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1
Introduction to Pyrolants

Energetic materials are characterised by their ability to undergo spontaneous
(AG < 0) and highly exothermic reactions (AH < 0). In addition, the specific
amount of energy released by an energetic material is always sufficient to facilitate
excitation of electronic transitions, thus causing known luminous effects such as
glow, spark and flame. Energetic materials are typically classified according to their
effects. Thus, they can be classified into high explosives, propellants and pyrolants
(Figure 1.1). Typical energetic materials and some of the salient properties are
listed in Table 1.1.

When initiated, high explosives undergo a detonation. That is a supersonic
shockwave supported by exothermic chemical reactions [1-3]. In contrast, propel-
lants and pyrolants undergo subsonic reactions and mainly yield gaseous products
as in the case of propellants [4, 5] or predominantly condensed reaction products
as in the case of pyrolants. The term pyrolant was originally coined by Kuwahara
to emphasise on the difference between these materials and propellants [6]. Thus,
the term aims at defining those energetic materials that upon combustion yield
both hot flames and large amount of condensed products. Hence, pyrolants often
find use where radiative and conductive heat transfer is necessary. Pyrolants also
prominently differ from other energetic materials in that they have both very high
gravimetric and volumetric enthalpy of combustion and very often densities far
beyond 2.0 gcm~? (see Table 1.1 for examples).

Pyrolants are typically constituted from metallic or non-metallic fuels (e.g. Al
Mg, Ti, B, Si, C(gyy and Sg) and inorganic (e.g. Fe, O3, NaNO;, KClO4 and BaCrOy)
and/or organic (e.g. C;Clg and (C,F,4),) oxidizers or alloying partners (e.g. Ni and
Pd). In contrast to propellants, they are mainly fuel rich and their combustion
is influenced by afterburn reactions with atmospheric oxygen or other ambient
species such as nitrogen or water vapour.

Pyrolants serve a surprisingly broad spectrum of applications such as payloads
for mine-clearing torches (Al/Ba(NO3),/PVC) [7, 8], delays (Ti/KClO,/BaCrOy)
[9], heating charges (Fe/KClOy) [10, 11], igniters (B/KNOj3) [12, 13], illuminants
(Mg/NaNOs3) [14, 15], thermites (Al/Fe,03) [16, 17], obscurants (RP/Zr/KNO3)
(RP, red phosphorus) [18], (Al/ZnO/C,Clg) [20], tracers (MgH,/SrO,/PVC) [21],
initiators (Ni/Al) [22] and many more. Recently, pyrolant combustion is increasingly
used for the synthesis of new materials.
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1 Introduction to Pyrolants

l Energetic materials I

|
IPropelIants | I High explosives |

Process: Burning Deflagration Detonation
Speed of reaction: Subsonic* Subsonic* Supersonic*
<tms™ 1-1000 m s~ >>1000ms™!

Reaction products: Mainly condensed Mainly gaseous Mainly gaseous
Oxygen balance: Fuel rich Balanced Balanced — Fuel rich

Combustion enthalpy: 1-30kJ g 5-10kJ g’ 5-15kJ g™’
5-50 kJ cm # 10-20kdem™®  15-25kJ cm?

Density range: 2-10gcm? 15-25gcm®  <2gcm3#

* With respect to speed of sound of energetic material

#) Not taking into account metallized formulations and heavy metal based primary explosives

Figure 1.1 Classification of energetic materials.

Table 1.1 Performance parameters of selected energetic materials.
Class of energetic  Material, formula, p9gcm™) AH (kjg™') AHkjem™) Ty(°C)
materials weight ratio

High explosive HMX, C4HgNgOg 1.906 9.459 18.028 287
TNT, CHs5N3;04 1.654 14.979 24.775 300
PETN, 1.778 8.136 14.465 148
CsHgN4Oy
Nitroglycerine, 1.593 6.717 10.699 180
C3HsN30Oq
Nitrocellulose®, 1.660 9.118 15.135 200
CsH7N;3;09,

Pyrolant KNO;/Sg /charcoal 1.940 3.790 7.353 260-320
(75/10/15)
Al/KClO,(34/66) 2.579 9.780 25.223 446
Fe/KClO, (20/80) 2916 1.498 4360 440470
Mg/PTFE/Viton 1.889 22.560 42.616 540
(60/30/10)
Zn/C,Cly(45/55) 3.065 4.220 12.934 420
Tu/THV-500[‘ 5.802 6.338 36.773 310
(74/26)

“At TMD = Theoretical Maximum Density.

"14.4 W% N.

‘With liquid H;O.

4THV-500 is copolymer of tetrafluoroethylene (TFE), Hexafluoropropene (HFP) and Vinylidene
difluoride (VF,} ratio: 60/20/20, C3221Hac24F3822. p = 2.03 g cm . PTFE, polytetrafluoroethylene.
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An important group of pyrolants are those constituted from metal powder
and halocarbon compounds [19]. The high energy density of metal—halocarbon
pyrolants stems from the high enthalpy of formation of the correéponding
metal-halogen bond (M-X). Thus, chlorocarbon but mainly fluorocarbon com-
pounds are used as oxidizers.

On the basis of metal fluorocarbon combinations, pyrolants show superior
exothermicity compared to many of the aforementioned fluorine-free systems [22).
This advantage is due to the high enthalpy of formation of the metal-fluorine
bond not outperformed by any other combination of the respective metal. Thus,
the exothermic step

M" 4+ wF —s MF,

is the driving force behind the reaction (W = maximum valence).

Owing to a great number of metallic elemental fluorophiles (~70), metal flu-
orocarbon pyrolants (MFPs) offer a great variability in performance. In addition,
many alloys and binary compositions of fluorophiles may also come into play
to further tailor the performance of the pyrolant: MgyAl;, MgH,, MgB,, Mg;N,,
Mg(Ns);, Mg,Si and so on [23]. Very often MFPs find use in volume-restricted
applications where other materials would not satisfy the requirements — see, for
example, payloads for infrared decoy flares (see Chapter 10). Within the scope of
this book, the following applications are discussed:

agent defeat payloads
countermeasure flares
cutting torches

.

.

heating devices

igniters

incendiaries

material synthesis
obscurants
propellants
reactive fragments

.

stored chemical energy propulsion systems
tracers

tracking flares

underwater flares.

This book focuses only on specialised pyrotechnic applications; thus, for a more
generalised introduction to pyrotechnics, the interested reader is referred to the
books by Shidlovski [24], Ellern [25], McLain [26], Conkling [27, 28], Hardt [29] and
Kosanke et al. [30],
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2 History

The French forces applied these obscurants in the First World War with both
navy and army in the so-called smoke generators. Later in the war, the Berger
mixture saw widespread application with all belligerent countries. Berger was
honored with the “Grand Prix de la Marine” in 1918 for his contribution to French
warfare [14]. After the war, Berger reported that he had been in contact with Victor
Grignard by early 1916 on these mixtures. Grignard had also proposed to him to use
hexachlorobenzene as an alternative source of chlorine. In the same report, Berger
also refers to Matignon’s work [14]. Thus, it is very likely that he was inspired to
apply these highly exothermic reactions in pyrotechnic obscurant formulations [15].

In 1919, the US First World War veteran Richard Clyde Gowdy (1886-1946),
a citizen of Cincinatti, invented a signal smoke mixture based on magnesium,
hexachloroethane, and anthracene [17). Although Berger had already proposed to
use magnesium as a fuel, it was noted by him that these mixtures would burn
almost too vigorously. Gowdy, a mechanical engineer, modified Berger's mixture

in that he applied anthracene both to cool down the combustion temperature and

to generate soot that would turn the generated smoke black. It can be assumed that
Gowdy learned about the Berger mixture in his military deployment to Europe.

Further refinements and modifications of Berger's smoke mixture were succes-
sively undertaken by Metivier (1926) [18, 19] and Brandt (1937) [20] both in France.

In 1922, Staudinger reported about explosive reactions of alkali and alkaline
earth metals with partially and perhalogenated solvents such as CH,Cl, and
CCl.. He intuitively assumed the formation of a very instable species on contact
that would be very sensitive to mechanical impact and thus trigger an explosive
reaction. However, he was unable to identify the actual species [21] but proposed
to exploit these fierce reactions in detonating charges for ammunition (22, 23].
Staudinger was a visionary and he even tried to apply the explosive reaction
between sodium and tetrachloromethane to make diamond [24]. He thought that
both the high temperature and pressure from the explosion would enable to force
the formed carbon soot to undergo phase transition to diamond. Although he
was not successful with his experiment, about 60 years later nanodiamonds were
isolated from TNT/RDX detonation soot and proved Staudinger’s basic idea that
2 detonation would furnish the necessary physical conditions for the formation of
diamond [25]. Still 10 years after that (in 1998), a Chinese group reported about the
successful nanodiamond synthesis based on the original Staudinger set up with
sodium and tetrachloromethane in an autoclave [26].

2.3
Rise of Fluorocarbons

In the course of the electrolytic preparation of beryllium from molten KHF,/
BeF,, in 1926, Paul Lebeau (1858-1959) and his collaborator Damien were able to
purify and isolate tetrafluoromethane, CFj, by fractional distillation with a liquid
air-cooled condenser. They observed vigorous combustion reactions of CF, with
both sodium and calcium [27].
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In 1930, Otto Ruff (1871-1939) and his coworker Otto Bretschneider synthesized
CF4 by a reaction of F, with charcoal and reported about violent combustion
reactions of tetrafluoromethane with both calcium and magnesium at elevated
temperatures [28]. Ruff and Brettschneider were also the first to .obtain the
important monomer tetrafluoroethylene, C;F; (TFE), from tetrafluoromethane by
arc discharge between graphite electrodes (Scheme 2.1) in 1933. They described its
fierce combustion reaction with sodium [29].

c F F
cFy, ——— =+ cF,
Arc discharge: 1700 °C F

Scheme 2.1 TFE synthesis via arc discharge between carbon electrodes.

In 1934, Ruff and Brettschneider synthesized the first all-fluorinated polymer,
graphite fluoride, (CF,),, by fluorination of norite (Scheme 2.2) and investigated
its thermal stability and decomposition mechanisms [30].

Norite or Graphite

Y

FE‘
300-400 °C

Scheme 2.2 Synthesis of graphite fluoride by fluorination of norite or graphite.

The first ever reported fluorinated flexible polymers based on fluorinated
ethylenes were developed in 1934 by Fritz Schloffer (1901-1978) and Otto
Scherer (1903-1987), both were from IG Farben/Frankfurt Germany. They
described polymerization of chlorotrifluoroethylene to give polychlorotrifluoroethy-
lene, (CF,CIF),, according to Scheme 2.3 [31].

E Cl 24 hours each
— ——— > —(CF,CFCl),

= 1.) 40-50 °C

2.) 6065 °C

Scheme 2.3 Polymerization of chlorotrifluoroethylene (CTFE) according to Ref. [31].

They also described the synthesis of polychloredifluoroethylene, (CCIHCF,),,,
polybromotrifluoroethylene (CBrFCF,),, and mixed polyvinylchloride-co-poly-
chlorotrifluoroethylene (CCIFCF;),,(CH,CHCI),, where all these occur under
similar reaction conditions. Mass production of these started shortly after that.
Later these materials were adopted in the United States by Kellog Company and
marketed under the brand name Kel-F". Former Hoechst scientist Walter Wetzel
(born 1925) in his paper on the discovery of polytetrafluoroethylene (PTFE) has
revealed, from the company archives of Hoechst, that Schloffer and Scherer had
investigated the polymerization of TFE as well but the resulting polymer, PTFE,
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R F 3-20 days
— ——» —(CF.CFy),~
F F Various conditions

Scheme 2.4 Polymerization of TFE according to Ref. [33].

owing to its chemical inertness and insolubility was not considered a useful
material [32]. The application department at Hoechst rejected the material with
the rather rhetoric question: “Was sollen wir mit diesem klitschigen Ding?”
literally translated: “What do you expect us to do with this repellent material?”
In view of the problems to access technical reasonable quantities of TFE to run
into mass production —a technical problem that should remain for another 15
years — Hoechst unfortunately decided to disregard this material and did not
include PTFE in the upcoming disclosure [31].

In 1939, Roy Plunkett (1911-1994) at Dupont discovered the polymerization of
TFE to give PTFE the chemically and thermally most resistant fluoropolymer ever
made (Scheme 2.4) [33]. However, similar to Schloffer’s and Scherer’s experience
with the same material, Plunkett would not obtain any royalties from Dupont
as the company would not work on PTFE for another four years for the same
reasons [32]. It was only in 1943 when the Manhattan project created a demand
for corrosion-resistant liners and gasket for reactors and valves to handle highly
corrosive UF, [34]. Then, people at Dupont remembered the highly hydrophobic
and chemically inert material. This is when PTFE came into play again and its
small-scale production started. At the end of the 1940s, PTFE was produced on a
small scale for the civilian market under the brand name Teflon®.

From a BIOS report, it is known that successive chlorination and fluorination of
“Cerisin,” a hydrocarbon wax frequently used in Germany, was applied before the
war to obtain chemically highly resistive waxes with 57 wt% chlorine and 20 wt%
fluorine for chemical engineering purposes [35].

In addition, in 1939, Hugo Stoltzenberg (1883-1974) invented a new obscurant
based on magnesium and a mixture of liquid and solid halocarbon compounds
[36). His company was one of the few private firms beside big IG Farben to be
involved with the complete span of chemical warfare development in Germany.
He developed all kinds of warfare supplies for German Wehrmacht such as
pyrotechnics (illuminants, obscurants, and incendiaries), chemical warfare agents,
and the corresponding protective equipment. Thus, he had the most advanced
materials such as the newly invented fluoropolymers at his disposal. Hence, it
is likely that he had experimented with them as oxidizers as well. At the time
of writing this book, any of the FIAT/CIOS/BIOS" interrogation files of Hugo
Stoltzenberg were still not released by either UK or US government (sic).

1) Combined Intelligence Objectives Sub- Information Agency Technical (FIAT) are

committee (CIOS), British Intelligence allied post-war reports on German Science
Objectives Subcommittee (BIOS), Field and Industry.
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SR 107 [46] SR 580 [46]
Composition

35 wt% Magnesium 60 wt% Magnesium
65 wt% Ferric oxide 36 wt% Sodium nitrate

4wt% Acaroid resin

Spectral efficiency

Epps: 56] g ! sr! Epps: 21 ) g7 sr!
Eppre: 31) g ' s Epyre: 10] g1 sr™!
Spectral radiance

Lpps: 33W srlem™ Lpps: 27 W s em ™2
Lpps: 18 W sr™! em ™2 Lpps: 18 W sr~! em ™2

25
Metal/Fluorocarbon Pyrolants

The first unambiguously documented use of fluorocarbon as oxidizers in pyrotech-
nics was 1956in a patent that was not published until 1964. The chemist Edgar
A. Cadwallader (1918-2006) disclosed the first pyrotechnic material to include a
fluoropolymer, Kel-F, polychlorotrifluoroethylene, and a metal such as magnesium
or aluminium for a visual flare composition (Table 2.2) [47].

Cadwallader had worked on organometallic reactions previously [48], obviously a
prerequisite for many researchers involved with metal-halocarbon reactions. The
first reported use of a metal/fluorocarbon material in infrared tracking flares then
was made in Spring 1956. At NOTS, the type 702A target augmentation flare was
designed, which used the below given composition based on Mg and PTFE [49].
The flare material had a heat of reaction of 9.2k] g~ and a specific energy in the
PbS band that would outperform both SR 107 and 580 by two or six times.

Table 2.2 Table with ingredient proportions and per-
formance of a 0.5 in diameter flare candle. (Taken from
Cadwallader's disclosure [47].)

Mg (%) Kel-F (%) Candle power
40 60 18
50 50 19
60 40 25
70 30 40

2.5 Metal/Fluorocarbon Pyrolants |15
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Watts/ steradian per Sq. In.
Burning Surface (0.8 — 3.5
um)

Name of flare Composition Ambient 65 000 Feet

. BuOrd Mk 21 Mk O 54% Mg 677 500
34% NaNoj
12% Laminac
. Applicants' flare 54% Mg 2283 1070
23% Teflon
23% Kel-F
. Army "Rita" flare 66.7% Mg 1000
28.5% NaNO,
4.8% Binder
. Optimum aluminum-  48% Al 1700
Teflon 52% Teflon
. Optimum boron- 56% B 445
Teflon 44% Teflon
. Optimum zirconium-  54% ZrH, 428
Teflon 46% Teflon

1750

| —

|
3.5 um Ambient radiation

—
[=]
[=]
o

.5 um 65,000 ft Radiation

Watts / Steradian

//

2 - 3 um Ambient radiation

> ©
/

—

%/ 2.-3 ur|n 65,000 h‘Radiaticn

35 45 55 65 75
% Magnesium —

Figure 2.6 Ingredient proportions and performance of an
infrared flare candle. (Taken from Hahn's disclosure [45].)
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NOTS 702 [49]

54 wt% Magnesium

30 wt% Polytetrafluoroethylene
16 wt% Kel-F wax

Performance

Ers-27um:125] g~' sr™!

Burn rate; 3.4 mm s~

Iis 27um: 300 W sr!

A similar composition was finally filed by Hahn, Rivette, and Weldon in a patent
application in 1958, which was not disclosed until nearly 39 years later in 1997 [45].

The spectral performance in both 2—3 pm band is given in Figure 2.6.

A report on magnesium/Teflon” /Kel-F-based infrared flare compositions and
their performance was issued in 1959 and declassified from secret to unclassified
in 1980 [50].

In 1962, Hugo Stoltzenberg and his coworker Martin Leuschner (1913-1982)
filed a patent on obscurants based on titanium and fluorocarbons and/or chloro-
carbons that was published in 1965 [51]. In 1963, the 1IT Research Institute located
in Illinois Chicago issued a report under Air-Force contract on thermochemical
properties of a large number of metal/oxidizer systems. Their considerations also
included both CF4 and C;F; as oxidizers [52].

In 1965, the Russian chemist Alexander Alexandrovich Shidlovskii (1911-1985)
in his book on pyrotechnics refers to the possibility to use PTFE as an oxidizer
in pyrotechnic mixtures [53]. Finally, Herbert Ellern (1902—-1987) in his epochal
monograph on pyrotechnics in 1968 for the first time in the open and accessible
literature refers to the use of magnesium/PTFE mixtures in infrared decoy flares
and gives details on caloric data and ignition sensitivity [54]. From then on,
magnesium/PTFE has made its way into numerous applications as will be discussed
in the following chapters.
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3
Properties of Fluorocarbons

3.1
Polytetrafluoroethylene (PTFE)

Polytetrafluoroethylene (PTFE) is a crystalline translucent solid polymer with a
high molecular weight ranging between 10° and 107 g mol . It is prepared from
the monomer C,F, by polymerization in aqueous medium and is obtained as fine
powder. A number of trade names exist for PTFE. Thus it is often referred to as
Teflon” (DuPont), Hostaflon” (Dyneon), Fluon"™ (ICI), Halon" (Allied Chemical) or
Fluoroplast” (Ftoroplastoviye Tekhnologii JSC) [1, 2].

PTFE undergoes a series of first- and second-order transitions at 19 C (first),
30°C (second) and 90 C (first), and finally at 130°C (second), it expands to
about 1.2 times its volume. At 340 C, pristine PTFE changes into a transparent
amorphous gel and expands to about 1.3 times its solid state volume [1]. However,
this melt process is irreversible, and remelting of the recrystallized polymer
will occur at 327 C [1]. At temperatures above 350-400 C, pyrolysis of the
polymer into gaseous products occurs. This occurs without significant charring,
as the C—C bond is significantly weaker (348k] mol ') than the C-F bond
(507 k] mol '}, thus favouring C-C scission over C-F bond breaking [3, 4].
The main decomposition products of PTFE are tetrafluoroethylene (TFE) and
CF, which depending on the reaction conditions undergo successive reactions
and yield complex product mixtures [4]. Hydrogen and chlorine atmosphere
inhibit PTFE decomposition, whereas steam, oxygen and sulfur dioxide accelerate
its decomposition [4]. The thermal decomposition in moist air yields carbonyl
difluoride, CO,F and the monomer [5, 6]. The monomer itself will also undergo
further reaction to both carbonyl difluoride and difluorocarbene. In the presence of
moisture, both carbonyl difluoride and difluorocarbene give hydrofluoric acid and
carbon dioxide or monoxide [5].

(CaFs)s ——> nCOF, + %cm (3.1)

C,F4 —> COF, + CF, (3.2)

A

COF; + H,O — 2HF + CO, (3.3)

CF; + H;0 — CO+ 2HF (3.4)

Metal-Fluorocarbon Based Energetic Malerials, First Edition. Ernst-Christian Koch.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table 3.1 Main products of pyrolysis of PTFE.

Products Formula Unit Temperature (°C)

650 700

Tetrafluoroethylene weight percentage 78.5 75.0 60.2
Hexafuoropropene CsFs weight percentage 4.6 4.7 6.0
cyclo-Octafluorobutane CyFg weight percentage 3.7 8.7 16.1
Soot Cn weight percentage 0.8 0.5 0.4

After Refs. [4, 6].

The main products of PTFE pyrolysis as a function of temperature obtained in a
fluidized-bed reactor are given in Table 3.1 [4]. In the absence of oxygen, pyrolysis
of PTFE at temperatures below 600 "C yields perfluoroisobutene (PFIB) [6], which
is about 10 times more toxic than phosgene (LCsy < 1ppm). The target organs
of PFIB are the lungs and the liver [7). However, PFIB formation has not been
observed on pyrolysis of PTFE in air or oxygen [4, 6].

Ignition of PTFE in air occurs at specific irradiance levels of E = 4.3 W cm? or at
an irradiance of H = 1 k] cm ™%, equalling a temperature of 630 C [8]. PTFE burns
under oxygen pressure (Limiting Oxygen Index (LOI: 96%)). Figure 3.1 depicts the
burn rate as a function of oxygen pressure after Ref. [9]. Burning PTFE rods attain
a conical shape with some soot at the apex. At pressures below 200 kPa, the liquid
layer formed at the burning surface shows bubbles indicative of gas formation. The
unsaturated fluorocarbon compounds formed on pyrolysis of PTFE (C,F,4, C;F,
C4Fg) are combustible at ambient pressure, whereas the saturated fluorocarbons
formed (CF4, C;Fg) will not burn at standard temperature and pressure (STP) [10].

1.0 4 -
- Rod diameter

09 |2 9525mm

¥ 6.350 mm
s ® 3175 mm

Burn rate, v (mm s™')

00 T 1 T 1 T ] T 1 T 1 T 1 T 1 T [ 1
0 100 200 300 400 500 600 700 800
Pressure, p(O,) (kPa)

Figure 3.1 Burn rate of PTFE rods under oxygen as a
function of pressure and rod diameter [9].
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Figure 3.2 FTIR spectrum of PTFE.

Table 3.2 Characteristic IR vibrations of PTFE [11].

Mode Wave number (cm~') Intensity

CF; asymmetrical 1230
stretching
CF; symmetrical 1149
stretching

774
CF; scissoring 729
CF; wagging 635
CF; wagging 553
CF; rocking 520

The FTIR spectrum of PTFE is depicted in Figure 3.2. The characteristic
vibrations are given in Table 3.2 [11].

3.2
Polychlorotrifluoroethylene (PCTFE)

Polychlorotrifluoroethylene (PCTFE) is a crystalline translucent solid polymer

with a high molecular weight ranging between 10 000 and 50 000 g mol~!, thus

available as either viscous oil or hard plastic. It is made by polymerization of the
bulk monomer or in solution, emulsion or dispersion by using free-radical starters,
UV and y-radiation. The presence of the chlorine atom improves the attractive
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forces between the polymer strands, thus leading to the greatest hardness and

tensile strength encountered within the group of fluoropolymers [2]. Commercial
brand names for PCTFE are Kel-F* (3M), Plaskon” (Allied Chemical Corporation),
Hostaflon C* (Dyneon), Neoflon"™ (Daikin Industries) and Aclar® (Honeywell). Solid
PCTFE has its glass transition between 71 and 99 "C and melts at 211-216 "C. It is
thermally stable up to 250 ' C but starts to decompose when subjected to T = 300 "C.

However, rapid decomposition does not occur until T > 400 C. The decomposition
of PCTFE in air produces the monomer as the main product followed by equal
amounts of CO,, C,F,Cl,, C;FsCl and C,;F;Cly (12, 13]. The IR spectrum of
low-molecular-weight PCTFE is given below together with the assignment of the

most important vibrational bands. High-molecular weight, solid PCTFE does not

exhibit the 902 cm ™! vibrational mode (Figure 3.3 and Table 3.3) [11, 14].

100 —
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Figure 3.3 FTIR spectrum of low molecular weight PCTFE [14].

Table 3.3 Characteristic IR vibrations of PCTFE [11, 14].

Mode Wave number (cm~') Intensity
CF stretching 1279 -
CF; stretching 1200 -
CF; stretching 1150 -
CF, stretching 1126 -
1041 =
CCl stretching 970 -
902 %
CF; wagging 599 =
CF; bending 520 -
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3.3
Polyvinylidene Fluoride (PVDF)

Polyvinylidene fluoride (PVDF) (PVF;) is made from 1,1-difluoroethylene by poly-
merization in bulk, solution or dispersion with starters such as.peroxides or
y-radiation. Commercial PVDF products are Kynar® (Pennwalt Corporation), Solef*
(Solvay) and Vidar™ (AWK Trostberg) [2].

Because of its alternating CF, and CH, groups, PVDF has a dipole moment (2.1
Debye), which makes it soluble in highly polar solvents such as DMF, THF, acetone
and esters. PVDF is the only known polymer to occur in four different polymorphs
[2]. These phases are present in the polymer at varying contents depending on
the manufacture and both thermal and mechanical history of the sample. The
orthorhombic phase (B-polymorph) is obtained from crystallization of PVDF from
solvents. Figure 3.4 shows FTIR spectra of both orthorhombic and monoclinic
(«-polymorph) phases of PVDF (Table 3.4) [15].

The density of the «-polymorph is 1.98 g cm 3: amorphous PVDF has a density
of 1.68g cm . Thus, commercial samples with a density of 1.75-1.78g crn
have ~45% crystallinity. The a-polymorph melts at 170 °C; however, the processed
polymer, because of its polymorphism, displays no sharp melting point but melts
between 150 and 190 C. The thermal decomposition becomes significant at
T = 300°C. Pyrolysis of PVDF yields hydrogen fluoride, the monomer C,H;F;
and C4F3H; [12]. Up to 600°C, pyrolysis also yields polyaromatic structures by
cyclization of polyenic intermediates formed through HF elimination [16]. This is a
particular advantage over PTFE, which is less likely to yield carbonaceous products.
Thus in obscurant applications, PVDF is preferred over PTFE as a fluorine source
(see Chapter 11).
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Figure 3.4 FTIR spectrum of both orthorhombic and monoclinic PVDF [15].
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Table 3.4  Characteristic IR vibrations of PVDF [15].

Mode Wavenumber (cm™') Intensity
CCH; CC,; CF 1408 Vs

1385 s

1281 s

1240 ]
CC, CCH, CCF 1180 Vs
CCH 976 m

868 vs

CCH 798 m
CGEGE,CF,/CEE 764 Vs
3.4

Polycarbon Monofluoride (PMF)

Depending on its fluorine content, polycarbon monofluoride (PMF), also known as
graphite fluoride, is a white cream to dark grey, highly hydrophobic microcrystalline
powder. Itis obtained by fluorination of graphite or norite at temperatures between
400 and 700 "C [17-19]. Fluorination of less-ordered carbon materials also yields
graphite fluoride, although at the expense of greater amounts of CF.. The FTIR
spectrum of a highly fluorinated sample (61% by weight F) is shown in Figure 3.5.
The vibrational assignment is given in Table 3.5.

In contrast to any of the other fluorinated polymers, graphite Huoride does
not melt or soften before its decomposition, which occurs slowly at temperatures
above 300°C (see DSC diagram in Figure 3.6). However, the onset of thermal

1.0 1
1.2 4

1.4 —

Absorbance
[e)]
|

2-2 T ' T | T |
4000 3000 2000 1000
Wavenumber, v (cm™)

Figure 3.5 FTIR spectrum of PMF.
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Table 3.5  Characteristic IR vibrations of PMF [17].

Mode Wave number (cm™')  Intensity

CF; symmetric 1350 sh
stretching”
CF stretching 1219 vs
CF; asymmelric 1076 sh
stretching”

4Qwing to terminal groups at the edge of graphite sheet.

0

Heat flow (mW)

-2 —

—4 —

-6 Jl‘ — T T 1 T T \ T
0 100 200 300 400 500 600
Temperature, T (°C)

Figure 3.6 Differential Scanning Calorimetry (DSC) plot of
(CFo.89)n at 10K min ' under 50ml min T Ar

decomposition with a steep slope occurs at ~500 " C for a material with x = 0.989.
The decomposition of graphite fluoride has been investigated by Watanabe et al.
[20-22). They found that decomposition in both vacuum and oxygen proceeds via
a similar mechanism, provided the temperature is above 588 'C. With a material
containing 59.7% by weight fluorine, approximate composition (CFo937)n, it was
found that the rate constant changes at 588 'C, indicative of change of the mode
of decomposition. Below that temperature, the decomposition in oxygen proceeds
very slowly and yields fluorine-containing residues, whereas at temperatures above
588 'C, no residue is obtained. Above 588 C, the fraction of decomposed material,
«, is given by the following expression known as the Avrami—Erofeyev equation,
with k = rate constantand n = 2:

—In(1 —a) = (k)" (3.5)

The decomposition of graphite fluoride under oxygen yields mainly difluorocar-

bene, TFE and exfoliated graphite according to the following reaction scheme:
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(2x+3y

- ) (CF)a—> (% +2 Y)Cpop gy + % CF> + p CaFi (3.6)

with h = (x 4 2 y).

3.5
Vinylidene Fluoride—Hexafluoropropene Copolymer

Vinylidene fluoride, VDF, —hexafluoropropene HFP, copolymer is a rubbery
translucent milk-white polymer. Figure 3.7 shows a typical slab of the mate-

rial. The monomer ratio is about 78 : 22. It is commercially available as Viton"
(Dupont), Fluorel FC-2175 (3M), Tecnoflon” {Monteflos) or Dai-el” (Daikin). How-
ever, these types differ slightly in composition, as is manifested in different solution
behaviour in supercritical solvents [23] (see Chapter 18.3.1). In general, a VDF-HFP
copolymer is soluble in ketone-type solvents. Typical molecular weights range

between 1.5 x 10° and 10°, Adiabatic compression heating in pressurized oxygen
yvields COF; and CF, beside CO; and CO, which constitute the main combustion
products [13). The thermal decomposition kinetics has been investigated in Ref.
[24].

Fluorel
Fluoroelastomer
FC-2175

Figure 3.7 FC-2175 slab. (Reproduced with kind permission of MACH | Inc.)

7
W‘ Fluoroelastomer Cg mer
LFC-1] o

Figure 3.8 LFC-1 viscous chunks. (Reproduced with kind permission of MACH | Inc.)
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Figure 3.9 FTIR spectrum of LFC-1-polymer [25].

Table 3.6  Characteristic IR vibrations of LFC-1 [25].

Mode Wave number (cm™") Intensity

CCH 745
CCH 798
CF 1136
& 1323
CH 2948
CH 2994

3:5.1
LFC-1

A special low-molecular-weight copolymer of VDF and HFP in about the same ratio
as FC-2175 yields a viscous material (Figure 3.8) that enables processing energetic
materials without using solvents. It is commercially available as LFC-1" (3M) and
has a tan to brown colour. Figure 3.9 depicts the FTIR spectrum of LFC-1. Table 3.6
gives the vibrational assignment. It decomposes above 400 "C (Figure 3.10). With
increasing temperature, its viscosity drops as depicted in Figure 3.11 [25].

The low shear viscosity of LEC-1 is shown in Figure 3.11.

3.6
Vinylidene Fluoride—Chlorotrifluoroethylene Copolymer

VDF—CTFE (chlorotrifluoroethylene) copolymer is a colourless granular material
(Figure 3.12) that is commercially available as Kel-F 800" or FK 800" (3M) in
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Figure 3.12  FK-800 powder. (Reproduced with kind permission of MACH 1 Inc.)
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3 Properties of Fluorocarbons

4 monomer ratio VDF : CTFE =13, is soluble in ketone- and acetate-type
solvents, and at 10-30% by weight content, it forms clear, air-drying lacquers
that are applicable by brush, dip or spray techniques. In addition, it is soluble
in supercritical solvent such as CO; [23). Using VDF-CTFE, compositions can
be made in which binder amounts to less than 5% of the tota] ingredients [26].
The thermal degradation kinetics has been investigated in Ref. [24]. The thermal
decomposition of a polymer with a different molar ratio of VDF': CTFE) = 4 : 1
has been investigated in Ref, [12]. The main decomposition products comprise HF,
HCI, CTFE, VDF, the dimer of VDF and C;F;(,

3.7
Copolymer of TFE and VDF

TFE and VDF can be polymerized in any proportion, thus giving rise to a broad
variety of products. The copolymers are obtained in either emulsion or suspension
process. An approximate composition of TFE : PVDF of 20 : 80 is the eutectic point
in the system, with a melting pointof 120 C. Itis widely used as a technical polymer
and is available under the brand names Kynar” 7200 and Kynar® sp. (Pennwalt
Corporation). A composition with the an approximate composition of TFE - PVDF
29 : 71) is available as Fluoroplast” 42 (Russia). Both copolymers are soluble in
ketones and esters but are insoluble in alcohols and chlorinated hydrocarbons and
are mainly processed via melt extrusion at temperatures between 190 and 260 C
[27, 28]. The low-wave-num ber FTIR spectrum of the copolymer is depicted in
Figure 3.13.

Owing to the higher TFE content, Fluoroplast®-42 melts at temperatures slightly
higher than the melting point (135 C) of Kynar® 7200 (Table 3.7) and decomposes
above 400 °C as is depicted in Figure 3.14 showing both DSC and TG-signal [30].
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Figure 3.13  F7IR spectrum of Kynar 7200 [29]).
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Table 3.7 Characteristic properties of various VDF-TFE copolymer Kynar~ 7200 [30, 31].

Property Kynar~ 7200 Fluoroplast " -42
Ratio of TFE : PVDF 20: 80 2957
Density (g cm ) 1.88 -
Melting point (' C) 122-126 _ 135
Heat of fusion (] g—') 13-21 -
Thermal decomposition ("C) =400 =400
Soluble in solvents b+ ry
Fluorine content (wt%) 64.0 65.8
| T | T | T I T T
100 — —0
80 — PR
£
_ - =
£ 60 — E
S i 1% %
a | =
8 40- 2
-6 ®
- [
A
20 ]
5 - -8
0

350 400 450 500 550 600
Temperature, T (°C)

Figure 3.14  Thermoanalysis of Fluoroplast“-42 [30).

3.8
Terpolymers of TFE, HFP and VDF

Terpolymers of TFE, HFP and VDF are melt-processable fluoropolymers. They
are polymerized in aqueous emulsion. Depending on the ratio of the monomers,
a large number of different terpolymers are available. Figure 3.15 depicts the
elastomeric region in the ternary system (28]. These materials are commercially
available as THV" (Dyneon) [32).

The density of THV varies with composition between 1.95 and 1.98g cm™3,

Table 3.8 gives information on the principal properties of a series of commercially
available Terpolymers, THV.

3.8 Terpolymers of TFE, HFP and VDF |31
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Elastomeric °
region

HFP

Hexafluoropropene

Figure 3.15  Elastomeric region in the ternary system TFE, HFP, VDF. (After Ref. [27].)

Table 3.8 Characteristic properties of various THV" grades [32-34].

Property THV-200 THV-221 THV-X310 THV-400 THV-500 THV-610 THV-815

Density (g cm™3) 1.95 1.93 n.a. 1.97 2.00 2.04 2.06
Melting point 115-125 115 140 150-160 165 185 225
(9

Thermal 420 370¢ . 430 440 3707 370¢
decomposition

(Q)

Soluble in

solvents

Hardness shore,

D

Glass transition

temperature ( C)

Fluorine content .a. ; 71-72 71-71
(weight

percentage)

“Onset of thermal decomposition in presence of metal powders.
P
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3.9
Summary of chemical and physical properties of common fluoropolymers

The following tables summarize the chemical and physical properties of common

fluoropolymers.

Table 3.9  Characteristic properties of various fluorinated polymers [18, 31, 35].

Name Formula CAS-no m, (g  F-content Tg(°C) Mp(°C) Dp,air
mol~1) (wt%s) (°C)
PTFE (C2Fa)n 9002-84-0 100.016 76.0 - 328, 340 > 400
PCTFE  (C;ClF3), 9002-83-9 116.470 48.9 71-99 211 =400
PVDF (CaH;F3), 24937-79-9 64.038 59.4 -40 154-184 350
Viton A (C;H;F;), 9011-17-0 374.145 66.0 =27 — =400
(CsFg)m
n=35m=1
FK-800 (C2HF3)n 9010-75-7 413.445 50.6 28-38 105 -
(C2CIF3)m
n=1m=3
PMF (CF)n 11113-63-6 31.01 61.3 n.a. n.a. 610
Ref. [27].) - : — —
Name p (gcm™?) melting enthalpy of specific thermal Limiting
enthalpy, formation, heat, conductivity, = Oxygen

ApmH (k) mol™') AgH (kfmol™") Cp (g7 K™") T (Wk"m~")  Index
LOI (% O3)

/-610 THV-815

PTFE 2.20 3.6 ~809 1.020 0.024 99.5

PCTFE 2.10-2.13 4.659 - 0.835 - 99.5
04 2.06 PVDF  1.75-1.80 5.966 = 1.26-1.42 0.1-0.13 43.6
85 225 Viton A 1.82-1.85 0.3-0.7 —2784 ~ 0.226 31.5

FK-800  2.02 2.5 -2418 1.3 0.053 =
70¢ 370 PMF 2.65 n.a. ~196 0.89 = 7

Abbreviations: m,, molecular weight; Tg, glass-transition temperature; Mp, melting point;
Dp, decomposition temperature.

36 n.a.
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6
Ignition and Combustion Mechanism of MTV

6.1
Ignition and Pre-Ignition of Metal/Fluorocarbon Pyrolants

Before ignition and steady-state combustion of a pyrolant, in the condensed
phase, very often an energy release step takes place that influences both ignition
and burn rate. This initial exothermal reaction is called pre-ignition reaction
(PIR) [1]. PIRs have been observed with a number of different pyrolants such
as Mg/NaNOs [2], Mg/BaO, [3], Zn/CsCl, [4], Al;Si,/C,Clg (5], B/KCIO, [6] and
finally metal/fluorocarbon systems.

It is generally assumed that the PIR yields a meta-stable species, M- - -AX,
constituted from both metallic fuel, M, and oxidant, AX, according to the general
Egs. (6.1) and (6.2):

k
M + AX —> M- --AX (6.1)

M---AX % MX + A (6.2)

where M is the metal and AX any oxidizing entity, with X being an electronegative
atom or atomic group.

The onset temperature of the pre-ignition reaction, Tpg, is usually independent
of the melting or decomposition temperature of the oxidizer but related to the
thermodynamic melting temperature, T,,q, of the metal:

Trir - 6.3)
Tinelt
For low melting metals such as Al, Mg and Zn, we find that « ~ 0.75 + 0.05;
however, with refractory fuels such as Ti and Zr, @ ~ 0.45 4 0.05. Table 6.1 lists
Tpir and onset temperature for steady-state combustion of a number of M/PTFE
(polytetrafluoroethylene) pyrolants.

6.2

Magnesium-Grignard Hypothesis

With AX being a fluorocarbon, the corresponding intermediate M - - - AX can be con-
sidered a Grignard-type compound with a general structure shown in Scheme 6.1.

Metal-Fluorocarbon Based Energetic Materials, First Edition. Ernst-Christian Koch.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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6.2 Magnesium —Grignard Hypothesis

Table 6.1  PIR-onset and steady-state combustion onset
temperatures for selected metal/fluorocarbon pyrolants.

System PIR (°C) Combustion (°C) References
Mg/PTFE 477 589 7]

Mg/PMF 520 600 8]

Al/PTFE 550 580 7]

Zn/PTFE 270 420 (9, 10]

Ti/PTFE 564 580 Ul

Zr/PTFE 510 570 (11, 12)
R,C-Mg-F Scheme 6.1 Fluorocarbon Grignard(l).

Scheme 6.2 Trifluoromethylphenylmagnesium chloride(ll).
FsC Mg-Cl

The driving force of this particular PIR reaction is the exothermic metal—fluorine
bond formation. On co-condensation of Mg atoms and alkyl halides (R-F) at
cryogenic temperatures (several 10 K), the formation of the corresponding Grignard
species has been observed [13-15]. Although the formation of fluorinated Grignard
species is known to be hampered for kinetic reasons, both activated magnesium
[16] and magnesium anthracene (Mg-Cis Hio) [17] give fluoro-Grignards in good
yields. In view of this the formation of fluoro-Grignards, in thermal reactions
appears a similar step. Both fluorinated and fluoro-Grignards are highly energetic
species as they are prone to eliminate MgF, in an exothermal reaction [18].
Trifluoromethylphenylmagnesium chloride (1) (assessed enthalpy of formation,
AfH = —956 k] mol ' [19]; Scheme 6.2) has been even observed to explode
fiercely [20, 21] according to Eq. (6.4):

(CF,)C HsMgCl —> MgF,(s) + HCl + HF + (C;) + H, + 533 K mol ' (6.4)

The formation of 1 by Knochel reaction [22] from trifluoromethylphenylbromide
with isopropylmagnesium(ll) chloride in solutions >1M can lead to a rapid
increase in temperature and pressure. Hence, this reaction must be diluted down
to <0.6 M to avoid catastrophic outcome [23].

The detonative potential of compositions based on Mg, benzotrifluoride a nd other
Auorocarbons had been investigated in the 1950s; the corresponding work is still
classified today (B.E. Douda, personal communication). Regardless of the known
dangers of these combinations, mixtures of metal powders and benzotrifluoride
have been proposed as liquid monopropellants.

At the beginning of the 1990s, it has been speculated that on combustion of
Magnesium/Teflon/Viton (MTV) a similar Grignard formation step could take
place [24]. For this purpose, Davis had investigated the gas-phase reaction of Mg
with CH3X, C;H3X (X = Cl, F)and C,F, at high level of theory. He showed that all
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Table 6.2 Activation energy (E;) (k) mol~) for Mg
insertion into C—F bond of CH3F, CH3F and CoF, and
reaction enthalpy for Grignard formation step.

Fluorocarbon Activation energy Reaction enthalpy
SCcFe Mp2* SCF® MP2¢
CH;F 49.5 28.5 179.1 -
C;HyF 56.5 25.4 168.6 226.7
C,F, 58.2 19.0 222.1 264.4

“SCF[6-31G**, Self consistent Field
"MP2/6-31G**//SCF/6-31G**, Moller-Plesset, MP
‘MP2/6-31G" [ IMP2/6-31G %%,

After Refs. [25-27].

Table 6.3 Calculated harmonic vibrational frequencies for
C2F3MgF [27, 28].

Assignment Wavenumber, v (cm™) Intensity (km mol~")
C-Mg-F 154 75
178 79
267 21
C-Mg 338 6
374 8
549 4
655 12
688 1
Mg-F $39 151
C-F 1098 50
C-C-F 1237 205
C-C-F 1439 196
C=C 1928 339

these reactions would exhibit sufficiently low activation energies and considerable
exothermicity to allow under combustion conditions (Table 6.2) [25-27]. Table 6.3
lists the calculated vibrational frequencies for the calculated specie C;F3MgF [27],
the structure of which is shown in Figure 6.1.

Davis also compared different possible reaction products formed in the re-

action between difluorocarbene — 4 major high-temperature pyrolysis product of
PTFE - and both Mg('S) and Mg(*P). From his observations, a similar Grignard
species appears energetically favoured together with a carbene-type species [24].
Thermal ignition of MTV is understood to start in the condensed phase with
heat release by either Grignard-type reaction of Mg with molten PTFE (Eqs. (6.5)
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6.2 Magnesium—Grignard Hypothesis

Figure 6.1 Calculated structure of C;F3MgF at SCF 6-
31G(d) level [28] C = green, F = yellow, Mg = silver.

and (6.6)) or fluoridation of Mg with any reactive fluorocarbon specie formed by
the decomposition of PTFE or Viton (Eq. (6.7)) [4]:

mMg + (C,F4), — (CF,—C(F)—Mg—F), + heat (6.5)
(CF,—C(F)—Mg—F), — (CF=CF),,—(C,F4), + m MgF,(s) + heat (6.6)
Mg + 2RFC—F — MgF,(s) + 2R"C + heat (6.7)

There is good reason to assume that fluoro-Grignards form as part of the PIR
in the condensed phase with Mg/PTFE and Mg/PMF (polycarbon monofluoride)
[9, 29]. Samples of both Mg/PTFE and Mg/PMF heated just above their observed
PIR-onset temperature (500 and 520°C) show signals in the FTIR spectrum
(Figures 6.2 and 6.3), which can be assigned to a C-Mg-F units. After further
exposure of the samples at T > 700 C, these structures disappear and characteristic
vibrations for MgF; are seen in both samples.

The heat released in these steps further supports decomposition of the fluoro-
carbon and melting the Mg. Once sufficient gaseous fluorocarbons are released,

90 4
— Mg/PTFE 800 °C > T< 700 °C
1 Mg/PTFE T> 700 “C
80 -
= i
o
~ 70
=
S
((:"’) 60 —
=
w
@ f
&
~ 50
40
T T T T T T T T I T T T T T LI
2000 1800 1600 1400 1200 1000 800 600 400

Wavenumber, v (cm ™)

Figure 6.2 FTIR spectra of Mg/PTFE pyrolant and residues at 600 and 700 C each [29].
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Figure 6.6 Mean-temperature profile for MTV pyrolant
(30/70/3) with 22 um Mg particles and 25 um PTFE particle
size, at 1 MPa pressure with data. (From Refs. [30-32].)
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Figure 6.7 DSC for Mg/PTFE pyrolant (30/70) with 45 um
Mg particles and 5 um PTFE particle size, at 0.1 MPa pres-
sure.

embedded Mg particles are ejected (Figure 6.4) and react adjacent to the surface
in the gas phase (Figure 6.5) as is evident from both high-speed photography and
UV-VIS spectroscopy (Chapter 9). These reactions yield a heat feedback to the
burning surface that, in turn, will accelerate the decomposition of PTFE and fusion
of Mg until steady-state conditions are reached.

A typical temperature profile of a burning MTV strand [30-32]at 1 MPa pressure
is shown in Figure 6.6. Below the surface, the strand temperature decreases
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Figure 6.8 Effect of stoichiometry on surface temperature at 1 MPa. (After Refs. [30-32].)
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Figure 6.9 Thermal conductivity of Mg/PTFE based on
either the Maywell or Rayleigh model [33].

following an exponential law. A few discontinuities are related to the fusion of Mg
and heat release by PIR. Below ~300 C, inert heating is assumed, thus not leading
toany enthalpy effects. The steep rise of temperature above 800 *C is indicative of the
hot gas phase above the surface. The surface temperature profile of the combustion
flame has been studied as a function of both stoichiometry and pressure. The PIR
of Mg/PTFE (30/70) is obvious from the DSC plot shown in Figure 6.7

The grain surface temperature shows influence by both pressure and
temperature.
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Figure 6.10 Influence of pressure on surface temperature of
two different MTV pyrolant grains. (After Refs. [30-32].)
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Figure 6.11 Influence of pressure on gas-phase temperature
of Mg/PTFE above surface. (After Ref. [34].)

The effect of stoichiometry on the strand surface temperature is shown in
Figure 6.8. It shows a temperature decrease with an increase in Mg content.
This can be related to increased composite thermal conductivity (Figure 6.9), which
effects faster dissipation of heat. At stoichiometries about 60 wt% Mg and above, the
surface temperature scatters around the fusion temperature of magnesium (660 C).

The influence of pressure on the temperature is less distinct. At§(Mg) = 60 wts,
the temperature is not affected largely by pressure changes between 0.1 and 2MPa
and scatters about 650-800 C. In contrast, the strand surface temperature of
a grain with lower Mg content (40w1%) displays decreasing temperature with
increasing pressure (Figure 6.10). This could be indicative of a Le Chatelier-type
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Figure 6.12 Modified qualitative structure of a pyrolant
combustion wave. (After Cudzito [36].)

effect on the decomposition reactions of PTFE according to formal Eq. (6.8);
(CyFs), —> nCFyf, AS<0 (6.8)

Figure 6.11 depicts the influence of both pressure and Mg content on the tem-
perature of the gas phase just above the burning surface determined with W/Re
thermocouples [34]. With 50 wt% Mg, a decrease in temperature is seen with
decreasing pressure. However, at 60 wt% Mg, the gas-phase temperature that scat-
ters about 1200 K seems unaffected by pressure in the range between 0.003 and
0.1MPa [1-3]. Even though the absolute temperatures are underestimated with
this method (Chapter 9), the general trend should hold valid.
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Figures 6.10 and 6.11 show that the thermal equilibrium of fuel-rich pyrolants
is less affected by pressure than that of fuel-lean grains, which explains the lower
pressure exponents of fuel-rich grains as we will discuss later.

In summary, the combustion of MTV pyrolant is determined by processes in
both gas and condensed phase. Cudzilo [36] has proposed a combustion wave
structure for MTV. In the pyrolant, an inert lemperature increase occurs that
is caused by heat conduction from the adjacent condensed-phase reaction zone.
In this zone, the decomposition of the fluorocarbon occurs and initial reaction
with magnesium takes place (Figure 6.12), giving rise to a further increase in
the temperature. Next to the condensed-phase combustion zone is the gas-phase
combustion zone that is divided into an anaerobic and aerobic part. In the former,
the initial decomposition products of the pyrolant react with greater homogeneity,
and in the latter, the primary combustion products mix with the atmospheric
oxygen and undergo after-burn reactions, allowing for a further increase in the
final temperature. The heat balance of these zones is determined by the thermal
conductivity of both the condensed pyrolant, and its primary combustion products
and the temperature-dependent emissivity of the pyrolant surface and the primary
combustion products.
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