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Abstract

Perfluoroalkyl acids (PFAAs), a group of synthetic organic chemicals with industrial and com-

mercial uses, are of current concern because of increasing awareness of their presence in

drinking water and their potential to cause adverse health effects. PFAAs are distinctive among

persistent, bioaccumulative, and toxic (PBT) contaminants because they are water soluble and

do not break down in the environment. This commentary discusses scientific and risk assess-

ment issues that impact the development of drinking water guidelines for PFAAs, including

choice of toxicological endpoints, uncertainty factors, and exposure assumptions used as their

basis. In experimental animals, PFAAs cause toxicity to the liver, the immune, endocrine, and

male reproductive systems, and the developing fetus and neonate. Low-dose effects include

persistent delays in mammary gland development (perfluorooctanoic acid; PFOA) and sup-

pression of immune response (perfluorooctane sulfonate; PFOS). In humans, even general

population level exposures to some PFAAs are associated with health effects such as

increased serum lipids and liver enzymes, decreased vaccine response, and decreased birth

weight. Ongoing exposures to even relatively low drinking water concentrations of long-chain

PFAAs substantially increase human body burdens, which remain elevated for many years

after exposure ends. Notably, infants are a sensitive subpopulation for PFAA’s developmental

effects and receive higher exposures than adults from the same drinking water source. This

information, as well as emerging data from future studies, should be considered in the develop-

ment of health-protective and scientifically sound guidelines for PFAAs in drinking water.

This Perspective is part of the Challenges in Environmental Health: Closing the Gap between
Evidence and Regulations Collection.

Introduction

Perfluoroalkyl acids (PFAAs), a group of persistent organic pollutants, are the focus of current

attention because of their detection in drinking water and a rapid increase in evidence for

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002855 December 20, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Post GB, Gleason JA, Cooper KR (2017)

Key scientific issues in developing drinking water

guidelines for perfluoroalkyl acids: Contaminants of

emerging concern. PLoS Biol 15(12): e2002855.

https://doi.org/10.1371/journal.pbio.2002855

Editor: Linda S. Birnbaum, National Institute of

Environmental Health Sciences, United States of

America

Published: December 20, 2017

Copyright: © 2017 Post et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors received no specific funding

for this work.

Competing interests: All three authors are

members of the New Jersey Drinking Water Quality

Institute (DWQI), an advisory body to the New

Jersey Department of Environmental Protection.

The DWQI recommends drinking water standards

for contaminants of concern in NJ based on

relevant scientific information. It recently

completed evaluations of two PFAAs—PFOA and

PFNA. The views expressed herein do not

necessarily reflect those of the New Jersey

Department of Environmental Protection or the

New Jersey Department of Health.

https://doi.org/10.1371/journal.pbio.2002855
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002855&domain=pdf&date_stamp=2017-12-20
https://doi.org/10.1371/journal.pbio.2002855
http://creativecommons.org/licenses/by/4.0/


their adverse health effects. This commentary discusses PFAAs as emerging drinking water

contaminants, and key scientific data and risk assessment issues for development of health-

protective and scientifically sound PFAA drinking water guidelines.

PFAAs (often referred to by the broader term, perfluorinated chemicals [PFCs]) are anthro-

pogenic compounds with a totally fluorinated carbon chain and a negatively charged func-

tional group such as carboxylate or sulfonate (Fig 1). They are part of the larger group, per-

and polyfluoroalkyl substances (PFAS), that encompasses many other aliphatic substances

containing at least one totally fluorinated carbon atom [1]. Although the most well-known and

well-studied PFAAs are the eight-carbon compounds, perfluorooctanoic acid (PFOA) and per-

fluorooctane sulfonate (PFOS), PFAAs with longer or shorter carbon chains as well as other

types of PFAS also occur in drinking water and are also the subject of current research [2–4].

PFAAs have been produced for over 60 years. They are used commercially and in indus-

trial processes because they repel both oil and water, withstand elevated temperatures, and

are highly resistant to chemical reactions. Commercial applications include stain-resistant

coatings for upholstery and carpeting, water-resistant breathable outdoor clothing, and

greaseproof food packaging. They are used in the manufacture of fluoropolymers such as

polytetrafluoroethylene in non-stick cookware and fluoroelastomers (high-performance

synthetic rubber), but are not intentionally present in these finished products [1,5]. PFAAs

and numerous other PFAS are also found in aqueous film-forming foams (AFFF) used to

fight hydrocarbon fires [6,7].

Why are PFAAs in drinking water a current concern?

PFAAs differ from other environmental contaminants in several important ways. They persist

indefinitely in the environment because of the strength of their carbon-fluorine bonds. PFAAs

are highly water-soluble while other well-known persistent, bioaccumulative, and toxic (PBT)

organic pollutants such as polychlorinated dioxins and polychlorinated biphenyls have low

water solubility. In contrast to PFAAs, drinking water is not a major exposure source for these

other PBT contaminants [8].

Sources of PFAAs in the environment include industrial facilities where they are made or

used, release of AFFF during training or firefighting, industrial and domestic wastewater treat-

ment plant effluent, land application of biosolids (sludge), and leachate from industrial waste

or consumer products disposed of in landfills [8]. Major United States manufacturers have vol-

untarily ended production and use of long-chain PFAAs (i.e., perfluorinated carboxylates with

eight or more carbons and perfluorinated sulfonates with six or more carbons) and their pre-

cursors, due to concerns about biological persistence and potential health effects [5,9]. How-

ever, environmental contamination is expected to continue due to their environmental

persistence, continued formation from precursors, and ongoing production by nonparticipat-

ing manufacturers especially overseas, particularly in China and India [5,10]. Of particular

note, PFAAs that reach groundwater may remain there indefinitely, impacting drinking water

sources for generations to come [11].

While not the focus of this paper, it is important to mention current concerns about the

numerous compounds that have been introduced as replacements for the phased-out long-

chain PFAAs, including shorter chain PFAAs and other types of PFAS such as perfluoroethers

[12]. While these replacements are generally less bioaccumulative than long-chain PFAAs,

they are similarly environmentally persistent, may be more mobile in the environment, and

are less efficiently removed from drinking water by standard treatment processes [13,14]. They

are not detected by standard analytical methods but have been found in drinking water at lev-

els of potential concern in research studies [15,16]. Furthermore, some replacements cause
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toxic effects similar to long-chain PFAAs [17], while the toxicity of others may not have been

adequately studied [13].

Both the scientific literature and awareness of PFAAs in US drinking water have greatly

increased in the past decade. A PubMed search for the keyword “PFOA” and synonyms

located only 244 citations before 2006, 667 from 2006–2010, and over 1,100 from 2011–2015.

Similarly, PFAA occurrence was investigated in only a few US public water systems (PWS)

near sites of industrial release until New Jersey conducted the first statewide studies of PFAAs

in drinking water, which included 54 PWS, in 2006 and 2009–2010 [3,18].

The recent US Environmental Protection Agency (EPA) Unregulated Contaminant Moni-

toring Rule 3 (UCMR3) study revealed previously unknown PFAA contamination in PWS

throughout the US [4]. UCMR3 required testing of all large US PWS (serving >10,000 people)

and a limited sample of smaller PWS for six PFAAs from 2013–2015. PFAAs were reported in

194 US PWS (about 4% of those tested) serving about 16.5 million people in 36 states and terri-

tories [19]. AFFF, particularly from discharge at military bases, is identified as the source of

many PFAA detections in UCMR3 including in some PWS with the highest levels.

UCMR3 reporting thresholds were much higher (e.g., 20 ng/L for PFOA; 40 ng/L for

PFOS) than in other studies of PFAAs in PWS such as the two conducted in New Jersey (4–5

ng/L; [3,18]). Because of these differences in reporting thresholds, PFAAs were detected sev-

eral times more frequently in the two New Jersey studies than in New Jersey UCMR3 monitor-

ing. Similarly, PFAAs are also present at levels too low to be reported in UCMR3 in many

additional PWS in other states [20]. Although PFAAs from industrial sources or AFFF were

recently discovered in several small US PWS, most small PWS were not tested in UCMR3.

Additionally, PFAAs have been detected in private drinking water wells adjacent to sources

(e.g., [21,22]), but many such wells remain untested.

Long-chain PFAAs including PFOA, PFOS, perfluorononanoic acid (PFNA; the nine-carbon

carboxylate), and perfluorohexane sulfonate (PFHxS; the six-carbon sulfonate) are found in the

low parts per billion (ng/ml) range in the blood serum of almost all residents of the US and many

other nations [23,24]. Body burdens of these compounds result from exposures to both the

Fig 1. Structures of PFOA and PFOS.

https://doi.org/10.1371/journal.pbio.2002855.g001
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compounds themselves and conversion of precursors in the body [25]. These long-chain PFAAs

are not metabolized and are slowly excreted with human half-lives of several years. Thus, PFAA

serum levels remain elevated for many years after exposure ends. In contrast, short-chain PFAAs

such as the four-carbon compounds perfluorobutanoic acid (PFBA) and perfluorobutane sulfo-

nate (PFBS) are eliminated much faster, with half-lives of 3 and 26 days, respectively [26,27].

While general population exposure to PFAAs and precursors comes from sources including

diet and consumer products, studies of exposed communities and predictions based on toxico-

kinetic factors show that low levels of PFAAs in drinking water (i.e., well below 100 ng/L [parts

per trillion]) substantially increase blood serum levels. These empirical observations and toxico-

kinetic models (Fig 2) consistently demonstrate that serum PFOA levels in adults increase on

average by more than 100 times the drinking water concentration [8,28], with greater predicted

increases for PFOS and PFNA. Notably, serum PFOA and PFOS were significantly higher

among individuals residing in zip codes with UCMR3 detections than in other zip codes,

although the study design tended to minimize differences between these two groups [29].

Scientific information considered in developing PFAA drinking

water guidelines

Health-based guidelines for drinking water contaminants are developed with risk assessment

approaches that consider toxicological, epidemiological, and mode of action data, and they are

Fig 2. Predicted increases in serum PFOA concentrations from consumption of drinking water with various concentrations of PFOA. Predicted

serum PFOA concentrations from consumption at mean [30] and upper percentile drinking water ingestion rates, as compared to median and 95th serum

PFOA concentration percentiles from NHANES [23]. Predictions are based on the clearance factor for PFOA (0.14 ml/kg/day), which relates PFOA dose (ng/

kg/day) to serum PFOA concentration (ng/ml) [31–33]. PFOA, perfluorooctanoic acid; NHANES, National Health and Nutrition Examination Survey.

https://doi.org/10.1371/journal.pbio.2002855.g002
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most often primarily based on toxicological data from laboratory animals. PFOA and PFOS

have more health effects information than most other contaminants with drinking water

guidelines, and toxicological data are sufficient for guideline development for other PFAAs

such as PFNA, PFBA, and PFBS. However, for some PFAAs of concern in drinking water, par-

ticularly PFHxS, additional toxicological studies are likely needed before guidelines can be

developed.

Numerous human studies have examined associations between PFAAs and many health

endpoints. For example, over 130 such studies of PFOS were published through 2015. A

strength of most of these studies is that associations are based on blood serum PFAA levels

that reflect individual variations in both external exposure (e.g., amount of water ingested each

day) and physiological parameters affecting excretion rates [31]. Exposure assessments based

on serum PFAA levels are therefore less uncertain than external exposure measures such as

residential drinking water concentrations.

Human studies come from the general population, such as the Centers for Disease Control’s

National Health and Nutrition Examination Survey (NHANES), a nationally representative

sample of the US population [34,35]. For PFOA, a wealth of data for a wide range of health end-

points comes from the C8 Health Study of approximately 70,000 Ohio and West Virginia resi-

dents exposed for at least 1 year to drinking water concentrations of 50 ng/L to>3,000 ng/L

[36]. However, such large-scale studies have not been conducted in communities whose drink-

ing water is contaminated with PFOS, other long-chain PFAAs, or the complex PFAS mixtures

found in AFFF. Finally, health effects of several PFAAs were studied in occupationally exposed

workers [34].

For PFOA, the PFAA with the largest epidemiological database, associations are generally

consistent for increases in cholesterol, certain liver enzymes, and uric acid in blood serum;

decreased fetal growth; and decreased vaccine response [31]. Testicular and kidney cancer

were also among several outcomes linked to PFOA in drinking water in the C8 Health Study.

For other effects, no associations were found, or the data may be too limited to make firm con-

clusions [31].

A distinctive feature of the dose-response curves for several effects (e.g., increased serum

lipids and liver enzymes) is that they are steepest at low exposures, including those prevalent in

the general population, with a much flatter slope approaching a plateau at higher exposures. A

potential explanation for the absence of associations in some occupational studies, although

associations are found in less exposed populations, is that the exposures of even the least

exposed workers who serve as controls may be high enough to fall on the “plateau” portion of

the dose-response curve [8,31]. Similarly, associations may not be observed in studies in which

all subjects are from communities with drinking water exposures sufficient to reach the “pla-

teau” [31].

Although some effects linked to PFOA are relatively small in magnitude, they present a

public health concern because such population-level changes can shift the overall distribution,

thereby increasing the number of individuals with clinically abnormal values. Additionally,

small changes in a clinical measure such as birth weight may be indicative of other effects that

were not evaluated such as changes in subtler developmental parameters [31,37].

Laboratory animal studies identify multiple targets for PFAA toxicity including the liver,

immune system, endocrine system, male reproductive system, and developing fetus and neo-

nate [31,38,39]. Toxicological effects are generally concordant with human epidemiology data,

and recent studies suggest that dietary factors (high-fat Western human diet versus low-fat

standard laboratory rodent diet) may contribute to differences in effects on lipid metabolism

observed in rodents versus humans [40,41]. In chronic rodent carcinogenicity studies, PFOA

and PFOS caused tumors while perfluorohexanoic acid (PFHxA), a six-carbon carboxylate
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which is more rapidly excreted, did not [42]. Toxicity that persists into adulthood from low-

dose prenatal or neonatal exposures to some PFAAs is of particular concern. For PFOA, such

effects, including changes in mammary gland development and persistent liver toxicity, are the

most sensitive known toxicological endpoints [31].

Understanding the mode of action is crucial to the risk assessment process used to develop

health-based guidelines, particularly in evaluating whether laboratory animal data are relevant

to humans. An important mode of action for PFAAs is activation of cellular receptors that reg-

ulate expression of genes controlling many biological pathways [43]. Activation can occur

from even very low concentrations of compounds with high specificity for the receptor.

A longstanding question about human relevance of PFAAs’ effects in rodents involves the

role of the nuclear receptor, peroxisome proliferator-activated receptor-α (PPAR-α). PPAR-α
is found in many tissues and has important roles in physiological processes including energy

homeostasis, lipid metabolism, inflammation, and reproduction and development [44–47].

Most PFAAs activate PPAR-α to some degree, and certain toxic effects of some PFAAs occur

wholly or partially via PPAR-α while other effects are PPAR-α independent [43–48].

PPAR-α is functional in humans, as shown by the efficacy of PPAR-α activators such as

fibrates in decreasing serum lipids. However, the human relevance of rodent liver tumors that

occur through PPAR-α activation is subject to debate because levels and/or intrinsic activity of

hepatic PPAR-α are lower in humans [49]. Unfortunately, this uncertainty about liver tumors

has been the basis for generalizations about PFAAs that are not scientifically supportable,

including dismissing human relevance of all rodent hepatic effects, all PPAR-α mediated non-

hepatic (immune and developmental) rodent effects, or even all rodent data [50].

Data from multiple sources including monkeys, standard rodent strains, genetically modi-

fied mice lacking PPAR-α or expressing human PPAR-α, and in vitro receptor activation stud-

ies demonstrate that these generalizations are not valid. Hepatic effects of PFOS are clearly

PPAR-α independent, and both PPAR-α dependent and independent processes are involved

in hepatic effects of PFOA and PFNA [8,31,37,39]. Furthermore, humans are not known to be

less susceptible than rodents to PPAR-α–mediated effects on the immune system or develop-

ment, and some important effects in rodents such as neonatal mortality and low-dose immune

suppression caused by PFOS are PPAR-α independent [37,51,52].

Key risk assessment issues in development of PFAA guidelines

Most recent health-based drinking water guidelines for long-chain PFAAs developed by EPA

and several states in the US range from 13–70 ng/L, far lower than earlier guidelines based on

older scientific literature (Table 1). Drinking water guidelines for PFAAs differ based on the

choice of toxicological endpoint, uncertainty factors, drinking water exposure assumptions

(e.g., for average adult, lactating woman, or infant), and assumed exposure from non-drinking

water sources. Some academic and other scientists suggest that guidelines as low as� 1 ng/L

are needed based on epidemiological findings for PFOA and PFOS, particularly decreased vac-

cine response, and low-dose developmental effects of PFOA such as delayed mammary gland

development in mice [53]. Although detailed discussion of the basis of the various guidelines is

beyond the scope of this commentary, several important issues in development of drinking

water guidelines for PFAAs should be mentioned.

Human studies are preferred as the basis for drinking water guidelines when suitable data

are available. However, there is a high bar for use of human epidemiology in quantitative risk

assessment due to its observational nature. Human data support a causal relationship between

exposure to some PFAAs, particularly PFOA, and certain health effects (e.g., increases in

serum lipids and certain liver enzymes). However, limitations in the current human database,
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such as inability to determine the dose-response relationships for individual PFAAs due to co-

occurrence of other PFAAs, preclude the use of human data as the primary basis for PFAA

drinking water guidelines. Accordingly, animal data are the primary basis for all PFAA drink-

ing water guidelines developed so far by governmental organizations. This approach should be

reconsidered if future studies provide further support for use of human data.

Although current guidelines are not based on human data, considerable evidence linking

some PFAAs with multiple human health effects even within the general population exposure

range indicates the need for caution about additional exposure from drinking water [31].

Therefore, health-protective guidelines for PFAAs must consider the resulting increase in

blood serum levels (Fig 2). Unfortunately, this has not always been the case; for example, the

EPA PFOA guideline of 70 ng/L [58] will increase average blood serum levels from the general

population median of about 2 parts per billion (ppb) to about 10 ppb, with much greater

increases in infants [31]. Links with several health effects at lower serum levels indicate that

increases of this magnitude are not desirable and may not be protective of public health.

An important consideration in risk assessments is the choice of the toxicological endpoint(s)

used as their basis. Drinking water guidelines for PFAAs are generally based on non-cancer

effects, and guidelines based on sensitive non-cancer PFOA endpoints, such as the value recom-

mended by the New Jersey Drinking Water Quality Institute [31], protect for carcinogenicity at

the one-in-one-million lifetime risk level.

For PFOA, hepatic effects, delayed bone formation, and accelerated puberty are the primary

basis for recent guidelines [31,58], while more sensitive developmental endpoints such as

delayed mammary gland development would result in much lower values [8,31,59,60]. Delayed

mammary gland development from low doses of PFOA is well established, and several studies

linking PFOA with shorter duration of breastfeeding support potential human relevance [31].

Table 1. EPA and state health-based drinking water guidelines for long-chain PFAAsa.

PFAA Source Year Guideline (ng/L)

PFOA EPA [33] 2016 70b

Minnesota [54] 2017 35

New Jersey [31] 2017 14c

North Carolina [55] 2006 2,000

Texas [56] 2016 290

Vermont [57] 2016 20b

PFOS EPA [33] 2016 70b

Minnesota [54] 2017 27

Texas [56] 2016 560

Vermont [57] 2016 20b

PFNA New Jersey [39] 2015 13c

Texas [56] 2016 290

PFHxS Texas [56] 2016 93

Abbreviations: EPA, US Environmental Protection Agency; PFHxS, perfluorohexane sulfonate; PFNA,

perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate.
a Includes drinking water guidelines and ground water guidelines applied to public water systems and/or

private drinking water wells. Guidelines of several additional states that are not listed are based on EPA

drinking water guidelines [33].
b Applies to total of PFOA and PFOS.
c Drinking water standards recommended by New Jersey Drinking Water Quality Institute. For PFNA, New

Jersey groundwater standard of 10 ng/L has same basis.

https://doi.org/10.1371/journal.pbio.2002855.t001
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However, this effect has not been used as the primary basis for PFOA risk assessment for rea-

sons including lack of precedent, although it and other low-dose effects are accounted for in

some PFOA guidelines with an uncertainty factor used when “there is concern that future

studies may identify a more sensitive effect, target organ, population, or lifestage” [31]. If addi-

tional studies provide further support for this or other emerging toxicological endpoints, their

use as the primary basis for PFOA risk assessment should be reconsidered.

Similarly, the recent EPA (2016) drinking water guideline for PFOS is based on decreased

offspring body weight. However, review of the toxicological literature suggests consideration

of decreased immune response as a more sensitive and appropriate basis [60], and Minnesota’s

recent PFOS guideline adds an additional uncertainty factor to EPA’s assessment to account

for potential immunotoxicity at lower doses [61].

Because PFAA half-lives are much longer in humans than animals, serum levels are much

greater in humans than animals given the same dose. The default uncertainty factor of 3 for

interspecies toxicokinetic variability is insufficient to account for this large difference. There-

fore, comparison of animals and humans is based on internal doses, as indicated by blood

serum levels, in most current drinking water guidelines for long-chain PFAAs (e.g.,

[31,39,58]).

Serum PFAA levels in breastfed infants are typically several fold higher than in older indi-

viduals using the same contaminated drinking water source; infants consuming formula pre-

pared with contaminated water also receive higher exposures than adults (reviewed in

[31,39]). This is of concern because developmental effects from early life exposures are sensi-

tive endpoints for PFAA toxicity. These higher exposures are accounted for in Vermont’s

guidelines by basing exposure on an infant ingestion rate that is larger than the default adult

drinking water ingestion rate [57]. However, this approach is uncertain because PFAA risk

assessments are based on steady-state serum levels from constant doses over many years, while

infant exposures vary with age and occur over a period too short to reach steady-state. This

problem has recently been addressed by Minnesota’s development of guidelines based on toxi-

cokinetic models that predict infant PFAA exposures from breast milk and formula [61,62].

Another consideration in developing PFAA drinking water guidelines is the Relative Source

Contribution (RSC) factor, which accounts for assumed exposure from non-drinking water

(e.g., food, consumer products) [63]. The default RSC is 20%; i.e., it is assumed that 20% of

total exposure comes from drinking water and 80% from other sources. However, a chemical-

specific RSC between 20% and 80%, which results in a less stringent guideline, may be derived

when supported by available data. Most drinking water guidelines for PFAAs use the default

RSC because it is the most public health-protective option and because non-drinking water

exposures in communities with drinking water contamination are not fully characterized (e.g.,

[31,33]). However, some guidelines use higher chemical-specific RSCs based on the assump-

tion that 95th percentile general population serum PFAA concentrations represent an upper

limit for non-drinking water exposures [39,61,62].

Finally, multiple PFAAs with potentially additive or synergistic toxicities often co-occur in

drinking water. Because the dose-response for some effects is steepest at low exposures and

approaches a plateau at higher exposures, dose-response for mixtures may be complex and

dose-dependent. Although cumulative effects are not considered in most PFAA drinking

water guidelines, the EPA guideline of 70 ng/L and the Vermont guideline of 20 ng/L apply to

PFOA and PFOS individually, as well as the sum of both [58].

PFAAs that have drinking water guidelines may also co-occur with other PFAS not

included in routine analysis that are detected only by research analytical methods [15]. Such

nontarget analytes may include many components of the complex PFAS mixtures found in

AFFF, as well as PFAS such as the perfluoroethers used as industrial replacements for phased-
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out long-chain PFAAs [7,13,15]. An important but frequently overlooked benefit of addressing

exceedances of PFAA drinking water guidelines is that treatment removal processes intended

to remove the compound(s) of concern may also partially or totally remove other PFAAs and

PFAS, as well as unrelated contaminants, that may be present at levels of public health concern

[31].

In conclusion, long-chain PFAAs cause low-dose toxicological effects in animals and some are

associated with human health effects at general population exposure levels. Ongoing exposure to

even relatively low drinking water concentrations of long-chain PFAAs substantially increases

human body burdens, which remain elevated for many years after exposure ends. Additionally,

infants, a sensitive subpopulation, receive much higher exposures than adults from the same

drinking water source. This information, along with other considerations presented above and

additional data from future studies, should be considered in the development of PFAA drinking

water guidelines to ensure that they are health-protective and scientifically sound.
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