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminant1
100 > CHF > 2	M (Medium)	CHF = Z,	
2 > CHF	L (Low) [Comparison Value for Contaminant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value from above in the box to the right maximum value = H).		L
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.			
Classification	Des	cription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the sediment is present at, sure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined		nant migration from the source via the sediment to a presence of geological structures or physical controls).	
MIGRATORY	DIRECTIONS: Record the single hig	hest value from above in the box to the	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

right (maximum value = H).

Classification	Description	
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant

Maximum Concentration (mg/kg)

Comparison Value (mg/kg)

Ratios

No Known or Suspected Sediment (Human Endpoint) MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Surface Water - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios		
	No surface water sampling was conducted.				
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	— [Maximum Concentration of Co	ontaminantl		
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right			
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS. Classification Description Value					
		that contamination in the surface water is present at,	Value H		
Evident	moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		M		
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =				
DIRECTIONS: Circle th	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification		cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.		Н		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М		
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =				

No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard

HHE Module: Sediment - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Antimony	1.97	22	0.089
Barium	369	15,000	0.025
Chromium	12.6	100,000	0.000
Copper	151	3,100	0.048
CHF Scale	CHF Value	Sum the Ratios	0.220
CHF > 100	H (High)	— Maximum Concentration of Co	ontominant]
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} I(Maximum Concentration of Concentration)$	Jillaminanij
2 > CHF	L (Low)	[Comparison Value for Contaminant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Valu (maximum value = H).		L

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

HHE Module: Sediment - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant

Maximum Concentration (mg/kg)

Comparison Value (mg/kg)

Ratios

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

HAZARD FACTOR

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

L

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Antimony	7.02	22	0.319
Barium	870	15,000	0.058
Chromium	22.5	100,000	0.000
Copper	225	3,100	0.072
CHF Scale	CHF Value	Sum the Ratios	0.0514
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i} \text{IMaximum Concentration of } Concentration Co$	Jinaminantj
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT	DIRECTIONS: Record the CHF Value	ue from above in the box to the right	1

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

(maximum value = H).

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant

Maximum Concentration (mg/kg)

Comparison Value (mg/kg)

Ratio

No Known or Suspected Surface Soil MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Lead	20.1	400	0.050
Sediment	Mercury	0.0768	23	0.003
Sediment	Zinc	115	23,000	0.005
Surface Soil	Lead	22.8	400	0.057
Surface Soil	Mercury	0.0517	23	0.002
Surface Soil	Zinc	149	23,000	0.006
				†
				+
				+
				+
				+
				1
				-

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: U.S. Fish and Wildlife Area

Component: U.S. Army

Installation/Property Name: Culebra Island

Location (City, County, State): Culebra Island, Puerto Rico

Site Name/Project Name (Project No.): Culebra Island PRDF/FRMD:

Date Information Entered/Updated: 19 December 2011

Point of Contact (Name/Phone): Layne Young (410) 332-4806

Project Phase (check only one): RI

q PA	q SI	ü RI	q FS	q RD
q RA-C	q RIP	q RA-O	q RC	q LTM

Media Evaluated (check all that apply):.

q Groundwater	ü Sediment (human receptor)
ü Surface soil	q Surface Water (ecological receptor)
ü Sediment (ecological □ receptor)	■ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The U.S. Fish and Wildlife Area includes contiguous portion of MRS 04 and MRS 05 in the north central portion of Culebra and covers approximately 631. Historical training records indicate that many of the hills in this area may have been used for direct fire.

Description of Pathways for Human and Ecological Receptors:

Potentially complete pathways exist for construction/utility workers, outdoor site workers, recreationists/visitors, and biota for MEC in the surface and subsurface. Incomplete pathways exist for all human and ecological receptors for MC.

Description of Receptors (Human and Ecological): The current human receptors include construction/utility workers, outdoor site workers, and recreationists/visitors. Ecological receptors include a variety of species.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture 	30
High explosive (used or damaged)	poses an explosive hazard. UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: S Damaged by burning or detonation S Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: \$ Have not been damaged by burning or detonation \$ Are not deteriorated to the point of instability. 	10
Practice	UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	W UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.)	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

DIRECTIONS: Document any MRS-specific data used in selecting the Munitions Type classifications in the space provided.

Historical munitions used at the U.S> Fish and Wildlife Area include 81mm HE and practice mortars and 75mm practice mortars. No MEC was found during the RI/FS field work.

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with **all** the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones.	10
Former munitions treatment (i.e., OB/OD) unit	■ The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions range	■ The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	■ The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	■ The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.	0
SOURCE OF HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

Historical training records indicate that many of the hills in this area may have been used for direct fire.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Limited MEC investigations were conducted in the US Fish and Wildlife Area during the RI; however, MD was found just south of the U.S. Fish and Wildlife Area in MRS 05 during the RI. No MEC was found during the RI or previous investigations.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The

barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	■ There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

The US Fish and Wildlife Area is a designated wildlife refuge. It is accessible to the public.

Table 5EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5
Scheduled for transfer from DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	■ The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

The USFWS and DNER manage the U.S. Fish and Wildlife Area. No property is under DoD control.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The island of Culebra has a population density of 62.4 persons per square mile.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of

inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

There are greater than 26 inhabited structures within 2 miles of the U.S. Fish and Wildlife Area.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The main land uses on and surrounding the U.S. Fish and Wildlife Area are residential, recreational, and undeveloped.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	
Ecological and cultural resources present	■ There are both ecological and cultural resources present on the MRS.	
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	■ There are cultural resources present on the MRS.	
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

Protected species include the endangered hawksbill (*Eretmochelys imbricata*) and leatherback (*Dermochelys coriacea*) sea turtles, the threatened green sea turtle (*Chelonia mydas*) and its designated critical habitat 3 nautical miles around Culebra and its surrounding islands and cays, the threatened elkhorn (*Acropora palmata*) and staghorn corals (*Acropora cervicornis*), the West Indian manatee (*Trichechus manatus*), and avian species.

Table 10 Determining the EHE Module Rating

DIRECTIONS:

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value		
Explosive Hazard Factor Data Ele	Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	25	35		
Source of Hazard	Table 2	10	33		
Accessibility Factor Data Elemer	nts				
Location of Munitions	Table 3	10			
Ease of Access	Table 4	10	25		
Status of Property	Table 5	5			
Receptor Factor Data Elements					
Population Density	Table 6	1			
Population Near Hazard	Table 7	5	14		
Types of Activities/Structures	Table 8	5	14		
Ecological and/or Cultural Resources	Table 9	3			
EHE MODULE TOTAL 7			74		
EHE Module Total EHE Module Rat		ating			
92 to 100		Α			
82 to 91		В			
71 to 81		C			
60 to 70		D			
48 to 59		E			
38 to 47		F			
less than 38	G				
	Eva	lluation Pen	ding		
Alternative Module Ratings	No I	_onger Requ	uired		
No Known or Suspecte Explosive Hazard					
EHE MODULE RATING			-		

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	The CWM known or suspected of being present at the MRS are: W CWM that are UXO (i.e., CWM/UXO) W Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.	30
CWM mixed with UXO	■ The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	■ The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS are: W Nonexplosively configured CWM/DMM either damaged or undamaged W Bulk CWM (e.g., ton container).	15
CAIS K941 and CAIS K942	■ The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

No evidence of CWM has been found at the U.S. Fish and Wildlife Area.

Tables 12-19

No known or suspected CWM hazard is expected at this site. Therefore, Tables 12 through 19 have been intentionally omitted according to Active Army Guidance.

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

3	Source	Score	Value
CWM Hazard Factor Data Eleme	nts		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12	-	0
Accessibility Factor Data Eleme	nts		
Location of CWM	Table 13	-	
Ease of Access	Table 14	-1	
Status of Property	Table 15		
Receptor Factor Data Elements			
Population Density	Table 16	-	
Population Near Hazard	Table 17	1	
Types of Activities/Structures	Table 18		
Ecological and/or Cultural Resources	Table 19		
CHE	MODULE	E TOTAL	0
CHE Module Total	al CHE Module Rating		ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		Е	
38 to 47		F	
less than 38	G		
	Eva	lluation Pen	ding
Alternative Module Ratings	No I	_onger Requ	uired
J 3	No Known or Suspected CWM Hazard		
CHE MODULE RATING	NO KNOWN OR SUSPECTED CWM HAZARD		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
Groundwater samples were not collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	- IMaximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	en in out!	
2 > CHF	L (Low)	[Comparison Value for Conta	minantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle the	Migratory Pathw he value that corresponds most closely to	vay Factor the groundwater migratory pathway at the N	MRS.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).		
DIRECTIONS: Circle the	Receptor Face that corresponds most closely to			
Classification	Des	cription	Value	
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).			
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).			
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).		
	No Kno	wn or Suspected Groundwater MC Hazard		

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L)	Comparison Value (g/L)	Ratios	
	Surface water samples w	vere not collected.		
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = [Maximum Concentration of Co	ntaminant]	
2 > CHF	L (Low)	[Comparison Value for Contain	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	· · · · · · · · · · · · · · · · · · ·	•	
DIRECTIONS: Circle to	Migratory Pathw ne value that corresponds most closely to	ay Factor the surface water migratory pathway at the	MRS.	
Classification	Desc	ription	Value	
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu-	hat contamination in the surface water is present at, ire.	Н	
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contamina a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
DIDECTIONS: Circle 4	Receptor Fa			
		the surface water receptors at the MRS.		
Classification	Identified receptors have access to surface water	cription to which contamination has moved or can move	Value	
Identified	·		H	
Potential	Potential for receptors to have access to surface with move.	water to which contamination has moved or can	M	
1	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
Limited				

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard

with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Barium	196	15,000	0.013
Chromium	14.3	100,000	0.000
Copper	149	3,100	0.048
Lead	6.29	400	0.016
CHF Scale	CHF Value	Sum The Ratios	0.080
CHF > 100	H (High)	[Maximum Concentration of Concentration	ontaminantl
100 > CHF > 2	M (Medium)	CHF = Z	1
2 > CHF	L (Low)	[Comparison Value for Contaminant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	L

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	M
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	M
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

No Known or Suspected Sediment (Human Endpoint) MC Hazard

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (g/L) Comparison Value (g/L)				
Surface water samples were not collected.					
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	Maximum Concentration of Concentrat	ontaminantl		
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	ontaminant _j		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ray Factor the surface water migratory pathway at the	MRS.		
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical L controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle th	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification	n Description				
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard					

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Barium	196	15,000	0.013
Chromium	14.3	100,000	0.000
Copper	149	3,100	0.048
Lead	6.29	400	0.016
CHF Scale	CHF Value	Sum the Ratios	0.080
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)	CHF = \(\sum_{} \)	
2 > CHF	L (Low)	[Comparison Value for Conta	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н	
Potential	Potential Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description			
Identified	Identified receptors have access to sediment to which contamination has moved or can move.			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	L		

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant

Maximum Concentration (mg/kg)

Comparison Value (mg/kg)

Ratios

No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio	
Antimony	7.57	22	0.344	
Barium	958	15,000	0.063	
Chromium	66.7	100,000	0.000	
Copper	171	3,100	0.055	
CHF Scale	CHF Value	Sum the Ratios	0.512	
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminant]	
100 > CHF > 2	M (Medium)	CHF = \(\sum_{		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).			

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	
Potential	Potential Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	
Confined Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).		L

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description			
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	M		
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L		

No Known or Suspected Surface Soil MC Hazard

Note: A value of L was selected for the MPF and the RF due to the extremely low concentrations of metals detected during the soils sampling event and the low potential for receptors to encounter these metals due to current and future land use. See Sections 5 and 6 of the RI for fate and transport and the baseline risk assessment.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Mercury	0.0129	23	0.000
Sediment	Zinc	73.3	23,000	0.003
Surface Soil	Lead	17.3	400	0.043
Surface Soil	Mercury	0.0434	23	0.002
Surface Soil	Zinc	127	23,000	0.005

Note: Surface soil and sediment samples were not collected from within the U.S Fish and Wildlife Area during the RI. The surface soil and sediment data used for the HHE Module were collected from MRS 05 which had the same historical training and munitions use as the U.S. Fish and Wildlife Area.

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-			:	
Surface Water/Human Endpoint (Table 22)				i	
Sediment/Human Endpoint (Table 23)	L	L	٦	LLL	G
Surface Water/Ecological Endpoint (Table 24)	1	-		1	
Sediment/Ecological Endpoint (Table 25)	L	L	٦	LLL	G
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only) Combination Rating

Combination	Rating	
ННН	A	
ННМ	В	
HHL	0	
НММ	С	
HML	-	
MMM	D	
HLL	Г	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
, morriant o modalo i tamigo	No Kasuman	

No Known or Suspected MC Hazard

G

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
C	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	Ш	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected Hazard				No Known or Suspected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING				4	

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	-1			i	
Surface Water/Human Endpoint (Table 22)	-		-	1	
Sediment/Human Endpoint (Table 23)	L	L	_	LLL	G
Surface Water/Ecological Endpoint (Table 24)			1		
Sediment/Ecological Endpoint (Table 25)	_	L	٢	LLL	G
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

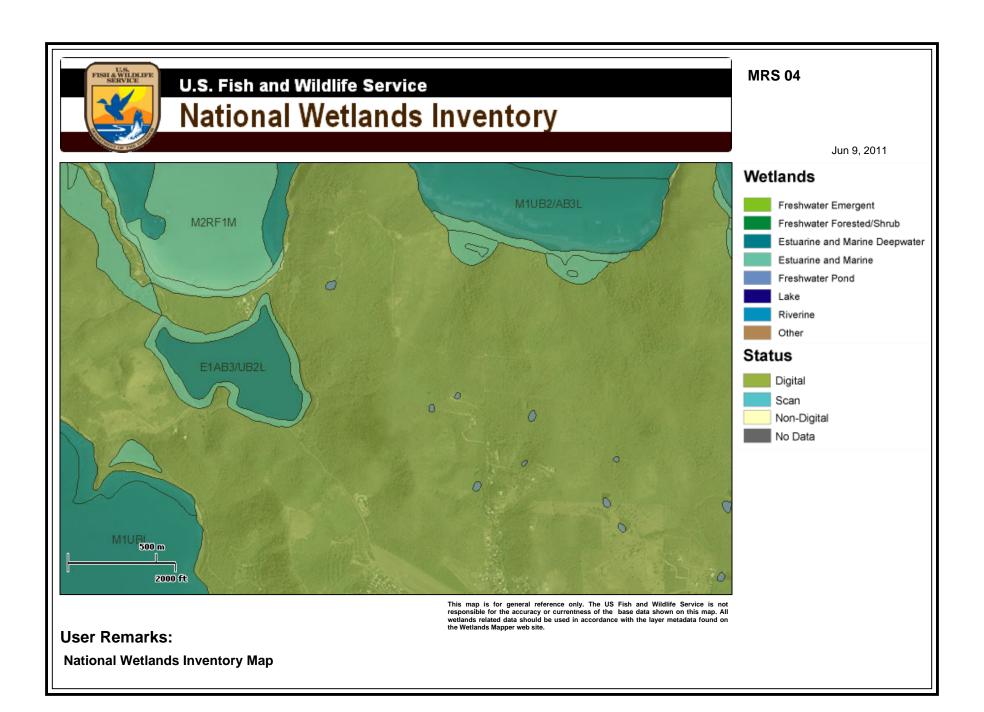
HHE Ratings (for reference only)

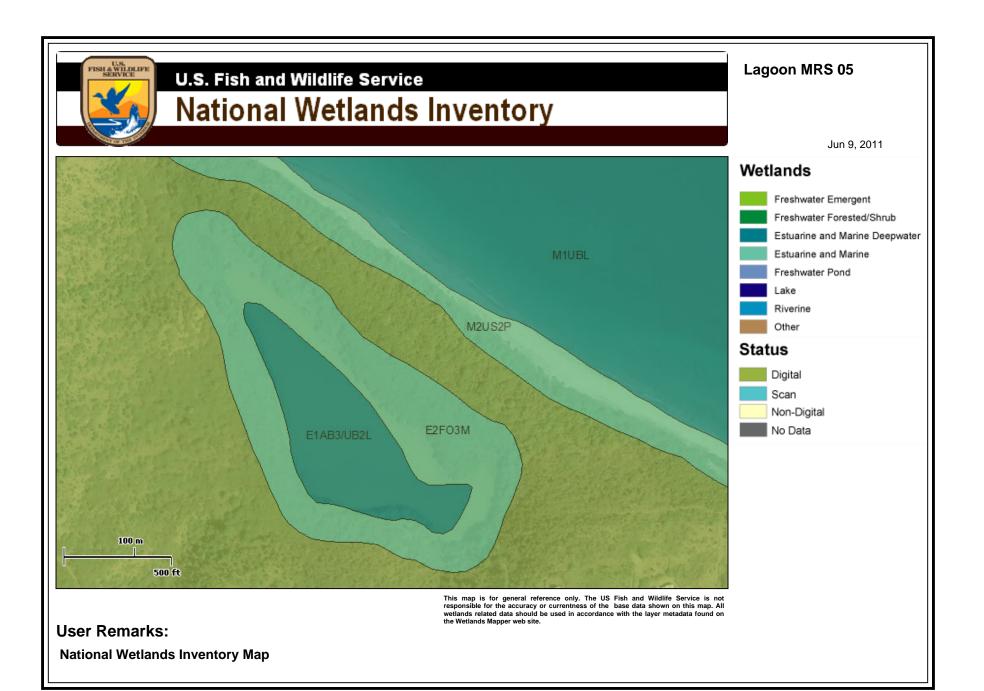
G

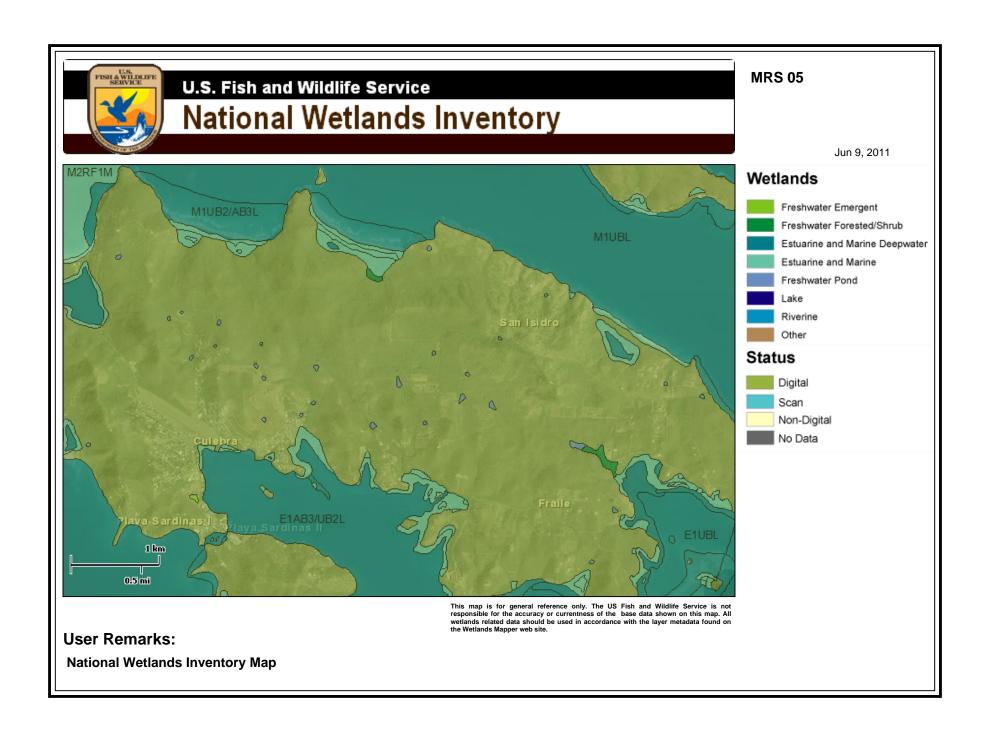
HHE MODULE RATING

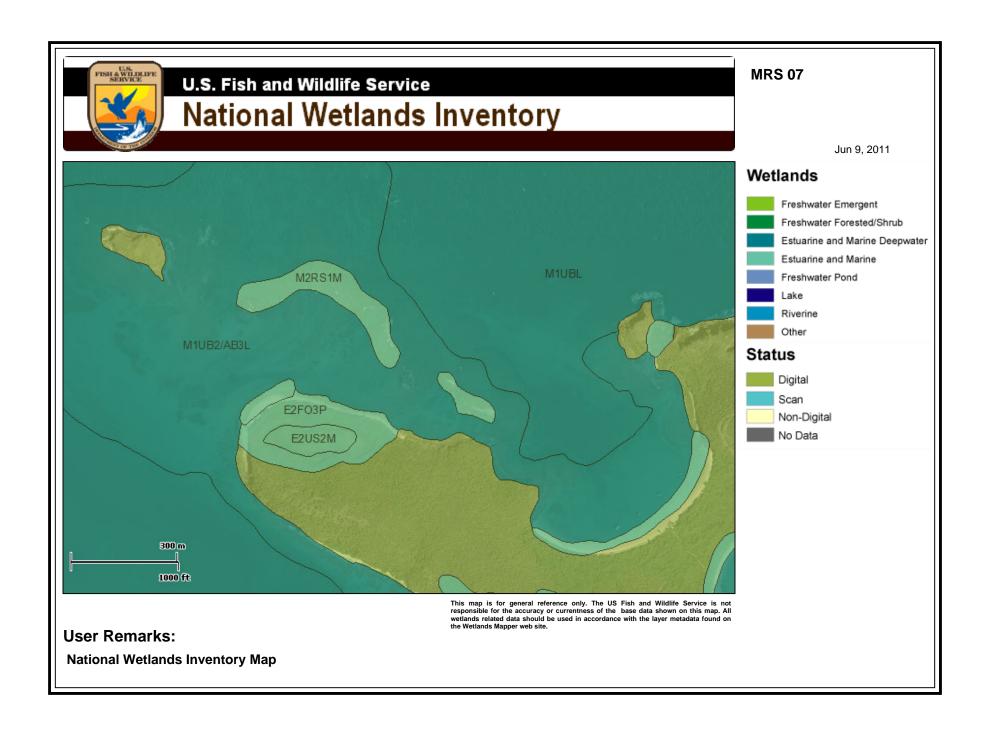
Title Ratings (for reference only)					
Combination	Rating				
ннн	А				
ННМ	В				
HHL					
НММ	С				
HML					
MMM	D				
HLL					
MML	E				
MLL	F				
LLL	G				
	Evaluation Pending				
Alternative Module Ratings	No Longer Required				
	No Known or Suspected MC Hazard				

Table 29 **MRS Priority**


DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS **Rating** at the bottom of the table.


Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.


EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	C	4
D	5	ш	5	D	5
E	6	F	6	Е	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard			No Known or Suspected MC Hazard		
MRS PRIORITY or ALTERNATIVE MRS RATING				3	


Appendix G: Federally Recognized Wetlands

Contract No. W912DY-04-D-0009 Task Order No. 0013

Appendix H: GIS Data GIS Data Included in Electronic Format on the Enclosed CD

Contract No. W912DY-04-D-0009 Task Order No. 0013