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Introduction

Polyfluorinated chemicals (PFCs) are synthetic chemical

substances that have very unique properties, such as high

stabilities and extremely low surface tensions. Most PFCs

are insoluble in both water and organic solvents, and they

repel dirt, water and oils. Although these chemicals are

rather expensive several hundreds different of them are

increasingly used as surfactants in various industry- and

common consumer products, including ‘nanoproducts’.

Important are uses in paints and for impregnation of tex-

tiles, clothes, footwear, furniture and carpets. Other uses

are in lubricants, waxes for floors and cars, and in fire-

fighting foam for oil fires at airports, harbours, oil plat-

forms and oil refineries. Common trade names for com-

mercial products are: Baygard (Bayer AG, Leverkusen,

Germany), Scotchgard (3M, St. Paul, MN, USA), Gore-Tex

(W. L. Gore & Associates Inc., Newark, DE, USA), Zonyl

(E. I. du Pont de Nemours and Company, Wilmington,

DE, USA) and Stainmaster (INVISTA, Wichita, KS, USA)

(Hekster et al., 2003; Poulsen et al., 2005; OECD, 2006).

The perfluoroalkylated substances (PFAS), such as per-

fluorooctane sulfonic acid (PFOS) and perfluorooctanoic

acid (PFOA), are most persistent in the environment and

have been discovered as global pollutants of air, water and

soil, and even found in remote polar areas (Giesy & Kan-

nan, 2002). PFOS is most abundant and have been deter-

mined in blood and liver samples from various aquatic

mammals (seals, otters, sea lions, dolphins, polar bears and

minks) and birds, fish and humans. The highest levels of

PFOS have been found in polar bears from the Arctic (Bossi

et al., 2005; Smithwick et al., 2005a,b, 2006; Betts, 2007).

Chemistry and properties

The most well-known perfluoroalkyl substances are PFOS,

PFOA and their derivatives. The chemical structures for

some compounds are shown in Fig. 1.
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Summary

In recent years, polyfluorinated chemicals (PFCs) have increasingly been used

as surfactants in various industry- and consumer products, because of their

unique properties as repellents of dirt, water and oils. The most well-known

PFCs are perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA)

and their derivatives belonging to the group of perfluoroalkylated substances.

The PFCs are very persistent in the environment, and some of them have been

discovered as global pollutants of air, water, soil and wildlife and even found

in remote polar areas. Bioaccumulation occurs also in humans, and everybody

in our society has traces of these PFCs in their blood and internal organs such

as the liver, kidneys, spleen, gall bladder and testes. In the blood, PFOS and

PFOA are bound to serum proteins. The acute toxicity of the polyfluorinated

substances is moderate but some substances can induce peroxisome prolifera-

tion in rat livers and may change the fluidity of cell membranes. Some of these

PFCs, such as PFOS and PFOA, are potential developmental toxicants and are

suspected endocrine disruptors with effects on sex hormone levels resulting in

lower testosterone levels and higher oestradiol level. Other PFCs have oestro-

genic effects in cell cultures. The industrial production of PFOS and its deriva-

tives stopped in 2000, and the European Union has banned most uses from the

summer of 2008. However, hundreds of related chemicals: homologues with

shorter or longer alkyl chain, PFOA and telomers, which potentially may

degrade to perfluoroalkanoic (carboxylic) acids, are not regulated.
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PFOA, PFOS and their salts are water-soluble and may

be spread globally by sea water currents (Prevedouros

et al., 2006).

The substances most used in practice are more complex

derivatives of these basic chemical structures, e.g. sulfona-

mides and fluorotelomers (Fig. 1).

These complex derivatives may be degraded to either

PFOS, PFOA or perfluoroalkanoic acids with shorter or

longer perfluorinated alkyl chain; the perfluorinated ‘tail’

is not degraded in the body or in the environment (Din-

glasan et al., 2004; Lau et al., 2007).

The complex derivatives are insoluble in water and lip-

ids but somewhat volatile and may be transported over

long distances by air from temperate to arctic areas (Wal-

lington et al., 2006). The use of fluorotelomer derivatives

in fire-fighting foam has an especially high potential for

environmental release and human exposure to PFCs

(Moody & Field, 2000; Moody et al., 2002).

Human exposure

Lipophilic persistent organic pollutants (POPs), such as

DDT, polychlorinated biphenyls (PCB), dioxins and bro-

minated diphenyl ethers, accumulate in fatty tissue, and

the main route of exposure for the general population is

from food intake (UNEP, 2001). However, PFCs are both

lipophobic and hydrophobic and, therefore, they will not

accumulate in lipids but mainly accumulate in blood,

liver and kidneys, which are not so common food ingre-

dients. A study from Canada has, however, reported PFAS

in fast food composites (Tittlemier et al., 2006).

The most publicly well-known occurrence of PFCs is

probably as impurity in the non-stick surface layer of

Teflon (E. I. du Pont de Nemours and Company) treated

cookware, such as frying pans, and as greaseproof additive

in pop corn microwave bags, from which the chemicals

can be released gradually during cooking and leak into

the food (Sinclair et al., 2007).

The major human exposure is probably from PFCs

used as surfactants for impregnation of consumer goods,

such as textiles, foot wear, furniture and carpets, which

then releases PFCs to the indoor air and contaminate

indoor dust, which then is inhaled by humans. Indoor air

contains in general 25–100 times more PFAS than out-

door air with maximum levels [e.g. 8 : 2 fluorotelomer

alcohol (FTOH)] of 28 lg ⁄ m3, and house dust can be

very contaminated with up to 75 ppm N-ethyl perfluo-

rooctane sulfonamidoethanol (EtFOSE), 16 ppm 8 : 2

FTOH, 5 ppm PFOS and 3.7 ppm PFOA (Shoeib et al.,

2004, 2007). Moreover, children, who may be more in

contact with considerable amounts of house dusts during

play on the floor, will collect such dusts on the fingers,

which subsequently can be ingested. Relative to body

weight children have a 5–10 times larger intake of PFCs

indoor than adults (Shoeib et al., 2005).

Human levels and half-lives

The PFAS are readily absorbed and bind to proteins in

blood serum and accumulate mainly in organs such as liver,

kidney and spleen, but also in testicles and brain (Vanden

Heuvel et al., 1992; Austin et al., 2003; Jones et al., 2003).

The renal clearances of PFOA and PFOS is almost negligi-

ble in humans, contrary to a large active excretion in exper-

imental animals (Harada et al., 2005). The half-lives of

different polyfluorinated compounds vary but are generally

very long. The half-lives in blood serum have been esti-

mated to be 3.8, 5.4 and 8.5 years for PFOA, PFOS and per-

fluorohexane sulfonamide, respectively (Olsen et al., 2007)

– and in the organs, the half-lives are probably even longer.

Levels in serum are, in general, 2–3 times higher than in

whole blood (Taniyasu et al., 2003; Ehresman et al., 2007).

Today PFAS, such as PFOA and PFOS, are present in

the blood, liver and kidneys of everybody in our society

(Kannan et al., 2004). In utero exposure to PFOS and

PFOA is, therefore, also ubiquitous as they are transferred

Figure 1 Chemical structures of selected polyfluorinated chemicals.
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to the foetus through the placenta and later also to the

babies through the milk (Apelberg et al., 2007a; Hender-

son & Smith, 2007).

Levels in blood are considered a sufficient sensitive,

precise and accurate biomarker of human exposure to

PFOS (Butenhoff et al., 2006). Levels can be high in

blood serum of the general population, as levels of more

than 1500 ng PFOS ⁄ mL have been observed in American

blood donors (Olsen et al., 2003a). In general, average

levels are, however, much lower around 20–30 ng

PFOS ⁄ mL, and the levels of PFOA and other perfluoro-

carboxylic acids even lower. There are also geographical

variations as illustrated in Fig. 2.

Today the levels are so high that exposure to polyfluori-

nated substances measured on basis of whole blood may

be the highest human exposure to exogenous chemicals,

exceeding that of more well-known environmental con-

taminants such as DDE (persistent and bioaccumulative

metabolite of the pesticide DDT), PCBs, brominated flame

retardants and even phthalates. Results from a study in

the Norwegian and Russian Arctic are shown in Fig. 3.

Levels of polyfluorinated compounds in maternal blood

are in general 2–3 times the levels in cord blood (Apel-

berg et al., 2007a; Fei et al., 2007; Inoue et al., 2004; Tit-

tlemier et al., 2004; Midasch et al., 2007). Levels in semen

were 10 times lower than in blood serum (Guruge et al.,

2005).

Toxicology

There is limited information available on the toxicology

of most PFCs (Lau et al., 2007), and it will probably last

several years before there is sufficient knowledge to assess

the full consequences of the human exposure to these

chemicals.

The acute toxicity of PFAS is moderate but increases

with the chain length. The oral rat LD50 for PFOS is

251 mg ⁄ kg (US EPA, 2000), while the oral LD50 for

PFOA is between 430 and 1800 mg ⁄ kg (Kennedy et al.,

2004).

The primary target organ is the liver, where they cause

an increased weight and hepatocytic hypertrophy (Seacat

et al., 2003; Kennedy et al., 2004). In rats, some of these

substances induce lower serum glucose and cholesterol

levels and increases the b-oxidation of fatty acids (Sohle-

nius et al., 1995; Seacat et al., 2003). Moreover, PFAS

binds to proteins in cell membranes and change the

membrane properties (fluidity), which can lead to aber-

rant signalling from surface receptors (Hu et al., 2003).

Perfluorooctane sulfonic acid exposure (10 mg ⁄ kg bw

for 2 weeks) of female rats affects the oestrous cyclicity

and increases serum corticosterone level, while it

decreases serum leptin concentration and norepinephrine

concentration in the hypothalamus (Austin et al., 2003).

In utero exposure to PFOS (‡0.8 mg ⁄ kg bw ⁄ day) leads in

Figure 2 Typical average concentrations of perfluorooctane sulfonic acid and perfluorooctanoic acid in blood (serum ⁄ plasma) from various coun-

tries (Hansen et al., 2001; Olsen et al., 2003a,b, 2004, 2007; Corsolini & Kannan, 2004; Kannan et al., 2004; Kubwabo et al., 2004; Kuklenyik

et al., 2004; Tittlemier et al., 2004; Guruge et al., 2005; Calafat et al., 2006; De Silva & Mabury, 2006; Odland et al., 2006; Thomsen et al.,

2006; Fei et al., 2007; Fromme et al., 2007; Harada et al., 2007; Kärrman et al., 2007; Kato et al., 2007).
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mice and rats dose-dependently to a reduced litter size

caused both by reduced implantation and foetal and neo-

natal death (Luebker et al., 2005a; Lau et al., 2006). Pups

of dams of mice and rats exposed by oral gavage to PFOS

(‡0.4 mg ⁄ kg bw ⁄ day) showed a reduced body weight and

a delay in development and neuromotor maturation (Lu-

ebker et al., 2005b; Fuentes et al., 2007), but there are no

reports of increase in malformations (Lau et al., 2007).

Gestational PFOA exposure of mice is associated with

altered mammary gland development in Dams and female

offspring (White et al., 2007).

Apelberg et al. (2007b) found that reductions of birth

weight, ponderal index and head circumference were

associated with PFOS and PFOA concentrations in blood

among vaginal deliveries. A similar inverse association

concerning maternal PFOA concentration and birth

weight was found by Fei et al. (2007).

Perfluorooctane sulfonic acid, PFOA and other tested

PFCs were not active in various mutagenicity test systems.

However, PFOA exposed rodents developed an excess of

Leydig cell adenomas (Cook et al., 1992; Biegel et al.,

1995; Liu et al., 1996). Moreover, PFOS and EtFOSE

caused liver hepatocellular adenomas in female rats and

thyroid follicular cell adenomas in male rodents (Thom-

ford et al., 2002). Because of these studies, the US EPA

classifies PFOA as an animal carcinogen (US EPA, 2000).

In accordance, a study from the work environment

reports an increased incidence of urinary bladder cancer

in workers with high exposure to perfluorooctane sulfonyl

fluoride (Alexander et al., 2003).

Thus, although PFAS are only moderately toxic, they

do induce a number of adverse effects in experimental

animals, which together point to potential problems with

the currently very high human exposure levels.

Possible mixture effects

As exposure to PFCs is ubiquitous to humans this exposure

is added to all other exposures humans may experience.

This raises the question of possible mixture effects, which

could increase effects from other exposures. Mixture effects

have already been shown in vitro and in vivo for oestrogen-

ic compounds (Silva et al., 2002; Tinwell & Ashby, 2004)

and for anti-androgens (Birkhoj et al., 2004; Metzdorff

et al., 2007), but there are very few studies of mixture

effects of compounds with different modes of action.

For PFAS, there are several reports of such effects. Co-

administration of PFOS and dioxin [2378-tetrachlorodi-

benzo-p-dioxin (TCDD)] resulted in an increased p450

A1A expression as compared to TCDD alone (Hu et al.,

2003). PFAS may also increase the carcinogenicity of

other chemicals as the genotoxicity of cyclophosphamide

in the micronucleus assay with hamster lung V79 cells

increased many fold by simultaneous exposure to PFOS

(Jernbro et al., 2007).

Thus, the sensitivity to other chemicals can be

increased by simultaneous exposure to PFCs.

Endocrine disruption

Some PFCs have oestrogenic effects in cell cultures

(‘E-screen assay’; Soto et al., 1995). For example, the flu-

orotelomer alcohols 6 : 2 FTOH and 8 : 2 FTOH induce

MCF-7 breast cancer cell proliferation and up-regulates

the oestrogen receptor, but PFOS, PFOA and perfluoro-

nonanoic acid had no oestrogenic effect in that test (Mar-

as et al., 2006; Vanparys et al., 2006). Nevertheless, PFCs

act as endocrine disruptors, because exposure of adult

rats affects their endocrine system by decreasing the

Figure 3 Persistent organic pollutants in blood plasma from pregnant women living in Norwegian and Russian Arctic (modified from Odland

et al., 2006).
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testosterone level and increasing the oestradiol level (Bie-

gel et al., 1995; Shi et al., 2007).

The effects on hormone levels in rodents are reflected

in changes in the testis where exposure to perfluorooct-

anoate results in Leydig cell hyperplasia and eventually

the development of Leydig cell adenomas (Biegel et al.,

1995). A study of testis effects in adult rats exposed to

‡5 mg perfluorododecanoic acid ⁄ kg bw daily for 2 weeks

also showed a reduced gene expression of many genes

involved in cholesterol transport and steroidogenesis and

a reduced serum testosterone level (Shi et al., 2007).

Thus, it seems as if exposure to PFAS substances can

severely affect proliferation and function of Leydig cells in

the adult rat.

This is of considerable concern, because Leydig cell

hyperplasia is common among infertile men (Holm et al.,

2003) who, as a group, also show lower testosterone levels

than comparable normal controls (Andersson et al.,

2004). Reduced testis function has been linked to the tes-

ticular dysgenesis syndrome (TDS) (Skakkebaek et al.,

2001). The TDS hypothesis states that in utero exposure

to endocrine disruptors can damage testis development

and lead to reduced testis function in the adult, with

symptoms ranging from a moderately reduced semen

quality to testis cancer. The best animal model for human

TDS consists of rats exposed to long-chain phthalates in

a critical time window during development (Fisher et al.,

2003). The exposure results in testis dysgenesis with Ley-

dig cell hyperplasia and clustering of the Leydig cells in

the centre of the testis, resulting in reduced testosterone

levels and compromised fertility in the adults (Sharpe,

2006; Hallmark et al., 2007). The compromised Leydig

cell function is reflected in a reduced expression of genes

involved in cholesterol transport and steroidogenesis (Liu

et al., 2005). This has striking similarities to the reported

effect of PFAS exposure; however, it seems as if PFAS

compounds, in contrast to phthalates, can induce the

effects in the adult.

Conclusion

Polyfluorinated chemicals have increasing importance in

industry and consumer products because of their unique

properties. However, these chemicals are persistent and

have become wide-spread in the environment and accu-

mulate in wildlife and humans.

One of the most worrying effects of polyfluorinated

substances is their effect on Leydig cells in the rat testis,

where the reported effects have a strong resemblance to

observations from the clinic of infertile men seeking help

with assisted reproduction. Such effects (Leydig cell

hyperplasia, lower testosterone levels) can also be

induced by exposure to other ubiquitous chemicals such

as phthalates. As PFCs can induce these effects in

the adult, it raises the question of what happens when

a person with a moderately reduced testis function,

maybe caused by TDS induced in utero, as an adult is

exposed to chemicals that can elicit the same effect.

Butenhoff et al. (2004) have made a risk characteriza-

tion of the general population exposure to PFOA con-

cluding that the margin of safety was ranging between

1600 for liver weight increase and 8900 for Leydig cell

adenomas. This assessment was based on information

obtained from animal experiments. However, the facts

that the half-life of the chemical in humans is much

longer than in animals, and the renal clearance in humans

is negligible, contrary to the active excretion in animals,

makes human risk assessment based on animal experi-

ments questionable for these chemicals.

The international awareness and concern is increasing.

In 2000 the main producer, the 3M Company, voluntarily

stopped the production of one of the chemicals (PFOS),

and a ban of some fluorotelomers has been introduced in

Canada. In Europe, the EU countries will ban PFOS and

its derivatives from the summer of 2008. However, PFOS

is only a small part of the problem. The family of PFCs

consists of several hundreds other unrestricted chemicals.

Because the exposure to polyfluorinated substances is so

considerable, and uses seem to increase, there is an urgent

need to resolve, what effect such exposure has on

humans.
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Panel discussion

S. Swan

You noticed a reduction in testosterone and altered

Leydig cell differentiation in mammals after exposure to

these chemicals. Did this have an effect on the anogenital

distance (AGD)?

A.A. Jensen

The AGD was not measured.

O. Söder

The high level of PFAS in polar bears is worrying. What

is the source of these chemicals, for example fish or

environment? We should not expect the chemicals to be

present in high concentrations in the environment of

polar bears.

A.A. Jensen

We do not know the origin of PFAS in polar bears. They

are at the top in the food chain, but there is much less

PFAS in the sea or in fish and seals. The main chemical

in the bear is PFOS (perfluoro-octane sulpfonic acid) but

there are also some longer chain compounds and a few

lower chain compounds. The extremely high PFOS levels

may be linked to the biochemistry of the polar bears with

high levels of vitamin A in the liver. The PFOS is predo-

minantly present in the blood, kidney and liver, and some

is transported to the testis and brain.
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