Conference of the Parties to the Basel Convention
on the Control of Transboundary Movements of
Hazardous Wastes and Their Disposal
Thirteenth meeting
Geneva, 24 April–5 May 2017
Agenda item 4 (b) (i)
Matters related to the implementation of the Convention:
scientific and technical matters: technical guidelines

Technical guidelines

Addendum

General technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants

Note by the Secretariat

At its thirteenth meeting, the Conference of the Parties to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal adopted, in decision BC-13/4 on technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants, the general technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants, on the basis of the draft technical guidelines contained in document UNEP/CHW.13/6/Add.1. The technical guidelines referred to above were prepared by Canada, in consultation with the small intersessional working group on the development of technical guidelines on persistent organic pollutants wastes and taking into account comments received from Parties and others and comments provided at the tenth meeting of the Open-ended Working Group of the Basel Convention. The technical guidelines were further revised on 6 March 2017 taking into account comments received from Parties and others by 28 February 2017, as well as the outcome of the face-to-face meeting of the small intersessional working group on the development of technical guidelines on persistent organic pollutants wastes held from 20 to 22 February 2017 in Bonn, Germany (see document UNEP/CHW.13/INF/60). The text of the final version of the technical guidelines, as adopted, is set out in the annex to the present note. The present note, including its annex, has not been formally edited.
Annex

General technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants

Revised final version (5 May 2017)
## Contents

**Abbreviations and acronyms** ................................................................. 5

**Units of measurement** ................................................................. 6

I. **Introduction** .............................................................................. 7

   A. Scope ...................................................................................... 7

   B. About POPs and POP wastes .................................................. 9

II. **Relevant provisions of the Basel and Stockholm conventions** ............ 10

   A. Basel Convention ...................................................................... 10

      1. General provisions .......................................................... 10

      2. POP-related provisions ...................................................... 11

   B. Stockholm Convention .......................................................... 11

      1. General provisions .......................................................... 11

      2. Waste-related provisions .................................................... 12

III. **Issues under the Stockholm Convention to be addressed cooperatively with the Basel Convention** 13

   A. Low POP content .................................................................. 13

   B. Levels of destruction and irreversible transformation ................. 15

   C. Methods that constitute environmentally sound disposal .............. 16

IV. **Guidance on environmentally sound management (ESM)** ................. 16

   A. General considerations .......................................................... 16

   B. Legislative and regulatory framework ........................................... 17

      1. Phase-out dates for production and use of POPs ....................... 17

      2. Transboundary movement requirements ................................ 18

      3. Specifications for containers, equipment, bulk containers and storage sites containing POPs ........................................... 18

      4. Health and safety .............................................................. 18

      5. Specification of acceptable procedures for sampling and analysis of POPs .......................................................... 19

      6. Requirements for hazardous waste treatment and disposal facilities .................................................. 19

      7. General requirement for public participation ................................ 19

      8. Contaminated sites ................................................................ 19

      9. Other legislative controls ...................................................... 19

   C. Waste prevention and minimization ............................................ 20

   D. Identification of wastes ............................................................ 20

      1. General considerations ...................................................... 20

      2. Inventories ........................................................................ 22

   E. Sampling, analysis and monitoring .............................................. 22

      1. Sampling ............................................................................ 23

      2. Analysis ............................................................................ 24

      3. Monitoring ......................................................................... 25

   F. Handling, collection, packaging, labelling, transportation and storage .................. 26

      1. Handling ........................................................................... 27

      2. Collection ......................................................................... 27

      3. Packaging ......................................................................... 28

      4. Labelling ........................................................................... 28

      5. Transportation .................................................................... 29

      6. Storage ............................................................................. 29

   G. Environmentally sound disposal .................................................... 30

      1. Pre-treatment ....................................................................... 30

         (a) Adsorption and absorption ........................................... 30

         (b) Blending ....................................................................... 31
K. Health and safety ................................................................. 53
   1. Higher-risk situations ..................................................... 54
   2. Lower-risk situations .................................................... 55
J. Emergency response ........................................................... 55
K. Public participation ............................................................. 56

Annex I: International instruments .................................................. 57
Annex II: Examples of pertinent national legislation ................................. 58
Annex III: Bibliography .................................................................. 61
### Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists (United States of America)</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BAT</td>
<td>best available techniques</td>
</tr>
<tr>
<td>BCD</td>
<td>base-catalysed decomposition</td>
</tr>
<tr>
<td>BEP</td>
<td>best environmental practices</td>
</tr>
<tr>
<td>CEN</td>
<td>European Committee for Standardization</td>
</tr>
<tr>
<td>CFCs</td>
<td>chlorofluorocarbons</td>
</tr>
<tr>
<td>CHD</td>
<td>catalytic hydrodechlorination</td>
</tr>
<tr>
<td>DDT</td>
<td>1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (dichlorodiphenyltrichloroethane)</td>
</tr>
<tr>
<td>DE</td>
<td>destruction efficiency</td>
</tr>
<tr>
<td>DRE</td>
<td>destruction removal efficiency</td>
</tr>
<tr>
<td>DRI</td>
<td>direct reduced iron</td>
</tr>
<tr>
<td>ECD</td>
<td>electron capture detector</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (United States of America)</td>
</tr>
<tr>
<td>ESM</td>
<td>environmentally sound management</td>
</tr>
<tr>
<td>ESWI</td>
<td>Expert Team to Support Waste Implementation</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FRTR</td>
<td>Federal Remediation Technologies Roundtable (United States of America)</td>
</tr>
<tr>
<td>GAC</td>
<td>granular activated carbon</td>
</tr>
<tr>
<td>GEMS</td>
<td>Global Environment Monitoring System</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GHS</td>
<td>Globally Harmonized System of Classification and Labelling of Chemicals</td>
</tr>
<tr>
<td>GPCR</td>
<td>gas-phase chemical reduction</td>
</tr>
<tr>
<td>HASP</td>
<td>health and safety plan</td>
</tr>
<tr>
<td>HBB</td>
<td>hexabromobiphenyl</td>
</tr>
<tr>
<td>HBCD</td>
<td>hexabromocyclododecane</td>
</tr>
<tr>
<td>HCB</td>
<td>Hexachlorobenzene</td>
</tr>
<tr>
<td>HCBBD</td>
<td>hexachlorobutadiene</td>
</tr>
<tr>
<td>HCH</td>
<td>hexachlorocyclohexane</td>
</tr>
<tr>
<td>HRGC</td>
<td>high-resolution gas chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high-resolution mass spectrometry/spectrometer</td>
</tr>
<tr>
<td>IATA</td>
<td>International Air Transport Association</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organization</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Programme on Chemical Safety</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JESCO</td>
<td>Japan Environmental Storage &amp; Safety Corporation</td>
</tr>
<tr>
<td>LRMS</td>
<td>low-resolution mass spectrometry/spectrometer</td>
</tr>
<tr>
<td>LTTD</td>
<td>low-temperature thermal desorption</td>
</tr>
<tr>
<td>LWPS</td>
<td>liquid waste pre-heater system</td>
</tr>
<tr>
<td>MSW</td>
<td>municipal solid waste</td>
</tr>
<tr>
<td>NFM</td>
<td>non-ferrous metal</td>
</tr>
<tr>
<td>NIP</td>
<td>national implementation plan (Stockholm Convention)</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OEWG</td>
<td>Open-ended Working Group of the Basel Convention</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PBB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCDD</td>
<td>polychlorinated dibenzo-p-dioxin</td>
</tr>
<tr>
<td>PCDF</td>
<td>polychlorinated dibenzo-furan</td>
</tr>
<tr>
<td>PCP</td>
<td>pentachlorophenol</td>
</tr>
<tr>
<td>PCT</td>
<td>polychlorinated terphenyl</td>
</tr>
<tr>
<td>Py/C</td>
<td>palladium on carbon</td>
</tr>
<tr>
<td>PeCB</td>
<td>pentachlorobenzene</td>
</tr>
<tr>
<td>PFOS</td>
<td>perfluorooctane sulfonic acid</td>
</tr>
<tr>
<td>POP</td>
<td>persistent organic pollutant</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>SCWO</td>
<td>supercritical water oxidation</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operational procedure</td>
</tr>
<tr>
<td>TEAP</td>
<td>Technology and Economic Assessment Panel (of the Montreal Protocol)</td>
</tr>
<tr>
<td>TEQ</td>
<td>toxicity equivalence</td>
</tr>
<tr>
<td>TRBP</td>
<td>thermal reduction batch processor</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
</tbody>
</table>
### Units of measurement

- **μg/kg**: microgram(s) per kilogram. Corresponds to parts per billion (ppb) by mass.
- **kg**: kilogram
- **kW**: kilowatt
- **kWh**: kilowatt-hour
- **mg**: milligram
- **mg/kg**: milligram(s) per kilogram. Corresponds to parts per million (ppm) by mass.
- **MJ**: megajoule
- **ms**: millisecond
- **ng**: nanogram
- **Mg**: megagram (1,000 kg or 1 tonne)
- **Nm³**: normal cubic metre; refers to dry gas, 101.3 kPa and 273.15 K
I. Introduction

A. Scope

1. The present general technical guidelines provide guidance on the environmentally sound management (ESM) of wastes consisting of, containing or contaminated with persistent organic pollutants (hereinafter referred to as “POP wastes”), pursuant to several decisions of multilateral environmental agreements on chemicals and wastes. This document supersedes the Updated general technical guidelines for the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants (POPs) of May 2015.

2. These technical guidelines serve as an “umbrella” document and should be used in conjunction with specific technical guidelines on wastes consisting of, containing or contaminated with the following POPs:

   (a) Polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and hexabromobiphenyl (HBB), these technical guidelines also cover polychlorinated terphenyls (PCTs) and polybrominated biphenyls (PBBs) other than HBB, which are subject to the Basel Convention but are not POPs subject to the Stockholm Convention (PCBs technical guidelines) (UNEP, 2017a);

   (b) The pesticide POPs aldrin, alpha hexachlorocyclohexane, beta hexachlorocyclohexane, chlordane, chlordecone, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB), hexachlorobutadiene, lindane, mirex, pentachlorobenzene (PeCB), pentachlorophenol and its salts, perfluorooctane sulfonic acid, technical endosulfan and its related isomers or toxaphene or HCB as an industrial chemical (Pesticide POPs technical guidelines) (UNEP, 2017b);

   (c) 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) (DDT technical guidelines) (UNEP, 2006a);

   (d) Unintentionally produced polychlorinated dibenzo- p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), HCB, PCBs, PeCB and PCNs (Unintentional POPs technical guidelines) (UNEP, 2017c);

   (e) Hexabromodiphenyl ether (hexaBDE) and heptabromodiphenyl ether (heptaBDE), or tetrabromodiphenyl ether (tetaBDE) and pentabromodiphenyl ether (pentaBDE) (POP-BDEs technical guidelines) (UNEP, 2015b);

   (f) Hexabromocyclododecane (HBCD) (HBCD technical guidelines) (UNEP, 2015c);

   (g) Perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOSF), or other PFOS-related substances that are precursors of PFOS (PFOS technical guidelines) (UNEP, 2015d);

   (h) Hexachlorobutadiene (HCB) (HCB technical guidelines) (UNEP, 2017d); and

   (i) Pentachlorophenol (PCP) and its salts and esters (PCP technical guidelines) (UNEP, 2017e).

3. The purpose of the general technical guidelines is to:

   (a) Provide overarching and common guidance on the ESM of POP wastes; and

   (b) Address provisions referred to in Article 6, paragraph 2 of the Stockholm Convention (see subsection II.B.2 of the present guidelines on waste-related provisions of the Stockholm Convention) on:

      (i) The levels of destruction and irreversible transformation;
(ii) The methods that are considered to constitute environmentally sound disposal; and
(iii) The concentration levels to define low POP content.

4. The guidelines also provide guidance on reducing or eliminating POP releases to the environment from waste disposal and treatment processes. Considerations pertaining to the environmentally sound disposal of POP wastes discussed in these guidelines include choices of pre-treatment since pre-treatment may be important when determining a disposal method.

5. It should be noted that guidance on best available techniques (BAT) and best environmental practices (BEP) as they apply to the prevention or minimization of the formation and release of unintentional POPs from the anthropogenic sources listed in Annex C to the Stockholm Convention is provided under the Stockholm Convention. Guidelines on BAT and provisional guidance on BEP relevant to Article 5 and Annex C to the Stockholm Convention were adopted by the Conference of the Parties to the Convention at its third meeting, in 2007.

6. Table 1 indicates which specific POPs technical guidelines address each of the 26 POPs listed in Annex A, B or C to the Stockholm Convention.

Table 1: Stockholm Convention POPs listed in Annex A, B or C addressed by specific technical guidelines under the Basel Convention

<table>
<thead>
<tr>
<th>Stockholm Convention POPs</th>
<th>Basel Convention POPs technical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General technical guidelines</td>
</tr>
<tr>
<td></td>
<td>PCBs technical guidelines</td>
</tr>
<tr>
<td></td>
<td>Pesticides technical guidelines</td>
</tr>
<tr>
<td></td>
<td>DDT technical guidelines</td>
</tr>
<tr>
<td></td>
<td>Unintentional POPs technical guidelines</td>
</tr>
<tr>
<td></td>
<td>POP-BDEs technical guidelines</td>
</tr>
<tr>
<td></td>
<td>HBCD technical guidelines</td>
</tr>
<tr>
<td></td>
<td>PFOS technical guidelines</td>
</tr>
<tr>
<td></td>
<td>HCBD technical guidelines</td>
</tr>
<tr>
<td></td>
<td>PCP technical guidelines</td>
</tr>
<tr>
<td>Aldrin</td>
<td>x</td>
</tr>
<tr>
<td>Chlordane</td>
<td>x</td>
</tr>
<tr>
<td>Chlordecone</td>
<td>x</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>x</td>
</tr>
<tr>
<td>1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)</td>
<td>x</td>
</tr>
<tr>
<td>Endrin</td>
<td>x</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>x</td>
</tr>
<tr>
<td>Hexabromobiphenyl (HBB)</td>
<td>x</td>
</tr>
<tr>
<td>Hexabromodiphenyl ether (hexaBDE) and heptabromodiphenyl ether (heptaBDE)</td>
<td>x</td>
</tr>
<tr>
<td>Hexabromocyclododecane (HBCD)</td>
<td>x</td>
</tr>
<tr>
<td>Hexachlorobenzene (HCB)</td>
<td>x</td>
</tr>
<tr>
<td>Hexachlorobutadiene (HCBD)</td>
<td>x</td>
</tr>
<tr>
<td>Alpha hexachlorocyclohexane (alpha-HCH)</td>
<td>x</td>
</tr>
<tr>
<td>Beta hexachlorocyclohexane (beta-HCH)</td>
<td>x</td>
</tr>
<tr>
<td>Lindane</td>
<td>x</td>
</tr>
</tbody>
</table>
### Stockholm Convention POPs

<table>
<thead>
<tr>
<th>POPs</th>
<th>General technical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirex</td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzene (PeCB)</td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol (PCP) and its salts and esters</td>
<td></td>
</tr>
<tr>
<td>Perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOSF)</td>
<td></td>
</tr>
<tr>
<td>Polychlorinated biphenyls (PCBs)</td>
<td></td>
</tr>
<tr>
<td>Polychlorinated dibenzo-p-dioxins (PCDDs)</td>
<td></td>
</tr>
<tr>
<td>Polychlorinated dibenzofurans (PCDFs)</td>
<td></td>
</tr>
<tr>
<td>Polychlorinated naphthalenes (PCNs)</td>
<td></td>
</tr>
<tr>
<td>Technical endosulfan and its related isomers</td>
<td></td>
</tr>
<tr>
<td>Tetrabromodiphenyl ether (tetaBDE) and pentabromodiphenylether (pentaBDE)</td>
<td></td>
</tr>
</tbody>
</table>

### Basel Convention POPs technical guidelines

<table>
<thead>
<tr>
<th>Technical endosulfan and its related isomers</th>
<th>PeCB technical guidelines</th>
<th>Pesticides technical guidelines</th>
<th>DDT technical guidelines</th>
<th>Unintentional POPs technical guidelines</th>
<th>POP-BDEs technical guidelines</th>
<th>POPs technical guidelines</th>
<th>PFOS technical guidelines</th>
<th>HBCD technical guidelines</th>
<th>PFCs technical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrabromodiphenyl ether (tetaBDE) and pentabromodiphenylether (pentaBDE)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### General technical guidelines

- Mirex
- Pentachlorobenzene (PeCB)
- Pentachlorophenol (PCP) and its salts and esters
- Perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOSF)
- Polychlorinated biphenyls (PCBs)
- Polychlorinated dibenzo-p-dioxins (PCDDs)
- Polychlorinated dibenzofurans (PCDFs)
- Polychlorinated naphthalenes (PCNs)
- Technical endosulfan and its related isomers
- Tetrabromodiphenyl ether (tetaBDE) and pentabromodiphenylether (pentaBDE)

### B. About POPs\(^2\) and POP wastes

7. Most quantities of POPs are of anthropogenic origin. For some POPs, such as HCB, PCNs PeCB, PCDD and PCDF, listed in Annex C to the Stockholm Convention, some quantities are also unintentionally generated and released from anthropogenic sources. The characteristics of POPs (toxicity, persistence and bioaccumulation), the potential for their long-range transport and their ubiquitous presence in the environment, including ecosystems and in humans, were the impetus for the Stockholm Convention.

8. POPs are being used or have been used in industrial processes, in products and in articles. Due to their characteristics, POPs listed in the Annexes of the Stockholm Convention need to be managed to prevent them from entering the environment. While action is needed to address recently listed POPs, continued action is equally important to manage the other POPs and prevent their further perpetuation (Weber et al, 2015).

9. It is important to recognize that even when POPs are adequately managed to “turn off the tap” at the beginning of POPs life cycles, waste management efforts are ongoing as POPs can last in products and waste streams for many decades. In addition, the improper management of POP wastes can lead to

---

\(^2\) Further information on the characteristics of POPs is available from several sources, including the Agency for Toxic Substances and Disease Registry (United States of America), the Global Programme of Action for the Protection of the Marine Environment from Land-based Activities, and the International Programme on Chemical Safety (1995) of the World Health Organization (WHO).
releases of POPs into the environment. Furthermore, some disposal technologies can lead to the unintentional formation and release of POPs.

10. Recently listed chemicals under the Stockholm Convention, such as POP-BDEs, PFOS and HBCD, have brought attention to the use of POPs in products and articles, including consumer products and articles. The management of these products and articles upon becoming waste has introduced new challenges to Parties and stakeholders in their work to define strategies and approaches for their ESM and efforts to prevent, reduce or eliminate their releases.

II. Relevant provisions of the Basel and Stockholm conventions

11. A number of multilateral environmental agreements provide frameworks to prevent and minimize releases of toxic chemicals and hazardous wastes. The Basel, Stockholm and Rotterdam conventions are a series of building blocks that dovetail to create a comprehensive life cycle approach to the management of hazardous chemicals and wastes. Together, these conventions guide decision makers in their actions to minimize and manage the risks to the environment from a range of chemicals, products and wastes.

12. A full list of international instruments related to POPs is listed in annex I. The following sections present a brief explanation and description of relevant Articles of the Basel and Stockholm conventions to illustrate their complementarity in addition to key obligations of their Parties.

13. Provisions of the Stockholm Convention complement the provisions for the management of hazardous wastes under the Basel Convention to form a comprehensive regime for managing POP wastes. Provisions from the two conventions are to be applied to POP wastes in making decisions about their ESM.

A. Basel Convention

1. General provisions

14. The Basel Convention, which entered into force on 5 May 1992, aims to protect human health and the environment against the adverse effects resulting from the generation, management, transboundary movements and disposal of hazardous and other wastes. It does this via a set of provisions on the transboundary movement of wastes and their ESM. In particular, the Basel Convention stipulates that any transboundary movement (export, import or transit) of wastes is permissible only when the movement itself and the planned disposal of the hazardous or other wastes are environmentally sound.

15. A set of provisions of the Basel Convention lays out Parties obligations to ensure the ESM of POP wastes. These are listed in paragraphs 16 to 18 below.

16. In Article 2 (“Definitions”), paragraph 1, the Basel Convention defines wastes as “substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law”. Paragraph 4 defines disposal as “any operation specified in Annex IV” to the Convention. Paragraph 8 defines the ESM of hazardous wastes or other wastes as “taking all practicable steps to ensure that hazardous wastes or other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes.”

17. Article 4 (“General obligations”), paragraph 1, establishes the procedure by which Parties exercising their right to prohibit the import of hazardous wastes or other wastes for disposal shall inform the other Parties of their decision. Paragraph 1 (a) states: “Parties exercising their right to prohibit the import of hazardous or other wastes for disposal shall inform the other Parties of their decision pursuant to Article 13.” Paragraph 1 (b) states: “Parties shall prohibit or shall not permit the export of hazardous or other wastes to the Parties which have prohibited the import of such wastes, when notified pursuant to subparagraph (a).”

18. Article 4, paragraphs 2 (a) – (e) and 2 (g), contains key provisions of the Basel Convention directly pertaining to ESM, waste prevention and minimization and waste disposal practices aimed at mitigating adverse effects on human health and the environment:

Paragraphs 2 (a) – (e) and 2 (g): “Each Party shall take appropriate measures to:

(a) Ensure that the generation of hazardous wastes and other wastes within it is reduced to a minimum, taking into account social, technological and economic aspects;
(b) Ensure the availability of adequate disposal facilities, for the environmentally sound management of hazardous wastes and other wastes, that shall be located, to the extent possible, within it, whatever the place of their disposal;

(c) Ensure that persons involved in the management of hazardous wastes or other wastes within it take such steps as are necessary to prevent pollution due to hazardous wastes and other wastes arising from such management and, if such pollution occurs, to minimize the consequences thereof for human health and the environment;

(d) Ensure that the transboundary movement of hazardous wastes and other wastes is reduced to the minimum consistent with the environmentally sound and efficient management of such wastes, and is conducted in a manner which will protect human health and the environment against the adverse effects which may result from such movement;

(e) Not allow the export of hazardous wastes or other wastes to a State or group of States belonging to an economic and/or political integration organization that are Parties, particularly developing countries, which have prohibited by their legislation all imports, or if it has reason to believe that the wastes in question will not be managed in an environmentally sound manner, according to criteria to be decided on by the Parties at their first meeting;"

“(g) Prevent the import of hazardous wastes and other wastes if it has reason to believe that the wastes in question will not be managed in an environmentally sound manner.”

Paragraph 8: “Each Party shall require that hazardous wastes or other wastes, to be exported, are managed in an environmentally sound manner in the State of import or elsewhere.”

2. POP-related provisions

19. Article 1 (“Scope of the Convention”) defines the types of waste that are subject to the Basel Convention. Subparagraph 1 (a) of that article sets forth a two-step process for determining whether a “waste” is a “hazardous waste” subject to the Convention: first, the waste must belong to any category contained in Annex I to the Convention (“Categories of wastes to be controlled”), and second, the waste must possess at least one of the characteristics listed in Annex III to the Convention (“List of hazardous characteristics”).

20. For a list of Annex I and Annex II wastes that may consist of, contain or be contaminated with a specific POP, refer to the specific technical guidelines pertaining to that POP.

21. Annex I wastes are presumed to exhibit one or more Annex III hazardous characteristics, which may include H4.1 “Flammable solids”, H6.1 “Poisonous (Acute)”, H11 “Toxic (Delayed or chronic)”, H12 “Ecotoxic”, or H13 “Capable, by any means, after disposal, of yielding another material, e.g., leachate, which possesses any of the characteristics listed above”, unless, through “national tests”, they can be shown not to exhibit such characteristics. National tests may be useful for identifying a particular hazardous characteristic listed in Annex III until such time as the hazardous characteristic is fully defined. Guidance papers for Annex III hazardous characteristics H11, H12 and H13 were adopted on an interim basis by the Conference of the Parties to the Basel Convention at its sixth and seventh meetings.

22. List A of Annex VIII to the Convention lists wastes that are “characterized as hazardous under Article 1, paragraph 1 (a), of this Convention.” However, designation of a waste on Annex VIII does not preclude the use of Annex III list of hazardous characteristics” to demonstrate that a waste is not hazardous (Annex I, paragraph (b)). List B of Annex IX lists wastes that “will not be wastes covered by Article 1, paragraph 1 (a), of this Convention unless they contain Annex I material to an extent causing them to exhibit an Annex III characteristic.”

23. For a list of Annex VIII waste characteristics that are applicable to a specific POP, refer to the specific technical guidelines pertaining to that POP.

24. As stated in Article 1, paragraph 1 (b), “Wastes that are not covered under paragraph (a) but are defined as, or are considered to be, hazardous wastes by the domestic legislation of the Party of export, import or transit” are also subject to the Basel Convention.

B. Stockholm Convention

1. General provisions

25. The Stockholm Convention on Persistent Organic Pollutants (POPs) is a global treaty aimed at protecting human health and the environment from persistent organic pollutants.
26. The objective of the Stockholm Convention, which entered into force on 17 May 2004, is set forth in Article 1 (“Objective”): “Mindful of the precautionary approach as set forth in Principle 15 of the Rio Declaration on Environment and Development, the objective of this Convention is to protect human health and the environment from persistent organic pollutants.”

27. The Stockholm Convention differentiates between two categories of POPs:

(a) Intentionally produced POPs, whose production and use are to be:

(i) Eliminated in accordance with the provisions of Article 3 and Annex A; or

(ii) Restricted in accordance with the provisions of Article 3 and Annex B; and

(b) Unintentionally produced POPs, for which Parties are required to take measures, in accordance with Article 5 and Annex C, to reduce total releases derived from anthropogenic sources with the goal of their continuing minimization and, where feasible, ultimate elimination.

28. Article 5, paragraph (a) (i), of the Stockholm Convention requires the development and maintenance of source inventories and release estimates for unintentionally produced POPs.

29. Article 5, paragraph (b) promotes the application of available, feasible and practical measures that can expeditiously achieve a realistic and meaningful level of release reduction or source elimination.

30. Under Article 7 (“Implementation plans”), paragraph 1, the Convention requires each Party to:

(a) Develop and endeavour to implement a plan for the implementation of its obligations under this Convention;

(b) Transmit its implementation plan to the Conference of the Parties within two years of the date on which this Convention enters into force for it; and

(c) Review and update, as appropriate, its implementation plan on a periodic basis and in a manner to be specified by a decision of the Conference of the Parties.”

2. Waste-related provisions

31. Article 6 (“Measures to reduce or eliminate releases from stockpiles and wastes”) sets forth waste-related provisions as follows:

“1. In order to ensure that stockpiles consisting of or containing chemicals listed either in Annex A or Annex B and wastes, including products and articles upon becoming wastes, consisting of, containing or contaminated with a chemical listed in Annex A, B or C, are managed in a manner protective of human health and the environment, each Party shall:

(a) Develop appropriate strategies for identifying:

(i) Stockpiles consisting of or containing chemicals listed either in Annex A or Annex B; and

(ii) Products and articles in use and wastes consisting of, containing or contaminated with a chemical listed in Annex A, B or C;

(b) Identify, to the extent practicable, stockpiles consisting of or containing chemicals listed either in Annex A or Annex B on the basis of the strategies referred to in subparagraph (a);

(c) Manage stockpiles, as appropriate, in a safe, efficient and environmentally sound manner. Stockpiles of chemicals listed either in Annex A or Annex B, after they are no longer allowed to be used according to any specific exemption specified in Annex A or any specific exemption or acceptable purpose specified in Annex B, except stockpiles which are allowed to be exported according to paragraph 2 of Article 3, shall be deemed to be waste and shall be managed in accordance with subparagraph (d);

(d) Take appropriate measures so that such wastes, including products and articles upon becoming wastes, are:

(i) Handled, collected, transported and stored in an environmentally sound manner;

(ii) Disposed of in such a way that the persistent organic pollutant content is destroyed or irreversibly transformed so that they do not exhibit the characteristics of persistent organic pollutants or otherwise disposed of in
an environmentally sound manner when destruction or irreversible transformation does not represent the environmentally preferable option or the persistent organic pollutant content is low, taking into account international rules, standards, and guidelines, including those that may be developed pursuant to paragraph 2, and relevant global and regional regimes governing the management of hazardous wastes;

(iii) Not permitted to be subjected to disposal operations that may lead to recovery, recycling, reclamation, direct reuse or alternative uses of persistent organic pollutants; and
(iv) Not transported across international boundaries without taking into account relevant international rules, standards and guidelines;

(e) Endeavour to develop appropriate strategies for identifying sites contaminated by chemicals listed in Annex A, B or C; if remediation of those sites is undertaken it shall be performed in an environmentally sound manner.

2. The Conference of the Parties shall cooperate closely with the appropriate bodies of the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal to, *inter alia*:

(a) Establish levels of destruction and irreversible transformation necessary to ensure that the characteristics of persistent organic pollutants as specified in paragraph 1 of Annex D are not exhibited;
(b) Determine what they consider to be the methods that constitute environmentally sound disposal referred to above; and
(c) Work to establish, as appropriate, the concentration levels of the chemicals listed in Annexes A, B and C in order to define the low persistent organic pollutant content referred to in paragraph 1 (d) (ii).”

32. Article 3, paragraph 2 (a) (i), pertaining to imports, stipulates: “Each Party shall take measures to ensure that a chemical listed in Annex A or Annex B is imported only for the purpose of environmentally sound disposal as set forth in paragraph 1 (d) of Article 6.” Similarly, Article 3, paragraph 2 (b) (i), requires that: “Each Party take measures to ensure that a chemical listed in Annex A for which any production or use specific exemption is in effect or a chemical listed in Annex B for which any production or use specific exemption or acceptable purpose is in effect, taking into account any relevant provisions in existing international prior informed consent instruments, is exported only for the purpose of environmentally sound disposal as set forth in paragraph 1 (d) of Article 6.”

33. Annex C, Part II, outlines industrial source categories that have the potential for comparatively high formation and release to the environment of POPs listed in Annex C. Part III outlines source categories from which POPs listed in Annex C may be unintentionally formed and released. Part V outlines general guidance on BAT and BEP.

**III. Issues under the Stockholm Convention to be addressed cooperatively with the Basel Convention**

**A. Low POP content**

34. As stated in Article 6, paragraph 2 (c), of the Stockholm Convention, the Conference of the Parties to the Stockholm Convention shall cooperate closely with the appropriate bodies of the Basel Convention to “work to establish, as appropriate, the concentration levels of the chemicals listed in annexes A, B and C in order to define the low persistent organic pollutant content referred to in paragraph 1 (d) (ii).”

35. Under the Stockholm Convention, POP wastes are, in accordance with Article 6, paragraph 1 (d) (ii), to be disposed of in such a way that the POP content is destroyed or irreversibly transformed so that they do not exhibit the characteristics of POPs or otherwise disposed of in an environmentally sound manner when destruction or irreversible transformation does not represent the environmentally preferable option, or the POP content is low, taking into account international rules, standards, and guidelines, including those that may be developed pursuant to paragraph 2, as well as relevant global and regional regimes governing the management of hazardous wastes.
36. The low POP content described in the Stockholm Convention is independent from the provisions on hazardous waste under the Basel Convention.

37. Under the Stockholm Convention, wastes with a POP content above the defined low POP content must be disposed of in such a way that the POP content is destroyed or irreversibly transformed in accordance with the methods described in section IV.G.2. They should otherwise be disposed of in an environmentally sound manner when destruction or irreversible transformation does not represent the environmentally preferable option in accordance with the methods described in section IV.G.3.

38. Wastes with a POP content at or below the defined low POP content should be disposed of in accordance with the methods referred to in section IV.G.4.

39. Low POP content definitions should be established taking into account the main objectives of the Basel and Stockholm conventions, which are the protection of the environment and human health. The following have been recognized in the determination of low POP content (See European Commission, 2011, German Federal Environment Agency, 2015, UNEP/CHW/OEWG.9/INF/9/Add.13 and /Add.23, and UNEP/CHW.13/INF/6/6):

   (a) Environmental and human health considerations;
   (b) Availability of adequate capacity for analysis;
   (c) Range of concentrations in articles, materials and waste;
   (d) Limit values within national legislation;
   (e) Availability of treatment capacity;
   (f) Limitations of knowledge and data; and
   (g) Economic considerations.

40. The provisional definitions of low POP content contained in table 2 below should be applied, determined in accordance with national or international methods and standards, except for PCDDs and PCDFs.

<table>
<thead>
<tr>
<th>POP</th>
<th>Low POP content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td>Alpha-HCH, beta-HCH and lindane</td>
<td>50 mg/kg as a sum7</td>
</tr>
<tr>
<td>Chlordane</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td>Chlordecone</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td>DDT</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>50 mg/kg</td>
</tr>
</tbody>
</table>

---

3 Draft updated general technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants: supporting document for the development of section III of the general technical guidelines for the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants.

4 Draft updated general technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with persistent organic pollutants: methodology for establishing low persistent organic pollutant content and its application in the European Union.

5 Supporting information on the concentration levels to define the low persistent organic pollutant content values for persistent organic pollutants listed in Annexes A, B and C to the Stockholm Convention.

6 It is noted that work towards a review of the provisional low POP content values will be undertaken in accordance with decision BC-13/4.

7 The limit value has been set for the sum of lindane and its by-products alpha- and beta-HCH, because they may be contained together in pesticides and production wastes.
B. **Levels of destruction and irreversible transformation**

41. Destruction efficiency\(^9\) (DE) is the percentage of originating POPs destroyed or irreversibly transformed by a particular method or technology. Destruction removal efficiency\(^10\) (DRE) only considers emissions to air and is the percentage of original POPs irreversibly transformed and removed from gaseous emissions.

42. The provisional definition set out in paragraph 43 below recognizes the following:

(a) Both DE and DRE are a function of the initial POP content and do not cover any fraction of other unintentionally produced POPs during destruction or irreversible transformation;

(b) DE is an important criterion to assess technologies performance for destruction and irreversible transformation, but can be difficult to measure in a reproducible and comparable manner;

(c) BAT and BEP are available in order to ensure the anticipated environmental performance is achieved, including expected DE; and

---

\(^8\) The limit value has been set for the sum of tetra-, penta-, hexa-, and hepta-BDE, because commercial mixtures have varying congener composition (see section I.B.1 of the POP-BDE guidelines), and for analytical efficiencies.

\(^9\) TEQ as referred to in Annex C, part IV, paragraph 2, to the Stockholm Convention, but only for PCDDs and PCDFs.

\(^10\) Calculated on the basis of the mass of the POP content within the waste, minus the mass of the remaining POP content in the gaseous, liquid and solid residues, divided by the mass of the POP content within the waste, i.e.,

\[ DE = \frac{\text{POP content within waste} - \text{POP content within gas, liquid and solid residual}}{\text{POP content within the waste}} \]

\(^11\) Calculated on the basis of the mass of the POP content within the waste, minus the mass of the remaining POP content in the gaseous residues (stack emissions), divided by the mass of the POP content within the wastes, i.e.,

\[ DRE = \frac{\text{POP content within waste} - \text{POP content within gas residual}}{\text{POP content within the waste}} \]
43. The following provisional definition for levels of destruction and irreversible transformation, based upon absolute levels (i.e., waste output streams of treatment processes) should be applied:

(a) Atmospheric emissions:
   (i) PCDDs and PCDFs: 0.1 ng TEQ/Nm³;\(^{13}\)
   (ii) All other POPs: pertinent national legislation and international rules, standards and guidelines, examples of pertinent national legislation can be found in annex II;

(b) Aqueous releases: pertinent national legislation and international rules, standards and guidelines, examples of pertinent national legislation can be found in annex II;

(c) Solid residues: POP contents should be below the low POP contents defined in section A of this chapter. However, if the POP content is above the low POP content defined in section A, the solid residues should be treated in accordance with section IV.G.

44. In addition, technologies for destruction and irreversible transformation should be operated in accordance with BAT and BEP.

C. Methods that constitute environmentally sound disposal

45. Section G of chapter IV below contains a description of methods that are considered to constitute environmentally sound disposal of POP wastes.

IV. Guidance on environmentally sound management (ESM)

A. General considerations

46. ESM is a broad policy concept that is understood and implemented in various ways by different countries, stakeholders and organizations. The provisions and guidance documents pertaining to ESM of hazardous wastes as it applies to POP wastes within the Basel and Stockholm conventions, together with performance elements produced by the Organisation for Economic Co-operation and Development (OECD), core performance elements provide for a common understanding and international guidance to support and implement the ESM of hazardous wastes and other wastes.

47. The 2013 Framework for the environmentally sound management of hazardous wastes and other wastes (“ESM framework”)\(^{14}\) (UNEP, 2013a) was adopted at the eleventh meeting of the Conference of the Parties to the Basel Convention. The framework establishes a common understanding of what ESM encompasses and identifies tools and strategies to support and promote the implementation of ESM. It is intended as a practical guide for governments and other stakeholders participating in the management of hazardous wastes and other wastes and constitutes the most comprehensive guidance on ESM to complement the Basel technical guidelines.

48. As presented in paragraph 17 of this document, Article 4 of the Basel Convention contains provisions related to the ESM of hazardous wastes and other wastes. ESM is also the subject of the following declarations:

(a) The 1999 Basel Declaration on Environmentally Sound Management, which was adopted at the fifth meeting of the Conference of the Parties to the Basel Convention calls on the Parties to enhance and strengthen their efforts and cooperation to achieve ESM, including through prevention, minimization, recycling, recovery and disposal of hazardous and other wastes subject to the Basel

\(^{12}\) For example, in Japan, the Ministry of the Environment in 2010 issued a “Technical Guideline for the Environmentally Sound Treatment of PFOS Wastes”, which states that destruction levels for PFOS and its salts must be over 99.999 per cent (Ministry of the Environment of Japan, 2013b).

\(^{13}\) TEQ as referred to in Annex C, part IV, paragraph 2, to the Stockholm Convention, but only for PCDDs and PCDFs. Nm³ refers to dry gas, 101.3 kPa and 273.15 K. Standardization at 11 per cent O₂. Standardization at 10 per cent O₂ for cement kilns co-incineration.

Convention, taking into account social, technological and economic concerns, and through further reduction of transboundary movements of hazardous and other wastes subject to the Basel Convention;

(b) The 2011 Cartagena Declaration on the Prevention, Minimization and Recovery of Hazardous Wastes and Other Wastes, which was adopted at the tenth meeting of the Conference of the Parties to the Basel Convention and reaffirms that the Basel Convention is the primary global legal instrument for guiding the ESM of hazardous wastes and other wastes and their disposal.

49. Under the Stockholm Convention, the term “environmentally sound management” is not defined. Environmentally sound methods for disposal of POP wastes are, however, to be determined by the Conference of the Parties in cooperation with the appropriate bodies of the Basel Convention.

50. The OECD has adopted a recommendation on ESM of wastes which includes various items, inter alia core performance elements of ESM guidelines applying to waste recovery facilities, including elements of performance that precede collection, transport, treatment and storage and also elements subsequent to storage, transport, treatment and disposal of pertinent residues (OECD, 2004).

51. Parties should develop a range of measures (strategies, policies, legislation, regulations and programmes) and monitor their implementation to support the meeting of ESM objectives. The implementation of national strategies, policies and programmes are effective tools to complement the implementation of legislation and regulations; monitoring and enforcement; incentives and penalties; technologies; and other tools in which all key stakeholders participate and cooperate (UNEP, 2013a). The following sections should be taken into account when establishing, implementing or evaluating ESM.

B. Legislative and regulatory framework

52. Parties to the Basel and Stockholm conventions should examine their national strategies, policies, controls, standards and procedures to ensure that they are in agreement with the two conventions and with their obligations under them, including those that pertain to ESM of POP wastes.

53. Most countries already have in place some form of legislation that outlines broad environmental protection principles, powers and rights. Such legislation should make ESM operational and include requirements for protection of both human health and the environment. Such enabling legislation can give governments the power to enact and enforce specific rules and regulations on hazardous wastes, conduct inspections and establish penalties for violations.

54. Such legislation on hazardous wastes should also define hazardous wastes. Waste with a POP content above the low POP content specified in the definition referred to in section III.A should be included in the definition, as appropriate.

55. The legislation could define ESM and require adherence to ESM principles, ensuring that countries satisfy provisions for ESM of POP wastes, including their environmentally sound disposal as described in the present guidelines and the Stockholm Convention. Specific components or features of a regulatory framework that would meet the requirements of the Basel and Stockholm conventions and other international agreements are discussed below.¹⁵

1. Phase-out dates for production and use of POPs

56. Legislation and voluntary commitments, as applicable, should differentiate between the phase-out dates for the production of POPs and their use ¹⁶ in products and articles (downstream manufacturer) and the date by which the POPs (whether in pure form or in mixtures), products or articles should be disposed of once they have become waste. In addition, they should set a time limit for the disposal of POP wastes, taking into account that such products and articles may have long service lives, so as to prevent the creation of stockpiles that have no clear phase-out dates. Examples of pertinent national legislation can be found in annex II.


¹⁶ Note that Annex A, parts I and II, and Annex B to the Stockholm Convention contain references to the elimination and restriction of production and use of POPs.
2. Transboundary movement requirements\(^\text{17}\)

57. Hazardous wastes and other wastes should, as far as is compatible with their ESM, be disposed of in the country where they were generated. Transboundary movements of such wastes are permitted only under the following conditions:

- If conducted under conditions that do not endanger human health and the environment;
- If exports are managed in an environmentally sound manner in the country of import or elsewhere;
- If the country of export does not have the technical capacity and the necessary facilities to dispose of the wastes in question in an environmentally sound and efficient manner;
- If the wastes in question are required as a raw material for recycling or recovery industries in the country of import; or
- If the transboundary movements in question are in accordance with other criteria decided by the Parties.

58. Any transboundary movements of hazardous and other wastes are subject to prior written notification from the exporting country and prior written consent from the importing and, if appropriate, transit countries. Parties shall prohibit the export of hazardous wastes and other wastes if the country of import prohibits the import of such wastes. The Basel Convention also requires that information regarding any proposed transboundary movement be provided using the accepted notification form and that the approved consignment be accompanied by a movement document from the point where the transboundary movement commences to the point of disposal.

59. Furthermore, hazardous wastes and other wastes subject to transboundary movements should be packaged, labelled and transported in conformity with international rules and standards.\(^\text{18}\)

60. When a transboundary movement of hazardous and other wastes to which consent of the countries concerned has been given cannot be completed, the country of export shall ensure that the wastes in question are taken back into the country of export for their disposal if alternative arrangements cannot be made. In the case of illegal traffic (as defined in Article 9, paragraph 1), as the result of conduct on the part of the exporter or the generator, the country of export shall ensure that the wastes in question are taken back into the country of export for their disposal or otherwise disposed of in accordance with the provisions of the Basel Convention (as per Article 9, paragraph 2).

61. No transboundary movements of hazardous wastes and other wastes are permitted between a Party and a non-Party to the Basel Convention unless a bilateral, multilateral or regional arrangement exists as required under Article 11 of the Convention.

3. Specifications for containers, equipment, bulk containers and storage sites containing POPs

62. To meet the requirements of ESM and specific clauses in the Basel and Stockholm conventions (for example, Basel Convention Article 4, paragraph 7, and Stockholm Convention Article 6, paragraph 1), Parties may need to enact specific legislation that describes the types of containers and storage areas that are acceptable for particular POPs and their relevant waste streams.\(^\text{19}\) Parties should ensure that containers that may be transported to another country meet international standards such as those established by the International Air Transport Association (IATA), the International Maritime Organization (IMO) and the International Organization for Standardization (ISO).

4. Health and safety\(^\text{20}\)

63. A legislative approach should be taken to protect workers from possible exposure to POPs. These provisions should include requirements for the proper labelling of products and the identification of appropriate disposal methods. While neither the Basel nor the Stockholm Convention specifically

---

\(^{17}\) This applies only to the Parties to the Basel Convention.

\(^{18}\) In this connection, the United Nations Recommendations on the Transport of Dangerous Goods (Model Regulations) of 2003 (UNECE, 2003a) or later versions should be used.

\(^{19}\) Parties should consult the guidelines pertaining to the storage of pesticides and pesticide waste that have been produced by the Food and Agriculture Organization (FAO) of the United Nations (FAO, 1996).

\(^{20}\) See section IV.I.
requires Parties to have worker health and safety legislation, the protection of human health underpins many of the objectives of both conventions.

64. Most countries have existing worker health and safety provisions either in general labour legislation or in specialized human health or environmental legislation. Parties should re-examine their existing legislation to ensure that POPs are adequately addressed and that relevant aspects of international agreements are integrated into such legislation. Worker health and safety is a relatively mature field and a great deal of guidance and literature is available to assist in the planning and revision of legislation, policy and technical guidance.

65. In its Article 10 (“Public information, awareness and education”), paragraph 1 (e), the Stockholm Convention calls upon Parties to promote and facilitate the training of workers, scientists, educators and technical and managerial personnel. National health and safety legislation should include provisions for the safe handling and storage of POP wastes.

5. Specification of acceptable procedures for sampling and analysis of POPs

66. Various methods and protocols for sampling and analysis have been developed for a range of purposes. Reliable and useful data can be generated only when sampling and analytical methods appropriate to the waste are used. Parties to the Basel and Stockholm conventions should have legislation or strong policy guidelines identifying the acceptable sampling and analytical methods for each POP waste, including the form in which it occurs and the matrix in which it is found. The procedures specified should be agreed and accepted before any sampling or analysis takes place. The use of internationally accepted procedures is recommended. This should ensure that the reported results are acceptable and comparable. See section E of this chapter for further details.

6. Requirements for hazardous waste treatment and disposal facilities

67. Most countries have legislation that requires waste treatment and disposal facilities to obtain some form of approval to commence operations. Approvals can outline specific conditions that must be maintained in order for such approvals to remain valid. It may be necessary to add requirements specific to POP wastes to meet the requirements of ESM and to comply with specific requirements of the Basel and Stockholm conventions.

7. General requirement for public participation

68. Public participation is a core principle of the 1999 Basel Declaration on Environmentally Sound Management and many other international agreements. Public participation as referred to in section IV.K below may be addressed in legislation or policy.

8. Contaminated sites

69. Provisions enabling the development of an inventory of contaminated sites and remediation of sites in an environmentally sound manner (Article 6, paragraph 1 (e), of the Stockholm Convention) may be specified in legislation.

9. Other legislative controls

70. Examples of other aspects of the life-cycle management of POP wastes that could be regulated through legislation include:

(a) Siting provisions and requirements relative to the storage, handling, collection and transport of wastes;

(b) Decommissioning requirements, including:
   (i) Inspection prior to and during decommissioning;
   (ii) Procedures to be followed to protect worker and community health and the environment during decommissioning;
   (iii) Post-decommissioning site requirements;

(c) Emergency contingency planning, spill and accident response, including:
   (i) Cleanup procedures and post-cleanup concentrations to be achieved;
   (ii) Worker training and safety requirements; and

(d) Waste prevention, minimization and management plans.
C. Waste prevention and minimization

71. The prevention and minimization of POP wastes are the first and most important steps in the overall ESM of such wastes. In Article 4, paragraph 2, the Basel Convention calls on Parties to “ensure that the generation of hazardous wastes and other wastes is reduced to a minimum”. Waste prevention should be the preferred option in any waste management policy. According to the framework for the ESM of hazardous wastes and other wastes, the need to manage wastes and/or the risks and costs associated with doing so are reduced by not generating wastes and by ensuring that generated wastes are less hazardous (UNEP, 2013a).

72. According to the Basel ESM framework, companies that generate wastes (waste generators) are responsible for ensuring the implementation of BAT and BEP when undertaking activities that generate wastes. In doing so, they act to minimize the wastes generated by ensuring research, investment in design, innovation and development of new products and processes that use fewer resources and energy and that reduce, substitute or eliminate the use of hazardous materials.

73. Waste generators and significant downstream industrial users (e.g., pesticide formulators) of products and articles containing POPs could be required to develop waste management plans. Such plans should cover all hazardous wastes and all POP wastes.

74. Elements of a waste prevention and minimization programme include the following:
   (a) Identification of processes possibly unintentionally producing POPs (e.g., incineration) and determination of whether Stockholm Convention guidelines on BAT and BEP are applicable;
   (b) Identification of processes that use POPs and generate POP wastes:
      (i) To determine whether process modifications, including updating of older equipment or material, could reduce POP waste generation; and
      (ii) To identify alternative processes that are not linked to the production of POP wastes;
   (c) Identification of products and articles consisting of, containing or contaminated with POPs and non-POP alternatives; and
   (d) Minimization of the volume of POP wastes generated:
      (i) By regular maintenance of equipment to increase efficiency and prevent spills and leaks;
      (ii) By prompt containment of spills and leaks;
      (iii) By decontamination of containers and equipment containing POP wastes;
      (iv) By isolation of POP wastes in order to prevent contamination of other materials; and
      (v) By adoption of appropriate procedures for decommissioning of facilities.

75. The mixing and blending of wastes with POP contents above a defined low POP content with other materials solely for the purpose of generating a mixture with a POP content at or below the defined low POP content is not environmentally sound. Nevertheless, the mixing or blending of materials prior to waste treatment may be necessary in order to enable treatment or to optimize treatment efficiency.

D. Identification of wastes

1. General considerations

76. The identification of POP wastes is the starting point for their effective ESM. POP wastes can be generated via a range of processes and activities that can occur during the whole life cycle of POPs, for example:
   (a) During their intentional manufacture (production facilities);
   (b) As by-products of industrial and other processes using these POPs (e.g., manufacturing facilities of products and articles such as plastics, upholstery, textiles, packaging materials, electrical/electronic equipment, masterbatches, pellets, expanded polystyrene materials, paints, adhesives, etc.).
(c) Through contamination of materials or the environment as a result of accidents or leakage that may occur during production, sale, use, decommissioning, removal, transfer or disposal;

(d) Through contamination of materials during handling, use of products and articles, such as containers, clothing and in some cases equipment (respirators, etc.) that have been contaminated through contact with a POP;

(e) When products or articles consisting of, containing or contaminated with POPs are used, become off-specification, are unfit for their original use or have been banned, or when registrations for such products have been withdrawn; or

(f) When products or articles consisting of, containing or contaminated with POPs are disposed of (e.g. incineration resulting in ash contaminated with unintentionally produced POPs).

77. POP wastes occur as solids and liquids (aqueous, semi-aqueous, solvent-based and emulsions) and can be released as gases (actual gases, as a liquid dispersion or aerosols), or adsorbed onto atmospheric pollutants. Examples of such wastes are presented in table 3.

**Table 3: Physical forms and types of POP wastes generated**

<table>
<thead>
<tr>
<th>Physical form of the wastes</th>
<th>Type of waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>1. Obsolete liquid stockpile of pure POPs</td>
</tr>
<tr>
<td></td>
<td>2. Industrial wastewater</td>
</tr>
<tr>
<td></td>
<td>3. Municipal wastewater</td>
</tr>
<tr>
<td></td>
<td>4. Landfill leachate</td>
</tr>
<tr>
<td></td>
<td>5. Industrial liquid (e.g., solvent)</td>
</tr>
<tr>
<td></td>
<td>6. Liquid household products</td>
</tr>
<tr>
<td></td>
<td>7. Liquid fluids (e.g., insulating oils and hydraulic fluids)</td>
</tr>
<tr>
<td></td>
<td>8. Industrial sludge</td>
</tr>
<tr>
<td></td>
<td>9. Municipal sludge</td>
</tr>
<tr>
<td>Solid</td>
<td>1. Obsolete solid stockpile of POPs</td>
</tr>
<tr>
<td></td>
<td>2. Soil, sediment, rock and mine aggregates</td>
</tr>
<tr>
<td></td>
<td>3. Industrial sludge</td>
</tr>
<tr>
<td></td>
<td>4. Municipal sludge</td>
</tr>
<tr>
<td></td>
<td>5. Residues from wastewater cleaning (e.g., activated carbon treatment)</td>
</tr>
<tr>
<td></td>
<td>6. Residues from air pollution control system (e.g., fly-ashes)</td>
</tr>
<tr>
<td></td>
<td>7. Dust</td>
</tr>
<tr>
<td></td>
<td>8. Upholstery, textile, carpets, rubber</td>
</tr>
<tr>
<td></td>
<td>9. Electrical and electronic equipment</td>
</tr>
<tr>
<td></td>
<td>10. Containers and packaging material</td>
</tr>
<tr>
<td></td>
<td>11. Contaminated material (e.g., clothing)</td>
</tr>
<tr>
<td></td>
<td>12. Vehicle and shredder vehicle fluff</td>
</tr>
<tr>
<td></td>
<td>13. Plastic, paper, metal, wood</td>
</tr>
<tr>
<td></td>
<td>14. Demolition material (painted materials, resin-based flooring, sealants, sealed glazing units, insulation boards)</td>
</tr>
<tr>
<td></td>
<td>15. Fire suppression foam equipment</td>
</tr>
<tr>
<td>Gas</td>
<td>1. Landfill gas</td>
</tr>
<tr>
<td></td>
<td>2. Gas from incineration facilities</td>
</tr>
<tr>
<td></td>
<td>3. Gas from recycling facilities</td>
</tr>
<tr>
<td></td>
<td>4. Gas from certain (industrial) processes</td>
</tr>
</tbody>
</table>

78. In Article 6, paragraph 1, the Stockholm Convention requires each Party to:

(a) Develop appropriate strategies for the identification of stockpiles consisting of or containing chemicals listed either in Annex A or Annex B and of products and articles in use and wastes consisting of, containing or contaminated with a chemical listed in Annex A, B or C; and

(b) Identify, to the extent practicable, stockpiles consisting of or containing chemicals listed either in Annex A or Annex B on the basis of the strategies referred to in subparagraph (a).

79. The list of source categories provided in Annex C to the Stockholm Convention can assist industrial managers and government regulators, and the general public, in identifying unintentionally produced POP wastes.
2. Inventories

80. Inventories are an important tool for identifying, quantifying and characterizing POP wastes.

81. Stockholm Convention articles 5, paragraph (a), 6, paragraph 1(a), and 11, paragraph 1, provide elements that contribute to the identification of waste-related sources of POPs. For the purpose of the ESM of wastes, a more specific and complete inventory may be needed.

82. When developing an inventory, priority should be given to the identification of important waste streams in terms of high volume and high POP concentrations. National inventories may be used:
   
   (a) To establish a baseline quantity of products, articles and POP wastes;
   
   (b) To establish an information registry to assist with safety and regulatory inspections;
   
   (c) To obtain the accurate information needed to draw up plans for site stabilization;
   
   (d) To assist with the preparation of emergency response plans; and
   
   (e) To track progress towards minimizing and phasing out POPs.

83. For further information on the development of national inventories, consult the Methodological guide for the development of inventories of hazardous wastes and other wastes under the Basel Convention (UNEP, 2015j). The guide focuses on the actions recommended to develop the national information systems that produce the information needed to assist countries in fulfilling their reporting obligations under the Basel Convention.

84. Guidance documents for the inventory of specific POPs are also available (e.g., PCBs, PFOS and POP-BDEs), as is guidance for developing release inventories of unintentionally generated POPs (see Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional Persistent Organic Pollutants under Article 5 of the Stockholm Convention (UNEP, 2013b)).

85. In addition, it should be noted that the 2003 Protocol on Pollutant Release and Transfer Registers to the 1998 United Nations Economic Commission for Europe (UNECE) Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention) includes provisions pertaining to inventories that may be applicable to POPs.

E. Sampling, analysis and monitoring

86. Sampling, analysis and monitoring are important activities in the management of POP wastes enabling the manager of the wastes and those who regulate its management to identify the concentration of POPs in some waste streams and select the appropriate management method. The activities may also be necessary to monitor if the methods of destruction chosen are operating within the set standards and to ensure that POPs are not released into the environment. Monitoring and surveillance serve as elements for identifying and tracking environmental concerns and human health risks. Information collected from monitoring programmes feeds into science-based decision-making processes and is used for the evaluation of the effectiveness of risk management measures, including regulations.

87. Sampling, analysis and monitoring should be conducted by trained professionals in accordance with a well-designed programme and using internationally accepted or nationally approved methods, carried out using the same method each time over the time span of the programme. They should also be subjected to rigorous quality assurance and quality control measures. Mistakes in sampling, analysis or monitoring, or deviation from standard operational procedures, can result in meaningless data or even programme-damaging data.

88. Each Party should identify its sampling, analysis and monitoring needs and ensure it has laboratory capacity that will meet the required operating standards. Training and protocols should be in place to ensure that these standards can be met and that quality data and meaningful results can be obtained. Building this capacity may be necessary in some countries if none exists.

89. Different analytical methods can be used depending on the purpose of the sampling or monitoring activity and the physical form of the waste. For information on good laboratory practices the OECD series (OECD, various years) and the Handbook on Good Laboratory Practices (WHO, 2009) may be consulted; on general methodological considerations, the Guidance for a Global Monitoring

---

21 Drafts of guidance documents for the inventory of these specific POPs are available and can be consulted at: http://chm.pops.int/Implementation/BATandBEP/Guidance/tabid/3636/Default.aspx and http://chm.pops.int/Implementation/NIPs/Guidance/tabid/2882/Default.aspx.
Programme for Persistent Organic Pollutants (UNEP, 2015a) may be used. Further information on POPs analysis may be obtained from the UNEP/Global Environment Facility (GEF) project on capacity needs for analyzing POPs at https://www.thegef.org/project/assessment-existing-capacity-and-capacity-building-needs-analyze-pops-developing-countries

1. **Sampling**

90. The overall objective of any sampling activity is to obtain a sample that can be used for the targeted purpose, e.g., waste characterization, compliance with regulatory standards or suitability of proposed treatment or disposal methods. This objective should be identified before sampling is started. It is indispensable that quality requirements for equipment, transportation and traceability be met.

91. Standardized sampling procedures should be established and agreed upon before the start of the sampling campaign (both matrix- and POP-specific). Elements of these procedures include the following:

   (a) The number of samples to be taken, the sampling frequency, the duration of the sampling project and a description of the sampling method (including quality assurance procedures put in place, e.g., field blanks and chain-of-custody);

   (b) Selection of location or sites and time of sample-taking (including description and geographic localization);

   (c) Identity of the person who took the sample and conditions during sampling;

   (d) Full description of sample characteristics – labelling;

   (e) Preservation of the integrity of samples during transport and storage (before analysis);

   (f) Close cooperation between the sampler and the analytical laboratory; and

   (g) Appropriately trained sampling personnel.

92. Sampling should comply with specific national legislation, where it exists, or with international regulations and standards. In countries where regulations do not exist, qualified staff should be appointed. Sampling procedures include the following:

   (a) Development of a standard operational procedure (SOP) for sampling each of the matrices for subsequent POPs analysis;

   (b) Application of well-established sampling procedures such as those developed by ISO, the American Society for Testing and Materials (ASTM), the European Union, the United States Environmental Protection Agency (EPA), the Global Environment Monitoring System (GEMS), and the European Committee for Electrotechnical Standardization (CENELEC) (See Standard on Collection, logistics and treatment requirements for WEEE (Waste Electrical and Electronic Equipment) – Part 1: General Treatment Requirements, in particular specifications for de-pollution), and the European Committee for Standardization (CEN) (see EN 14899:2005 Characterization of waste - Sampling of waste materials - Framework for the preparation and application of a sampling plan and the series of CEN/TR 15310 1-5: 2006 Characterization of waste - Sampling of waste materials).

   (c) Establishment of quality assurance and quality control (QA/QC) procedures.

93. All these steps should be followed for a sampling programme to be successful. Similarly, documentation should be thorough and rigorous.

94. Types of waste matrices typically sampled for POPs include solids, liquids and gases:

   (a) Liquids:

      (i) Leachate from dumpsites and landfills;

      (ii) Liquid collected from spills;

      (iii) Water (surface water, drinking water and industrial and municipal effluents);

   (b) Solids:

---

22 Further information on sampling is available in RCRA *Waste Sampling Draft Technical Guidance* (United States Environmental Protection Agency (EPA), 2002, and Nordtest method).
(i) Stockpiles, products and formulations consisting of, containing or contaminated with POPs;
(ii) Solids from industrial sources and treatment or disposal processes (fly ash, bottom ash, sludge, still bottoms, other residues, clothing, etc.);
(iii) Containers, equipment or other packaging materials (rinse or wipe samples), including the tissues or fabric used in the collection of wipe samples;
(iv) Soil, sediment, rubble and compost;
(v) Consumer articles and products.

(c) Gases:
(i) Air (indoor);
(ii) Air (emissions).

2. Analysis

95. Typically, POPs analysis is performed in a dedicated laboratory. In some situations, for example in remote areas, testing in the field can be made possible using test kits designed for screening purposes in the field.

96. For analysis in laboratories, there are several analytical methods available, although for some POPs analytical methods may still be in development. Therefore, Parties should verify the availability and costs of methods for the POP they want to monitor before developing their monitoring and sampling programme. Methods of analyzing the various matrices for POPs have been developed by ISO, the European Committee for Standardization (CEN), EPA, AOAC and ASTM. Most in-house methods are variations of these, and such in-house methods are also acceptable after validation.

97. The identification of a POP can be a difficult task, particularly when the POP consists of a number of congeners or even isomers.

98. A tiered approach for the analysis (for the purpose of identification and quantification of a POP) is recommended; this would begin with simple steps and thereafter involve more sophisticated methods. The first step is to identify wastes that potentially contain POPs in order to reduce the number of samples (and subsequently the amounts of waste to be disposed). The screening methods are especially valuable in situations where decisions need to be taken rapidly, or where there is a limited capacity, and also to reduce costs. In general, there are three steps, which sequentially include:

(a) Coarse screening for presence of halogens contained in a POP; these are chlorine (Cl), bromine (Br) or fluorine (F). The purpose of this step is to identify from a large amount of samples those that contain chlorine, bromine or fluorine. Hand-held instruments are available to test for these halogens without “destroying” the sample; e.g., X-ray fluorescence (XRF) has the advantage of being non-destructive, multi-elemental, fast and cost-effective. XRF is applicable to a wide range of concentrations, from 100 per cent to a few parts per million (ppm); its main disadvantage is that analyses are generally restricted to elements heavier than fluorine (Br, Cl) and cannot detect a specific substance.

(b) Biological or chemical screening methods (applied if a sample is positive under step 1): Test kits or simple detection methods with less costly instrumentation are available to further reduce the number of samples which may contain POPs listed in the Stockholm Convention. The determination of organic chlorine with the DEXSIL test kits or the L2000 analyzer is well established, as both methods are able to analyse POPs in oil or soil samples. Bioanalytical methods, such as CALUX, are recognized for the detection of dioxin-like toxic equivalents. Also, fast extraction methods and use of short GC columns and a simple detector can be used to identify chlorinated POPs.

(c) The final step is the confirmation of the chemical analysis, which is typically required for all samples that result positive under step 2. Such analysis is done in chemical laboratories, which often are specialized for a certain group of POPs (e.g., pesticide POPs, dioxin-like POPs, POP brominated

23 Information can be found at: DEXSIL test kits: http://www.dexsil.com/products/.
flame retardants, PFOS) and specialized to a certain matrix. Confirmatory chemical analytical methods have been developed by international and national organizations and include:

(i) For pesticide POPs and PCBs: capillary gas chromatography (GC) + electron capture detector (ECD), mass spectrometry (MS), or tandem mass spectrometry (MS/MS);
(ii) For POP-BDEs, dioxin-like POPs: capillary GC + MS (for dioxin-like preferentially high-resolution);
(iii) For PFOS: liquid chromatography (LC) + (MS/MS);
(iv) For HBCD: GC/MS, LC-MS and HPLC-MS. GC-FID (flame ionization detector) using a HBCD reference is also able to identify and quantify HBCD;
(v) For HCBD: GC/MS and GC+ECD;
(vi) For PCP and its salts and esters: Typical analytical detection uses GC+ECD, mass selective detectors, as well as LC/MS methods;
(vii) For PCNs: GC/MS for water analysis.

99. It is important that the steps described in subsections (a) and (b) of paragraph 98 above do not generate false negatives and that any method comply with the level of interest for the analysis.

100. Analysis refers to the extraction, purification, separation, identification, quantification and reporting of POPs concentrations in the matrix of interest. To obtain meaningful and acceptable results, the analytical laboratory should have the necessary infrastructure (housing) and proven experience with the matrix and the POP (e.g., successful participation in international intercalibration assessments). Accreditation of the laboratory in accordance with ISO 17025 or other standards by an independent body is important. Indispensable criteria for obtaining high-quality results include:

(a) Specification of the analytical technique used;
(b) Maintenance of analytical equipment;
(c) Validation of all methods used (including in-house methods); and
(d) Training of laboratory staff.

101. Typically, POPs analysis is performed in a dedicated laboratory. For specific situations, test kits are available that can be used in the field for screening purposes.

102. For laboratory POPs analysis, there is no single analytical method available. Methods of analyzing the various matrices for POPs have been developed by ISO, the European Committee for Standardization (CEN), EPA, AOAC and ASTM. Most in-house methods are variations of these, and after validation such in-house methods are also acceptable.

103. In addition, procedures and acceptance criteria for handling and preparation of the sample in the laboratory, e.g., homogenization, should be established.

104. The individual steps in the analytical determination include:

(a) Extraction, e.g., by Soxhlet, pressurized solvent extraction, liquid-liquid, etc.;
(b) Purification, e.g., by column chromatography or with Florisil. Purification should be efficient enough so that chromatographic retention is not influenced by the matrix;
(c) Separation by capillary gas chromatography (HRGC), which will provide sufficient separation of analytes;
(d) Identification by suitable detectors such as an ECD or a mass-selective detector, or by either low-resolution mass spectrometry (LRMS) or high-resolution mass spectrometry (HRMS);
(e) Quantification in accordance with internal standard methodologies (for reference, see UNEP, 2015d and UNEP, 2006b); and
(f) Reporting in accordance with regulation(s).

3. Monitoring

105. In Article 10 (“International Cooperation”), paragraph 2 (b), the Basel Convention requires Parties to “cooperate in monitoring the effects of the management of hazardous wastes on human health and the environment”. In Article 11, paragraph 1, the Stockholm Convention requires Parties, within
their capabilities, at the national and international levels, to encourage and/or undertake appropriate monitoring pertaining to POPs.

106. Monitoring programmes should be implemented for facilities managing POP wastes, as they provide an indication of whether a hazardous waste management operation is functioning in accordance with its design and environmental regulations.

107. In environmental and human monitoring programmes, both biotic and abiotic matrices may be included:

(a) Plant materials and food;
(b) Fish and wildlife;
(c) Biological fluids (e.g. human breast milk, blood, urine);
(d) Air (ambient, wet or dry deposition such as snow, ice, dust);
(e) Water (e.g., leachate, wastewater);
(f) Soil;
(g) Sediment.

108. The information from the monitoring programme should be used to:

(a) Detect any releases to or changes in the quality of the surrounding environment;
(b) Ensure that different types of hazardous wastes are properly managed by the waste management operation; and
(c) Identify potential issues relating to possible release or exposure and determine whether adjustments to the management approach might be appropriate.

109. By implementing a monitoring programme, governments, regulators, municipalities and recycling and waste facility managers can identify problems and take appropriate measures to remedy them. Further information on monitoring can be found in the following documents: Monitoring and research under the Chemicals Management Plan (Government of Canada, 2011; Environment Canada, 2011); General Principles of Monitoring (European Commission, 2003); Guidance for a Global Monitoring Programme for Persistent Organic Pollutants (UNEP, 2015a); Ministry of the Environment of Japan, 2013a; and German Federation/Länder Dioxin Database (German Federal Environment Agency Dessau-Roßlau, 2014).

F. Handling, collection, packaging, labelling, transportation and storage

110. Handling, collection, packaging, labelling, transportation and storage are critically important steps as the risk of a spill, leak or fire can be as great as at other stages of the life cycle of a POP.

111. Considerations and provisions unique to POP waste streams are presented in the specific POP technical guidelines when appropriate. A tailored approach for certain POP waste streams (e.g. articles and products that have become waste) is desirable considering their various sources, waste types, volumes and POP concentrations. This allows decision makers to consider the risks that various waste streams may pose at different stages of their management, and the appropriate actions that may be necessary to prevent, eliminate or minimize their impact on the environment. Best management practices are, in some cases, in the early stages of being developed or documented.

112. Where appropriate, procedures and processes for managing hazardous wastes should be considered for handling, collecting, packaging, labelling, transporting and storing wastes with a POP content above the low POP contents referred to in section III.A in order to prevent spills and leaks resulting in worker exposure, releases to the environment or exposure of the community.

113. Relevant information regarding the hazardous characteristics and risks of POP wastes should be collected and analysed in order to plan for the proper handling of such wastes, for example by consulting and following the instructions given on the chemicals they contain and related safety data sheets. For labelling and packaging, the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS) should be taken into account, accordingly.

114. For transport and transboundary movement of POP wastes meeting the criteria of hazardous wastes, the following documents should be consulted to determine specific requirements:

(a) Manual for the Implementation of the Basel Convention (UNEP, 2015h);
For the following sections (1–6), detailed information can be obtained from destruction and decontamination technologies for PCBs and other POP waste under the Basel Convention: A training manual for hazardous waste project managers (UNEP, 2002a).

1. Handling

The main concerns when handling POP wastes are human exposure, accidental releases to the environment and contamination of other waste streams with POPs. POP wastes should be handled separately from other types of waste in order to prevent contamination of other waste streams. The management of liquid waste streams, in particular, and other wastes streams as appropriate should include the following recommended practices:

   (a) Inspecting containers for leaks, holes, rust or high temperature, and appropriate repackaging and relabelling as necessary;
   (b) Handling wastes at temperatures below 25 °C, if possible, because of increased volatility at higher temperatures;
   (c) Ensuring that spill containment measures are adequate and would contain liquid wastes if spilled;
   (d) Placing plastic sheeting or absorbent mats under containers before opening them if the surface of the containment area is not coated with a smooth surface material (paint, urethane or epoxy);
   (e) Removing liquid wastes either by removing the drain plug or by pumping with a peristaltic pump and suitable chemical-resistant tubing;
   (f) Using dedicated pumps, tubing and drums, not used for any other purpose, to transfer liquid wastes;
   (g) Cleaning up any spills with cloths, paper towels or absorbent;
   (h) Triple rinsing of contaminated surfaces with a solvent;
   (i) Treating all absorbents and solvent from triple rinsing, disposable protective clothing and plastic sheeting as wastes containing or contaminated with POPs when appropriate; and
   (j) Training staff in the correct methods of handling POP wastes.

2. Collection

Although large industries may be responsible for the proper management of the POP wastes that they generate or own, many smaller entities also possess such wastes. The POP waste possessed by small entities may include household- or commercial-size pesticide containers, PCB fluorescent light ballasts, small containers of pentachlorophenol-based wood preservatives with PCDD and PCDF contamination, small amounts of "pure" POPs in laboratories and research facilities, and pesticide-coated seeds used in agricultural and research settings. To deal with this scattered assortment of hazardous wastes, many governments have established depots where small quantities of these wastes can be deposited by the owner at no charge or for a nominal fee. These depots may be permanent or temporary in nature, or may be located at existing commercial hazardous waste transfer stations. Waste-collection depots and transfer stations may be set up on a regional basis by groups of countries or may be provided by a third party to a developing country.

---

26 European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR); European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways (ADN); Regulations concerning the International Carriage of Dangerous Goods by Rail (RID).

27 Examples of guidelines on the safe handling of hazardous materials and accident prevention include those prepared by the International Labour Organization (ILO, 1999a and 1999b) and OECD (OECD, 2003).
118. Care should be taken in establishing and operating waste collection programmes, depots and transfer stations:

(a) To advertise the programme, depot locations and collection time periods to all potential holders of POP wastes;

(b) To allow enough time of operation of collection programmes for the complete collection of all potential POP wastes;\(^28\)

(c) To include, to the extent practical, all POP wastes in the programme;

(d) To make acceptable containers and safe-transport materials available to waste owners for those waste materials that may need to be repackaged or made safe for transport;

(e) To establish simple, low-cost mechanisms for collection;

(f) To ensure the safety both of those delivering waste to depots and workers at the depots;

(g) To ensure that the operators of depots are using an accepted method of disposal;

(h) To ensure that the programme and facilities meet all applicable legislative requirements; and

(i) To ensure the separation of POP wastes from other waste streams.

3. Packaging

119. POP wastes, whether hazardous or not, should be properly packaged for ease of transport and as a safety measure to reduce the risk of leaks and spills.

120. Packaging of hazardous wastes falls into two categories: packaging for transport and packaging for storage. Packaging for transport is often controlled by national dangerous goods transportation legislation. For packaging specifications for transport, the reader should consult reference materials published by IATA, IMO, UNECE, GHS and national governments.

121. Some general precepts for the packaging of POP wastes for storage are as follows:

(a) Packaging that is acceptable for transport is, in most cases, suitable for storage, unless more stringent storage requirements are specified;

(b) Such wastes in their original product containers are generally safe for storage if the packaging is in good condition;

(c) POP wastes should never be stored in product containers that were not intended to contain such wastes or that have labels on them that incorrectly identify their contents;

(d) Containers that are deteriorating or are deemed to be unsafe should be emptied or placed inside a sound outer package (overpack). When unsafe containers are emptied, the contents should be placed in appropriate new or refurbished containers. All new or refurbished containers should be clearly labelled as to their contents;

(e) Smaller containers can be packaged together in bulk by placing them in appropriate or approved larger containers containing absorbent material;

(f) Out-of-service equipment containing POPs may or may not constitute suitable packaging for storage. The determination of its safety should be made on a case-by-case basis.

4. Labelling\(^29\)

122. Labelling of products containing POPs may be a necessary measure in order to effectively manage the products upon becoming wastes.

123. Labelling of POP wastes containers is a basic safety feature and important for the success of any waste management system. Each waste container should be labelled to identify the container (e.g., ID number) and the POP present and its hazard level.

\(^{28}\) Complete collection may require the depots to operate either continuously or intermittently over several years.

\(^{29}\) International standards have been developed for the proper labelling and identification of wastes. Guidelines on the proper labelling and identification of hazardous materials have been produced by UNECE (2003b). See also FAO, 2001; UNEP, 2015h; and UNEP, UNIDO et al, 2012.
5. Transportation

124. POP wastes should be transported in an environmentally sound manner to avoid accidental spills and to track their transport and ultimate destination appropriately. Before transport, contingency plans should be prepared in order to minimize environmental impacts associated with spills, fires and other emergencies that could occur during transport. During transportation, such wastes should be identified, packaged and transported in accordance with the “United Nations Recommendations on the Transport of Dangerous Goods: Model Regulations (Orange Book)”. Persons transporting such wastes should be qualified and certified as carriers of hazardous materials and wastes.

125. Transportation of dangerous goods and wastes is regulated in most countries and the transboundary movement of wastes is controlled, in particular by the Basel Convention.

126. Companies transporting wastes within their own countries should be certified as carriers of hazardous materials and wastes, and their personnel should be qualified.

127. Guidance on the safe transportation of hazardous materials can be obtained from IATA, IMO, UNECE and ICAO.

6. Storage

128. According to Annex IV, sections A and B, of the Basel Convention, storage (operations D5 and R13) is a temporary operation that precedes other disposal operations. POP wastes, after having been appropriately packaged (see subsection IV.F.3 on packaging) should be stored safely, preferably away from drinking water winning areas, and in dedicated areas away from other materials and wastes. However, they could be stored together with other wastes if they were destined for a similar disposal operation as listed under section IV.G. Storage areas should be designed to prevent the release of POPs into the environment by any route. Storage rooms, areas and buildings should be designed by professionals with expertise in the fields of structural design, waste management and occupational health and safety or can be purchased in prefabricated form from reputable suppliers as approved by the authorities, as appropriate.

129. Where necessary, POP wastes should be segregated at the source to ensure appropriate arrangements for collection, including the use of collection tanks, taking into account their hazardous characteristics and the risk of exposure that they present.

130. Some basic principles of safe storage of POP wastes are as follows:

(a) Storage sites inside multi-purpose buildings should be in a locked dedicated room or partition that is not in an area of high use;

(b) Outdoor dedicated storage buildings or containers (shipping containers are often used for storage) should be stored inside a lockable fenced enclosure;

(c) Separate storage areas, rooms or buildings may be required for each type of POP waste, unless specific approval has been given for joint storage;

(d) Such wastes should not be stored at or near sensitive sites such as hospitals or other medical care facilities, schools, residences, food processing facilities, animal feed storage or processing facilities, agricultural operations, or facilities located near or within environmentally sensitive sites;

(e) Storage rooms, buildings and containers should be located and maintained in conditions that minimize volatilization, including cool temperatures, reflective roofs and sidings, a shaded location, etc. When possible, particularly in warm climates, storage rooms and buildings should be maintained under negative pressure with exhaust gases vented through carbon filters, bearing in mind the following conditions:

(i) Ventilating a site with carbon filtration of exhaust gases may be appropriate when exposure to vapours of those who work at the site and those living and working in the vicinity of the site is a concern;

(ii) Sealing and venting a site so that only well-filtered exhaust gases are released to outside air may be appropriate when environmental concerns are paramount;

(f) Dedicated buildings or containers should be in good condition and made of hard plastic or metal, not wood, fibreboard, drywall, plaster or insulation;

(g) The roofs of dedicated buildings or containers and the surrounding land should be sloped to provide drainage away from the site;

(h) Dedicated buildings or containers should be set on asphalt, concrete or durable (e.g., 6 mm) plastic sheeting;

(i) The floors of storage sites inside buildings should be concrete or durable (e.g., 6 mm plastic sheeting). Concrete should be coated with a durable epoxy polymer;

(j) Storage sites should have fire alarm systems;

(k) Storage sites inside buildings should have (preferably non-water) fire suppression systems. If the fire suppressant is water, then the floor of the storage room should be curbed and the floor drainage system should not lead to the sewer or storm sewer or directly to surface water but should have its own collection system, such as a sump;

(l) Liquid wastes should be placed in containment trays or in curbed, leak-proof areas. The liquid containment volume should be at least 125 per cent of the liquid waste volume, taking into account the space taken up by stored items in the containment area;

(m) Contaminated solids should be stored in sealed containers such as barrels or pails, steel waste containers (lugger boxes) or in specially constructed trays or containers. Large volumes of material may be stored in bulk in dedicated shipping containers, buildings or vaults so long as they meet the safety and security requirements described herein;

(n) A complete inventory of such wastes in the storage site should be created and kept up to date as waste is added or disposed of;

(o) The outside of the storage site should be labelled as a waste storage site;

(p) The site should be subjected to routine inspection for leaks, degradation of container materials, vandalism, integrity of fire alarms and fire suppression systems and general status of the site.

G. Environmentally sound disposal

1. Pre-treatment

131. This section presents some of the pre-treatment operations that may be required for the proper and safe operation of the disposal technologies described in subsections 2 and 3 below. There are other pre-treatment operations that may be applied. Pre-treatment operations prior to disposal in accordance with subsections IV.G.2 and IV.G.3 should be performed only if the POPs that are isolated from the waste during pre-treatment are subsequently disposed of in accordance with subsection IV.G.2. When only part of a product or waste, such as waste equipment, contains or is contaminated with POPs, it should be separated and then disposed of as specified in subsections IV.G.1–4, as appropriate.

(a) Adsorption and absorption

132. “Sorption” is the general term for both absorption and adsorption processes. Sorption is a pre-treatment method in which solids are used for removing substances from liquids or gases. Adsorption involves the separation of a substance (liquid, oil, gas) from one phase and its accumulation at the surface of another (activated carbon, zeolite, silica, etc.). Absorption is the process whereby a material transferred from one phase to another interpenetrates the second phase; for example, when contaminants are transferred from liquid phase onto granular activated carbon (GAC). GAC is widely applied in the removal of organic contaminants in wastewaters because of its effectiveness, versatility and relatively low-cost.

133. Adsorption and absorption processes can be used to extract contaminants from aqueous wastes and from gas streams. The concentrate and the adsorbent or absorbent may require treatment prior to disposal.

31 Further information on pre-treatment can be found in the Basel technical guidelines on hazardous wastes-Physico-Chemical Treatment/Biological Treatment. UNEP, 2000a.
(b) Blending

134. The blending of waste to create a homogeneous feedstock prior to waste treatment may be appropriate in order to enable treatment or to optimize treatment efficiency. However, the blending of wastes with POP contents above a defined low POP content with other materials for the purpose of generating a mixture with a POP content at or below the defined low POP content is not environmentally sound.

(c) Desorption

135. Desorption includes chemical desorption and thermal desorption. Thermal desorption (e.g., through vacuum thermal recycling or the use of a toroidal bed reactor or a liquid waste pre-heater) is a technology that utilizes heat to increase the volatility of contaminants such that they can be removed (separated) from a solid matrix (typically soil, sludge or filter cake). Direct fired and indirect fired desorbers exist. Thermal desorption processes are also categorized into high temperature thermal desorption (HTTD) and low-temperature thermal desorption (LTTD) processes. In HTTD, wastes are heated between 320°C and 550°C and in LTTD between 90°C and 350°C. LTTD, also known as low-temperature thermal volatilization, thermal stripping and soil roasting is used for volatile and semi-volatile compounds and elements (most commonly light petroleum hydrocarbons) from contaminated media (most commonly excavated soils). Such processes have been used for the decontamination of non-porous surfaces of electrical equipment, such as transformer carcasses that formerly contained PCB-containing dielectric fluids, or fluorescent lamps that contained mercury. Thermal desorption of POP wastes may result in the unintentional formation of POPs which may require additional treatment of treated waste or off-gas released.

(d) Dewatering

136. Dewatering is a pre-treatment process in which water is partially removed from the wastes to be treated. Dewatering can be employed for disposal technologies that are not suitable for aqueous wastes. For example, water will react explosively with molten salts or sodium. Depending on the nature of the contaminant, the resulting vapours may require condensation or scrubbing and further treatment.

(e) Dismantling/disassembling

137. Dismantling or disassembling is a pre-treatment in which equipment, components or assemblies are taken apart to separate materials to increase options for reuse, refurbishment, recycling, recovery and final disposal.

(f) Dissolution

138. Pre-treatment by which a waste (liquid, solid or gas) is dissolved into a solvent.

(g) Distillation

139. A process which separates a solvent from a mixture by applying thermal energy and vaporising components and then condensing that vapour in a subsequent stage. Through this process, the solvent is separated, thereby allowing for subsequent recovery of the solvent and the reduction of the volume of waste destined for final disposal using other processes.

(h) Drying

140. Drying is a pre-treatment that removes water or a solvent by evaporation from a solid, semi-solid or liquid waste. In general, a gas stream, e.g., air, applies the heat by convection and carries away the vapor as humidity. Vacuum drying can also be used when heat is supplied by conduction or radiation (or microwaves), while the vapor produced can be removed with a vacuum system.

(i) Mechanical separation

141. Mechanical separation can be used to remove larger-sized debris from the waste stream or for technologies that may not be suitable for both soils and solid wastes.

(j) Membrane filtration

142. Membrane filtration is a thin film separation of two or more components in a liquid and is used as an option for conventional wastewater treatment. It is a pressure- or vacuum-driven separation process in which contaminants may be rejected by an engineered barrier, primarily through a size-
exclusion mechanism. Different classifications of membrane treatment applicable to POPs include nanofiltration and reverse osmosis.

(k) **Mixing**

143. Mixing materials, without blending, prior to waste treatment may be appropriate in order to enable treatment or to optimize treatment efficiency. However, the mixing of wastes with POP contents above a defined low POP content with other materials solely for the purpose of generating a mixture with a POP content at or below the defined low POP content is not environmentally sound.

(l) **Oil-water separation**

144. Some treatment technologies are not suitable for aqueous wastes, while others are not suitable for oily wastes. Oil-water separation can be employed in these situations to separate the oily phase from the water. Both the water and the oily phase may be contaminated after separation and both may require treatment.

(m) **pH adjustment**

145. Some treatment technologies are most effective over a defined pH range and in these situations alkali, acid or CO₂ are often used to control pH levels. Some technologies may also require pH adjustment as a post-treatment step.

(n) **Sedimentation**

146. Sedimentation is a physical process whereby particles settle by gravity. Chemical agents can be added to facilitate the settling process.

(o) **Size reduction**

147. Some technologies can be used to process wastes only within a certain size limit. For example, some technologies may be used to handle POP-contaminated solid wastes only if they are less than 200 mm in diameter. Size reduction can be used in these situations to reduce the waste components to a defined diameter. Size reduction can include crushing, shearing and grinding. Other disposal technologies require slurries to be prepared prior to injection into the main reactor. It should be noted that facilities may become contaminated when reducing the size of POP wastes. Precautions should therefore be taken to prevent subsequent contamination of POP-free waste streams.

(p) **Solvent washing**

148. Solvent washing can be used to remove POPs from electrical equipment such as capacitors and transformers. This technology has also been used for the treatment of contaminated soil and sorption materials used in adsorption or absorption pre-treatment.

(q) **Stabilization and solidification**

149. Stabilization and solidification are to be used in conjunction for them to be environmentally sound. The stabilization of waste refers to the chemical conversion of the hazardous constituents in the waste to less soluble, mobile or toxic materials. The solidification of waste refers to changes in the physical properties of the waste to increase its compressive strength, decrease its permeability and encapsulate its hazardous constituents. Many waste streams require pre-treatment or special additives prior to stabilization and solidification. Applicability trials and durability tests prior to both stabilization and solidification are advisable.

(r) **Vaporization**

150. The conversion of liquid or solid substances into a gaseous state prior to waste treatment may be appropriate in order to enable or optimize treatment efficiency.

(s) **Volume reduction**

151. The reduction of waste volume through compression or compaction to make the waste more condensed may be appropriate to facilitate waste handling, transport, storage and disposal.
2. Destruction and irreversible transformation methods

152. The following disposal operations, as provided for in Annex IV, sections A and B, of the Basel Convention, should be permitted for the purpose of destruction and irreversible transformation of the POP content in wastes when applied in such a way as to ensure that the remaining wastes and releases do not exhibit the characteristics of POPs:

(a) D9: Physico-chemical treatment;
(b) D10: Incineration on land;
(c) R1: Use as a fuel (other than in direct incineration) or other means to generate energy; and
(d) R4: Recycling/reclamation of metals and metal compounds, but restricted to activities of primary and secondary metallurgy described in (k) below.

153. POPs that are isolated from a waste stream during pre-treatment should subsequently be disposed of in accordance with operations D9 and D10.

154. Subsections (a) to (k) below describe commercially available operations for the environmentally sound destruction and irreversible transformation of the POP content in wastes that are capable of achieving the levels of destruction and irreversible transformation referred to in section III.B.32 Table 4 below provides an overview of these operations. Table 4 should be used in conjunction with the following subsections to gain a more fulsome understanding of the many factors to consider before making decisions concerning the use of destruction and irreversible transformation methods. It should be noted that pertinent national legislation apply to these operations and that the operations should be used in accordance with the BAT and BEP standards developed under the Stockholm Convention, as presented in the Guidelines on best available techniques and provisional guidance on best environmental practices relevant to Article 5 and Annex C of the Stockholm Convention on Persistent Organic Pollutants (UNEP, 2007). Consequences of not conducting the operations according to the standards outlined in the BAT and BEP guidance can lead to the formation and release of POPs into the environment.

155. Emerging technologies are not described in this subsection because their commercial availability and their performance with regard to destruction and irreversible transformation of POPs are not documented.

156. For assessing the performance of the operations in subsections (a) to (k) below, a minimum DE of 99.999 per cent, with 99.9999 per cent of DRE as a supplement requirement where applicable, provides practical benchmark parameters for assessing disposal technology performance. Higher demonstrated DEs may be preferred on a case-by-case basis. DE and DRE should be used together to demonstrate a level of destruction and irreversible transformation; as neither DE nor DRE take into account the potential transformation of the original POP to an unintentionally produced POP, potential releases of unintentionally produced POPs should be considered when choosing a particular operation.

Table 4: Overview of technologies for the destruction and irreversible transformation of POPs in wastes

<table>
<thead>
<tr>
<th>Technology</th>
<th>HBB</th>
<th>HBCD</th>
<th>HCBD</th>
<th>PCB</th>
<th>PCDDs/PCDFs</th>
<th>PCN</th>
<th>PCP</th>
<th>Pesticides POPs</th>
<th>PFOS</th>
<th>POP-BDEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Alkali metal reduction</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes, for certain pesticides: chlordane, HCH</td>
<td>ND</td>
<td>ND*</td>
</tr>
<tr>
<td>(b) Advanced solid waste incineration (ASWI)</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
</tr>
<tr>
<td>(c) Base catalyzed decomposition (BCD)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>Yes</td>
<td>ND</td>
<td>Yes</td>
<td>Yes, for certain pesticides: chlordane, HCH</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

32 Further information regarding these current and emerging technologies can be found in: UNEP, 2004a; volumes A and B of UNEP, 2002a (currently being updated) and at STAP, 2011; UNEP, 2007. For full references, see annex III (bibliography) below.
<table>
<thead>
<tr>
<th>Technology</th>
<th>HBB</th>
<th>HBCD</th>
<th>HCBD</th>
<th>PCB</th>
<th>PCDDs/PCDFs</th>
<th>PCN</th>
<th>PCP</th>
<th>Pesticides POPs</th>
<th>PFOS</th>
<th>POP-BDEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) Catalytic hydrodechlorination</td>
<td>ND</td>
<td>NA</td>
<td>ND</td>
<td>Yes</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>NA**</td>
</tr>
<tr>
<td>(e) Cement kiln co-incineration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes for all pesticides</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(f) Gas phase chemical reduction (GPCR)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes for all pesticides:</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(g) Hazardous waste incineration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes for all pesticides</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(h) Plasma arc</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes, for most pesticides, including chlordane, chlordecone, DDT, endosulfan, heptachlor</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>(i) Plasma melting decomposition method (PMD)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>(j) Supercritical water oxidation (SCWO) and</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>Yes, for</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>subcritical water oxidation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCDDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) Thermal and metallurgical production of metals</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* ND stands for “not determined” and indicates that information is not available to confirm the use of the technology for certain POPs.
** NA stands for “not applicable”.

(a) Alkali metal reduction

157. **Process description:** Alkali metal reduction involves the treatment of wastes with dispersed alkali metals. Alkali metals react with chlorine in halogenated waste to produce salts and non-halogenated waste. Typically, the process operates at atmospheric pressure and at temperatures of between 60°C and 180°C. Treatment can take place either in situ (e.g., in the case of PCB-contaminated transformers), or ex situ in reaction vessels. There are several variations of this process (Piersol, 1989). Although potassium and potassium-sodium alloy have been used as reducing agents, metallic sodium is the most commonly used reducing agent. The information discussed in the remainder of this subsection is based on experiences with the use of metallic sodium.

158. **Efficiency:** Destruction efficiencies (DEs) of more than 99.999 per cent and destruction removal efficiencies (DREs) of 99.9999 per cent have been reported for chlordane, HCH and PCBs (Ministry of Environment of Japan, 2004). The sodium reduction process has also been demonstrated to meet regulatory criteria in Australia, Canada, Japan, South Africa, the United States of America and the European Union for PCB transformer oil treatment, i.e., less than 2 mg/kg in solid and liquid residues (UNEP, 2004b).

33 Additional information is available in UNEP, 1998, UNEP, 2000, and UNEP, 2004a.
159. **Waste types**: Sodium reduction has been demonstrated with PCB-contaminated oils containing concentrations up to 10,000 mg/kg. Some vendors have claimed that this process is capable of treating whole capacitors and transformers (UNEP, 2004a). It is also reported that alkali metal reduction is applicable to chlordane and HCH as waste pesticides (Ministry of the Environment of Japan, 2004).

160. **Pre-treatment**: Ex-situ treatment of PCBs can be performed following solvent extraction of PCBs. Treatment of whole capacitors and transformers could be carried out following size reduction through shearing. Pre-treatment should include dewatering by phase separation, evaporation, or other method (UNIDO, 1987) to avoid explosive reactions with metallic sodium. Equipment should be washed with organic solvents. Similarly, the POPs that are in a solid or adsorbed form would need to be dissolved to the required concentration or extracted from their matrices (Piersol, 1989 and UNEP, 2004a).

161. **Emissions and residues**: Air emissions include nitrogen and hydrogen gas. Emissions of organic compounds are expected to be relatively minor (Piersol, 1989). It has been noted, however, that PCDDs and PCDFs can be formed from chlorophenols under alkaline conditions at temperatures as low as 150°C (Weber, 2004). Residues produced during the process include sodium chloride, sodium hydroxide, polyphenyls and water. In some variations, a solidified polymer is also formed (UNEP, 2000).

162. **Release control and post-treatment**: After a reaction, the resulting by-products can be separated out from the oil through a combination of filtration and centrifugation. The decontaminated oil can be reused, the sodium chloride can either be reused or disposed of in a landfill, and the solidified polymer can be disposed of in a landfill (UNEP, 2000), with no or minimal post-treatment required. Depending on the technology used, the combination of filtration and centrifugation can include off-gas treatment and neutralization or conservation of residuals. The excess sodium, if not neutralized, may need to be recovered. Liquid products, if not reused, and solidified polymeric products should be usually burnt in incinerators, and inorganic salts would require disposal. Minor quantities of volatile organic compounds in emissions can be captured with the use of activated carbon (UNIDO, 2007).

163. **Energy requirements**: Immediate energy requirements are expected to be relatively low owing to the low operating temperatures associated with the sodium reduction process.

164. **Material requirements**: Sodium is required to operate this process (UNEP, 2004a).

165. **Portability**: The process is available in transportable and fixed configurations (UNEP, 2000).

166. **Health and safety**: Dispersed metallic sodium can react violently and explosively with water, presenting a major hazard to operators. Metallic sodium can also react with a variety of other substances to produce hydrogen, a flammable gas that is explosive in admixture with air. Great care must be taken in the process design and operation to exclude any water (and certain other substances, e.g., alcohols) from the waste and to prevent any contact of water (or certain other substances) with the metallic sodium.

167. **Capacity**: Mobile facilities are capable of treating 15,000 litres per day of PCB-contaminated transformer oils (UNEP, 2000).

168. **Other practical issues**: Sodium reduction used for in-situ treatment of PCB-contaminated transformer oils may not destroy all the PCBs contained in the porous internals of the transformer. Some authors have noted that there is a lack of information on the characterization of residues (UNEP, 2000).

169. **State of commercialization**: Alkali metal reduction has been used commercially for about 25 years and is still in use today. In Japan, three commercial-scale facilities were installed in 2004, 2005 and 2009 and are currently in operation (JESCO, 2009a; JESCO, 2009b; JESCO, 2013).

(b) **Advanced Solid Waste Incineration (ASWI)**

170. **Process description**: There are many different types of municipal waste incinerators and not all municipal waste incinerator technologies or facilities are able to properly destroy POPs in waste. Advanced solid waste incinerators are designed to safely treat the contaminants present in municipal solid waste (MSW) and similar commercial and industrial waste, usually in grate furnaces operating at high temperatures, and incorporating state-of-the-art pollution-control methods. Advanced solid waste incineration processes involve maintaining a minimum temperature of 850°C in the combustion chamber(s) with a residence time in the gas phase of at least two seconds. There are also incineration facilities dedicated to wood waste that are able to incinerate wood waste containing or contaminated with PCP under similar conditions as described above (European Commission, 2011). The conditions and operating requirements of the processes described above should be stringent and meet the levels of
destruction and irreversible transformation set out in subsection IV.G.2. Some countries have included such requirements in their national legislation.\textsuperscript{35}

171. In order to properly destroy the HBCD contained in waste a temperature higher than 850°C is necessary. In the case of a full scale test trial of the treatment of polystyrene foam (EPS and XPS) waste containing HBCD in the Würzburg Municipal Solid Waste Incinerator (Germany), where the input contained 1-2 weight-per cent of such foam waste containing 6,000 to 21,000 mg/kg of HBCD, the necessary combustion temperature was 900–1,000°C (Mark et al, 2015). In the case of a full scale test trial of the treatment of e-waste in the Tamara Municipal Solid Waste Incinerator (Germany), where the input contained 2.5–3.5% of bromine including POP-BDEs, the temperature was 1,000°C (Vehlow, 2002). These trial results were confirmed by a full scale facility study conducted in Norway, where the total input of brominated flame retardants was less than 500 g/h (Borgnes & Rikheim, 2005). In the case of incineration or co-incineration of hazardous waste with a content of more than 1 per cent of halogenated organic substances expressed as chlorine, a temperature of at least 1,100°C is required.

172. During incineration, flue gases are released that contain most of the available fuel energy as heat. The organic substances in the waste burn as soon as they reach the ignition temperature. It is noted that it may be necessary to add other fuels in order to adjust the temperature during incineration as well as during the starting up and shutting down of furnaces.

173. It should be noted that residual waste typically contains small amounts of heavy metals, sulphur and chlorine and may contain small amounts of flame retardants in plastic or textile waste. These substances are found in practically all fractions of residual waste and in a variety of chemical compounds. For this reason, the requirements for technical systems ensuring safe residual waste treatment are highly complex.\textsuperscript{36}

174. The guidance on BAT/BEP developed by the Stockholm Convention relevant to Article 5 and Annex C should be used and applied to this technology (UNEP, 2007).

175. **Efficiency:** Under appropriate combustion conditions, organic compounds are destroyed during incineration.\textsuperscript{37} Reports by the Technology and Economic Assessment Panel (TEAP) of the Montreal Protocol on Substances that Deplete the Ozone Layer, in particular a 2002 report of the TEAP Task Force on Destruction Technologies (TFDT), has shown the high destruction efficiency of ASWI for halogenated substances such as CFCs and HCFCs in polystyrene foams.

176. In the full-scale test trial at the Würzburg Municipal Solid Waste Incinerator it was shown that ASWI was able to destroy HBCD with a DE of 99.999 per cent for EPS and XPS foams.\textsuperscript{38} Controlled combustion is demonstrated to achieve a DE greater than 99.9 per cent for treated wood containing PCP.\textsuperscript{39}

177. **Waste types:** Advanced solid waste incinerators are designed to incinerate MSW, including residual waste, but can also treat some waste from industry and commerce.\textsuperscript{40} A full-scale test trial showed that an ASWI was suitable for the incineration of polystyrene foam (EPS and XPS) waste containing HBCD.\textsuperscript{41} ASWI has been demonstrated to treat waste containing POP-BDEs (Borgnes & Rikheim, 2005; Vehlow, 2002; OECD, 1998; European Commission, 2011). Wood waste containing or contaminated with PCP can be incinerated in incineration facilities dedicated to wood waste (European Commission, 2011).

178. **Pre-treatment:** Waste should be mixed in a bunker in order to keep its calorific value constant. Volume reduction (crushing or shredding) is needed for bulky waste.

179. **Emissions and residues:** Emissions include carbon dioxide, water vapour, hydrogen chloride, hydrogen fluoride, sulphur-dioxide and other oxides of sulphur, particulates, nitrogen oxides, total

\textsuperscript{35} See EU Directive 2010/75/EU on industrial emissions, chapter 4. The directive succeeded Directive 2008/1/EC (integrated pollution prevention and control) and is aimed at minimizing pollution from various industrial sources throughout the European Union. Operators of industrial installations engaged in activities covered under Annex I to the Directive are required to obtain an integrated permit from the authorities of EU countries.


\textsuperscript{37} See BiPROM GmbH, 2005.

\textsuperscript{38} See Mark et al., 2015.

\textsuperscript{39} European Commission, 2011.

\textsuperscript{40} See European Commission, 2006.

\textsuperscript{41} See Mark et al., 2015.
organic carbon (TOC), PCDD/PCDF, heavy metals and carbon monoxide,\textsuperscript{42} and could also include PBDD/PBDF (UNEP, 2007). Other emissions include hydrogen bromide and PXDD/PXDF.\textsuperscript{43} Incinerators applying BAT that, \textit{inter alia}, are designed to operate at high temperatures, to minimize the reformation of PCDDs and PCDFs and to remove PCDD and PCDF (e.g., with the use of activated carbon filters) have led to very low PCDD and PCDF emissions to air and discharges to water.\textsuperscript{44}

180. In residues, PCDDs and PCDFs are mainly found in fly ash and flue gas cleaning residues, in the range from 0.0008 to 35 ng TEQ/g, while bottom ash (representing the largest mass flow of residues from waste incineration) and scrubber water sludge contain a comparably small amount of PCDDs and PCDFs.\textsuperscript{45} According to the facility study conducted in Norway, emission to air of polybrominated diphenyl ethers was 3.5 ng/Nm\textsuperscript{3} (Borgnes & Rikheim, 2005).

181. \textit{Release control and post-treatment:} Process gases usually require treatment to remove hydrogen chloride and fluoride, sulphur and nitrogen oxides, heavy metals and particulate matter, and to prevent the formation of, or remove, unintentionally produced POPs. This can be achieved through the combined use of cleaning equipment, including electrostatic precipitators, fabric filters, scrubbers, selective catalytic or non-catalytic reduction, and carbon adsorption. Depending upon their characteristics, bottom and fly ashes may require disposal within a specially engineered landfill or permanent storage in underground mines and formations, or may be used for backfilling in salt mines.\textsuperscript{46}

182. \textit{Energy requirements:} The amount of combustion fuel required depends on the composition of the waste to be treated and the flue gas treatment technologies to be applied.

183. \textit{Material requirements:} Material requirements may include lime, sodium bicarbonate, activated carbon and other suitable materials for the removal of acid gases and other pollutants.

184. \textit{Portability:} ASWI facilities are fixed units.

185. \textit{Health and safety:} To ensure that appropriate health and safety measures are taken, ASWI facilities should be designed and operated in accordance with to the relevant chapters of EU Directive 2010/75/EU on industrial emissions (integrated pollution prevention and control) and the European Commission Best Available Techniques Reference Document (BREF) on Waste Incineration (See section 2.8.5 on “overview of safety devices and measures.”) (European Commission, 2006)

186. \textit{Capacity:} Each ASWI facility can treat between 30,000 and more than 1,000,000 tonnes of waste per year. Due to the high volume of HBCD-containing PS foams (which have a high volume and densities between 15 and 40 kilogram/cubic meters), the use of 1-2 per cent by weight of such foams, which corresponds to about 15 per cent to 30 per cent by volume, is recommended (Mark et al, 2015).

187. \textit{Other practical issues:} There are no practical issues to report at this time.

188. \textit{State of commercialization:} There is a long history of experience with municipal waste incineration.\textsuperscript{47} Currently, some ASWI facilities are operating in Europe.

\textbf{(c) Base-catalysed decomposition (BCD)}\textsuperscript{48}

189. \textit{Process description:} The BCD process involves treatment of wastes in the presence of a reagent mixture consisting of a hydrogen-donor oil, an alkali metal hydroxide and a proprietary catalyst. When the mixture is heated to above 300 °C, the reagent produces highly reactive atomic hydrogen. The atomic hydrogen reacts with the waste to remove constituents that confer toxicity to the compounds.

190. \textit{Efficiency:} DEs of 99.99–99.9999 per cent have been reported for DDT, HCB, PCBs, PCDDs and PCDFs (UNEP, 2000), HCH and PCP (UNEP, 2004c). DEs greater than 99.999 per cent and DREs greater than 99.9999 per cent have also been reported for chlordane and HCH (Ministry of the

\textsuperscript{42} See European Commission, 2006.
\textsuperscript{43} See Mark et al., 2015.
\textsuperscript{44} See UNEP, 2001.
\textsuperscript{45} See BiPRO GmbH, 2005.
\textsuperscript{46} See European Commission, 2006.
\textsuperscript{47} See European Commission, 2006.
\textsuperscript{48} Additional information is available from CMPS&F – Environment Australia, 1997; Costner, Luscombe and Simpson, 1998; Danish Environmental Protection Agency (EPA), 2004; Rahuman, Pistone, Trifulò and Miertu, 2000; UNEP, 1998; UNEP, 2001; UNEP, 2004a; and Vijgen, 2002.
Environment of Japan, 2004). It has also been reported that reduction of chlorinated organics to less than 2 mg/kg is achievable (UNEP, 2001).

191. **Waste types**: BCD should be applicable to other POPs in addition to the ones listed in the previous paragraph (i.e., DDT, PCBs, PCDDs and PCDFs) (UNEP, 2004a and Vijgen, 2002). BCD should be capable of treating wastes with a high POP concentration, with demonstrated applicability to wastes with a PCB content of above 30 per cent by weight (Vijgen, 2002). Although there have been reports that the formation of salt within the treated mixture could limit the concentration of halogenated material that could be treated with BCD, more recent reports suggest that this problem has been overcome (see paragraph 202 below).

192. **Pre-treatment**: Soils may be treated directly. Different types of soil pre-treatment may be necessary:

   (a) Larger particles may need to be removed by sifting and crushed to reduce their size; or

   (b) pH and moisture content may need to be adjusted.

193. **Thermal desorption** has also been used in conjunction with BCD to remove POPs from soils prior to treatment. In these situations, the soil is pre-mixed with sodium bicarbonate prior to being fed into the thermal desorption unit. Water will need to be evaporated from aqueous media, including wet sludge, prior to treatment. Capacitors can be treated following size reduction through shredding. If volatile solvents are present, as is the case with pesticides, they should be removed by distillation prior to treatment (CMPS&F – Environment Australia, 1997).

194. **Emissions and residues**. Air emissions are expected to be relatively minor. The potential to form PCDDs and PCDFs during the BCD process is relatively low. However, it has been noted that PCDDs can be formed from chlorophenols under alkaline conditions at temperatures as low as 150 °C (Weber, 2004). Other residues produced during the BCD reaction include sludge containing primarily water, salt, unused hydrogen-donor oil and carbon residue. The vendor claims that the carbon residue is inert and non-toxic. For further details, refer to the literature produced by BCD Group Inc.

195. **Release control and post-treatment**: Depending on the type of hydrogen-donor oil used, the slurry residue may be treated in different ways. If No. 6 fuel oil has been used, the sludge may be disposed of as a fuel in a cement kiln. If more refined oils are used, these may be removed from the sludge by gravity or centrifuge separation. The oils can then be reused and the remaining sludge can be further treated for use as a neutralizing agent, or disposed of in a landfill (UNEP, 2004a). In addition, BCD facilities are equipped with activated carbon traps to minimize releases of volatile organic compounds in gaseous emissions.

196. **Energy requirements**: Energy requirements are expected to be relatively low owing to the low operating temperatures associated with the BCD process.

197. **Material requirements**:

   (a) Hydrogen-donor oil;

   (b) Alkali or alkaline earth metal carbonate, bicarbonate or hydroxide, such as sodium bicarbonate. The amount of alkali required is dependent on the concentration of the halogenated contaminant contained in the medium (CMPS&F – Environment Australia, 1997). Amounts range from 1 per cent to about 20 per cent by weight of the contaminated medium; and

   (c) Proprietary catalyst amounting to 1 per cent by volume of the hydrogen donor oil.

198. The **equipment** associated with this process is thought to be readily available (Rahuman et al, 2000).

199. **Portability**: Modular, transportable and fixed facilities have been built.

200. **Health and safety**: In general, the health and safety risks associated with operation of this technology are thought to be low, although a BCD facility in Melbourne, Australia, was rendered inoperable following a fire in 1995. The fire is thought to have resulted from the operation of a storage vessel without a nitrogen blanket. Some associated pre-treatments such as alkaline pre-treatment of capacitors and solvent extraction present significant risks of fire and explosions, but those risks can be minimized through the application of appropriate precautions (CMPS&F – Environment Australia, 1997).

201. **Capacity**: BCD can process up to 2,500 gallons of waste per batch and can treat two–four batches per day (Vijgen, 2002).
202. **Other practical issues:** Since the BCD process involves stripping chlorine from the waste compound, the treatment process may result in an increased concentration of lower-chlorinated species. This can be of potential concern in the treatment of PCDDs and PCDFs, where lower-chlorinated congeners are more toxic than higher-chlorinated congeners. It is therefore important that the process be appropriately monitored to ensure that the reaction reaches completion. In the past, it was reported that the BCD process was unable to treat high-concentration wastes because of salt build-up (CMPS&F – Environment Australia, 1997). More recently, however, it has been reported that this problem has been overcome (Vijgen, 2002 and UNEP, 2004a).

203. **State of commercialization:** BCD has been used at two commercial operations in Australia, one of which is still operating. Another commercial system has been operating in Mexico since 1999. In addition, BCD systems have been used in projects in Australia, Czech Republic, Spain, and the United States of America.

(d) **Catalytic hydrodechlorination (CHD)**

204. **Process description:** CHD involves the treatment of wastes with hydrogen gas and a palladium on carbon (Pd/C) catalyst dispersed in paraffin oil. Hydrogen reacts with chlorine in halogenated waste to produce hydrogen chloride (HCl) and non-halogenated waste. In the case of PCBs, biphenyl is the main product. The process operates at atmospheric pressure and at temperatures of between 180°C and 260°C (Sakai, Peter and Oono, 2001; Noma, Sakai and Oono, 2002; and Noma, Sakai and Oono, 2003a and 2003b).

205. **Efficiency:** DEs of 99.98–99.9999 per cent have been reported for PCBs. It has also been reported that a reduction of the PCB content to less than 0.5 mg/kg is achievable.

206. **Waste types:** CHD has been demonstrated with PCBs removed from used capacitors. PCDDs and PCDFs contained in PCBs as impurities have also been dechlorinated. A vendor has also claimed that chlorinated wastes in liquid state or dissolved in solvents can be treated using CHD.

207. **Pre-treatment:** PCBs and PCDDs/PCDFs must be extracted using solvents or isolated by vaporization. Substances with low boiling points such as water or alcohols should be removed by distillation prior to treatment.

208. **Emission and residues:** No emissions would occur during the dechlorination reaction because it takes place in the closed hydrogen circulation system. HCl is not discharged from the reaction because it is collected with water as hydrochloric acid within the circulation system. Biphenyl isolated after the reaction by distillation does not contain any toxic materials.

209. **Release control and post-treatment:** Biphenyl, the main product, is separated out from the reaction solvent by distillation after the reaction, and the catalyst and reaction solvent are reused in the next reaction.

210. **Energy requirements:** Energy requirements are expected to be relatively low owing to the low operating temperatures associated with the CHD process.

211. **Material requirements:** The CHD process requires the same number of atoms of hydrogen as those of chlorine in the PCBs, and also 0.5 per cent by weight of catalyst.

212. **Portability:** CHD is available in fixed and transportable configurations depending on the volume of PCBs to be treated.

213. **Health and safety:** The use of hydrogen gas requires adequate controls and safeguards to ensure that explosive air-hydrogen mixtures are not formed.

214. **Capacity:** In Japan, a facility capable of treating 2 Mg PCB per day using the CHD process was constructed and is in operation. Facilities are also operated in Canton, United States of America, and Young, Australia. There is no information on the treatment capacities of those facilities.

215. **Other practical issues:** There are many reports about PCB dechlorination using CHD. Generally, Pd/C catalysts show the largest degradation rates compared to the other supported metal catalysts. Reaction temperatures can be increased to 260°C when paraffin oil is used as a reaction solvent.

216. **State of commercialization:** In Japan, a commercial-scale facility was constructed at the Japan Environmental Storage & Safety Corporation (JESCO) Osaka facility in 2006 and PCB extracted from transformers and capacitors are treated using the CHD process (JESCO, 2009c).
(e) **Cement kiln co-incineration**

217. ***Process description***: Cement kilns typically consist of a long cylinder of 50–150 metres in length, inclined slightly from the horizontal (3 per cent to 4 per cent gradient), which is rotated at about 1-4 revolutions per minute. Raw materials such as limestone, silica, alumina and iron oxides are fed into the upper or "cold" end of the rotary kiln. The slope and rotation cause the materials to move toward the lower or "hot" end of the kiln. The kiln is fired at the lower end of the kiln, where material temperatures reach 1,400°C–1,500°C. As the materials move through the kiln, they undergo drying and pyroprocessing reactions to form clinker.

218. Cement kilns treating wastes may require kiln modifications. Adequate feed points should be selected according to the characteristics of the waste, including its physical, chemical and toxicological properties. For example, combusable toxic compounds found in some hazardous waste, such as halogenated organic substances, need to be completely destroyed through proper temperature and residence time. In preheater/precalciner kilns, hazardous waste should generally be fed through either the main or the secondary burners. Halides (e.g. chlorides, bromides and fluorides) have an impact on the quality of the cement so their presence must be limited. Chlorine can be found in all raw materials used in cement manufacture, so total halogen (e.g. chlorine, bromine and fluorine) levels in the hazardous waste can be critical (European Commission, 2013). However, if they are blended down sufficiently, cement kilns can treat highly chlorinated hazardous waste.

219. The potential feed point for supplying waste would be:

(a) The main burner at the rotary kiln outlet end;
(b) A feed chute at the transition chamber at the rotary kiln inlet end (for lump fuel);
(c) Secondary burners to the riser duct;
(d) Precalciner burners to the precalciner;
(e) A feed chute to the precalciner/preheater (for lump fuel);
(f) A mid-kiln valve in the case of long wet and dry kilns (for lump fuel) (UNEP, 2004b).

220. The guidance on BAT/BEP developed by the Stockholm Convention relevant to Article 5 and Annex C on cement kiln firing hazardous waste should be used and applied to this technology (UNEP, 2007).

221. **Efficiency**: DREs greater than 99.99998 per cent have been reported for PCBs in several countries. A facility should demonstrate its capability to destroy (through combustion) or remove (through settling in ductwork or air pollution control devices) at least 99.9999 per cent of targeted POPs. Reported DE and DRE values for DDT are in the range of 99.9335-99.9998 per cent and 99.9984-99.9999 per cent, respectively (Yan et al, 2014) and DRE greater than 99.9999 per cent (Li et al., 2012). Considering very high temperatures and long residency time found in state of the art cement kiln co-incineration facilities, it is expected that PCN, PCP and HCBD would also be destroyed (German Federal Environment Agency, 2015). Process operating constraints may become significant when certain compounds, for example circulating volatile elements such as chlorine, sulphur or alkalis, are present in excessive quantities (Karstensen, 2008).

222. **Waste types**: Virtually any organic compound can be destroyed at the minimum temperature of 1,400°C of a properly operating cement kiln (UNEP, 2002a). Cement kilns are capable of treating both liquid and solid wastes.

223. **Pre-treatment**: Pre-treatment can involve:

(a) Thermal desorption of solid wastes;

---

49 Additional information is available from CMPS&F – Environment Australia, 1997; Costner et al., 1998; Danish Environmental Protection Agency, 2004; Karstensen, 2001; Rahuman et al., 2000; Stobiecki et al., 2001 and UNEP, 1998. In addition, information on BAT and BEP with respect to cement kilns firing hazardous waste is available from the European Commission.

50 See CMPS&F – Environment Australia, 1997 and UNEP, 2004b

51 Karstensen et al, 2009.

(b) Homogenization of solid and liquid wastes through drying, shredding, blending, mixing and grinding;
(c) Volume reduction; and
(d) Blending.

224. Emissions and residues: Cement kiln co-incineration of hazardous wastes is listed as an industrial source category that has the potential for comparatively high formation and release of the unintentionally formed POPs listed in Annex C to the Stockholm Convention. Emissions may include, inter alia, nitrogen oxides, carbon monoxide, sulphur dioxide and other oxides of sulphur, metals and their compounds, hydrogen chloride, hydrogen fluoride, ammonia, PCDDs, PCDFs, benzene, toluene, xylene, polycyclic aromatic hydrocarbons, chlorobenzenes and PCBs (UNEP, 2004b) and PCN (Liu et al, 2016). It should be noted that cement kilns can comply with PCDD and PCDF air emission levels below 0.1 ng TEQ/Nm$^3$ although waste with high chlorine levels should be fed together with other wastes to avoid adversely affecting emission levels, particularly in wet and (long) dry kilns. Residues include cement kiln dust captured by the air pollution control systems.

225. Release control and post-treatment: Process gases must be treated to remove cement kiln dust and organic compounds, sulphur dioxide and nitrogen oxide; they must also be heated so that the formation of PCDDs and PCDFs is minimized. Treatments include the use of preheaters, electrostatic precipitators, fabric filters and activated carbon filters. Recovered cement kiln dusts should be put back into kilns to the maximum extent practicable, while the remainder may require disposal in a specially engineered landfill or permanent storage in an underground mine or formation.

226. Energy requirements: For new facilities and major upgrades using dry process kiln with multistage preheating and precalcination, the BAT-associated energy consumption is 2,900-3,200 MJ/tonne clinker under normal (excluding, e.g. start-ups and shutdowns) and optimised operational conditions (not applying to facilities producing special cement or white cement clinker that require significantly higher process temperatures due to product specifications). The production capacity has an influence on the energy demand, with higher capacities providing energy savings and smaller capacities requiring more energy. Energy consumption also depends on the number of cyclone preheater stages, with more cyclone preheater stages leading to lower energy consumption of the kiln process. The appropriate number of cyclone preheater stages is mainly determined by the moisture content of raw materials (European Commission, 2013).

227. Material requirements: Cement manufacturing requires large amounts of materials, including limestone, silica, alumina, iron oxides and gypsum.

228. Portability: Cement kilns are available only in fixed configurations.

229. Health and safety: Treatment of wastes in cement kilns can be regarded as relatively safe provided that kilns are properly designed and operated.

230. Capacity: Cement kilns that co-incinerate waste as fuel must normally not meet more than 40 per cent of their heat requirements with hazardous waste. It has been noted, however, that cement kilns with high throughput can potentially treat significant quantities of waste (CMPS&F – Environment Australia, 1997).

231. State of commercialization: Cement kilns in the United States, some European countries and a number of developing countries have been and are used to treat wastes contaminated with POPs (World Business Council, 2004: Formation and Release of POPs in the Cement Industry and Karstensen, 2006).


---

53 See CMPS&F – Environment Australia, 1997; Karstensen et al., 2006 and UNEP, 2004b.
233. **Process description:** The GPCR process involves the thermochemical reduction of organic compounds. At temperatures greater than 850 °C and at low pressures, hydrogen reacts with chlorinated organic compounds to yield primarily methane, hydrogen chloride (if the waste is chlorinated), and minor amounts of low molecular weight hydrocarbons (benzene and ethylene). The hydrochloric acid is neutralized through the addition of caustic soda during the initial cooling of the process gas, or can be taken off in acid form for reuse. The GPCR technology can be broken down into three basic unit operations: a front-end system (where the contaminants are transformed into a suitable form for destruction in the reactor), a reactor (which reduces the contaminants, at this stage in gas phase, using hydrogen and steam), and a gas scrubbing and compression system.

234. **Efficiency:** DEs of 99.9999 per cent have been reported for DDT, HCB, PCBs, PCDDs and PCDFs.54

235. **Waste types:** GPCR is expected to be able to treat all POP wastes, including aqueous and oily liquids, soils, sediments, sludges, transformers and capacitors.57

236. **Pre-treatment:** Contaminants must be in gaseous form for a GPCR reactor to reduce them. While liquid wastes can be preheated and injected directly into the reactor on a continuous basis, contaminants on solids must first be volatilized into the solids. Depending on the waste type, one of the following three pre-treatment units is currently used to volatilize wastes prior to treatment in a GPCR reactor:

   (a) Thermal reduction batch processors (TRBPs) for bulk solids, including those in drums;
   (b) Toroidal bed reactors for contaminated soils and sediments, but also adapted for liquids;
   (c) Liquid waste pre-heater systems (LWPSs) for liquids.58

237. In addition, other pre-processing is required for large capacitors and building rubble. Large capacitors are punctured and drained, while rubble and concrete must be reduced in size to less than one square metre.59

238. **Emissions and residues:** In addition to hydrogen chloride and methane, low molecular weight hydrocarbons may be emitted. Residues from the GPCR process include used liquor and water. Solid residues will also be generated from solid waste inputs.60 Since the GPCR process takes place in a reducing atmosphere, the possibility of PCDD and PCDF formation is considered limited.61 No ash is produced.

239. **Release control and post-treatment:** Gases leaving the reactor are scrubbed to remove water, heat, acid and carbon dioxide.62 Scrubber residue and particulate will require disposal off site.63 Solid residues generated from solid waste inputs should be suitable for disposal in a landfill.64

240. **Energy requirements:** Methane produced during the GPCR process can provide much of the fuel needed in the process.65 It has been reported that electricity requirements range from 96 kWh per ton of soil treated to around 900 kWh per ton of pure organic contaminants treated.66

---

54 Additional information is available from CMPS&F – Environment Australia, 1997; Costner et al., 1998; Danish Environmental Protection Agency, 2004; Kümmling et al, 2001; Rahuman et al., 2000; Ray, 2001; UNEP, 2001; UNEP, 2004a; and Vijgen, 2002.


57 Ibid.


62 See Kümmling et al., 2001; CMPS&F – Environment Australia, 1997; and Rahuman et al., 2000.


64 See UNEP, 2004a.


241. **Material requirements:** There is a need for hydrogen supplies, at least during start-up. It has been reported that methane produced during the GPCR process can be used to form enough hydrogen to operate the process thereafter.\(^{67}\) The hydrogen production unit was plagued, however, by reliability problems in the past.\(^{68}\) Other material requirements include caustic for the acid scrubber.\(^{69}\)

242. **Portability:** GPCR is available in fixed and transportable configurations.\(^{70}\)

243. **Health and safety:** Use of hydrogen gas under pressure requires suitable controls and safeguards to ensure that explosive air-hydrogen mixtures are not formed.\(^{71}\) Operating experience gained to date has indicated that the GPCR process can be undertaken safely.\(^{72}\) GPCR is used to treat sewage sludge by converting the waste into clean water and a clean hydrogen enriched methane gas while chemically destroying all pathogens and pharmaceuticals and recovering phosphorous. There are no fugitive methane emissions in the process.

244. **Capacity:** GPCR process capacity is dependent on the capacities of the following three pre-treatment units, as specified below:

- (a) TRBPs have a capacity of up to 100 tonnes of solids per month or up to four litres per minute of liquids. Two TRBPs can be used in parallel to double capacity;
- (b) Toroidal bed reactors have a capacity of up to 5,000 tonnes of soils and sediments per month, although these pre-treatment units are still in the development stage; and
- (c) LWPSs have a capacity of three litres per minute (UNEP, 2004a and Vijgen, 2002).

245. **Other practical issues:** Contaminants such as sulphur and arsenic were found to inhibit treatment in earlier development stages, although it is unclear whether this problem persists.\(^{73}\)

246. **State of commercialization:** Commercial-scale GPCR facilities have operated in Canada and Australia. The GPCR facility in Australia operated for more than five years until 2000.\(^{74}\) In the United States, there is a plan to build a GPCR synthetic diesel facility in Fauquier County, Virginia, with a daily processing capacity of 200 Mg.

(g) **Hazardous waste incineration**\(^{75}\)

247. **Process description:** Hazardous waste incineration uses controlled flame combustion to treat organic contaminants, mainly in rotary kilns. Typically, a process for treatment involves heating to a temperature greater than 850°C or, if the waste contains more than 1 per cent of halogenated organic substances expressed as chlorine, to a temperature greater than 1,100°C, with a residence time greater than two seconds under conditions that ensure appropriate mixing. Dedicated hazardous waste incinerators are available in a number of configurations, including rotary kiln incinerators and static ovens (for liquids with low contamination). High-efficiency boilers and lightweight aggregate kilns are also used for the co-incineration of hazardous wastes.

248. The guidance on BAT/BEP developed by the Stockholm Convention relevant to Article 5 and Annex C for waste incinerator should be used and applied to this technology (UNEP, 2007).

249. **Efficiency:** DREs greater than 99.9999 per cent have been reported for treatment of PCBs, PCDDs and PCDFs, chlordane and HCB.\(^{76}\) DREs greater than 99.9999 and DREs greater than 99.9999 per cent have been reported for aldrin, endrin, HCH, DDT and PFOS (Ministry of the Environment of

---

\(^{67}\) See CMPS&F – Environment Australia, 1997; Rahuman et al., 2000; UNEP, 2004a; and Vijgen, 2002.

\(^{68}\) See CMPS&F – Environment Australia, 1997.

\(^{69}\) See UNEP, 2004a.

\(^{70}\) See UNEP, 2001; UNEP, 2004a; and Vijgen, 2002.

\(^{71}\) See CMPS&F – Environment Australia, 1997.


\(^{75}\) Additional information is available from Danish Environmental Protection Agency, 2004; Federal Remediation Technology Roundtable (FRTR), 2002; Rahuman et al., 2000; UNEP, 1995b; UNEP, 1998; UNEP, 2001; and United States Army Corps of Engineers, 2003. In addition, information on BAT and BEP with respect to hazardous waste incinerators is available from UNEP, 2015.

Japan, 2004 and, 2013b). DE and DRE were reported for PCN at 99.9974 and 99.9995 per cent, respectively (Yamamoto et al., 2016). State-of-the-art incineration reaches destruction rates of more than 99.9 per cent for HCBD and PCP and between 99.32 and 99.96 for PCNs. (Germany Federal Environment Agency, 2015).

250. **Waste types:** Hazardous waste incinerators are capable of treating wastes consisting of, containing or contaminated with POPs (UNEP, 2002a); Incinerators can be designed to accept wastes in any concentration or physical form, i.e., as gases, liquids, solids, sludges or slurries.77

251. **Pre-treatment:** Depending upon the configuration, pre-treatment requirements may include blending and size reduction of wastes.78

252. For polystyrene foam (EPS and XPS) wastes containing HBCD, a series of steps can be applied to separate HBCD from polystyrene and subsequently destroy HBCD in hazardous waste incinerators. The relevant pre-treatments operations include volume reduction, size reduction, dissolution, sedimentation, and distillation79. In the case of XPS waste containing HBCD and which may also contain ozone depleting substances controlled by the Montreal Protocol on Substances That Deplete the Ozone Layer80, measures should be taken to prevent the release of ODS to the environment during these pre-treatment operations.

253. **Emissions and residues:** Emissions include carbon monoxide, carbon dioxide, HCB, hydrogen chloride, particulates, PCDDs, PCDFs and PCBs, heavy metals and water vapour.81 Incinerators applying BAT that, inter alia, are designed to operate at high temperatures, to prevent the re-formation of PCDDs and PCDFs and to remove PCDD and PCDF (e.g., with the use of activated carbon filters), have led to very low PCDD and PCDF emissions to air and discharges to water.82 In residues, PCDDs and PCDFs are mainly found in fly ash and salt, and to some extent in bottom ash and scrubber water sludge. Levels of PCDD/PCFs in fly ash from hazardous waste incinerators can be in the range from 0.0002 to 124.5 ng TEQ/g.83

254. **Release control and post-treatment:** Process gases may require treatment to remove hydrogen chloride and particulate matter and to prevent the formation of, and remove unintentionally produced, POPs (sulphur and nitrogen oxides, heavy metals and organic micro pollutants such as PAHs, like carbon monoxide, are being used as an indicator of combustion efficiency). This can be achieved through a combination of types of post-treatments, including the use of cyclones and multi-cyclones, electrostatic filters, static bed filters, scrubbers, selective catalytic reduction, rapid quenching systems and carbon adsorption.84 Depending upon their characteristics, bottom and fly ashes may require disposal within a specially engineered landfill or permanent storage in underground mines and formations.85

255. **Energy requirements:** The amount of combustion fuel required will depend upon the composition and calorific value of the waste and also upon the flue gas treatment technologies applied.

256. **Material requirements:** Material requirements include cooling water and lime or another suitable material for removal of acid gases and other pollutants like active carbon.

257. **Portability:** Hazardous waste incinerators are available in both portable and fixed units.

258. **Health and safety:** Health and safety hazards include those associated with operations involving high temperatures.86

---

77 See UNEP, 1995b.
79 [http://polystyreneloop.org/](http://polystyreneloop.org/)
84 UNEP, 2004b.
259. **Capacity**: Hazardous waste incinerators can treat between 30,000 and 100,000 tonnes of waste per year.\(^{87}\)

260. **Other practical issues**: None to report at this time.

261. **State of commercialization**: There is a long history of experience with hazardous waste incineration.\(^{88}\)

(h) **Plasma Arc**\(^ {89}\)

262. **Process description**: The waste, as a liquid or gas, is injected directly into the plasma and is rapidly (<1 ms) heat up to about 3,100°C and pyrolysed for about 20 ms in the water-cooled reaction chamber (flight tube). The high temperature causes compounds to dissociate into their elemental ions and atoms. Recombination occurs in a cooler area of the reaction chamber, followed by a quench, resulting in the formation of simple molecules.\(^{90}\) The plasma arc system requires a mono-nitrogen oxides (NOx) abatement device, as important amounts of NOx are produced by the high temperature flame.

263. The guidance on BAT/BEP developed by the Stockholm Convention relevant to Article 5 and Annex C should be used and applied to this technology (UNEP, 2007).

264. **Efficiency**: Bench-scale tests with oils containing 60 per cent PCBs have achieved DREs ranging from 99,9999-99,99999 per cent.\(^ {91}\) A DE of 99,9999 per cent is achievable for most pesticide POPs, including chlorodane, chloredecone, DDT, endosulfan and heptachlor.

265. **Waste types**: Plasma arc system facilities have been used to treat a wide range of PCBs, pesticide POPs, halons and chlorofluorohydrocarbons. Waste types to be treated must be liquid or gas, or solid if the waste is contained in a fine slurry that can be pumped. Very viscous liquids or sludges thicker than 30–40 weight motor oil cannot be processed without pre-treatment. Other solid wastes cannot be treated unless some form of pre-treatment is undertaken.\(^ {92}\)

266. **Pre-treatment**: Pre-treatment is not required for most liquids. Solids such as contaminated soils, capacitors and transformers can be pre-treated using thermal desorption or solvent extraction.\(^ {93}\)

267. **Emissions and residues**: Emissions include gases consisting of argon, carbon dioxide and water vapour. Residues include an aqueous solution of inorganic sodium salts, such as sodium chloride, sodium bicarbonate and sodium fluoride. Traces of PCDD and PCDF have been detected in effluent gas from plasma arc systems. These traces are at a concentration of less than 0.01 ng TEQ/Nm\(^3\). POP concentrations in solid residues are unknown.\(^ {94}\)

268. **Release control and post-treatment**: Currently, there is little information available regarding post-treatment requirements.

269. **Energy requirements**: A 150 kW plasma arc system unit requires 1,000–3,000 kWh of electricity per tonne of waste treated.\(^ {95}\)

270. **Material requirements**: Currently, there is little information available regarding material requirements. It has been noted, however, that this process requires argon gas, oxygen gas, caustic and cooling water.\(^ {96}\)

271. **Portability**: Plasma arc systems are available in both portable and fixed units.\(^ {97}\)

---

\(^{87}\) See UNEP, 2004b.

\(^{88}\) See UNEP, 2001.

\(^{89}\) Additional information is available from CMPS&F – Environment Australia, 1997; Costner et al., 1998; Rahuman et al., 2000; Ray, 2001; UNEP, 1998; UNEP, 2000; UNEP, 2001 and UNEP, 2004a.


\(^{91}\) See Rahuman et al., 2000 and UNEP, 2004a.


\(^{93}\) Ibid.

\(^{94}\) Ibid 92.


\(^{97}\) See UNEP, 2004a.
272. **Health and safety:** Since the plasma arc system process has a low throughput, there is a low risk associated with the release of partially treated wastes following process failures. Currently, there is little additional information available regarding health and safety.

273. **Capacity:** A 150 kW plasma arc system unit can process 1–3 Mg of waste per day.

274. **Other practical issues:** It should be noted that metals or metal-like compounds (e.g., arsenic) may interfere with catalysts or cause problems in disposing of residues. For example, arsenicals in pesticide waste exported from Pacific islands for disposal in Australia using the plasma arc system process have presented problems.

275. **State of commercialization:** BCD Technologies Pty Ltd. operates two plasma facilities in Australia: one in Brisbane for PCBs and other POPs and another one in Melbourne for treating CFCs and halons. BCD Technologies Pty Ltd. also operates a BCD facility for low-level PCBs and POPs and has two thermal desorbers for treating contaminated solids.

(i) **Plasma Melting Decomposition Method**

276. **Process description:** The plasma melting decomposition method (PMD) is a thermal destruction method for solid waste containing or contaminated with PCBs. Solid waste containing or contaminated with PCBs is canned directly into containers, such as drums or pails, without shredding or disassembling. In a plasma furnace, a plasma torch generates high temperature plasma gas (air) so that the furnace temperature is maintained to melt the waste together with the container itself. All the organic substances, including PCBs, are decomposed into CO2, H2O and HCl under the high temperature conditions of the plasma furnace, and inorganic materials, including metals, are oxidized to become molten slag. The plasma furnace temperatures exceed 1,400°C (Tagashira et al., 2006).

277. **Efficiency:** In Japan, a pilot PMD facility was tested for PCB treatment in 2006. The result showed DEs ranging from 99.9999454-99.999997 per cent and DREs ranging from 99.9999763-99.999998 per cent (Tagashira et al., 2006).

278. **Waste types:** In commercial scale facilities in Japan, solid waste containing or contaminated with PCBs, such as fluorescent light ballasts, sludge, carbonless paper and secondary contaminants, can be treated using PMD (JESCO, 2009a).

279. **Pre-treatment:** Japan’s commercial-scale facilities uses containers such as drums and pails in which PCB-contaminated waste is mixed with basicity-controlling agents like limestone or silica sand, as needed, and pushed into the plasma furnace (JESCO, 2009).

280. **Emissions and residues:** The JESCO plasma melting treatment facility can comply with dioxins air emission levels below 0.1 ng TEQ/Nm3 (JESCO, 2009). Air emission levels of dioxins were 0.0000043-0.068 ng TEQ/Nm3 in a pilot scale facility (Tagashira et al., 2006). Together with an enhanced gas treatment system, dioxin emission levels can be controlled within a range of 0.00001-0.001 ng TEQ/Nm3 (Tagashira et al., 2007).

281. **Release and control and post-treatment:** In Japan, as exhaust gas pollution control, two-stage bag filters with lime and pulverized activated carbon injection remove dust, acid gas such as HCl and SOx and dioxins, while catalyst towers with NH3 gas injection remove NOx. Activated carbon is installed at the last stage (Tagashira et al., 2006).

282. **Material requirements:** PMD is reported to require lime and pulverized activated carbon supply (Tagashira et al., 2006). To improve molten slag fluidity, basicity-controlling agents such as silica sand or limestone may also be required.

283. **Portability:** PMD is available only in fixed units (JESCO, 2009a).

284. **Capacity:** In Japan, it has been demonstrated that the two JESCO plasma melting treatment facilities operating there are capable of treating 10.4 tonnes and 12.2 tonnes of PCB-containing waste per day, respectively (JESCO, 2009a; JESCO, 2013).

285. **State of commercialization:** In Japan, the JESCO plasma melting treatment facility in Kitakyushu has used PMD technology treatment of 10.4 tonnes of PCB waste per day on a commercial scale since July 2009 (JESCO, 2009a); the same type of facility in Hokkaido has the capacity to treat 12.2 tonnes of

---

99 Ibid.
PCB waste per day and was expected to commence commercial operations in the Autumn of 2013 (JESCO, 2013).

286. Additional information: See the following website for further information: http://www.jesconet.co.jp/eg/pdf/plasma.pdf.

(j) Supercritical water oxidation (SCWO) and subcritical water oxidation

287. Process description: SCWO and subcritical water oxidation treat wastes in an enclosed system using an oxidant (such as oxygen, hydrogen peroxide, nitrite, nitrate, etc.) in water at temperatures and pressures above the critical point of water (374°C and 218 atmospheres) and below supercritical conditions (370°C and 262 atmospheres). Under these conditions, organic materials become highly soluble in water and are oxidized to produce carbon dioxide, water and inorganic acids or salts.

288. Efficiency: DEs greater than 99.999 per cent and DREs greater than 99.99999 per cent have been reported for chlordane, DDT and PCBs for SCWO (Ministry of the Environment of Japan, 2004). DEs greater than 99.999999 per cent and DREs of greater than 99.999999 per cent have been reported for subcritical water oxidation (Ministry of the Environment of Japan, 2004). DREs as high as 99.9999 per cent have also been demonstrated for PCDDs in bench-scale tests. SCWO has been shown to be effective in the treatment of toxic chlorinated chemicals such as PCBs, pesticides and flame retardants (Marrone and Hong, 2007). Overall, SCWO usually has a DE greater than 99.99 per cent for a wide range of organic compounds (Marrone and Hong, 2007).

289. Waste types: SCWO and subcritical water oxidation are thought to be applicable to all POPs. Applicable waste types include aqueous wastes, oils, solvents and solids with a diameter of under 200 µm. The organic content of the waste is limited to below 20 per cent by weight.

290. Pre-treatment: Concentrated wastes may have to be diluted prior to SCWO treatment in order to reduce their organic content to below 20 per cent by weight. If solids are present, they must be reduced to less than 200 µm in diameter. Other processing options include addition of fuel to low concentration wastes, co-processing of dilute and concentrated wastes and partial sludge dewatering, among others. In the case of subcritical water oxidation, the dilution of wastes is not necessary.

291. Emissions and residues: Under operating conditions above the critical range of 500°C–650°C and 25 MPa with reactor residence times of under one minute for complete destruction PCDD/PCDF, NOx and other toxic by-products are not formed in SCWO (Marrone, 2013). However, during laboratory-scale PCB destruction, it was has been shown that the SCWO technology has the potential to form high concentrations of PCDFs during PCB degradation in experiments below 450°C (Weber, 2004). It has been reported that emissions contain no oxides of nitrogen or acid gases such as hydrogen chloride or oxides of sulphur and that process residues consist of water and solids if the waste contains inorganic salts or organic compounds with halogens, sulphur or phosphorus. Limited information has been reported regarding potential concentrations of undestroyed chemicals. The process is designed so that emissions and residues can be captured for reprocessing if needed.

292. Release control and post-treatment: Currently, there is no specific information available regarding post-treatment requirements.

293. Energy requirements: Energy requirements are expected to be relatively high because of the combinations of high temperatures and pressures. It has been claimed, however, that as long as relatively high hydrocarbon content is present in the feed, no energy input is required to heat the feed to supercritical temperatures.

---

100 Additional information is available from CMPS&F – Environment Australia, 1997; Costner et al., 1998; Rahuman et al., 2000; UNEP, 2001; and UNEP, 2004a.
102 See UNEP, 2004a.
103 See CMPS&F – Environment Australia, 1997; Rahuman et al., 2000; and Vijgen, 2002.
106 See UNEP, 2004a.
107 See Rahuman et al., 2000.
294. **Material requirements**: SCWO and subcritical water oxidation reaction vessels must be constructed of materials capable of resisting corrosion caused by halogen ions. \(^{108}\) Material corrosion can be severe at the temperatures and pressures used in the SCWO and subcritical water oxidation processes. In the past, the use of titanium alloys has been proposed to tackle this problem. Current vendors claim to have overcome this problem through the use of advanced materials and engineering designs. \(^{109}\)

295. **Portability**: The SCWO and subcritical water oxidation units are currently used in fixed configurations, but are thought to be portable. \(^{110}\)

296. **Health and safety**: The high temperatures and pressures used in SCWO and subcritical water oxidation processes require special safety precautions. \(^{111}\)

297. **Capacity**: Current SCWO demonstration units are capable of treating 500 kg/h, while full-scale units can be designed to treat up to 10,000 kg/h (Marrone 2013).

298. **Other practical issues**: Earlier designs were plagued by reliability, corrosion and plugging problems. Current vendors claim to have addressed these problems through the use of special reactor designs and corrosion-resistant materials. \(^{112}\)

299. **State of commercialization**: A full-scale SWCO commercial facility with the capacity to treat 2 tonnes of waste per day was installed in 2005 and is in operation in Japan (JESCO, 2009d). In addition, the SCWO process has been approved for full-scale development and use in the chemical-weapon destruction programme of the United States There are plants in commercial operation also in France and Korea (Marrone et al, 2013).

(k) **Thermal and metallurgical production of metals**

300. **Process description**: The processes described below are primarily designed for the recovery of iron and non-ferrous metals (NFM), e.g., aluminium, zinc, lead, and nickel from ore concentrates as well as from secondary raw materials (intermediates, wastes, scrap). However, due to their nature, the processes are in some cases also used on a commercial basis for the destruction of the POP content of appropriate wastes (see paragraph 303). A general description of some of the following processes may also be found in the European BAT reference documents for NFM industries (European Commission, 2001a and 2001b):

(a) Processes that are relevant for the destruction of the POP content in iron-containing wastes use certain types of blast furnaces, shaft furnaces or hearth furnaces. All these processes operate under reducing atmospheres at high temperatures (1,200°C–1,450°C). The reducing atmospheres and high temperatures destroy PCDDs and PCDFs contained in the wastes and avoid de novo synthesis. The blast furnace and shaft furnace processes use coke and small amounts of other reducing agents to reduce the iron-containing input to cast iron. There are no direct emissions of process gas, as gas is used as a secondary fuel. In the hearth furnace process, the iron-containing material is charged to a multi-hearth furnace together with coal. The iron oxide is directly reduced to solid direct reduced iron (DRI). In a second step, the reduced iron is melted in an electric arc furnace to produce cast iron.

(b) Processes that are relevant for the destruction of the POP content in wastes containing NFM are the Waelz rotary kiln process and bath melting processes using vertical or horizontal furnaces. These processes are reductive, reach temperatures of 1,200°C and use rapid quenching, so PCDDs and PCDFs are destroyed and de novo synthesis is avoided. In the Waelz process, zinc-containing steel mill dusts, sludges, filter cakes, etc. are pelletized and smelted together with a reductant. At a temperature of 1,200°C, the zinc volatizes and is oxidized to “Waelz Oxide”, which is collected in a filter unit. In the vertical bath furnace process, copper-containing residues are used as a catalyst and smelted at temperatures of at least 1,200°C. The filter dust is used for the production of zinc and zinc compounds. In the horizontal bath furnace process, lead-containing residues and ore concentrates are charged continuously into a smelting bath which has an oxidizing zone and a reducing zone with temperatures of between 1,000°C and 1,200°C. The process gas (sulphur dioxide

---

\(^{108}\) See Vijgen, 2002.

\(^{109}\) Ibid.


\(^{112}\) Ibid.
concentration above 10 per cent) is used for sulphuric acid production after heat recovery and de-
dusting. The dust from the process is recycled after cadmium leaching.

301. The guidance on BAT/BEP developed by the Stockholm Convention relevant to Article 5 and
Annex C for thermal processes in the metallurgical industry should be used and applied to this
technology (UNEP, 2007.)

302. Efficiency: Data on DE or DRE are not available.

303. Waste types: The processes described in paragraph 300 above are specific to the treatment of the
following wastes:
   
   (a) Residues from iron- and steel-making processes such as dusts or sludges from gas
treatment or mill scale that may be contaminated with PCDDs and PCDFs;
   
   (b) Zinc-containing filter dusts from steelworks, dusts from gas cleaning systems of copper
smelters, etc., and lead-containing leaching residues of NMF production that may be contaminated with
PCDDs and PCDFs; and
   
   (c) Waste electrical and electronic equipment that may contain POP-BDEs (Brusselaers et al,
2006).

304. Pre-treatment: Iron-containing materials recycled by the conventional blast furnace process
require pre-treatment in an agglomeration facility. For the shaft furnace (“Oxycup” furnace) process the
iron-containing waste is briquetted. Briquetting is a cold process in which a binder and water are added
to the fines, which are then pressed to briquettes, dried and hardened. Generally no pre-treatment is
necessary for the multi-hearth furnace process, although in some special cases the fine solids may have
to be pelletized. Pelletizing involves the addition of water and the formation of pellets in a drum.
Special pre-treatment of materials contaminated with POPs is not usually necessary for NFMs.

305. Emissions and residues: In iron and NFM production, PCDDs and PCDFs may be emitted
during the process itself or downstream in the flue gas treatment system. Application of BAT should,
however, prevent or at least minimize such emissions. When the processes described in paragraph 300
above are used for the destruction of POP content in wastes, appropriate release control and post-
treatment techniques are required (see paragraph 306 below). Slags are in many cases used for
construction purposes. For iron metals, emissions can occur from pre-treatment in an agglomeration
facility and also in the off-gas from melting furnaces. Residues from de-dusting systems are mainly
used in the NFM industry. The off-gas of multi-hearth furnaces is de-dusted by a cyclone, underlies a
post-combustion, and is quenched and cleaned with the addition of adsorbent and the use of a bag filter.
The off-gas of melting furnaces also underlies post-combustion and is quenched before it is mixed up
with the off-gas of multi-hearth furnaces for the joint adsorbance step. For NFMs, residues include filter
dusts and sludges from wastewater treatment.

306. Release control and post-treatment: Control of temperatures and rapid quenching are often
suitable means of minimizing PCDD and PCDF formation. Process gases require treatment to remove
dust that consists mainly of metals or metal oxides as well as sulphur dioxide when smelting sulphidic
materials. In the ferrous metals industry, waste gases from agglomeration facilities are treated by an
electrostatic precipitator followed by further flue gas treatment, e.g., with the use of adsorption
techniques followed by an additional bag filter. The off-gases from multi-hearth furnaces are de-dusted
by a cyclone and subjected to treatment by post-combustion, quenching and further cleaning by the
addition of adsorbent followed by the use of a bag filter. The off-gases from melting furnaces also
require post-combustion and quenching and are then combined with the off-gas stream from multi-
hearth furnaces for further treatment with the addition of absorbent followed by the use of a bag filter.
In NFM production, suitable treatment techniques include the use of, inter alia, fabric filters,
electrostatic precipitators or scrubbers, sulphuric acid plants, and adsorption techniques with activated
carbon.

307. Energy requirements: Production processes for iron and NFM are energy-intensive with
significant differences between different metals. The treatment of the POP content in wastes within
these processes requires little additional energy.

308. Material requirements: For the production of metals, raw materials (ores, concentrates or
secondary material) are used together with additives (e.g., sand, limestone), reductants (coal and coke)
and fuels (oil and gas). Temperature control to avoid de novo synthesis of PCDDs and PCDFs requires
additional water for quenching.

309. Portability: Metal smelters are large and fixed installations.
310. **Health and safety:** The treatment of wastes within thermal processes can be regarded as safe if properly designed and operated.

311. **Capacity:** The metal smelters described above have feedstock capacities above 100,000 tonnes per year. Current experience with the addition of wastes contaminated with POPs to the feedstock involves much smaller quantities but the capability for treating larger quantities may well exist and is being explored.

312. **Other practical issues:** None.

313. **State of commercialization:** Cast iron production from iron-containing materials of iron and steel production in a conventional blast furnace has been in operation for some years in Germany (http://www.dk-duisburg.de), where a shaft furnace (“Oxycup” furnace) has been in operation since 2003 (http://www.thyssenkrupp.com). The hearth furnace process has been in operation on an industrial scale in Luxembourg, since 2003 (www.paulwurth.com), and in Italy (www.lucchini.it). The Waelz rotary kiln process is well-established and is covered by BAT that is in operation at different sites in Europe (http://www.befesa-steel.com). The vertical bath melting process is in operation in Germany (http://www.aurubis.com), as is the horizontal bath melting process (www.berzelius.de).

3. **Other disposal methods when neither destruction nor irreversible transformation is the environmentally preferable option**

314. When neither destruction nor irreversible transformation is the environmentally preferable option for wastes with a POP content above the low POP content referred to in subsection A of section III above, countries may allow such wastes to be disposed of in an environmentally sound manner through methods other than those referred to in subsection IV.G.2.

315. Wastes containing or contaminated with POPs where such other disposal methods may be considered include, but are not limited to:

(a) Wastes from power stations and other combustion facilities (except those listed in subparagraph (d) below), wastes from the iron and steel industry and wastes from aluminium, lead, zinc, copper and other non-ferrous thermal metallurgy. Such wastes include bottom ash, slag, salt slags, fly ash, boiler dust, flue gas dust and other particulates and dust, solid wastes from gas treatment, black drosses, wastes from treatment of salt slags and black drosses, dross and skimmings;

(b) Carbon-based and other linings and refractories from metallurgical processes;

(c) The following construction and demolition wastes:

   (i) Mixtures of, or separate fractions of, concrete, bricks, tiles and ceramics;

   (ii) The inorganic fraction of soil and stones, including excavated soil from contaminated sites; and

   (iii) Construction and demolition wastes containing PCBs, excluding equipment containing PCBs;

(d) Wastes from the incineration or pyrolysis of waste, including solid wastes from gas treatment, bottom ash, slag, fly ash and boiler dust; and

(e) Vitrified wastes and waste from vitrification, including fly ash and other flue gas treatment wastes and non-vitrified solid phase wastes.

316. The relevant authority of the country concerned should be satisfied that neither destruction nor irreversible transformation of the POP content, performed using best environmental practices or best available techniques, is the environmentally preferable option.

317. Other disposal methods when neither destruction nor irreversible transformation is the environmentally preferable option include those described below.

(a) **Specially engineered landfill**

318. Any landfiling should be carried out in a way that minimizes the potential of the POP content to enter the environment. This may be achieved through pre-treatment, e.g., a suitable solidification

---

113 Further information is available in UNEP, 1995c, and in pertinent national legislation, such as European Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste.
process. A specially engineered landfill should comply with requirements regarding location, conditioning, management, control, closure and preventive and protective measures to be taken against any threat to the environment in both the short and long terms. In particular, measures should prevent the pollution of groundwater through leachate infiltration into the soil. Protection of soil, groundwater and surface water should be achieved through a combination of a geological barrier and a synthetic bottom liner system during the operational phase and through a combination of a geological barrier and a top liner during the closure and post-closure phases. Measures should be taken to prevent and reduce the production of gases and, as appropriate, introduce landfill gas collection and control systems.

319. Chemicals, including POPs, found in leachate and discharged into the receiving environment can have an impact on the environment and human health. Landfill leachate on-site treatment technologies should be in place to reduce and prevent toxic leachate from entering the environment. Leachate can be treated through the use of physico-chemical and biological treatments or advanced treatment technologies such as active carbon filtration, reverse osmosis and nanofiltration, among others.

320. In addition, a uniform waste acceptance procedure based on a classification procedure for acceptable waste, including standardized concentration limit values, should be introduced. Moreover, monitoring procedures during the operation and post-closure phases of a landfill should be established in order to identify and prevent any possible adverse environmental effects of the landfill and take the appropriate corrective measures. A specific permit procedure should be introduced for the landfill. Permits should include specifications regarding the types and concentrations of wastes to be accepted, leachate and gas control systems, monitoring, on-site security, and closure and post-closure.

321. The following wastes containing or contaminated with POPs are not suitable for disposal in specially engineered landfills:

(a) Liquids and materials containing free liquids;
(b) Biodegradable organic wastes;
(c) Empty containers, unless they are crushed, shredded or similarly reduced in volume; and
(d) Explosives, flammable solids, self-heating spontaneously combustible materials, water-reactive materials, pyrophoric solids, self-reactive wastes, oxidizers, organic peroxides, and corrosive and infectious wastes.

(b) Permanent storage in underground mines and formations

322. Permanent storage in facilities located underground in geohydrologically isolated salt mines and hard rock formations is an option for separating hazardous wastes from the biosphere for geological periods of time. A site-specific security assessment conducted in accordance with pertinent national legislation, such as the provisions contained in European Council Decision 2003/33/EC of 19 December 2002 (establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Council Directive 1999/31/EC), Annex, appendix A, should be performed for every planned underground storage facility.

323. Wastes should be disposed of in a manner that excludes any undesirable reaction between different wastes or between wastes and storage linings, through, among other things, the storage of wastes in chemically and mechanically secure containers. Wastes that are liquid, gaseous, emit toxic gases or are explosive, flammable or infectious should not be stored underground in mines. Operational permits should define waste types that should be generally excluded.

324. The following should be considered in the selection of permanent storage for disposal of POP wastes:

(a) Caverns or tunnels used for storage should be completely separated from active mining areas and areas that may be reopened for mining;
(b) Caverns or tunnels should be located in geological formations that are well below zones of available groundwater or in formations that are completely isolated by impermeable rock or clay layers from water-bearing zones;
(c) Caverns and tunnels should be located in geological formations that are extremely stable and not in areas subject to earthquakes.

4. Other disposal methods when the POP content is low

325. If wastes with a POP content below the low POP content are not disposed of using the methods described above, they should be disposed of in an environmentally sound manner in accordance with
pertinent national legislation and international rules, standards and guidelines, including specific technical guidelines developed under the Basel Convention.

326. Depending on, inter alia, the type of waste stream in question, the appropriate disposal method should be chosen to manage the waste in an environmentally sound manner. For example, technical guidelines on the ESM of a number of waste streams have been developed under the Basel Convention and are available from www.basel.int.

327. Examples of pertinent national legislation are given in annex II to the present guidelines.

H. Remediation of contaminated sites

1. Contaminated site identification

328. Poor handling and storage practices in particular may lead to releases of POPs at sites storing these chemicals\(^{114}\), resulting in contamination of the site with high levels of POPs that may pose serious environmental and health concerns. Identification of such sites is the first step in addressing potential concerns.

329. Identification of such sites can be undertaken using a phased approach, including:

(a) Identification of suspected sites, such as sites presently or historically involved in:

(i) Manufacture of POPs;

(ii) Other processes listed in Annex C to the Stockholm Convention leading to the creation of unintentional POPs;

(iii) Formulation of pesticides and filling and retrofilling of transformers;

(iv) Usage and storage of POPs, such as application of pesticides and placement of transformers; and

(v) Disposal of POP wastes;

(vi) Manufacture of equipment, materials, articles (transformers, capacitors, etc) containing POPs;

(vii) Accidents including fires with liquids and other materials containing or polluted with POPs;

(viii) Sites for the maintenance of equipment containing POPs.

(b) Review of current and historical information pertaining to the suspected site;

(c) An initial testing programme to confirm the presence or absence of suspected contaminants and to characterize the physical conditions of the suspected site; and

(d) A detailed testing programme to identify the nature of the site contamination and gather any additional information required.

330. Information on contaminated site identification is widely available. For example, the United Nations Industrial Development Organization (UNIDO) Expert Group on POPs has developed a comprehensive toolkit aimed at assisting developing countries with the identification, classification and prioritization of POP-contaminated sites and with the development of suitable technologies for land remediation, in accordance with best available techniques and best environmental practices (BAT/BEP) (UNIDO, 2010). Other information can be found in the Reference manual for assessing soil contamination (FAO, 2000) and the Guidance document on the management of contaminated sites in Canada (Canadian Council of Ministers of the Environment, 1997).

2. Environmentally sound remediation

331. Contaminated site criteria developed by Governments using risk assessment techniques are used as general targets in site remediation. Separate criteria can be developed or adopted for soil, sediment and groundwater. Often, a distinction is made between soil quality criteria depending on the use of the site: industrial (least stringent criteria), commercial, residential or agricultural (most stringent criteria).

\(^{114}\) The identification of contaminated sites should also include those where POPs precursors have been used and stored (e.g. the use of sulfuramid as a pesticide which is a PFOS precursor).
soils. Examples of such criteria can be found in the German Federal Soil Protection and Contaminated Sites Ordinance, the Swiss Soil Burden Ordinance and the Canadian Environmental Quality Guidelines.\textsuperscript{115}

332. Information on methods currently used for the remediation of sites contaminated with POPs, including guidance on site assessment, remediation programs and risk assessment, is available from a variety of sources, including:\textsuperscript{116}


- (d) United States Environmental Protection Agency (EPA):
  - \url{http://www.epa.gov/superfund/}
  - \url{http://www.epa.gov/oswer/riskassessment/risk_superfund.htm}
  - \url{http://www.epa.gov/superfund/cleanup/pasi.htm}
  - \url{http://www.epa.gov/superfund/policy/remedy/sfremedy/rifs.htm}
  - \url{http://www.epa.gov/superfund/cleanup/rdra.htm}
  - \url{https://clu-in.org/}

- (e) United States Army Corps of Engineers, 2003. \textit{Safety and Health Aspects of HTRW Remediation Technologies}. Available at: \url{http://140.194.76.129/publications/eng-manuals/EM_1110-1-4007_secm/EM_1110-1-4007.pdf}; and


I. Health and safety\textsuperscript{117}

333. In general, there are three main ways to protect workers and members of the public from chemical hazards (in order of preference):

- (a) Keep workers and members of the public away from all possible sources of contamination;

- (b) Control contaminants so that the possibility of exposure is minimized; and

- (c) Protect workers by ensuring that they use personal protective equipment.

334. Information on health and safety is also available from ILO (ILO, 1999a and 1999b), WHO (WHO, 1995 and 1999), IPCS INCHEM (various dates) the United Kingdom Health and Safety Executive (See \textit{Protection of workers and the general public during the development of contaminated land}, Guidance Note HS (G) 66-H HMSO) and in the Guidance Manual for Hazardous Waste Site Activities (NIOSH, 1985), Examples of practical implementation can be found in UNEP, 2001.

335. Health and safety plans should be in place at all facilities that handle POP wastes to ensure the protection of every person in and around such facilities. The health and safety plan for each specific facility should be developed by a trained health and safety professional with experience in managing health risks associated with the specific POPs at the facility.

336. All health and safety plans should adhere to the above principles and recognize local or national labour standards. Most health and safety programmes recognize various levels of safety, with risk levels

\textsuperscript{115} See Canadian Council of Ministers of the Environment, 2002, and annex II (examples of pertinent national legislation) below.

\textsuperscript{116} For full references, see annex III (bibliography) below.

\textsuperscript{117} Further information on health and safety is available from ILO, 1999a and 1999b; WHO, 1995 and 1999; IPCS INCHEM, no date. For full references, see annex III (bibliography) below.
depending on the site in question and the nature of the contaminated materials found there. The level of protection provided to workers should correspond to the level of risk to which they are exposed.

337. Different POP waste streams can present significantly different risks depending upon toxicity and exposure. Levels of risk should be established and each situation should be evaluated by health and safety professionals. Two types of situations are discussed below: higher-risk and lower-risk situations.

1. **Higher-risk situations**

338. Higher-risk situations occur where high concentrations of POPs or high volumes of POP wastes are found and a high potential for exposure of workers or the general population exists. In such situations, particular efforts should be made to minimize public exposure. In addition, guidance should be provided to ensure that the public is aware of the potential risk and of the measures to be taken in cases of exposure.

339. Specific technical guidelines on POP wastes will identify higher-risk situations relevant to the specific POPs that they cover.

340. There is no international quantitative definition of high volume or high concentration. Workers and employers can be guided by the advice and input of health and safety professionals, labour representatives, scientific literature and government authorities. Higher-risk situations may occur:

   (a) At sites producing, handling and/or using POPs;
   (b) At stockpile and large-volume storage sites for chemicals or POP wastes;
   (c) At facilities for the treatment or disposal of POP wastes;
   (d) At sites contaminated with high concentrations of POPs at or near the surface.

341. At a minimum, POPs health and safety planning for higher-risk situations should include the following elements:

   (a) A written health and safety plan (HASP) should be developed and posted at each site;
   (b) Workers who are to have access to the site should read the HASP and sign a statement confirming that they have read it and understood it;
   (c) The HASP may be written to encompass all hazards at the site but should have a section or chapter specifically detailing procedures for POPs;
   (d) Workers should be present at the site only when necessary for servicing or inspecting equipment or stored materials;
   (e) Workers entering the site should have appropriate health and safety and operational training for chemical, physical and biological hazards;
   (f) Health and safety training should be performed annually;
   (g) Routine air monitoring should be carried out to detect the presence of POP contaminants;
   (h) Collective protective measures such as active wet control system (e.g., to prevent contaminated dust from becoming airborne) and passive covering systems (e.g., sealed impermeable high density polyethylene (HDPE) sheets to reduce dust and vapour diffusion), may be advisable;
   (i) When appropriate, workers entering the site should wear appropriate respiratory protection, and impermeable fabrics should cover their entire bodies (i.e., coveralls with hoods, face shields, gloves and boot covers, or full body suits);
   (j) Spill clean-up kits and personal decontamination materials should be present in all areas containing POPs;
   (k) Workers who are or are expected to be routinely entering sites or working with POPs should undergo medical monitoring, including a baseline medical examination;
   (l) When POPs are to be handled in an open system or when it is reasonably expected that the protective clothing of a worker may be contaminated with POPs, a contaminant reduction zone should be established where workers can be decontaminated and remove their protective equipment;
   (m) The HASP and general work procedures should be reviewed at least annually and revised if necessary to enhance health and safety at the site.
2. **Lower-risk situations**

342. As with high volume or high concentration, there is no international quantitative definition of low volume or low concentration. The terms should thus be defined by comparing contaminant levels with government guidelines or by conducting site-specific risk assessments. Lower-risk situations may occur:

(a) At sites that contain materials contaminated with POPs in small quantities or at low concentrations;

(b) In controlled storage rooms that contain small quantities of POPs; and

(c) At sites contaminated with low concentrations of POPs or where the contamination cannot come directly into contact with people.

343. Despite the low level of risk that the situations described above present, some health and safety measures should be taken to minimize exposure, including health and safety training of personnel who are likely to come into contact with POPs.

J. **Emergency response**

344. Emergency response plans should be in place for all POPs in production, use, storage and transport or at disposal sites, in line with the exposure and risk profiles of each specific POP. While emergency response plans can vary for each situation and each type of POP, the principal elements of an emergency response include:

(a) Identifying all potential hazards, risks and accidents;

(b) Identifying relevant local and national legislation governing emergency response plans;

(c) Planning for anticipated emergency situations and possible responses to them;

(d) Maintaining a complete up-to-date inventory of all POPs on site;

(e) Training personnel in response activities, including simulated response exercises, and first aid;

(f) Maintaining mobile spill response capabilities or retaining the services of a specialized firm for spill response;

(g) Notifying fire departments, the police and other government emergency response agencies of the location of POPs and their routes of transport;

(h) Installing mitigation measures such as fire suppression systems, spill containment equipment, fire-fighting water containment, spill and fire alarms, and firewalls;

(i) Installing emergency communication systems, including signs indicating emergency exits, telephone numbers, alarm locations and response instructions;

(j) Installing and maintaining emergency response kits containing sorbents, personal protective equipment, portable fire extinguishers and first aid supplies;

(k) Integrating facility plans with local, regional, national and global emergency plans, if appropriate; and

(l) Regularly testing emergency response equipment and reviewing emergency response plans.

345. Emergency response plans should be prepared jointly by interdisciplinary teams that include emergency response, medical, chemical and technical personnel and labour and management representatives. When applicable, representatives of potentially impacted communities should also be included.

---

118 Further guidance on emergency response plans can be found in other guidelines developed by international organizations, such as the OECD Guiding Principles for Chemical Accident Prevention, Preparedness and Response, second edition (2003), or by national, regional or local governments or agencies (such as civil defence and emergency coordination agencies and fire departments).
K. Public participation

346. Public participation is a core principle of the 1999 Basel Declaration on Environmentally Sound Management and many other international agreements. It is essential that the public and all stakeholder groups have a chance to participate in the development of policy related to POPs, the planning of programmes, the development of legislation, the review of documents and data, and decision-making on local issues related to POPs. Paragraphs 6 (g) and (h) of the Basel Declaration reflect an agreement to enhance and strengthen efforts and cooperation to achieve environmentally sound management with regard to the enhancement of information exchange, education and awareness-raising in all sectors of society; and cooperation and partnership at all levels between countries, public authorities, international organizations, industry, non-governmental organizations and academic institutions.

347. The Stockholm Convention, in Article 10, paragraph 1 (d), calls on each Party, within its capabilities, to promote and facilitate public participation in addressing POPs and their health and environmental effects and in developing adequate responses, including by providing opportunities for public input at the national level regarding the implementation of the Convention.

348. Articles 6, 7, 8, and 9 of the UNECE 1998 Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention) require the Parties to conduct fairly specific types of activities regarding public participation in specific government activities, the development of plans, policies and programmes and the development of legislation, and call for access to justice for the public with regard to the environment.

349. The participation of the public in the adoption of standards and regulations on POPs is essential. Any Government planning new or changed regulations or policies should have an open process for soliciting comment from any and all persons or groups. This means that a general invitation to comment should be given through regular media outlets, the Internet, or by direct invitation. The individuals and groups who should be considered for direct invitation to comment are:

   (a) Individual citizens who have expressed an interest in POPs;
   (b) Local citizens groups, including local environmental groups, for local issues;
   (c) Groups of highly vulnerable people, such as women, children and the least educated;
   (d) Regionally, nationally or globally organized environmental groups;
   (e) Individual industries and businesses with a stake in the process;
   (f) Business associations;
   (g) Trade unions and associations;
   (h) Professional associations;
   (i) Other levels of government.

350. A public participation process may have several phases. Groups may be consulted before any changes or programmes are considered, during the policy development process and after each draft policy document is prepared. Comments may be invited in person, in writing or through an Internet website.

351. An example of public consultation regarding the development of POPs management plans can be found in the Australia Department of the Environment and Heritage document titled “A case study of problem solving through effective community consultation.”

Annex I to the technical guidelines

International instruments

In addition to the Stockholm and Basel conventions, there are other international instruments or systems that contain provisions pertaining to POPs or POP wastes, including:

(a) 1998 Protocol on Persistent Organic Pollutants to the UNECE 1979 Convention on Long-range Transboundary Air Pollution;

(b) 2003 Protocol on Pollutant Release and Transfer Registers to the UNECE 1998 Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention);

(c) 1991 Bamako Convention on the Ban of the Import into Africa and the Control of Transboundary Movement and Management of Hazardous Wastes within Africa;

(d) 1995 Convention to Ban the Importation into Forum Island Countries of Hazardous and Radioactive Wastes and to Control the Transboundary Movement and Management of Hazardous Wastes within the South Pacific Region (Waigani Convention);


(f) Rotterdam Convention on Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (1998); and

(g) Globally Harmonized System of Classification and Labelling of Chemicals (GHS).
Annex II to the technical guidelines

Examples of pertinent national legislation

Examples of national legislation containing provisions related to the management of POP wastes are outlined below.

<table>
<thead>
<tr>
<th>Country</th>
<th>Legislation</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Law 25.670/2002 and Decree 853/2007 on PCBs</td>
<td>• Environmental protection for the management of PCB prohibiting the production, importation and use as well as establishing a procedure to remove functioning equipment containing it due to 2010</td>
</tr>
<tr>
<td>Argentina</td>
<td>Law 24.051/1992 and Decree 831/1993 on management of hazardous wastes</td>
<td>• Reaches all POP wastes that are classified as hazardous waste; includes a destruction efficiency parameter for components in waste incineration</td>
</tr>
<tr>
<td>Argentina</td>
<td>Resolution 511/2011 from National Health Service and Food Quality (Servicio Nacional de Sanidad y Calidad Agroalimentaria-SENASA).</td>
<td>• Prohibits the import of the active ingredient endosulfan and its formulated products and forbids the development, formulation, marketing and use of products containing the active ingredient endosulfan</td>
</tr>
<tr>
<td>Austria</td>
<td>Soil Protection Acts</td>
<td>• Contains stringent limit values for PCBs, PCDDs and PCDFs in sewage sludge used as fertilizer.</td>
</tr>
<tr>
<td>Brazil</td>
<td>Norm ABNT/NBR, N° 8371/1997</td>
<td>• Procedures for handling, transport and storage of materials containing PCBs</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CETESB (São Paulo state), N° 007/1997</td>
<td>• Determines limits for PCDDs and PCDFs on emissions from medical waste incinerators with capacity &gt; 200 kg/day</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CONAMA, N° 264/1999</td>
<td>• Procedures for environmental licensing of waste co-processing in cement kilns</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CONAMA, N° 313/2002</td>
<td>• Provides for an inventory of PCB stocks and industrial wastes</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CONAMA, N° 316/2002</td>
<td>• Procedures and criteria for operating thermal waste treatment systems, provides limits on emissions of PCDDs and PCDFs.</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CONAMA, N° 334/2003</td>
<td>• Procedures for environmental licensing for establishments responsible for receiving pesticides packaging.</td>
</tr>
<tr>
<td>Brazil</td>
<td>Decision CETESB (São Paulo state), N° 26/2003</td>
<td>• Sets limits for air emissions of PCDDs and PCDFs of cement kilns treating waste</td>
</tr>
<tr>
<td>Brazil</td>
<td>Resolution CONAMA, N° 357/2005</td>
<td>• Provides maximum permitted levels for POPs in effluents discharged to water.</td>
</tr>
<tr>
<td>Canada</td>
<td>PCB Regulations</td>
<td>• Restrict the manufacture, import, export and sale of PCBs and equipment containing PCBs, and prohibit PCB releases to the environment. The regulations have deadlines ending the use of PCBs and PCB equipment that have concentrations at or above 50 mg/kg along with maximum storage and destruction timelines.</td>
</tr>
<tr>
<td>China</td>
<td>Technical specifications for centralized incineration disposal engineering (HJ 2037)</td>
<td>• Procedures for incineration of materials containing PCBs</td>
</tr>
<tr>
<td>China</td>
<td>Technical specification for co-processing of solid wastes in cement kilns (GB 30760)</td>
<td>• Procedures for co-processing of POPs wastes in cement kilns • Limitation for dioxin in cement produced by the co-processing of solid waste</td>
</tr>
<tr>
<td>Country</td>
<td>Legislation</td>
<td>Brief description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>China</td>
<td>Guidelines for the pollution control of dioxins</td>
<td>• Pollution control of dioxins on 4 key-industries</td>
</tr>
<tr>
<td>China</td>
<td>Standard for pollution control on:</td>
<td>• Contains standards for releases of PCDDs and PCDFs in air emissions</td>
</tr>
<tr>
<td></td>
<td>• municipal solid wastes incineration (GB 18485)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hazardous wastes incineration (GB 18484)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• co-processing of solid wastes in cement kilns (GB 30485)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• the steel smelt industry (GB 28664)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sintering and pelletizing of iron and the steel industry (GB 28662)</td>
<td></td>
</tr>
<tr>
<td>European Union</td>
<td>Council Directive 96/59/EC of 16 September 1996 on the disposal of polychlorinated biphenyls and polychlorinated terphenyls (PCB/PCT)</td>
<td>• Contains rules regarding the disposal of PCBs and PCTs, inter alia on the decontamination and/or disposal of equipment and the PCBs therein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Annex V contains air emission values for PCDDs and PCDFs.</td>
</tr>
<tr>
<td>European Union</td>
<td>Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of, and Annex II to Directive 1999/31/EC</td>
<td>• Paragraph 2.1.2.2 of the annex contains criteria for landfilling of inert waste containing PCBs.</td>
</tr>
<tr>
<td>Finland</td>
<td>Council of State Decision (1071/1989) on restricting the use of PCBs and PCTs</td>
<td>• Contains limit values for PCBs and PCTs</td>
</tr>
<tr>
<td>Finland</td>
<td>Council of State Decision (101/1997) on oil waste management</td>
<td>• Contains limit values for PCBs in regenerated oil and in oil wastes destined for incineration</td>
</tr>
<tr>
<td>Finland</td>
<td>Council of State Decision (711/1998) on the disuse of PCB appliances and the treatment of PCB waste</td>
<td>• Contains limit values for PCBs</td>
</tr>
<tr>
<td>Finland</td>
<td>Council of State Decree (1129/2001) on a list of the most common wastes and of hazardous wastes</td>
<td>• Contains limit values for PCBs</td>
</tr>
<tr>
<td>Germany</td>
<td>Federal Soil Protection and Contaminated Sites Ordinance</td>
<td>• Contains action levels regarding sites contaminated with aldrin, DDT, HCB, HCH, PCBs, PCP, PCDDs and PCDFs.</td>
</tr>
<tr>
<td>Germany</td>
<td>Ordinance on Landfills and Long-Term Storage Facilities</td>
<td>• Contains a limit for PCBs in soils used as recultivation layers of landfills.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prohibits the landfilling of waste that could harm public welfare due to its content of long-lived or bio-accumulable toxic substances.</td>
</tr>
<tr>
<td>Germany</td>
<td>Ordinance on Underground Waste Stowage</td>
<td>• Contains limits for the use of waste contaminated with PCBs as stowage material.</td>
</tr>
<tr>
<td>Germany</td>
<td>Fertilizer Ordinance</td>
<td>• Contains limits for PFOS, PCDDs and PCDFs in fertilizers</td>
</tr>
<tr>
<td>Germany</td>
<td>Sewage Sludge Ordinance</td>
<td>• Contains limits for the usage of sewage sludge contaminated with PCBs, PCDDs and PCDFs as fertilizer.</td>
</tr>
<tr>
<td>Germany</td>
<td>Waste Wood Ordinance</td>
<td>• Contains limits for recycling of waste wood contaminated with PCBs and PCP.</td>
</tr>
<tr>
<td>Germany</td>
<td>Waste Oil Ordinance</td>
<td>• Contains limits for recycling of PCB-contaminated oils.</td>
</tr>
<tr>
<td>Ghana</td>
<td>Hazardous and Electronic Waste Control and</td>
<td>• Contains elements related to the implementation of</td>
</tr>
<tr>
<td>Country</td>
<td>Legislation</td>
<td>Brief description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Italy               | Part of the Environmental Frame Law concerning waste and soil remediation (Part IV of Legislative Decree No. 152 of 3 April 2006)                                                                                                                                                                                                                                                  | • Contains limits for the regeneration and the co-incineration of PCB/PCT contaminated oils  
• Contains action levels regarding sites (residential, industrial commercial soil and groundwater) contaminated with aldrin, alfa, beta and gamma HCH, chlordane, dieldrin, endrin, DDT, HCB, PCBs, PCDDs and PCDFs.                                                                                     |
| Italy               | Regulations for waste recovery with exemption from permit requirements (simplified administrative procedures) (Ministerial Decree 5/02/1998)                                                                                                                                                                                                               | • Contains limits for PCBs, PCTs and PCDDs in specific types of waste as conditions for exemption from permit requirements                                                                                                                                                                                                                      |
| Japan               | Law Concerning Special Measures Against Dioxins                                                                                                                                                                                                                                                                                                                                                           | • Contains tolerable daily intake environmental standards for ambient air, water quality (including sediment) and soil, emission and residue standards for gas, effluent, ash and dust regarding PCDDs, PCDFs and dioxin-like PCBs.                                                                                             |
| Japan               | Law Concerning Special Measures for Promotion of Proper Treatment of PCB Wastes (PCB Special Measures Law)                                                                                                                                                                                                                                        | • Contains standards for the treatment of plastics and metals contaminated with PCBs.                                                                                                                                                                                                                                                                 |
| Japan               | Soil Contamination Countermeasures                                                                                                                                                                                                                                                                                                                                                                       | • Contains standards for the treatment of soil contaminated with PCBs.                                                                                                                                                                                                                                                                             |
| Japan               | Waste Management and Public Cleansing Law                                                                                                                                                                                                                                                                                                                                                                 | • Contains criteria of hazardous wastes containing PCBs, PCDDs, PCDFs and dioxin-like PCBs.                                                                                                                                                                                                                                                     |
| Japan               | Water Pollution Control Law                                                                                                                                                                                                                                                                                                                                                                              | • Contains emission standards for effluent containing PCBs.                                                                                                                                                                                                                                                                                     |
| Mexico              | Norm NOM-098 of 2004                                                                                                                                                                                                                                                                                                                                                                                      | • Contains emission and destruction efficiency standards for waste incinerators.                                                                                                                                                                                                                                                                   |
| Mexico              | Norm NOM-133 of 2001                                                                                                                                                                                                                                                                                                                                                                                      | • Contains regulations regarding handling of PCBs and a programme for the preparation of inventories.                                                                                                                                                                                                                                             |
| New Zealand         | National Environmental Standards for Air Quality (Resource Management (National Environmental Standards for Air Quality) Regulations 2004)                                                                                                                                                                                                             | • Contains standards banning activities discharging significant quantities of dioxins and other toxics into the air, and standards for ambient (outdoor) air quality.                                                                                                                                                                             |
| Norway              | Norwegian Product Regulations, Chapter 2 on Regulated substances, preparations and products.                                                                                                                                                                                                                                                    | • Contains a ban on the production, use, import and export of PCBs, including PCB-containing capacitors.                                                                                                                                                                                                                                       |
| Norway              | Norwegian Waste Regulations, Chapter 14 on Discarded insulating glass units containing PCBs                                                                                                                                                                                                                                                   | • Lays down requirements for the producers to collect and handle obsolete windows that contain PCBs.                                                                                                                                                                                                                                             |
| Norway              | Norwegian Pollution Regulations, Chapter 2 on Clean-up of contaminated soil                                                                                                                                                                                                                                                                     | • Contains limit values below which a soil is considered to be clean and suitable for use in sensitive areas.                                                                                                                                                                                                                                    |
| Switzerland         | Soil Burden Ordinance                                                                                                                                                                                                                                                                                                                                                                                      | • Contains action levels regarding sites contaminated with PCBs, PCDDs and PCDFs.                                                                                                                                                                                                                                                                   |
| United States of America | 40 CFR 268.48 Universal Treatment Standards for Hazardous Wastes                                                                                                                                                                                                                                                                              | • Contains standards for the treatment of hazardous waste prior to land disposal and aqueous waste prior to release.                                                                                                                                                                                                                                  |
| United States of America | 40 CFR 761.70 Standards for incineration of PCBs                                                                                                                                                                                                                                                                                                      | • Contains standards for air emissions when incinerating PCBs.                                                                                                                                                                                                                                                                                     |
Annex III to the technical guidelines

Bibliography


UNEP, 2015c. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with hexabromocyclododecane.*

UNEP, 2015d. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride.*


UNEP, 2017a. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with polychlorinated biphenyls, polychlorinated terphenyls, polychlorinated naphthalenes or polybrominated biphenyls including hexabromobiphenyl.*

UNEP, 2017b. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with the pesticides aldrin, alpha hexachlorocyclohexane, beta hexachlorocyclohexane, chlordane, chlodecone, dieldrin, endrin, heptachlor, hexachlorobenzene, hexachlorobutadiene, lindane, mirex, pentachlorobenzene, pentachlorophenol and its salts, perfluorooctane sulfonic acid, technical endosulfan and its related isomers or toxaphene or with hexachlorobenzene as an industrial chemical.*

UNEP, 2017c. *Technical guidelines on the environmentally sound management of wastes containing or contaminated with unintentionally produced polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, hexachlorobenzene, polychlorinated biphenyls, pentachlorobenzene or polychlorinated naphthalenes.*

UNEP, 2017d. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with hexachlorobutadiene.*

UNEP, 2017e. *Technical guidelines on the environmentally sound management of wastes consisting of, containing or contaminated with hexachlorobutadiene.*


