Evaluation of Suspect Soil at Fence Lines and Railroad Track

for

United States Department of Agriculture (USDA)

at

Badger Army Ammunition Plant (BAAP) Baraboo, Wisconsin

Prepared by: Federal Occupational Health (FOH) 536 S. Clark Street Chicago, IL 60605

February 1, 2002

FROM THE FILES OF: Citizens for Safe Water Around Badger E12629 Weigand's Bay South Merrimac, WI 53561 www.cswab.org

gost copy

-

Table of Contents

Executive Summary		њ. -	T
Recommendations			2
I. Site Background and	Description		3
II. Scope of Work			4
III. Methodology			4
IV. Discussion			5

Appendices

A. BAAP Site Map

B. Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP

···-- -

C. Summary Tables for Soil Sample Results

D. USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie

E. State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals

F. State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Executive Summary

At the request of the United States Department of Agriculture (USDA), field personnel representing Federal Occupational Health (FOH) conducted soil sampling at certain fence lines and railroad track on the Badger Army Ammunition Plant (BAAP) where the presence of herbicide and heavy metal contamination could adversely impact USDA Dairy Forage Research Center (DFRC) operations. Specifically, DFRC wishes to acquire a parcel of land (Referred to herein as the USDA land), which is adjacent to its present site. This land is currently titled to BAAP. Soil at fence lines and railroad track on this parcel of land is suspect because it was common practice at ammunition manufacturing sites to spray herbicide at fence lines and railroad track to prevent weed growth. Many herbicides persist in the soil and, if present, could harm cattle grazing or crops growing in these areas.

On August 7, 2001, eleven composite soil samples were collected along three segments of fence line that separate BAAP from DRFC as well as along railroad track within the parcel of land. Samples were analyzed via US Environmental Protection Agency (EPA) methods for various herbicides and heavy metals. Sample results were compared to three sets of soil remediation goals to include those developed by the USDA Forest Service at the Midewin National Tallgrass Prairie, the Wisconsin Soil Remediation Objectives intended to protect human health in residential settings and the Illinois Tier I Soil Remediation Objectives for residential settings intended to protect human health via soil ingestion. (These sets of goals are referred to herein as Midewin, Wisconsin and Illinois.) Individual goals for 10 of the 26 herbicides identified in the samples are not available in any of these three sets of goals.

Only one herbicide in one sample exceeded the most stringent goal that has been established for it. Specifically, the dieldrin concentration in Sample A4C1 taken from the midpoint of the railroad track was 180 ug/kg as compared to the Illinois Tier I goal for residential property of 40 ug/kg. The Midewin goal for dieldrin is 2,000 ug/kg, and Wisconsin has not promulgated a goal for it.

All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. These arsenic levels in general are well below those found at JOAAP where fence line arsenic levels as high as 52,000 ug/kg were recorded. Further, the background level for arsenic in the BAAP area averages 16,000 ug/kg. None of them exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of the them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected

along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. These results for lead suggest that further investigation into lead levels throughout the southwestern portion of BAAP is advisable.

Recommendations

- 1. Provide this report to State of Wisconsin Department of Natural Resources (WDNR) personnel and BAAP management.
- 2. Collect additional soil samples for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east.

I. Site Description and Background

Site Description

BAAP is a government-owned, contractor-operated (GOCO) military industrial installation that is located in south-central Wisconsin, nine miles south of Baraboo and 30 miles northwest of Madison. It covers approximately 7,354 acres in Sauk County and is bordered to the north by Devil's Lake State Park, to the east and south by farmland, to the west by U.S. Highway 12 and to the southeast by Lake Wisconsin.

The topography in the eastern two-thirds is knob and kettle while the outwash plain west of the terminal moraine is level to gently sloping (ANL, 1988). Surface runoff is limited (ABB, 1993) being contained in depressed areas where it tends to evaporate. The main direction of drainage is to the south being partially controlled by man-made ditches.

The geology of the site consists of a thick sequence of unconsolidated sediments underlain by bedrock. At the surface, a five to ten foot thick clayey silt layer exists over most of the site. Two major aquifers exist beneath the facility to include an overburden aquifer approximately 100 feet below ground surface and an underlying sandstone bedrock aquifer. These aquifers are interconnected so that water can flow between them. Direction of flow appears to be from the bedrock aquifer into the overburden aquifer. The general direction of groundwater flow is south-southeast (ABB, 1993).

Background

BAAP operated during three multi-year periods totaling 18 years since being constructed in 1942 to provide nitrocellulose-based single base artillery propellant, double base solventless rocket propellant and double base ball propellant for World War II and the Korean and Vietnam conflicts. All major production activities were located north of Gate Road 6/16 that serves as, for the most part, the northern boundary of the USDA land. Most of the USDA land was either open ground or used for storage of BAAP product in magazine areas.

The DFRC is located just southeast of BAAP. Responsibility for operation of the site is shared by USDA and the University of Wisconsin. DFRC has leased almost 1250 acres of land over the last 20 years from BAAP for purposes of growing crops and grazing cattle. Use of this land has become a very important part of the DFRC operation. Now that this land is going to be returned to the public domain, USDA wishes to acquire title to the land it has leased in the past as well as approximately an additional 500 acres comprised of individual parcels interspersed throughout the leased land areas.

Little or no soil sampling has been performed on the USDA land at BAAP. The reason for this is that previous environmental site assessments including the Environmental Baseline Study (EBS) have concluded that it is improbable that BAAP operations would have resulted in any significant contamination of the USDA land. Department of the

3

•••••

Army (DOA) has a policy that precludes sampling of areas unless it is likely that they may be contaminated. This same policy was implemented at JOAAP where environmental site assessments failed to determine that fence lines had been sprayed with Brulin, an arsenic-containing herbicide, and, as a result, cattle grazing along fence line areas became ill and died of arsenic poisoning. The use of Brulin was discontinued, but arsenic contamination in the soil was not remediated to acceptable levels. A soil study conducted by USDA confirmed the presence of arsenic and other heavy metals in concentrations significantly higher than USDA deems acceptable to protect human health. As a result of that experience, USDA has commissioned this soil sampling work in an attempt to preclude a reoccurrence of such a situation at BAAP.

II. Scope of Work

The purpose of this work was to determine if soil present at fence lines or along the railroad track that would be incorporated into the USDA land is contaminated with herbicides or heavy metals such that these contaminants would adversely affect cattle grazing or crops growing in these areas. Specific tasks included:

- Conduct soil sampling along fence lines that separate BAAP and DFRC and the railroad track that runs northeast through the southeast portion of BAAP.
- Compare soil sample results to appropriate soil remediation goals.
- Provide a report of findings.

III. Methodology

Montgomery Watson Harza performed soil sampling at various areas along perimeter fence line and the railroad track that runs northeast through the southwest portion of BAAP in conjunction with FOH representatives. Eight composite samples were obtained of soil at the fence line, which was divided into three sections as a function of its proximity to land that DFRC wishes to acquire. Two samples were collected from Area 1, which extends from Gate 16 south to Gate 15. The second area, where two samples were collected, extends from the southwest corner of the BAAP property east to Gate 13. Four samples were collected from Area 3, which is located in the southeast portion of the BAAP property running between Gate 7 and Gate 8. Three composite soil samples were obtained of soil along the railroad track, which runs from the south fence line to Gate Road 7/16 and was designated as Area 4. See Appendix A.

Each Area was subdivided into a number of segments equal to the number of composite samples to be collected from that area. Five individual samples were then collected from zero to six inches within 12 inches of the fence or within the rail footprint at the centerline of the segment and at intervals of approximately100 and 200 yards on either side of the centerline location using stainless steel implements and containers. Equal volumes of the individual samples were then deposited into a stainless steel container and thoroughly mixed using a stainless steel implement. The composite sample was then

placed into glass containers, labeled and refrigerated. Implements and field containers were decontaminated between samples. Sample containers and one blank soil sample were transported to CT Laboratories in Baraboo, Wisconsin on August 7, 2001 for analysis.

Each soil sample was analyzed for organophosphate-organonitrate (OP-ON) pesticides via EPA Method 8141A, organochloride (OC) pesticides via EPA Method 8081, acid extractable pesticides via EPA Method 8151A, tebuthiuron (Brulan) via EPA Method 8321-HPLC UV, mercury via EPA Method 7471 and eight RCRA metals via EPA Method 6010B. Further, samples collected along the railroad track were analyzed for PCBs using EPA Method 8082.

IV. Discussion

Cleanup Goals

As was the case at JOAAP, DOA and USDA have not set a mutually acceptable set of cleanup goals for the USDA land at BAAP. In view of this, an attempt has been made to consider three sets of goals that seem most relevant to the situation under consideration. The Midewin goals were selected because of the similarities between BAAP and JOAAP and they were developed under the USDA aegis. It should be noted, however, that these goals have an interim status while deliberations continue to finalize them. The Wisconsin NR 720 goals were considered because BAAP is located in the State of Wisconsin, they are based on human health effects and Wisconsin officials will review all data generated at BAAP. Finally, Illinois Tier I goals were used because Illinois has promulgated goals for many more of the herbicides in question than Wisconsin, and these goals are also based on human health effects. USDA must decide which of these goals are the most appropriate to determine the need for additional sampling or soil remediation. See Appendices D, E and F.

Sample Results

In total 25 individual herbicides were identified in the eleven composite soil samples. Goals have been promulgated for 16 of these herbicides. Only one of the herbicides identified, dieldrin, exceeded its most stringent goal, and only in one of the 11 samples. This was Sample A4C1, which was collected at the midpoint of the railroad track. The dieldrin concentration in this sample was 180 ug/kg as compared to the Illinois Tier I level of 40 ug/kg for residential property. Dieldrin concentration in the sample did not exceed the Midewin goal of 2,000 ug/kg or the Illinois goal for industrial property of 400 ug/kg. See Appendix B for the MWH report of findings and Appendix C, Tables 1 and 2 for a summary of the MWH findings and a comparison of the highest MWH findings to the Midewin, Wisconsin and Illinois remediation goals, respectively.

Goals have not been established that can be used to judge cumulative toxicity when several herbicides are present at a given location. One approach to making such a judgment, assuming the toxicity of these herbicides to be additive, is to sum the quantities

5

of herbicide present in each composite sample for which remediation goals have been established, and then to compare the total quantity of herbicides present in the most concentrated sample to the sum of the most stringent individual goals that have been established for the herbicides present in that sample. The total concentration of individual herbicides found in any given sample ranged from 59 in Sample A2C1, which was taken at the southwestern fence line, to 3960 ug/kg found in Sample A4C1, which was collected at the midpoint of the railroad track. Goals have been established for 11 of the 19 herbicides found in Sample A4C1. The sum of individual concentrations of the 11 herbicides in Sample A4C1 was 2,335 ug/kg as compared to the sum of the most stringent goals established for the same 11 herbicides of 4,765,040 ug/kg. Thus, the 11 herbicides having goals were present at a level of only 0.049 percent of their respective most stringent goals. Based on this approach, it appears that the cumulative effect of the herbicides identified in any of the 11 composite soil samples does not appear to pose a serious risk to cattle that might graze nearby the fence line and railroad track, or crops that might be grown in these areas. This conclusion should be reviewed by professionals specializing in the disciplines of toxicology and risk assessment.

Two of the eight heavy metals analytes exceeded goals that have been established for them. These were arsenic and lead. All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. However, the background level for arsenic in the area averages 16,000 ug/kg. WDNR NR 720 explicitly states that when background levels exceed values stated in NR 720, the background level will prevail as the goal. None of sample results exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg. These results suggest that arsenic-containing herbicides such as Brulin were not used at BAAP to control fence line and railroad track weed growth.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. Based on this, additional soil samples should be collected for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east. However, it is advisable to discuss these

6

results with State of Wisconsin DNR personnel prior to conducting this type of sampling work.

Evaluation of Suspect Soil at Fence Lines and Railroad Track

for

United States Department of Agriculture (USDA)

at

Badger Army Ammunition Plant (BAAP) Baraboo, Wisconsin

Prepared by: Federal Occupational Health (FOH) 536 S. Clark Street Chicago, IL 60605

February 1, 2002

:

Table of Contents

Execut	tive Summary		◄	-	1
Recon	nmendations				2
I.	Site Background and I	Description		•	3
II.	Scope of Work				4
III.	Methodology	•			4
IV.	Discussion				5

Appendices

A. BAAP Site Map

B. Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP

11 1

C. Summary Tables for Soil Sample Results

D. USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie

E. State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals

F. State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Executive Summary

At the request of the United States Department of Agriculture (USDA), field personnel representing Federal Occupational Health (FOH) conducted soil sampling at certain fence lines and railroad track on the Badger Army Ammunition Plant (BAAP) where the presence of herbicide and heavy metal contamination could adversely impact USDA Dairy Forage Research Center (DFRC) operations. Specifically, DFRC wishes to acquire a parcel of land (Referred to herein as the USDA land), which is adjacent to its present site. This land is currently titled to BAAP. Soil at fence lines and railroad track on this parcel of land is suspect because it was common practice at ammunition manufacturing sites to spray herbicide at fence lines and railroad track to prevent weed growth. Many herbicides persist in the soil and, if present, could harm cattle grazing or crops growing in these areas.

On August 7, 2001, eleven composite soil samples were collected along three segments of fence line that separate BAAP from DRFC as well as along railroad track within the parcel of land. Samples were analyzed via US Environmental Protection Agency (EPA) methods for various herbicides and heavy metals. Sample results were compared to three sets of soil remediation goals to include those developed by the USDA Forest Service at the Midewin National Tallgrass Prairie, the Wisconsin Soil Remediation Objectives intended to protect human health in residential settings and the Illinois Tier I Soil Remediation Objectives for residential settings intended to protect human health via soil ingestion. (These sets of goals are referred to herein as Midewin, Wisconsin and Illinois.) Individual goals for 10 of the 26 herbicides identified in the samples are not available in any of these three sets of goals.

Only one herbicide in one sample exceeded the most stringent goal that has been established for it. Specifically, the dieldrin concentration in Sample A4C1 taken from the midpoint of the railroad track was 180 ug/kg as compared to the Illinois Tier I goal for residential property of 40 ug/kg. The Midewin goal for dieldrin is 2,000 ug/kg, and Wisconsin has not promulgated a goal for it.

All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. These arsenic levels in general are well below those found at JOAAP where fence line arsenic levels as high as 52,000 ug/kg were recorded. Further, the background level for arsenic in the BAAP area averages 16,000 ug/kg. None of them exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of the them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected

along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. These results for lead suggest that further investigation into lead levels throughout the southwestern portion of BAAP is advisable.

Recommendations

- 1. Provide this report to State of Wisconsin Department of Natural Resources (WDNR) personnel and BAAP management.
- 2. Collect additional soil samples for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east.

2

.

I. Site Description and Background

Site Description

BAAP is a government-owned, contractor-operated (GOCO) military industrial installation that is located in south-central Wisconsin, nine miles south of Baraboo and 30 miles northwest of Madison. It covers approximately 7,354 acres in Sauk County and is bordered to the north by Devil's Lake State Park, to the east and south by farmland, to the west by U.S. Highway 12 and to the southeast by Lake Wisconsin.

The topography in the eastern two-thirds is knob and kettle while the outwash plain west of the terminal moraine is level to gently sloping (ANL, 1988). Surface runoff is limited (ABB, 1993) being contained in depressed areas where it tends to evaporate. The main direction of drainage is to the south being partially controlled by man-made ditches.

The geology of the site consists of a thick sequence of unconsolidated sediments underlain by bedrock. At the surface, a five to ten foot thick clayey silt layer exists over most of the site. Two major aquifers exist beneath the facility to include an overburden aquifer approximately 100 feet below ground surface and an underlying sandstone bedrock aquifer. These aquifers are interconnected so that water can flow between them. Direction of flow appears to be from the bedrock aquifer into the overburden aquifer. The general direction of groundwater flow is south-southeast (ABB, 1993).

Background

BAAP operated during three multi-year periods totaling 18 years since being constructed in 1942 to provide nitrocellulose-based single base artillery propellant, double base solventless rocket propellant and double base ball propellant for World War II and the Korean and Vietnam conflicts. All major production activities were located north of Gate Road 6/16 that serves as, for the most part, the northern boundary of the USDA land. Most of the USDA land was either open ground or used for storage of BAAP product in magazine areas.

The DFRC is located just southeast of BAAP. Responsibility for operation of the site is shared by USDA and the University of Wisconsin. DFRC has leased almost 1250 acres of land over the last 20 years from BAAP for purposes of growing crops and grazing cattle. Use of this land has become a very important part of the DFRC operation. Now that this land is going to be returned to the public domain, USDA wishes to acquire title to the land it has leased in the past as well as approximately an additional 500 acres comprised of individual parcels interspersed throughout the leased land areas.

Little or no soil sampling has been performed on the USDA land at BAAP. The reason for this is that previous environmental site assessments including the Environmental Baseline Study (EBS) have concluded that it is improbable that BAAP operations would have resulted in any significant contamination of the USDA land. Department of the

Army (DOA) has a policy that precludes sampling of areas unless it is likely that they may be contaminated. This same policy was implemented at JOAAP where environmental site assessments failed to determine that fence lines had been sprayed with Brulin, an arsenic-containing herbicide, and, as a result, cattle grazing along fence line areas became ill and died of arsenic poisoning. The use of Brulin was discontinued, but arsenic contamination in the soil was not remediated to acceptable levels. A soil study conducted by USDA confirmed the presence of arsenic and other heavy metals in concentrations significantly higher than USDA deems acceptable to protect human health. As a result of that experience, USDA has commissioned this soil sampling work in an attempt to preclude a reoccurrence of such a situation at BAAP.

II. Scope of Work

The purpose of this work was to determine if soil present at fence lines or along the railroad track that would be incorporated into the USDA land is contaminated with herbicides or heavy metals such that these contaminants would adversely affect cattle grazing or crops growing in these areas. Specific tasks included:

- Conduct soil sampling along fence lines that separate BAAP and DFRC and the railroad track that runs northeast through the southeast portion of BAAP.
- Compare soil sample results to appropriate soil remediation goals.
- Provide a report of findings.

III. Methodology

Montgomery Watson Harza performed soil sampling at various areas along perimeter fence line and the railroad track that runs northeast through the southwest portion of BAAP in conjunction with FOH representatives. Eight composite samples were obtained of soil at the fence line, which was divided into three sections as a function of its proximity to land that DFRC wishes to acquire. Two samples were collected from Area 1, which extends from Gate 16 south to Gate 15. The second area, where two samples were collected, extends from the southwest corner of the BAAP property east to Gate 13. Four samples were collected from Area 3, which is located in the southeast portion of the BAAP property running between Gate 7 and Gate 8. Three composite soil samples were obtained of soil along the railroad track, which runs from the south fence line to Gate Road 7/16 and was designated as Area 4. See Appendix A.

Each Area was subdivided into a number of segments equal to the number of composite samples to be collected from that area. Five individual samples were then collected from zero to six inches within 12 inches of the fence or within the rail footprint at the centerline of the segment and at intervals of approximately100 and 200 yards on either side of the centerline location using stainless steel implements and containers. Equal volumes of the individual samples were then deposited into a stainless steel container and thoroughly mixed using a stainless steel implement. The composite sample was then

placed into glass containers, labeled and refrigerated. Implements and field containers were decontaminated between samples. Sample containers and one blank soil sample were transported to CT Laboratories in Baraboo, Wisconsin on August 7, 2001 for analysis.

Each soil sample was analyzed for organophosphate-organonitrate (OP-ON) pesticides via EPA Method 8141A, organochloride (OC) pesticides via EPA Method 8081, acid extractable pesticides via EPA Method 8151A, tebuthiuron (Brulan) via EPA Method 8321-HPLC UV, mercury via EPA Method 7471 and eight RCRA metals via EPA Method 6010B. Further, samples collected along the railroad track were analyzed for PCBs using EPA Method 8082.

IV. Discussion

Cleanup Goals

As was the case at JOAAP, DOA and USDA have not set a mutually acceptable set of cleanup goals for the USDA land at BAAP. In view of this, an attempt has been made to consider three sets of goals that seem most relevant to the situation under consideration. The Midewin goals were selected because of the similarities between BAAP and JOAAP and they were developed under the USDA aegis. It should be noted, however, that these goals have an interim status while deliberations continue to finalize them. The Wisconsin NR 720 goals were considered because BAAP is located in the State of Wisconsin, they are based on human health effects and Wisconsin officials will review all data generated at BAAP. Finally, Illinois Tier I goals were used because Illinois has promulgated goals for many more of the herbicides in question than Wisconsin, and these goals are also based on human health effects. USDA must decide which of these goals are the most appropriate to determine the need for additional sampling or soil remediation. See

Sample Results

In total 25 individual herbicides were identified in the eleven composite soil samples. Goals have been promulgated for 16 of these herbicides. Only one of the herbicides identified, dieldrin, exceeded its most stringent goal, and only in one of the 11 samples. This was Sample A4C1, which was collected at the midpoint of the railroad track. The dieldrin concentration in this sample was 180 ug/kg as compared to the Illinois Tier I level of 40 ug/kg for residential property. Dieldrin concentration in the sample did not exceed the Midewin goal of 2,000 ug/kg or the Illinois goal for industrial property of 400 ug/kg. See Appendix B for the MWH report of findings and Appendix C, Tables 1 and 2 for a summary of the MWH findings and a comparison of the highest MWH findings to the Midewin, Wisconsin and Illinois remediation goals, respectively.

Goals have not been established that can be used to judge cumulative toxicity when several herbicides are present at a given location. One approach to making such a judgment, assuming the toxicity of these herbicides to be additive, is to sum the quantities

of herbicide present in each composite sample for which remediation goals have been established, and then to compare the total quantity of herbicides present in the most concentrated sample to the sum of the most stringent individual goals that have been established for the herbicides present in that sample. The total concentration of individual herbicides found in any given sample ranged from 59 in Sample A2C1, which was taken at the southwestern fence line, to 3960 ug/kg found in Sample A4C1, which was collected at the midpoint of the railroad track. Goals have been established for 11 of the 19 herbicides found in Sample A4C1. The sum of individual concentrations of the 11 herbicides in Sample A4C1 was 2,335 ug/kg as compared to the sum of the most stringent goals established for the same 11 herbicides of 4,765,040 ug/kg. Thus, the 11 herbicides having goals were present at a level of only 0.049 percent of their respective most stringent goals. Based on this approach, it appears that the cumulative effect of the herbicides identified in any of the 11 composite soil samples does not appear to pose a serious risk to cattle that might graze nearby the fence line and railroad track, or crops that might be grown in these areas. This conclusion should be reviewed by professionals specializing in the disciplines of toxicology and risk assessment.

Two of the eight heavy metals analytes exceeded goals that have been established for them. These were arsenic and lead. All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. However, the background level for arsenic in the area averages 16,000 ug/kg. WDNR NR 720 explicitly states that when background levels exceed values stated in NR 720, the background level will prevail as the goal. None of sample results exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg. These results suggest that arsenic-containing herbicides such as Brulin were not used at BAAP to control fence line and railroad track weed growth.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. Based on this, additional soil samples should be collected for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east. However, it is advisable to discuss these

6

••••

results with State of Wisconsin DNR personnel prior to conducting this type of sampling work.

Evaluation of Suspect Soil at Fence Lines and Railroad Track

for

United States Department of Agriculture (USDA)

at

Badger Army Ammunition Plant (BAAP) Baraboo, Wisconsin

Prepared by: Federal Occupational Health (FOH) 536 S. Clark Street Chicago, IL 60605

February 1, 2002

:

•

Table of Contents

1

2

3

4

4

5

Execu	tive Summary			•		
Recon	nmendations			100 A. 100 A. 100 A.		
I.	Site Background and	Description	•	•	•	
П.	Scope of Work					
III.	Methodology					
IV.	Discussion					

Appendices

- A. BAAP Site Map
- B. Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP
- C. Summary Tables for Soil Sample Results
- D. USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie
- E. State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals
- F. State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Executive Summary

At the request of the United States Department of Agriculture (USDA), field personnel representing Federal Occupational Health (FOH) conducted soil sampling at certain fence lines and railroad track on the Badger Army Ammunition Plant (BAAP) where the presence of herbicide and heavy metal contamination could adversely impact USDA Dairy Forage Research Center (DFRC) operations. Specifically, DFRC wishes to acquire a parcel of land (Referred to herein as the USDA land), which is adjacent to its present site. This land is currently titled to BAAP. Soil at fence lines and railroad track on this parcel of land is suspect because it was common practice at ammunition manufacturing sites to spray herbicide at fence lines and railroad track to prevent weed growth. Many herbicides persist in the soil and, if present, could harm cattle grazing or crops growing in these areas.

On August 7, 2001, eleven composite soil samples were collected along three segments of fence line that separate BAAP from DRFC as well as along railroad track within the parcel of land. Samples were analyzed via US Environmental Protection Agency (EPA) methods for various herbicides and heavy metals. Sample results were compared to three sets of soil remediation goals to include those developed by the USDA Forest Service at the Midewin National Tallgrass Prairie, the Wisconsin Soil Remediation Objectives intended to protect human health in residential settings and the Illinois Tier I Soil Remediation Objectives for residential settings intended to protect human health via soil ingestion. (These sets of goals are referred to herein as Midewin, Wisconsin and Illinois.) Individual goals for 10 of the 26 herbicides identified in the samples are not available in any of these three sets of goals.

Only one herbicide in one sample exceeded the most stringent goal that has been established for it. Specifically, the dieldrin concentration in Sample A4C1 taken from the midpoint of the railroad track was 180 ug/kg as compared to the Illinois Tier I goal for residential property of 40 ug/kg. The Midewin goal for dieldrin is 2,000 ug/kg, and Wisconsin has not promulgated a goal for it.

All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. These arsenic levels in general are well below those found at JOAAP where fence line arsenic levels as high as 52,000 ug/kg were recorded. Further, the background level for arsenic in the BAAP area averages 16,000 ug/kg. None of them exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of the them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected

along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. These results for lead suggest that further investigation into lead levels throughout the southwestern portion of BAAP is advisable.

Recommendations

- 1. Provide this report to State of Wisconsin Department of Natural Resources (WDNR) personnel and BAAP management.
- 2. Collect additional soil samples for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east.

.2

I. Site Description and Background

Site Description

BAAP is a government-owned, contractor-operated (GOCO) military industrial installation that is located in south-central Wisconsin, nine miles south of Baraboo and 30 miles northwest of Madison. It covers approximately 7,354 acres in Sauk County and is bordered to the north by Devil's Lake State Park, to the east and south by farmland, to the west by U.S. Highway 12 and to the southeast by Lake Wisconsin.

The topography in the eastern two-thirds is knob and kettle while the outwash plain west of the terminal moraine is level to gently sloping (ANL, 1988). Surface runoff is limited (ABB, 1993) being contained in depressed areas where it tends to evaporate. The main direction of drainage is to the south being partially controlled by man-made ditches.

The geology of the site consists of a thick sequence of unconsolidated sediments underlain by bedrock. At the surface, a five to ten foot thick clayey silt layer exists over most of the site. Two major aquifers exist beneath the facility to include an overburden aquifer approximately 100 feet below ground surface and an underlying sandstone bedrock aquifer. These aquifers are interconnected so that water can flow between them. Direction of flow appears to be from the bedrock aquifer into the overburden aquifer. The general direction of groundwater flow is south-southeast (ABB, 1993).

Background

BAAP operated during three multi-year periods totaling 18 years since being constructed in 1942 to provide nitrocellulose-based single base artillery propellant, double base solventless rocket propellant and double base ball propellant for World War II and the Korean and Vietnam conflicts. All major production activities were located north of Gate Road 6/16 that serves as, for the most part, the northern boundary of the USDA land. Most of the USDA land was either open ground or used for storage of BAAP product in magazine areas.

The DFRC is located just southeast of BAAP. Responsibility for operation of the site is shared by USDA and the University of Wisconsin. DFRC has leased almost 1250 acres of land over the last 20 years from BAAP for purposes of growing crops and grazing cattle. Use of this land has become a very important part of the DFRC operation. Now that this land is going to be returned to the public domain, USDA wishes to acquire title to the land it has leased in the past as well as approximately an additional 500 acres comprised of individual parcels interspersed throughout the leased land areas.

Little or no soil sampling has been performed on the USDA land at BAAP. The reason for this is that previous environmental site assessments including the Environmental Baseline Study (EBS) have concluded that it is improbable that BAAP operations would have resulted in any significant contamination of the USDA land. Department of the

3

1. . .

Army (DOA) has a policy that precludes sampling of areas unless it is likely that they may be contaminated. This same policy was implemented at JOAAP where environmental site assessments failed to determine that fence lines had been sprayed with Brulin, an arsenic-containing herbicide, and, as a result, cattle grazing along fence line areas became ill and died of arsenic poisoning. The use of Brulin was discontinued, but arsenic contamination in the soil was not remediated to acceptable levels. A soil study conducted by USDA confirmed the presence of arsenic and other heavy metals in concentrations significantly higher than USDA deems acceptable to protect human health. As a result of that experience, USDA has commissioned this soil sampling work in an attempt to preclude a reoccurrence of such a situation at BAAP.

II. Scope of Work

The purpose of this work was to determine if soil present at fence lines or along the railroad track that would be incorporated into the USDA land is contaminated with herbicides or heavy metals such that these contaminants would adversely affect cattle grazing or crops growing in these areas. Specific tasks included:

- Conduct soil sampling along fence lines that separate BAAP and DFRC and the railroad track that runs northeast through the southeast portion of BAAP.
- Compare soil sample results to appropriate soil remediation goals.
- Provide a report of findings.

III. Methodology

Montgomery Watson Harza performed soil sampling at various areas along perimeter fence line and the railroad track that runs northeast through the southwest portion of BAAP in conjunction with FOH representatives. Eight composite samples were obtained of soil at the fence line, which was divided into three sections as a function of its proximity to land that DFRC wishes to acquire. Two samples were collected from Area 1, which extends from Gate 16 south to Gate 15. The second area, where two samples were collected, extends from the southwest corner of the BAAP property east to Gate 13. Four samples were collected from Area 3, which is located in the southeast portion of the BAAP property running between Gate 7 and Gate 8. Three composite soil samples were obtained of soil along the railroad track, which runs from the south fence line to Gate Road 7/16 and was designated as Area 4. See Appendix A.

Each Area was subdivided into a number of segments equal to the number of composite samples to be collected from that area. Five individual samples were then collected from zero to six inches within 12 inches of the fence or within the rail footprint at the centerline of the segment and at intervals of approximately100 and 200 yards on either side of the centerline location using stainless steel implements and containers. Equal volumes of the individual samples were then deposited into a stainless steel container and thoroughly mixed using a stainless steel implement. The composite sample was then

placed into glass containers, labeled and refrigerated. Implements and field containers were decontaminated between samples. Sample containers and one blank soil sample were transported to CT Laboratories in Baraboo, Wisconsin on August 7, 2001 for analysis.

Each soil sample was analyzed for organophosphate-organonitrate (OP-ON) pesticides via EPA Method 8141A, organochloride (OC) pesticides via EPA Method 8081, acid extractable pesticides via EPA Method 8151A, tebuthiuron (Brulan) via EPA Method 8321-HPLC UV, mercury via EPA Method 7471 and eight RCRA metals via EPA Method 6010B. Further, samples collected along the railroad track were analyzed for PCBs using EPA Method 8082.

IV. Discussion

Cleanup Goals

As was the case at JOAAP, DOA and USDA have not set a mutually acceptable set of cleanup goals for the USDA land at BAAP. In view of this, an attempt has been made to consider three sets of goals that seem most relevant to the situation under consideration. The Midewin goals were selected because of the similarities between BAAP and JOAAP and they were developed under the USDA aegis. It should be noted, however, that these goals have an interim status while deliberations continue to finalize them. The Wisconsin NR 720 goals were considered because BAAP is located in the State of Wisconsin, they are based on human health effects and Wisconsin officials will review all data generated at BAAP. Finally, Illinois Tier I goals were used because Illinois has promulgated goals for many more of the herbicides in question than Wisconsin, and these goals are also based on human health effects. USDA must decide which of these goals are the most appropriate to determine the need for additional sampling or soil remediation. See Appendices D, E and F.

Sample Results

In total 25 individual herbicides were identified in the eleven composite soil samples. Goals have been promulgated for 16 of these herbicides. Only one of the herbicides identified, dieldrin, exceeded its most stringent goal, and only in one of the 11 samples. This was Sample A4C1, which was collected at the midpoint of the railroad track. The dieldrin concentration in this sample was 180 ug/kg as compared to the Illinois Tier I level of 40 ug/kg for residential property. Dieldrin concentration in the sample did not exceed the Midewin goal of 2,000 ug/kg or the Illinois goal for industrial property of 400 ug/kg. See Appendix B for the MWH report of findings and Appendix C, Tables 1 and 2 for a summary of the MWH findings and a comparison of the highest MWH findings to the Midewin, Wisconsin and Illinois remediation goals, respectively.

Goals have not been established that can be used to judge cumulative toxicity when several herbicides are present at a given location. One approach to making such a judgment, assuming the toxicity of these herbicides to be additive, is to sum the quantities

-

of herbicide present in each composite sample for which remediation goals have been established, and then to compare the total quantity of herbicides present in the most concentrated sample to the sum of the most stringent individual goals that have been established for the herbicides present in that sample. The total concentration of individual herbicides found in any given sample ranged from 59 in Sample A2C1, which was taken at the southwestern fence line, to 3960 ug/kg found in Sample A4C1, which was collected at the midpoint of the railroad track. Goals have been established for 11 of the 19 herbicides found in Sample A4C1. The sum of individual concentrations of the 11 herbicides in Sample A4C1 was 2,335 ug/kg as compared to the sum of the most stringent goals established for the same 11 herbicides of 4,765,040 ug/kg. Thus, the 11 herbicides having goals were present at a level of only 0.049 percent of their respective most stringent goals. Based on this approach, it appears that the cumulative effect of the herbicides identified in any of the 11 composite soil samples does not appear to pose a serious risk to cattle that might graze nearby the fence line and railroad track, or crops that might be grown in these areas. This conclusion should be reviewed by professionals specializing in the disciplines of toxicology and risk assessment.

Two of the eight heavy metals analytes exceeded goals that have been established for them. These were arsenic and lead. All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. However, the background level for arsenic in the area averages 16,000 ug/kg. WDNR NR 720 explicitly states that when background levels exceed values stated in NR 720, the background level will prevail as the goal. None of sample results exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg. These results suggest that arsenic-containing herbicides such as Brulin were not used at BAAP to control fence line and railroad track weed growth.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. Based on this, additional soil samples should be collected for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter force lines to the west and south and the ramos' mark to the east. However, it is advisable to discuss these

results with State of Wisconsin DNR personnel prior to conducting this type of sampling work.

Evaluation of Suspect Soil at Fence Lines and Railroad Track

for

United States Department of Agriculture (USDA)

at

Badger Army Ammunition Plant (BAAP) Baraboo, Wisconsin

Prepared by: Federal Occupational Health (FOH) 536 S. Clark Street Chicago, IL 60605

February 1, 2002

٠.

Table of Contents

Execu	tive Summary			1
Recon	nmendations			2
I.	Site Background and	Description	•	3
II.	Scope of Work			4
III.	Methodology			4
IV.	Discussion			5

Appendices

A. BAAP Site Map

B. Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP

•

- C. Summary Tables for Soil Sample Results
- D. USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie
- E. State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals
- F. State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Executive Summary

At the request of the United States Department of Agriculture (USDA), field personnel representing Federal Occupational Health (FOH) conducted soil sampling at certain fence lines and railroad track on the Badger Army Ammunition Plant (BAAP) where the presence of herbicide and heavy metal contamination could adversely impact USDA Dairy Forage Research Center (DFRC) operations. Specifically, DFRC wishes to acquire a parcel of land (Referred to herein as the USDA land), which is adjacent to its present site. This land is currently titled to BAAP. Soil at fence lines and railroad track on this parcel of land is suspect because it was common practice at ammunition manufacturing sites to spray herbicide at fence lines and railroad track to prevent weed growth. Many herbicides persist in the soil and, if present, could harm cattle grazing or crops growing in these areas.

On August 7, 2001, eleven composite soil samples were collected along three segments of fence line that separate BAAP from DRFC as well as along railroad track within the parcel of land. Samples were analyzed via US Environmental Protection Agency (EPA) methods for various herbicides and heavy metals. Sample results were compared to three sets of soil remediation goals to include those developed by the USDA Forest Service at the Midewin National Tallgrass Prairie, the Wisconsin Soil Remediation Objectives intended to protect human health in residential settings and the Illinois Tier I Soil Remediation Objectives for residential settings intended to protect human health via soil ingestion. (These sets of goals are referred to herein as Midewin, Wisconsin and Illinois.) Individual goals for 10 of the 26 herbicides identified in the samples are not available in any of these three sets of goals.

Only one herbicide in one sample exceeded the most stringent goal that has been established for it. Specifically, the dieldrin concentration in Sample A4C1 taken from the midpoint of the railroad track was 180 ug/kg as compared to the Illinois Tier I goal for residential property of 40 ug/kg. The Midewin goal for dieldrin is 2,000 ug/kg, and Wisconsin has not promulgated a goal for it.

All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. These arsenic levels in general are well below those found at JOAAP where fence line arsenic levels as high as 52,000 ug/kg were recorded. Further, the background level for arsenic in the BAAP area averages 16,000 ug/kg. None of them exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of the them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected

along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. These results for lead suggest that further investigation into lead levels throughout the southwestern portion of BAAP is advisable.

Recommendations

- 1. Provide this report to State of Wisconsin Department of Natural Resources (WDNR) personnel and BAAP management.
- Collect additional soil samples for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east.

I. Site Description and Background

Site Description

BAAP is a government-owned, contractor-operated (GOCO) military industrial installation that is located in south-central Wisconsin, nine miles south of Baraboo and 30 miles northwest of Madison. It covers approximately 7,354 acres in Sauk County and is bordered to the north by Devil's Lake State Park, to the east and south by farmland, to the west by U.S. Highway 12 and to the southeast by Lake Wisconsin.

The topography in the eastern two-thirds is knob and kettle while the outwash plain west of the terminal moraine is level to gently sloping (ANL, 1988). Surface runoff is limited (ABB, 1993) being contained in depressed areas where it tends to evaporate. The main direction of drainage is to the south being partially controlled by man-made ditches.

The geology of the site consists of a thick sequence of unconsolidated sediments underlain by bedrock. At the surface, a five to ten foot thick clayey silt layer exists over most of the site. Two major aquifers exist beneath the facility to include an overburden aquifer approximately 100 feet below ground surface and an underlying sandstone bedrock aquifer. These aquifers are interconnected so that water can flow between them. Direction of flow appears to be from the bedrock aquifer into the overburden aquifer. The general direction of groundwater flow is south-southeast (ABB, 1993).

Background

BAAP operated during three multi-year periods totaling 18 years since being constructed in 1942 to provide nitrocellulose-based single base artillery propellant, double base solventless rocket propellant and double base ball propellant for World War II and the Korean and Vietnam conflicts. All major production activities were located north of Gate Road 6/16 that serves as, for the most part, the northern boundary of the USDA land. Most of the USDA land was either open ground or used for storage of BAAP product in magazine areas.

The DFRC is located just southeast of BAAP. Responsibility for operation of the site is shared by USDA and the University of Wisconsin. DFRC has leased almost 1250 acres of land over the last 20 years from BAAP for purposes of growing crops and grazing cattle. Use of this land has become a very important part of the DFRC operation. Now that this land is going to be returned to the public domain, USDA wishes to acquire title to the land it has leased in the past as well as approximately an additional 500 acres comprised of individual parcels interspersed throughout the leased land areas.

Little or no soil sampling has been performed on the USDA land at BAAP. The reason for this is that previous environmental site assessments including the Environmental Baseline Study (EBS) have concluded that it is improbable that BAAP operations would have resulted in any significant contamination of the USDA land. Department of the

Army (DOA) has a policy that precludes sampling of areas unless it is likely that they may be contaminated. This same policy was implemented at JOAAP where environmental site assessments failed to determine that fence lines had been sprayed with Brulin, an arsenic-containing herbicide, and, as a result, cattle grazing along fence line areas became ill and died of arsenic poisoning. The use of Brulin was discontinued, but arsenic contamination in the soil was not remediated to acceptable levels. A soil study conducted by USDA confirmed the presence of arsenic and other heavy metals in concentrations significantly higher than USDA deems acceptable to protect human health. As a result of that experience, USDA has commissioned this soil sampling work in an attempt to preclude a reoccurrence of such a situation at BAAP.

II. Scope of Work

The purpose of this work was to determine if soil present at fence lines or along the railroad track that would be incorporated into the USDA land is contaminated with herbicides or heavy metals such that these contaminants would adversely affect cattle grazing or crops growing in these areas. Specific tasks included:

- Conduct soil sampling along fence lines that separate BAAP and DFRC and the railroad track that runs northeast through the southeast portion of BAAP.
- Compare soil sample results to appropriate soil remediation goals.
- Provide a report of findings.

III. Methodology

Montgomery Watson Harza performed soil sampling at various areas along perimeter fence line and the railroad track that runs northeast through the southwest portion of BAAP in conjunction with FOH representatives. Eight composite samples were obtained of soil at the fence line, which was divided into three sections as a function of its proximity to land that DFRC wishes to acquire. Two samples were collected from Area 1, which extends from Gate 16 south to Gate 15. The second area, where two samples were collected, extends from the southwest corner of the BAAP property east to Gate 13. Four samples were collected from Area 3, which is located in the southeast portion of the BAAP property running between Gate 7 and Gate 8. Three composite soil samples were obtained of soil along the railroad track, which runs from the south fence line to Gate Road 7/16 and was designated as Area 4. See Appendix A.

Each Area was subdivided into a number of segments equal to the number of composite samples to be collected from that area. Five individual samples were then collected from zero to six inches within 12 inches of the fence or within the rail footprint at the centerline of the segment and at intervals of approximately100 and 200 yards on either side of the centerline location using stainless steel implements and containers. Equal volumes of the individual samples were then deposited into a stainless steel container and thoroughly mixed using a stainless steel implement. The composite sample was then

placed into glass containers, labeled and refrigerated. Implements and field containers were decontaminated between samples. Sample containers and one blank soil sample were transported to CT Laboratories in Baraboo, Wisconsin on August 7, 2001 for analysis.

Each soil sample was analyzed for organophosphate-organonitrate (OP-ON) pesticides via EPA Method 8141A, organochloride (OC) pesticides via EPA Method 8081, acid extractable pesticides via EPA Method 8151A, tebuthiuron (Brulan) via EPA Method 8321-HPLC UV, mercury via EPA Method 7471 and eight RCRA metals via EPA Method 6010B. Further, samples collected along the railroad track were analyzed for PCBs using EPA Method 8082.

IV. Discussion

Cleanup Goals

As was the case at JOAAP, DOA and USDA have not set a mutually acceptable set of cleanup goals for the USDA land at BAAP. In view of this, an attempt has been made to consider three sets of goals that seem most relevant to the situation under consideration. The Midewin goals were selected because of the similarities between BAAP and JOAAP and they were developed under the USDA aegis. It should be noted, however, that these goals have an interim status while deliberations continue to finalize them. The Wisconsin NR 720 goals were considered because BAAP is located in the State of Wisconsin, they are based on human health effects and Wisconsin officials will review all data generated at BAAP. Finally, Illinois Tier I goals were used because Illinois has promulgated goals for many more of the herbicides in question than Wisconsin, and these goals are also based on human health effects. USDA must decide which of these goals are the most appropriate to determine the need for additional sampling or soil remediation. See Appendices D, E and F.

Sample Results

In total 25 individual herbicides were identified in the eleven composite soil samples. Goals have been promulgated for 16 of these herbicides. Only one of the herbicides identified, dieldrin, exceeded its most stringent goal, and only in one of the 11 samples. This was Sample A4C1, which was collected at the midpoint of the railroad track. The dieldrin concentration in this sample was 180 ug/kg as compared to the Illinois Tier I level of 40 ug/kg for residential property. Dieldrin concentration in the sample did not exceed the Midewin goal of 2,000 ug/kg or the Illinois goal for industrial property of 400 ug/kg. See Appendix B for the MWH report of findings and Appendix C, Tables 1 and 2 for a summary of the MWH findings and a comparison of the highest MWH findings to the Midewin, Wisconsin and Illinois remediation goals, respectively.

Goals have not been established that can be used to judge cumulative toxicity when several herbicides are present at a given location. One approach to making such a judgment, assuming the toxicity of these herbicides to be additive, is to sum the quantities

-5

of herbicide present in each composite sample for which remediation goals have been established, and then to compare the total quantity of herbicides present in the most concentrated sample to the sum of the most stringent individual goals that have been established for the herbicides present in that sample. The total concentration of individual herbicides found in any given sample ranged from 59 in Sample A2C1, which was taken at the southwestern fence line, to 3960 ug/kg found in Sample A4C1, which was collected at the midpoint of the railroad track. Goals have been established for 11 of the 19 herbicides found in Sample A4C1. The sum of individual concentrations of the 11 herbicides in Sample A4C1 was 2,335 ug/kg as compared to the sum of the most stringent goals established for the same 11 herbicides of 4,765,040 ug/kg. Thus, the 11 herbicides having goals were present at a level of only 0.049 percent of their respective most stringent goals. Based on this approach, it appears that the cumulative effect of the herbicides identified in any of the 11 composite soil samples does not appear to pose a serious risk to cattle that might graze nearby the fence line and railroad track, or crops that might be grown in these areas. This conclusion should be reviewed by professionals specializing in the disciplines of toxicology and risk assessment.

Two of the eight heavy metals analytes exceeded goals that have been established for them. These were arsenic and lead. All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. However, the background level for arsenic in the area averages 16,000 ug/kg. WDNR NR 720 explicitly states that when background levels exceed values stated in NR 720, the background level will prevail as the goal. None of sample results exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg. These results suggest that arsenic-containing herbicides such as Brulin were not used at BAAP to control fence line and railroad track weed growth.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. Based on this, additional soil samples should be collected for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east. However, it is advisable to discuss these

6

•••••

results with State of Wisconsin DNR personnel prior to conducting this type of sampling work.

7

.
Evaluation of Suspect Soil at Fence Lines and Railroad Track

for

United States Department of Agriculture (USDA)

at

Badger Army Ammunition Plant (BAAP) Baraboo, Wisconsin

Prepared by: Federal Occupational Health (FOH) 536 S. Clark Street Chicago, IL 60605

February 1, 2002

FROM THE FILES OF: Citizens for Safe Water Around Badger E12629 Weigand's Bay South Merrimac, WI 53561 www.cswab.org

. . .

Table of Contents

Execu	tive Summary			1
Recon	umendations	· · · · ·		2
I.	Site Background and Description		•	3
II.	Scope of Work			4
Ш.	Methodology			4
IV.	Discussion			5

Appendices

- A. BAAP Site Map
- B. Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP
- C. Summary Tables for Soil Sample Results
- D. USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie
- E. State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals
- F. State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Executive Summary

At the request of the United States Department of Agriculture (USDA), field personnel representing Federal Occupational Health (FOH) conducted soil sampling at certain fence lines and railroad track on the Badger Army Ammunition Plant (BAAP) where the presence of herbicide and heavy metal contamination could adversely impact USDA Dairy Forage Research Center (DFRC) operations. Specifically, DFRC wishes to acquire a parcel of land (Referred to herein as the USDA land), which is adjacent to its present site. This land is currently titled to BAAP. Soil at fence lines and railroad track on this parcel of land is suspect because it was common practice at ammunition manufacturing sites to spray herbicide at fence lines and railroad track to prevent weed growth. Many herbicides persist in the soil and, if present, could harm cattle grazing or crops growing in these areas.

On August 7, 2001, eleven composite soil samples were collected along three segments of fence line that separate BAAP from DRFC as well as along railroad track within the parcel of land. Samples were analyzed via US Environmental Protection Agency (EPA) methods for various herbicides and heavy metals. Sample results were compared to three sets of soil remediation goals to include those developed by the USDA Forest Service at the Midewin National Tallgrass Prairie, the Wisconsin Soil Remediation Objectives intended to protect human health in residential settings and the Illinois Tier I Soil Remediation Objectives for residential settings intended to protect human health via soil ingestion. (These sets of goals are referred to herein as Midewin, Wisconsin and Illinois.) Individual goals for 10 of the 26 herbicides identified in the samples are not available in any of these three sets of goals.

Only one herbicide in one sample exceeded the most stringent goal that has been established for it. Specifically, the dieldrin concentration in Sample A4C1 taken from the midpoint of the railroad track was 180 ug/kg as compared to the Illinois Tier I goal for residential property of 40 ug/kg. The Midewin goal for dieldrin is 2,000 ug/kg, and Wisconsin has not promulgated a goal for it.

All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. These arsenic levels in general are well below those found at JOAAP where fence line arsenic levels as high as 52,000 ug/kg were recorded. Further, the background level for arsenic in the BAAP area averages 16,000 ug/kg. None of them exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of the them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected

along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. These results for lead suggest that further investigation into lead levels throughout the southwestern portion of BAAP is advisable.

Recommendations

- 1. Provide this report to State of Wisconsin Department of Natural Resources (WDNR) personnel and BAAP management.
- 2. Collect additional soil samples for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east.

•

I. Site Description and Background

Site Description

BAAP is a government-owned, contractor-operated (GOCO) military industrial installation that is located in south-central Wisconsin, nine miles south of Baraboo and 30 miles northwest of Madison. It covers approximately 7,354 acres in Sauk County and is bordered to the north by Devil's Lake State Park, to the east and south by farmland, to the west by U.S. Highway 12 and to the southeast by Lake Wisconsin.

The topography in the eastern two-thirds is knob and kettle while the outwash plain west of the terminal moraine is level to gently sloping (ANL, 1988). Surface runoff is limited (ABB, 1993) being contained in depressed areas where it tends to evaporate. The main direction of drainage is to the south being partially controlled by man-made ditches.

The geology of the site consists of a thick sequence of unconsolidated sediments underlain by bedrock. At the surface, a five to ten foot thick clayey silt layer exists over most of the site. Two major aquifers exist beneath the facility to include an overburden aquifer approximately 100 feet below ground surface and an underlying sandstone bedrock aquifer. These aquifers are interconnected so that water can flow between them. Direction of flow appears to be from the bedrock aquifer into the overburden aquifer. The general direction of groundwater flow is south-southeast (ABB, 1993).

Background

BAAP operated during three multi-year periods totaling 18 years since being constructed in 1942 to provide nitrocellulose-based single base artillery propellant, double base solventless rocket propellant and double base ball propellant for World War II and the Korean and Vietnam conflicts. All major production activities were located north of Gate Road 6/16 that serves as, for the most part, the northern boundary of the USDA land. Most of the USDA land was either open ground or used for storage of BAAP product in magazine areas.

The DFRC is located just southeast of BAAP. Responsibility for operation of the site is shared by USDA and the University of Wisconsin. DFRC has leased almost 1250 acres of land over the last 20 years from BAAP for purposes of growing crops and grazing cattle. Use of this land has become a very important part of the DFRC operation. Now that this land is going to be returned to the public domain, USDA wishes to acquire title to the land it has leased in the past as well as approximately an additional 500 acres comprised of individual parcels interspersed throughout the leased land areas.

Little or no soil sampling has been performed on the USDA land at BAAP. The reason for this is that previous environmental site assessments including the Environmental Baseline Study (EBS) have concluded that it is improbable that BAAP operations would have resulted in any significant contamination of the USDA land. Department of the

3

Army (DOA) has a policy that precludes sampling of areas unless it is likely that they may be contaminated. This same policy was implemented at JOAAP where environmental site assessments failed to determine that fence lines had been sprayed with Brulin, an arsenic-containing herbicide, and, as a result, cattle grazing along fence line areas became ill and died of arsenic poisoning. The use of Brulin was discontinued, but arsenic contamination in the soil was not remediated to acceptable levels. A soil study conducted by USDA confirmed the presence of arsenic and other heavy metals in concentrations significantly higher than USDA deems acceptable to protect human health. As a result of that experience, USDA has commissioned this soil sampling work in an attempt to preclude a reoccurrence of such a situation at BAAP.

II. Scope of Work

The purpose of this work was to determine if soil present at fence lines or along the railroad track that would be incorporated into the USDA land is contaminated with herbicides or heavy metals such that these contaminants would adversely affect cattle grazing or crops growing in these areas. Specific tasks included:

- Conduct soil sampling along fence lines that separate BAAP and DFRC and the railroad track that runs northeast through the southeast portion of BAAP.
- Compare soil sample results to appropriate soil remediation goals.
- Provide a report of findings.

III. Methodology

Montgomery Watson Harza performed soil sampling at various areas along perimeter fence line and the railroad track that runs northeast through the southwest portion of BAAP in conjunction with FOH representatives. Eight composite samples were obtained of soil at the fence line, which was divided into three sections as a function of its proximity to land that DFRC wishes to acquire. Two samples were collected from Area 1, which extends from Gate 16 south to Gate 15. The second area, where two samples were collected, extends from the southwest corner of the BAAP property east to Gate 13. Four samples were collected from Area 3, which is located in the southeast portion of the BAAP property running between Gate 7 and Gate 8. Three composite soil samples were obtained of soil along the railroad track, which runs from the south fence line to Gate Road 7/16 and was designated as Area 4. See Appendix A.

Each Area was subdivided into a number of segments equal to the number of composite samples to be collected from that area. Five individual samples were then collected from zero to six inches within 12 inches of the fence or within the rail footprint at the centerline of the segment and at intervals of approximately100 and 200 yards on either side of the centerline location using stainless steel implements and containers. Equal volumes of the individual samples were then deposited into a stainless steel container and thoroughly mixed using a stainless steel implement. The composite sample was then

placed into glass containers, labeled and refrigerated. Implements and field containers were decontaminated between samples. Sample containers and one blank soil sample were transported to CT Laboratories in Baraboo, Wisconsin on August 7, 2001 for analysis.

Each soil sample was analyzed for organophosphate-organonitrate (OP-ON) pesticides via EPA Method 8141A, organochloride (OC) pesticides via EPA Method 8081, acid extractable pesticides via EPA Method 8151A, tebuthiuron (Brulan) via EPA Method 8321-HPLC UV, mercury via EPA Method 7471 and eight RCRA metals via EPA Method 6010B. Further, samples collected along the railroad track were analyzed for PCBs using EPA Method 8082.

IV. Discussion

Cleanup Goals

As was the case at JOAAP, DOA and USDA have not set a mutually acceptable set of cleanup goals for the USDA land at BAAP. In view of this, an attempt has been made to consider three sets of goals that seem most relevant to the situation under consideration. The Midewin goals were selected because of the similarities between BAAP and JOAAP and they were developed under the USDA aegis. It should be noted, however, that these goals have an interim status while deliberations continue to finalize them. The Wisconsin NR 720 goals were considered because BAAP is located in the State of Wisconsin, they are based on human health effects and Wisconsin officials will review all data generated at BAAP. Finally, Illinois Tier I goals were used because Illinois has promulgated goals for many more of the herbicides in question than Wisconsin, and these goals are also based on human health effects. USDA must decide which of these goals are the most appropriate to determine the need for additional sampling or soil remediation. See Appendices D, E and F.

Sample Results

In total 25 individual herbicides were identified in the eleven composite soil samples. Goals have been promulgated for 16 of these herbicides. Only one of the herbicides identified, dieldrin, exceeded its most stringent goal, and only in one of the 11 samples. This was Sample A4C1, which was collected at the midpoint of the railroad track. The dieldrin concentration in this sample was 180 ug/kg as compared to the Illinois Tier I level of 40 ug/kg for residential property. Dieldrin concentration in the sample did not exceed the Midewin goal of 2,000 ug/kg or the Illinois goal for industrial property of 400 ug/kg. See Appendix B for the MWH report of findings and Appendix C, Tables 1 and 2 for a summary of the MWH findings and a comparison of the highest MWH findings to the Midewin, Wisconsin and Illinois remediation goals, respectively.

Goals have not been established that can be used to judge cumulative toxicity when several herbicides are present at a given location. One approach to making such a judgment, assuming the toxicity of these herbicides to be additive, is to sum the quantities

5

of herbicide present in each composite sample for which remediation goals have been established, and then to compare the total quantity of herbicides present in the most concentrated sample to the sum of the most stringent individual goals that have been established for the herbicides present in that sample. The total concentration of individual herbicides found in any given sample ranged from 59 in Sample A2C1, which was taken at the southwestern fence line, to 3960 ug/kg found in Sample A4C1, which was collected at the midpoint of the railroad track. Goals have been established for 11 of the 19 herbicides found in Sample A4C1. The sum of individual concentrations of the 11 herbicides in Sample A4C1 was 2,335 ug/kg as compared to the sum of the most stringent goals established for the same 11 herbicides of 4,765,040 ug/kg. Thus, the 11 herbicides having goals were present at a level of only 0.049 percent of their respective most stringent goals. Based on this approach, it appears that the cumulative effect of the herbicides identified in any of the 11 composite soil samples does not appear to pose a serious risk to cattle that might graze nearby the fence line and railroad track, or crops that might be grown in these areas. This conclusion should be reviewed by professionals specializing in the disciplines of toxicology and risk assessment.

Two of the eight heavy metals analytes exceeded goals that have been established for them. These were arsenic and lead. All sample results exceeded the Wisconsin objectives for arsenic in residential settings of 39 ug/kg ranging from 1,600 to 3,800 ug/kg. However, the background level for arsenic in the area averages 16,000 ug/kg. WDNR NR 720 explicitly states that when background levels exceed values stated in NR 720, the background level will prevail as the goal. None of sample results exceeded the Midewin Soil Remediation Goal for arsenic of 21,000 ug/kg or the Illinois Soil Remediation Goal of 11,300 ug/kg. These results suggest that arsenic-containing herbicides such as Brulin were not used at BAAP to control fence line and railroad track weed growth.

Three of the sample results exceeded the Midewin objective for lead of 185,000 ug/kg ranging from 251,000 to 274,000 ug/kg, four of them exceeded the Wisconsin objective for lead 50,000 ug/kg ranging from 63,500 to 274,000 ug/kg and five of them exceeded the background level for lead at BAAP of 30,000 ug/kg ranging from 36,000 to 274,000 ug/kg. None of the eleven sample results exceeded the Illinois objective for lead of 400,000 ug/kg. Four of the five samples having the highest lead levels were collected along the fence line on the southwestern portion of BAAP. The elevated levels of lead could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area, and/or from emissions of vehicles traveling along U.S. Highway12, which runs parallel to and nearby the fence line in this area. The remaining sample, which was collected in the central portion of the railroad track run, had a slightly elevated lead level above background of 36,000 ug/kg. Lead in this sample could have resulted from operations formerly conducted in and around the Propellant Burning Grounds Thermal Treatment/Racetrack area. Based on this, additional soil samples should be collected for lead analysis on the USDA land from an area bordered by the Gate Road 7/16 to the north, the perimeter fence lines to the west and south and the railroad track to the east. However, it is advisable to discuss these

results with State of Wisconsin DNR personnel prior to conducting this type of sampling work.

]

Ĭ

3 -

÷

Appendix A

BAAP Site Map

*:

FIGURE 1 BADGER ARMY AMMUNIFIES PLANT SHOLLOW SOIL SAMPLE LOCATIONS. AUGUST 7, 2001

Nord: LOCATIONS AND APPROXIMATE

HAP D

Appendix B

Montgomery Watson Harza (MWH) Report of Soil Sampling Results at BAAP

A YA WAYA A MONTGOMERY WATSON HARZA

September 18, 2001

Mr. Dennis P. Bridge, CIH, CSP, PE Bridge Environmental Management Group P.O. Box 229 Lake Zurich, Illinois 60047

Re: Results of Soil Sampling and Analysis USDA/Badger Army Ammunition Plant

Dear Mr. Bridge:

I have attached the laboratory results and a summary table for the sampling performed in August on behalf of the U.S. Department of Agriculture at the Badger Army Ammunition Plant near Baraboo, Wisconsin. Please call me at 608-231-4747 if you have questions.

Sincerely,

MONTGOMERY WATSON HARZA

Timothy E. Melka, P.G. Project Manager

Enclosure: Table 1 – Summary of Soil Sample Results, Badger Army Ammunition Plant Attachment A – Laboratory Analytical Results.

Gaivening Innovatives Stares, 2 and Constants State of the

cc: Mark D. Pauli, P.G. - MWH Michael G. Collentine, P.G. - MWH

TEM/tem/MDP N:\Jobs\208\2398\01\wp\ltr\99_Bridge USDA.doc 2082398.01160101 MAD-1

٢	Rold Ver D. Apr.																									••		2.5 mg 4				10. " mgika	30 mig 1 kg.	22			0. 38 mg 1/4	5 5			
	USDA oals (mg/Kg)	19	4.0	2	4.4	NA NA	2	NA	A N	AN	2.2	AN		NA		AN			AN	NA	M	AN N		AN		NA		5	705	2		1300	105	70	10		0.1				
	605 Hazardous Constituent G		yes -	yes	yes	2	NO	yes	yes	yes	Yes	Y85				Yes	yes		2	2	2	2	2			2		Yes	Yes	Yes		VBS	yes	yes	Y85		Ves			γ 0 3	
-an sta	720 Industrial NIR dential) Standard		NA (LIA)	NA (NA)	NA (NA)	NA (MA)		NA (NA)	(NA) NA	(AN) AN	NA (NA)	NA (NA)		NA (NA)		NA (NA)	NA (NA)	_	NA (NA)	(A) AN	HA (PIA)	NA (NA)	NA (NA)	NA (NA)		(NA) NA		1.6 (.039)	NA (NA)	510 (8)	NA trivalent, 200	nexavaleni (ro.uuu 	500 (50)	(MA) AN	(NA) NA		NA MAN	had the		(NA) NA (NA)	-
3:4: 52×10 3:4: 100 - 20 1000 - 20	A4C3 (Resid		××	×	×	×	×	×	×	130	×	×	16	×		×	×		×	×	×	×	 	× `		×		2.2	31.5	0.84			20.2	0.25	0.045			70'0		×	
tide r:	A4C2				×	120	×	×	240	×	×	×	240	<u>× </u> ,	×	3.4	- 31		11	350	×	8.6	26	<u>, ,</u>		33	ſ	2.6	21.9	0.92		0	36	16.0	×			10.0	T	×	
Barry	AIC1		×	061		88	×	99 190	 	520	19	160	570	×		×	2		101	130	8	2	66	560	64	×		1.6	31.7	0.42				0.42	×			0.034		×	
됩드	100	5	 × '	×		1	×	× ;			×	×	×	×	×	×	×			630	×	×	×	×	×	28	Ť	2.1	147	0.68			14.1	96.0	×			0.034			
mple Resu		A3(2)	×	24	×	- EI	×	×	 × `		×	×	1.1	×	×	×	×		•	AOD A			×	×	×	×		25	1691	0.81			13.8	100	×	1		0.038			
r of Solt Sa		A3L2	×	×.>			21	×	<u>-</u> ;;	<	×	×	×	×	×	32	×			× 19			×	×	×	×			135	0.68			1.1	2.6				0.025		1	Ì
Summan		VICI	×	×;;		110	 × 	×	×	212	(×	×	×	×	×	×	×			×		 	×	×	×	×			154	0.7		-	13.6	16.9				0.03		1	
		A2C2	×	×			×	×	×	×			×	×	×		×			×	120	<×	9.6	×	×	×		1	125	0.74				266	- '	<		0.029			
		A2C1	i×.	×	×p i	 	×	×	×				×	×	×	.>	; ; ×			×	23	.	· ×	×	×	×			- 1910	0.62		•••	9.2	274	- 0 - 1 - 0	<		0.022			
	-	A1C2	×	×	7.6	×i×	X	×	×		 		×	×	×	10	n x	•		×,	220	×.)	< ×	(×	×	×			1.1	- 107 0 87			15.1	251	- 1.6	×	T	0.034			-
		AICI	15	×	9.1	×	X		×	×		× 5		=	×		×			×	16	×	· · ·		×	×			2.7	671			12.4	63.5	1.2	×		0.055			
			EPA 8081 (ug/kg)	1.1.006	1.4-001	alpha Chlorodane	heta BIIC	dela-orno	Endosultan 1	Endosulan II	Endusulfan sullate	Endnin	Forthin aldenyde	Endra ketone	Nethoxychlor	EPA 8151A (ug/Kg)	Pentachtorophenol		EPA 8141A (00/K0)	[rifluralin	Prometon	Propazine	Alrazine	Simazine	Pendamelhalin	F PA 8321-HPLC UV (ug/Kg)		EPA 6010B (m0/Kg)	Arsenic	Badun	Cadmium		Chronilum	Lead	Selenium	Silver	rox 1474 Imalifal	LEFA (4) I JUNITAL		EPA 8082 (ug/Kg)	PCBs
Ź	humine 1							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	the Connector	1.200		18.033 431			•																										

Notes:

1. Only detected compounds are listed above. Complete Laboratory Reports are included in Attachment A.

2. A1C1 = Area 1 Composite Sample 1

X = Mol Detected at the Limit of Detection
In 720 Standards = State of Wisconsin RCLs for Soll. Rolded values Indicate exceedance of the generic standard.
IN 720 Standards = State of Wisconsin RCLs for Soll. Rolded values Indicate exceedance of the generic standard.
IN 700 Standards = State of Wisconsin RCLs for Soll. Rolded values Indicate exceedance of the generic standard.
IN 700 Standards = State of Wisconsin RCLs for Soll. Rolded values Indicate exceedance of the generic standard.
IN 700 Standards = State of Wisconsin RCLs for Soll.
IN 800 Hazardous Constituent = Any solid waste that contains constituents as fisted in Wisconsin Administrative Code Chapter NR 605

6. ug/Kg = microgram/kilogram 7. mg/Kg = milligram per kilogram A 11A = 1101 Applicable

ATTACHMENT A

Laboratory Analytical Results

:

÷

:

CTLaboratories

MONTGOMERY WATSON

ONE SCIENCE COURT

MADISON, WI 53711

MARK PAULI

1230 Lange Court Baraboo, WI 53913-3109 Phone: (800) 228-3012 Fax: (608) 356-2766 www.ctlaboratories.com

ANALYTICAL REPORT

1 of 15

Project Name: BRIDGE/BADGER Contract #: 1747 Project #: 2082398.01160101 Folder #: 18858 Purchase Order #: Arrival Temperature: See COC Report Date: 8/29/01 Date Received: 8/8/01 Reprint Date:

CTLLAB#:	81230	Sample Desc	ription:	AREA 1 ·	СОМР	OSITE 1				Sampled	: 8/	7/01 0920
		Result	Units	L	OD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method
Solids, Percent		78.6	%		N/A	N/A	1			8/9/01	TAR	EPA 5030A
Metals Results	•	2.7	mg/kg	ан сайна Сайн сайн (0.45	1.5	5 1		8/9/01	8/9/01	NAH	EPA 60108
Banum		125	mg/kg	0.	.086	0.29	9 1		8/9/01	8/9/01	NAH	EPA 6010B
Cadmium		0.59	mg/kg	0	.019	0.065	5 1		8/9/01	8/9/01	NAH	EPA 6010B
Chromum		12.4	mg/kg	0	.052	0.17	7 1		8/9/01	8/9/01	NAH	EPA 6010B
Lead		63.5	mg/kg		0.18	0.6	1 •		8/9/01	8/9/01	NAH	EPA 6010B
Selecture		1.2	mg/kg		0.26	0.8	61		8/9/01	8/9/01	NAH	EPA 60108
Silver		<0.060	mg/kg	c). 06 0	0.2	0 1		8/9/01	8/9/01	NAH	EPA 6010B
Mercury		0.055	mg/kg	0.	0076	0.02	5 1		8/11/01	8/13/01	NAH	EPA 7471
Organic Results		0.015	mg/kg	0.	0051	0.01	7 1		8/10/01	8/29/01	JRC	EPA 8081
4.4 -DDE		<0.0064	mg/kg	0.	0064	0.02	20 1		8/10/01	8/29/01	JRC	EPA 8081
4 4 -DDT		0.0091	mg/kg	0.	.0051	0.01	8 1		8/10/01	8/29/01	JRC	EPA 8081
Aldrin		<0.0076	mg/kg	0.	0076	0.02	23 1		8/10/01	8/29/01	JRC	EPA 8081
alona-BHC		<0.0076	mg/kg	О	.0076	0.02	25 1		8/10/01	8/29/01	JRC	EPA 8081
alona Chiordane		<0.0064	mg/kg	C C	0064	0.01	19 1		8/10/01	8/29/01	JRC	EPA 8081
beta-BHC		0.0097	mg/kg	0	.0051	• 0.0	17 1		8/10/01	8/29/01	JRC	EPA 8081
Chlordane (Technica	10	<0.0038	mg/kg	0	.0038	0.0	13 1		8/10/01	8/29/01	JRC	EPA 8081
delta-BHC		<0.0051	mg/kg	0	.0051	0.0	14 1		8/10/01	8/29/01	JRC	EPA 8081
		<0.0064	mg/kg	C	.0064	0.0	20 1		8/10/01	8/29/01	JRC	EPA 8081
Endosultan I		<0.0064	mg/kg	C	.0064	0.0	17 1		8/10/01	8/29/01	JRC	EPA 8081

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

:: ;

Solid sample results reported on a Dry Weight Basis

ι.

Contract #: 1747 Folder #: 18858

...

.....

Project Name: BRIDGE/BADGER Project #: 2082398.01160101

2 of 15

8/9/01

8/9/01

8/9/01

8/9/01

8/9/01

8/9/01

8/13/01

8/29/01

8/29/01

8/29/01

8/29/01

8/9/01

8/9/01

8/9/01

8/9/01

8/9/01

8/9/01

8/11/01

8/10/01

8/10/01

8/10/01

8/10/01

NAH

NAH

NAH

NAH

NAH

NAH

NAH

JRC

JRC

JRC

JRC

EPA 6010B

EPA 6010B

EPA 6010B

EPA 6010B

EPA 6010B

EPA 7471

EPA 8081

EPA 8081

EPA 8081

EPA 8081

1

CTI LAB#:	81230	Sample Des	cription:	AREA 1 - COMF	POSITE 1				Sample	d: 8	7/01 0920
Analyte		Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analys	Method
Indosulfan II	· · · ·	<0.0051	mg/kg	0.0051	0.018	1		8/10/01	8/29/01	JRC	EPA 8081
ndosultan sulfate		0.012	mg/kg	0.0051 *	0.014	1	· •	8/10/01	8/29/01	JRC	EPA 8081
ndrin		<0.0064	mg/kg	0.0064	0.020) 1 ·		8/10/01	8/29/01	JRC	EPA 8081
ndrin aldehvde		0.010	mg/kg	0.0051	0.015	1		8/10/01	8/29/01	JRC	EPA 8081
Endrin ketone		<0.0064	mg/kg	0.0064	0.019	1		8/10/01	8/29/01	JRC	EPA 8081
amma-Chlordane		0.011	mg/kg	0.0064 *	0.018	3 1		8/10/01	8/29/01	JRC	EPA 8081
		<0.0064	mg/kg	0.0064	0.020) 1		8/10/01	8/29/01	JRC	EPA 8081
		<0.0064	mg/kg	0.0064	0.019) 1		8/10/01	8/29/01	JRC	EPA 8081
indane		<0.0076	mg/kg	0.0076	0.02	3 1		8/10/01	8/29/01	JRC	EPA 8081
Methoxychlor		<0.0038	mg/kg	0.0038	0.010	D 1		8/10/01	8/29/01	JRC	EPA 8081
Toxaphene	•	<0.025	mg/kg	0.025	0.05	1 1		8/10/01	8/29/01	JRC	EPA 8081
l'ondprierre											· · ·
Sub Lab Results Herbicides		SUB		N/A	N	A 1			8/27/01	PML	
CTI LAB#:	81231	Sample De	scription:	AREA 1 - COM	IPOSITE	2			Sampl	ed:	8/7/01 100
Analyte		Result	Units	LOD	LOQ	Dilutio	n Qualifie	Prep Date	Analysis Date	Analy	st Method
Solids, Percent		78.70	%	N/A	N	'A 1			8/9/01	TAR	EPA 5030A
Metals Results Arsenic		3.8	mg/kg	0.60	2	.0 1		8/9/01	8/9/01	NAH	EPA 6010B
								8/0/01	8/9/01	NÁH	FPA 6010B

0.38

0.087

0.23

0.81

1.2

C ?7

0.025

0.016

0.020

0.018

0.023

0.11

0.026

0.069

0.24

0.35

0.081

0.0076

0.0051

0.0063

0.0051

0.0076

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

mg/kg

182

0.87

15.1

251

1.6

<0.081

0.034

<0.0051

<0.0063

0.0076

<0.0076

1

1

1

1

1

1

1

1

1

1

1

Banum

Cadmium

Chromium

Selenium

Mercury

4.4'-DDD

4.4'-DDE

4.4'-DDT

Aldrin

Organic Results

Lead

Silver

Solid sample results reported on a Dry Weight Basis

.

Project #: 2082398.01160101

Contract #: 1747

Folder #: 18858

3 of 15

CTILAB#: E	1231	Sample Desc	ription:	AREA 1 - COMP	OSITE 2				Sampled	1: 8	/7/01 100	
Analyte		Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analys	t Method	
alpha-BHC		<0.0076	mg/kg	0.0076	0.025	1		8/10/01	8/29/01	JRC	EPA 8081	
aloha-Chiordane		<0.0063	mg/kg	0.0063	0.019	1	• •	8/10/01	8/29/01	JRC	EPA 8081	
beta-BHC		<0.0051	mg/kg	0.0051	0.016	1		8/10/01	8/29/01	JAC	EPA 8081	
Chlordane (Technical)		<0.0038	mg/kg	0.0038	0.013	1		8/10/01	8/29/01	JRC	EPA 8081	
delta-BHC		<0.0051	mg/kg	0.0051	0.014	1		8/10/01	8/29/01	JRC	EPA 8081	
Dieldrin		<0.0063	mg/kg	0.0063	0.020	1		8/10/01	8/29/01	JRC	EPA 8081	
Endosullan I		<0.0063	mg/kg	0.0063	0.016	i 1		8/10/01	8/29/01	JRC	EPA 8081	•
Endosultan II		<0.0051	mg/kg	0.0051	0.018	3 1		8/10/01	8/29/01	JAC	EPA 8081	
Endosultan sulfate		<0.0051	mg/kg	0.0051	0.014	1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin		<0.0063	mġ/kg	0.0063	0.020) 1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin aldehyde		<0.0051	mg/kg	0.0051	0.015	5 1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin ketone		<0.0063	mg/kg	0.0063	0.019	9 .1		8/10/01	8/29/01	JRC	EPA 8081	
gamma-Chlordane		<0.0063	mg/kg	0.0063	0.018	B 1		8/10/01	8/29/01	JRC	EPA 8081	
Heptachlor		<0.0063	mg/kg	0.0063	0.020	0 , 1		8/10/01	8/29/01	JRC	EPA 8081	
Heptachlor epoxide		<0.0063	mg/kg	0.0063	0.01	9 1		8/10/01	8/29/01	JRC	EPA 8081	
Lindane		<0.0076	mg/kg	0.0076	0.02	3 1		8/10/01	8/29/01	JRC	EPA 8081	
Methoxychior		<0.0038	mg/kg	0.0038	0.01	0 1		8/10/01	8/29/01	JRC	EPA 8081	
Toxaphene		<0.025	mg/kg	0.025	0.05	1 1		8/10/01	8/29/01	JRC	EPA 8081	
Sub Lab Results Herbicides		SUB		N⁄A	N/	A 1			8/27/01	PML		
CTI LAB#	81232	Sample De	scription:	AREA 2 -COM	POSITE	1			Sample	ed:	8/7/01 105	5
	· .	Result	Units	LOD	LOQ	Dilutio	n Qualifie	Prep Date	Analysis Date	Analy	rst Method	
Solids, Percent		86.40	%	N/A	N/	A 1			8/9 /01	TAR	EPA 5030A	
Metais Results		25	ma/ka	0.50	•	.7 1		8/9/01	8/9/01	NAH	EPA 6010B	
Arsenic		67 5	ma/ko	0.096	0.3	32 1		8/9/01	8/9/01	NAH	EPA 6010B	
Barium		0.62	mn/kn	0.022	0.07	73 1		8/9/01	8/9/01	NAH	EPA 6010B	
Caomium		9.02	ma/ka	0.058	0.1	19 1		8/9/01	8/9/01	NAH	EPA 6010B	
Chromium				0.20	0.4	20 1		8/9/01	8/9/01	NAH	EPA 6010B	
Land		274	ma/ka	U.20	Ų.0	10 1		0.0.01		• •• •• •		

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

....

-

CTLaboratories Project Name: BRIDGE/BADGER

Project #: 2082398.01160101

Contract #: 1747 Folder #: 18858

A the second second 4 of 15 .

CTI LAB#:	81232	Sample De	scription:	AREA 2 -COMP	OSITE 1	:			Sampleo	J: 8/	7/01 1055
		Recult	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method
Analyte		<0.067	- ma/ka	0.067	. 0.22	1		8/9/01	8/9/01	NAH	EPA 60108
bilver		0.022	ma/ka	0.0069 *	0.023	1	•	8/11/01	8/13/01	NAH	EPA 7471
Aercury		0.022									
rganic Hesuits		<0.0046	mg/kg	0.0046	0.015	1		8/10/01	8/29/01	JRC	EPA 8081
4'-DDE		<0.0058	mg/kg	0.0058	0.018	1		8/10/01	8/29/01	JRC	EPA 8081
4'-DDT		<0.0046	mg/kg	0.0046	0.016	1		8/10/01	8/29/01	JRC	EPA 8081
Marin		<0.0069	mg/kg	0.0069	0.021	1		8/10/01	8/29/01	JRC	EPA 8081
Inha-BHC		<0.0069	mg/kg	0.0069	0.023	1		8/10/01	8/29/01	JRC	EPA 8081
Inha-Chlordane		<0.0058	mg/kg	0.0058	0.017	1		8/10/01	8/29/01	JRC	EPA 8081
mpring Children Children		<0.0046	mg/kg	0.0046	0.015	5 1 .		8/10/01	8/29/01	JRC	EPA 8081
Chlordane (Technical)	•	<0.0035	mg/kg	0.0035	0.012	2 1		8/10/01	8/29/01	JRC	EPA 8081
		<0.0046	ma/kg	0.0046	0.013	3 ⁷ - 1		8/10/01	8/29/01	JRC	EPA 8081
	an an Se	<0.0058	ma/ka	0.0058	0.018	3 Î		8/10/01	8/29/01	JRC	EPA 8081
		<0.0058	mo/ka	0.0058	0.01	5 1		8/10/01	8/29/01	JRC	EPA 8081
		<0.0046	ma/ka	0.0046	0.01	51		8/10/01	8/29/01	JRC	EPA 8081
		<0.0046	mo/ko	0.0046	0.01	31		8/10/01	8/29/01	JRC	EPA 8081
Endosulfan suitate		-0.0058	maka	0.0058	0.01	8 1		8/10/01	8/29/01	JRC	EPA 8081
Endrin		<0.0038	molta	0.0046	0.01	4 1		8/10/01	8/29/01	JRC	EPA 8081
Endrin aldehyde		<0.0046	mg/kg	0.0058	0.01	7 1		8/10/01	8/29/01	JRC	EPA 8081
Endrin ketone		<0.0058	molec	0.0058	0.01	6 1		8/10/01	8/29/01	JRC	EPA 8081
gamma-Chiordane		<0.0058	my/kg	0.0058	0.01	8 1		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor		<0.0058	mg/kg	0.0050	0.01	7 1		8/10/01	8/29/01	JRC	EPA 8081
Heptachior epoxide		<0.0058	mg/kg	0.0000	0.07	7 1		8/10/01	8/29/01	JRC	EPA 8081
Lindane		<0.0069	mg/kg	0.0035	0.02	12 1		8/10/01	8/29/01	JRC	EPA 8081
Methoxychior	•	<0.0035	mg/kg	0.0035	0.005	16 1		8/10/01	8/29/01	JRC	EPA 8081
Toxaphene		<0.023	mg/kg	0.023	0.0-						
Sub Lab Hesulls Herbicides		SUB		N/A	N	/A 1		· · ·	8/27/01	PML	
CTI LAB#	8123	3 Sample I	Description:	AREA 2 COM	POSITE	2			Samp	led:	8/7/01 1140
		Result	Units	LOD	LOQ	Dilutio	on Qualif	Prep lier Date	Analysis Date	Analy	vst Method
Analyte Solids, Percent		Result 84.00	u Units	s LOD N/A	LOQ	Dilutic	on Qualif	lier Date	Date 8/9/01	Analy TAR	EPA 5030A

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

، بر است. 4 مارون

Solid sample results reported on a Dry Weight Basis

ener

Contract #: 1747

Folder #: 18858

5 of 15

Project Name: BRIDGE/BADGER Project #: 2082398.01160101

Sampled: 8/7/01 1140 AREA 2 COMPOSITE 2 Sample Description: 81233 CTI LAB#: Prep Analysis Date Date Analyst Method **Dilution Qualifier** LOD LOQ Units Result Analyte Metals Results NAH EPA 60108 8/9/01 8/9/01 1 1.5 0.44 2.7 mg/kg Arsenic EPA 60108 8/9/01 NAH 8/9/01 0.085 0.28 1 mg/kg 125 Barium EPA 6010B NAH 8/9/01 0.065 1 8/9/01 0.019 0.74 mg/kg Cadmium EPA 6010B NAH 8/9/01 8/9/01 0.051 0.17 1 mg/kg 11.4 Chromium NAH EPA 6010B 8/9/01 1 8/9/01 0.60 0.18 mg/kg 266 Lead EPA 6010B NAH 8/9/01 8/9/01 0.86 1 0.26 mg/kg 1.1 Selenium EPA 6010B 8/9/01 8/9/01 NAH 0.060 0.20 1 <0.060 mg/kg Silver EPA 7471 NAH 8/13/01 8/11/01 0.0071 0.024 1 0.029 mg/kg Mercury **Organic Results** EPA 8081 JRC 8/10/01 8/29/01 0.016 0.0048 1 mg/kg 4.4'-DDD <0.0048 JRC EPA 8081 8/29/01 8/10/01 0.019 1 0.0060 <0.0060 mg/kg 4.4'-DDE 8/29/01 JRC EPA 8081 8/10/01 0.017 1 0.0048 * 0.0078 mg/kg 4.4'-DDT 8/29/01 JRC EPA 8081 8/10/01 0.0072 0.022 1 <0.0072 mg/kg Aldrin JRC EPA 8081 8/29/01 8/10/01 0.024 1 0.0072 <0.0072 mg/kg alpha-BHC JRC EPA 8081 8/10/01 8/29/01 0.018 0.0060 1 mg/kg <0.0060 alpha-Chlordane EPA 8081 JRC. 8/29/01 8/10/01 0.0048 0.016 1 mg/kg <0.0048 beta-BHC JRC EPA 8081 8/29/01 8/10/01 1 0.012 mg/kg 0.0036 <0.0036 Chlordane (Technical) JRC EPA 8081 8/29/01 8/10/01 0.013 1 mg/kg 0.0048 < 0.0048 delta-BHC FPA 8081 JRC 8/10/01 8/29/01 0.019 1 mg/kg 0.0060 <0.0060 Dieldrin JRC EPA 8081 8/29/01 8/10/01 0.0060 0.016 1 <0.0060 mg/kg Endosulfan I EPA 8081 JRC 8/10/01 8/29/01 1 0.017 0.0048 <0.0048 mg/kg Endosulfan li EPA 8081 JRC 8/29/01 8/10/01 0.0048 0.013 1 mg/kg <0.0048 Endosultan sulfate EPA 8081 JRC 8/29/01 8/10/01 1 0 0060 0.019 <0.0060 mg/kg Endrin EPA 8081 8/29/01 JRC 8/10/01 0.0048 0.014 1 <0.0048 mg/kg Endrin aldehyde EPA 8081 8/29/01 JRC 8/10/01 0.018 1 0.0060 <0.0060 mg/kg Endrin ketone JRC EPA 8081 8/29/01 8/10/01 0.017 1 0.0060 <0.0060 mg/kg gamma-Chlordane EPA 8081 JRC 8/10/01 8/29/01 0.0060 0.019 1 mg/kg <0.0060 Heptachlor 8/29/01 JRC EPA 8081 8/10/01 0.018 1 0.0060 <0.0060 mg/kg Heptachlor epoxide JRC EPA 8081 8/29/01 0.022 1 8/10/01 0.0072 mg/kg <0.0072 Lindane EPA 8081 JRC 8/10/01 8/29/01 0.0096 1 0.0036 mg/kg < 0.0036 Methoxychlor EPA 8081 JRC 8/29/01 8/10/01 0.048 1 0.024 <0.024 mg/kg Toxaphene

> WI DNR Lab Certification Number, 15-7066030 DATCP Certification Number: 105-000289

Contract #: 1747 Folder #: 18858

Project #: 2082398.01160101

6 of 15

CTI LAB#:	81233	Sample Descr	iption:	AREA 2 COMPO	SITE 2				Sampled	1: 8 /7	/01 1140
Inalyte		Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method
ub Lab Results terbicides		SUB		N/A	N/A	1			8/27/01	PML	
CTI LAB#:	81234	Sample Desc	ription:	AREA 4- COMP	OSITE1				Sampleo	d: 8/7	7/01 1235
		Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method
Solids, Percent		89.00	%	N/A	N/A	· _ · 1			8/9/01	TAR	EPA 5030A
Arsenic		1.6	mg/kg	0.40	1.3	3 1		8/9/01	8/9/01	NAH	EPA 6010B
Barium		31.7	mg/kg	0.077	0.26	5 1		8/9/01	8/9/01	NAH	EPA 6010B
Cadmium		0.42	mg/kg	0.017	0.058	3 1		8/9/01	8/9/01	NAH	EPA 60108
Chromium		4.8	mg/kg	0.046	0.1	51		8/9/01	8/9/01	NAH	EPA DUIUS
_ead		13.4	mg/kg	0.16	0.5	4 1		8/9/01	8/9/01	NAH	EPA DUIUS
Selenium		0.42	mg/kg	0.23	0.7	7 1		8/9/01	8/9/01 -	NAH	EPA 60108
Silver		<0.054	mg/kg	0.054	0.1	8 1		8/9/01	8/9/01	NAH	EPA 60108
Mercury		0.034	mg/kg	0.0067	0.02	2 1		8/11/01	8/13/01	NAH	EPA 7471
Organic Results Aroclor-1016		<0.045	mg/kg	0.045	0.1	2 1		8/10/01	8/22/01	JRC	EPA 8082
Aroclor-1221		<0.045	mg/kg	0.045	0.1	3 1		8/10/01	8/22/01	JRC	EPA 8082
Aroclor-1232		<0.034	mg/kg	0.034	0.1	10 1		8/10/01	8/22/01	JRC	EPA 8082
Arocior-1242		<0.056	mg/kg	0.056	0.1	16 .1		8/10/01	8/22/01	JRC	EPA 8082
Aroclor-1248		<0.034	mg/kg	0.034	0.1	10 1		8/10/01	8/22/01	JRC	EPA 8082
Arocior-1254		<0.022	mg/kg	0.022	0.0	56 1		8/10/01	8/22/01	JRC	EPA 8082
Aroclor-1260		<0.045	mg/kg	0.045	0.	12 1		8/10/01	8/22/01	JRC	EPA 8082
4 4'-DDD		<0.045	mg/kg	0.045	0.	15 10)	8/10/01	8/29/01	JRC	EPA 8081
4 4 -DDE		0.16	mg/kg	0.056	• 0.	18 10)	8/10/01	8/29/01	JRC	EPA 8081
		0.19	mg/kg	0.045	0	16 10)	8/10/01	8/29/01	JRC	EPA 8081
Aldrin		<0.067	mg/kg	0.067	0	.20 10	o E	8/10/01	8/29/01	JRC	EPA 8081
alona-BHC		<0.067	mg/kg	0.067	0	.22 10	с. [.]	8/10/01	8/29/01	JRC	EPA 8081
alpha-Chlordane		0.077	mg/kg	0.056	• 0	.17 10	o ¹ .	8/10/01	8/29/01	JRC	EPA 8081
heta-BHC		0.088	mg/kg	0.045	;• o	.15 1	0	8/10/01	8/29/01	JRC	EPA 8081
Oblastana /Tachai	cal)	<0.034	ma/ka	0.034	4 C	.11 1	0	8/10/0	8/29/01	JRC	EPA 8081

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

Project #: 2082398.01160101

Contract #: 1747 Folder #: 18858

7 of 15

18 P. 1

CTI LAB#:	81234	Sample Des	cription;	AREA 4- COMPO	OSITE1				Sample	d:	8/7/01	1235
Aosido		Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analy	st Meth	od
		<0.045	mg/kg	0.045	0.12	10		8/10/01	8/29/01	JRC	EPA 8	081
Dieldrin		0.18	mg/kg	0.056	0.18	10		8/10/01	8/29/01	JRC	EPA 8	081
Endosuttan I		<0.056	mg/kg	0.056	0.15	10		8/10/01	8/29/01	JRC	EPA 8	081
Endosulfan II		0.13	mg/kg	0.045 *	0.16	10		8/10/01	8/29/01	JRC	EPA 8	081
Endosultan sultate		0.52	mg/kg	0.045	0.12	10		8/10/01	8/29/01	JRC	EPA 8	081
Endrin		0.11	mg/kg	0.056 *	0.18	10		8/10/01	8/29/01	JRC	EPA 8	081
Endrin aldehvde		0.16	mg/kg	0.045	0.13	3 10		8/10/01	8/29/01	JRC	EPA 8	081
Endrin ketone		0.57	mg/kg	0.056	0.17	7 10		8/10/01	8/29/01	JRC	EPA 8	081
gamma-Chlordane		<0.056	mg/kg	0.056	0.16	5 10		8/10/01	8/29/01	JRC	EPA 8	081
Hentachlor		<0.056	mg/kg	0.056	0.18	3 10		8/10/01	8/29/01	JRC	EPA 8	081
		<0.056	mg/kg	0.056	0.17	7 10		8/10/01	8/29/01	JRC	EPA 8	8081
		<0.067	ma/ka	0.067	0.20	0 10		8/10/01	8/29/01	JRC	EPA 8	3081
Methoxichior		0.80	ma/ka	0.034	0.09	0 10		8/10/01	8/29/01	JRC	EPA 8	3081
Teventeno		<0.22	ma/ka	0.22	0.4	5 10		8/10/01	8/29/01	JRC	EPA 8	3081
Тохарнене			5.5									
Sub Lab Results Herbicides		SUB		N/A	N//	A 1			8/27/01	PML		
CTI LAB#:	81235	Sample De	scription:	AREA 3 - COM	POSITE	1			Sampl	ed:	8/7/01	1315
Analyte	1 a	Result	Units	LOD	LOQ	Dilutio	n Qualifie	Prep er Date	Analysis Date	Anal	yst Met	hođ
Solids, Percent		85.3	€/, /0	N/A	N/	'A , 1 -			8/9/01	TAR	EPA	5030A
Metais Results Arsenic		2.5	mg/kg	0.62	2	.1 1		8/9/01	8/9/01	NAH	EPA	6010B
Banum		154	mg/kg	0.12	0.4	10 1		8/9/01	8/9/01	NAH	EPA	6010B
Cadmium		0.70	mg/kg	0.027	0.09	90 1		8/9/01	8/9/01	NAH	EPA	6010B
Chromium		13.6	mg/kg	0.072	0.2	24 1		8/9/01	8/9/01	NAH	EPA	6010B
Lead		16.9	mg/kg	0.25	0.8	B4 1		8/9/01	8/9/01	NAH	EPA	6010B
Selenium		1.2	mg/kg	0.36	1	.2 1		8/9/01	8/9/01	NAH	EPA	6010B
Silver		<0.083	mg/kg	0.083	0.:	28 1		8/9/01	8/9/01	NAH	EPA	6010B
Mercury		0.030	mg/kg	0.0070	0.0	23 1		8/11/01	8/13/01	NAH	EPA	7471
Organic Results 4.4'-DDD		<0.047	mg/kg	0.047	0.	15 10		8/10/01	8/29/01	JRC	EPA	8081

WI DNR Lab Certification Number: 15-7066030. DATCP Certification Number: 105-000289

•••••

Project #: 2082398.01160101

Contract #: 1747 Folder #: 18858

8 of 15

 \mathcal{T}

CTI LAB#: 81!	235 Sample	e Description:	AREA 3 - COM	POSITE 1		1. S.		Sample	d: 8	/7/01 1315
	, <u>, , , , , , , , , , , , , , , , , , </u>				Dilution	Ouslifier	Prep	Analysis Date	Analys	t Method
Analyte	Resu	ult Units	LOU	0.10	10	Quanner	8/10/01	8/29/01	JRC	EPA 8081
I,4'-DDE	<0.058	3 mg/kg	0.000	0.10	10	· •	8/10/01	8/29/01	JRC	EPA 8081
I,4'-DDT	<0.047	7 mg/kg	0.047	0.10	10		8/10/01	8/29/01	IBC	EPA 8081
Aldrin	<0.070) mg/kg	0.070	0.21	10		8/10/01	8/23/01		EPA 8081
alpha-BHC	<0.070) mg/kg	0.070	0.23	10	· ·	8/10/01	8/29/01	500	EDA 8081
alpha-Chiordane	<0.058	8 mg/kg	0.058	0.18	3 10		8/10/01	8/29/01	JIL	EPA 8001
beta-BHC	0.14	mg/kg	0.047	• 0.1	5 10		8/10/01	8/29/01	JHC	EPA 8081
Chlordane (Technical)	<0.03	5 mg/kg	0.035	0.1	2 10		8/10/01	8/29/01	JRC	EPA 8081
delta-BHC	<0.04	7 mg/kg	0.047	0.1	3 10		8/10/01	8/29/01	JRC	EPA 8081
Dieldrin	<0.05	8 mg/kg	0.058	0.1	9 10		8/10/01	8/29/01	JRC	EPA 8081
Endosulfan I	<0.05	8 mg/kg	0.058	0.1	5 10		8/10/01	8/29/01	JRC	EPA 8081
Endosultan II	0.075	mg/kg	0.047	• 0.1	6 10		8/10/01	8/29/01	JRC	EPA 8081
Endosulfan sulfate	<0.04	7 mg/kg	0.047	0.1	3 10		8/10/01	8/29/01	JRC	EPA 8081
Endoschan sonate	<0.05	sa mg/kg	0.058	0.1	9 10		8/10/01	8/29/01	JRC	EPA 8081
Endrin	~0.04	17 ma/ka	0.047	0.1	4 10		8/10/01	8/29/01	JRC	EPA 8081
Endrin aldenyde	<0.04	58 ma/ka	0.058	3 ° 0 .1	8 10		8/10/01	8/29/01	JRC	EPA 8081
Endrin ketone	-0.0	50 	0.058	3 0.1	16 10		8/10/01	8/29/01	JRC	EPA 8081
gamma-Chlordane	<0.0		0.058	3 0 .	19 10		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor	<0.0	50	0.056	a 0.	18 10		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor epoxide	<0.0	58 mg/kg	0.030		21 10		8/10/01	8/29/01	JRC	EPA 8081
Lindane	<0.0	70 mg/kg	0.070		04 10		8/10/01	8/29/01	JRC	EPA 8081
Methoxychlor	<0.0	35 mg/kg	0.035	- 0.0	47 10		8/10/01	8/29/01	JRC	EPA 8081
Toxaphene	<0.2	3 mg/kg	0.23	3 0.	4/ 10		81001	420,01	•	
Sub Lab Results	SUF	3	N/	A • 1	U/A 1			8/27/01	PML	
Herbicides			ADEN 3 . C		F 2			Sam	pled:	8/7/01 1420
CTI LAB#:	81236 San	nple Description	AHEAS						· · ·	
					Diketi	on Quali	Frep fier Date	a Analysis Date	Ana	lyst Method
Analyte	R	esult Uni								
Solids, Percent	84.	3 %	N	/A 1	VA 1			8/9/01	TAR	EPA 5030A
Metals Results								0001	81 A LI	
Arsenic	2.2	mg/k	g 0.4	43	1.4 1		8/9/01	8/9/01	NAH	EFA 00100
	135	5 mg/k	g 0.08	82 (27 1		8/9/01	8/9/01	NAH	EPA 6010B
Banum										

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

CILAboratories Project Name: BRIDGE/BADGER

.

MONTGOMERY WATSON

Contract #: 1747 Folder #: 18858

۶.

9 of 15

Project #: 2082398.01160101

CTI LAB#: 8123	6 Sample Des	cription:	AREA 3 - COMP	OSITE 2				Sampled	: 8/	7/01 142	0
	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method	
Chromium	14.1	mg/kg	0.050	0.17	1	-8/9	3/01	8/9/01	NAH	EPA 6010B	
Lead	14.9	mg/kg	0.17	0.58	1	8/9	9/01	8/9/01	NAH	EPA 60108	
Selenium	0.88	mg/kg	0.25	0.83	1	8/9	9/01	8/9/01	NAH	EPA 60108	
Silver	<0.058	mg/kg	0.058	0.19	• 1	8/9	9/01	8/9/01	NAH	EPA 6010B	I.
Mercuny	0.025	mg/kg	0.0070	0.023	1	8/	11/01	8/13/01	NAH	EPA 7471	
Organic Results	<0.0047	mg/kg	0.0047	0.015	1 1	8/	10/01	8/29/01	JRC	EPA 8081	
4 4 -DDF	<0.0059	mg/kg	0.0059	0.019	1	8/	10/01	8/29/01	JRC	EPA 8081	
4 4'-DDT	<0.0047	mg/kg	0.0047	0.017	1	8/	10/01	8/29/01	JRC	EPA 8081	•
	<0.0071	mg/kg	0.0071	0.021	1	8/	10/01	8/29/01	JRC	EPA 8081	
aloba-BHC	<0.0071	mg/kg	0.0071	0.024	L 1	8/	10/01	8/29/01	JRC	EPA 8081	
ainha-Chlordane	<0.0059	mg/kg	0.0059	0.018	3 1	8/	10/01	8/29/01	JRC	EPA 8081	• . •
beta-BHC	<0.0047	mg/kg	0.0047	0.015	5 1	8/	/10/01	8/29/01	JRC	EPA 8081	
Chiordane (Technical)	<0.0036	mg/kg	0.0036	0.012	2 1	8/	/10/01	8/29/01	JRC	EPA 8081	
delta-BHC	0.021	mg/kg	0.0047	0.013	3 1	8/	/10/01	8/29/01	JRC	EPA 8081	
	<0.0059	mg/kg	0.0059	0.019	91	8	/10/01	8/29/01	JRC	EPA 8081	
Endosultan I	<0.0059	mg/kg	0.0059	0.01	5 1	8	/10/01	8/29/01	JRC	EPA 8081	
Endosultan II	<0.0047	mg/kg	0.0047	0.01	71	8	/10/01	8/29/01	JRC	EPA 8081	
Endosultan sulfate	0.0090	mg/kg	0.0047	• 0.01	31	8	/10/01	8/29/01	JRC	EPA 8081	
Endro	<0.0059	mg/kg	0.0059	0.01	91	. 8	/10/01	8/29/01	JRC	EPA 8081	
	<0.0047	mg/kg	0.0047	0.01	4 1	8	10/01	8/29/01	JRC	EPA 8081	
Endrin kelone	<0.0059	mg/kg	0.0059	0.01	8 1		10/01	8/29/01	JRC	EPA 8081	
namma-Chlordane	<0.0059	mg/kg	0.0059	0.01	7 1	ε ε	3/10/01	8/29/01	JRC	EPA 8081	
Heptachlor	<0.0059	mg/kg	0.0059	0.01	9 1	• • • •	3/10/01	8/29/01	JRC	EPA 8081	
Hestachlor epoxide	<0.0059	mg/kg	0.0059	0.01	8 1	ξ	3/10/01	8/29/01	JRC	EPA 8081	
Lindane	<0.0071	mg/kg	0.0071	0.02	21 1	· 8	B/10/01	8/29/01	JRC	EPA 8081	l .
	<0.0036	mg/kg	0 0035	0.009	95 1	. 1	8/10/01	8/29/01	JRC	EPA 8081	1.
Toxachene	<0.024	mg/kg	0.024	0.04	47 1		8/10/01	8/29/01	JRC	EPA 8081	1
Sub Lab Results					<i>,</i> , ,			8/27/01	PML		

Sub Lab Results Herbicides

SUB

N/A 1 8/27/01

5

•

Ξ.

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

N/A

Project #: 2082398.01160101

Contract #: 1747 Folder #: 18858

10 of 15

	81277	Sample Desc	ription:	AREA 3-	COMPO	OSITE 3				Sampled:	8/	7/01 1500	
CTI LAB#:				· · · · · · · · · · · · · · · · · · ·		100	Dilution	Qualifier	Prep Date	Analysis Date	Anaiyst	Method	
Analyte		Result	Units	L	.00		Dilation	duanner					
Solids, Percent		80.2	%		N/A	N/A	1			8/9/01	TAR	EPA 5030A	
Metals Results Arsenic		2.5	mg/kg		0.49	1.6	1		8/9/01	8/9/01	NAH	EPA 60108	
Barium		169	mg/kg	C	.094	0.31	1		8/9/01	8/9/01	NAH	EPA 60108	
Cadmium		0.81	mg/kg	Ċ	.021	0.072	1		8/9/01	- 8/ 9/01	NAH	EPA 60108	
Chromium		13.8	mg/kg		0.057	0.19	1		8/9/01	8/9/01	NAH	EPA 6010B	
Lead		17.3	mg/kg		0.20	0.66	ì		8/9/01	8/9/01	NAH	EPA 6010B	
Selenum		0.97	mg/kg		0.28	0.95	1		8/9/01	8/9/01	NAH	EPA 6010B	
Selection		<0.066	mg/kg		0.066	0.22	1		8/9/01	8/9/01	NAH	EPA 60108	
Silver		0.038	mg/kg	0	.0075	0.025	. 1		8/11/01	8/13/01	NAH	EPA 7471	
Mercury Occorrig Results		· .	• •										
4.4-DDD		<0.0050	mg/kg	0	.0050	0.016	1		8/10/01	8/29/01	JRC	EPA 8081	
4.4-DDE		0.024	mg/kg	. 0	.0062	0.020) 1		8/10/01	8/29/01	JRC	EPA 8081	
4 4'-DDT		0.0078	mg/kg	· C	.0050	0.017	1		8/10/01	8/29/01	JRC	EPA 8081	
Aktrin		<0.0075	mg/kg	C C	.0075	0.022	2 1		8/10/01	8/29/01	JRC	EPA 8081	
aloha-BHC		<0.0075	mg/kg		0.0075	0.02	5 1		8/10/01	8/29/01	JRC	EPA 8081	
aipha-Chiordane		<0.0062	mg/kg		0.0062	0.01	9, 1		8/10/01	8/29/01	JRC	EPA 8081	
		0.013	mg/kg	(0.0050	• 0.01	5 1		8/10/01	8/29/01	JRC	EPA 8081	
Dela-Bric	n	<0.0037	ma/ka		0.0037	0.01	2 1		8/10/01	8/29/01	JRC	EPA 8081	
Chiordane (Technical	''	<0.0050	ma/ka		0.0050	0.01	4 1		8/10/01	8/29/01	JRC	EPA 8081	
delta-BHC		<0.0062	ma/ka		0.0062	0.02	0 1		8/10/01	8/29/01	JRC	EPA 8081	
Dieldrin		<0.0062	ma/ka		0.0062	0.01	6 1		8/10/01	8/29/01	JRC	EPA 8081	
Endosultan		<0.0050	mo/ko		0.0050	0.01	7 1		8/10/01	8/29/01	JRC	EPA 8081	
Endosultan li		20.0050	make		0.0050	0.01	4 1		8/10/01	8/29/01	JRC	EPA 8081	
Endosultan sulfate		<0.0050	mg/kg		0.0062	0.02	20 1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin		<0.0062	mg/kg		0.0002	0.0	15 1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin aldehyde		<0.0050	mg/kç) . 	0.0050	• 0.0	19 1		8/10/01	8/29/01	JRC	EPA 8081	
Endrin ketone		0.0077	mg/kg	3	0.0002	0.0	17 1		8/10/01	8/29/01	JRC	EPA 8081	
gamma-Chiordane		<0.0062	mg/kg)	0.0062	0.0	20 1		8/10/01	8/29/01	JRC	EPA 8081	
Heptachlor		<0.0062	mg/k	3	0.0062	0.0	20 1		9/10/01	8/29/01	JRC	EPA 8081	
Heptachlor epoxide		<0.0062	mg/k	g	0.0062	0.0	19 1			0123101	IRC	EPA 8081	
Lindane		<0.0075	mg/k	g. ·	0.0075	0.0	22 1		6/10/01	0/23/01	5110		

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

::: :

Contract #: 1747

Folder #: 18858

۰

11 of 15

	81227	Sample Desci	ription:	AREA 3- (COMPO	SITE 3				Sampled:	8/7	/01 1500
CTI LAB#	6123/							Qualifier	Prep	Analysis Date	Analyst	Method
Analyte		Result	Units	L				Quanner	B/10/01	8/29/01	JRC	EPA 8081
vethoxychior		<0.0037	mg/kg	0.0	037	0.010	1		a/10/01	8/29/01	JRC	EPA 8081
Toxaphene		<0.025	mg/kg	• 0 .	.025	0.050	1		8/10/01	8/23/01	•	
Sub Lab Results Herbicides		SUB			N/A	N/A.	1			8/27/01	PML	7/01 1550
CTI LAB#:	81238	Sample Des	cription:	AREA 3-	COMP	OSITE 4				Sampled	. 0/	
		Desuit	Linits			LOQ	Dilutio	n Qualifie	Prep r Date	Analysis Date	Analys	Method
Analyte Solids, Percent	· · ·	78.7	%		N/A	N/A	1		•	8/9/01	TAR	EPA 5030A
Metals Results		2.1	mg/kg		0.52	1.7	1		8/9/01	8/9/01	NAH	EPA 60108
Arsenic		147	mg/kg		0.099	0.33	3 1		8/9/01	8/9/01	NAH	EPA 6010B
Barium		0.68	ma/ka		0.022	0.075	5 1		8/9/01	8/9/01	NAH	EPA 6010B
Cadmium		14 1	molko		0.060	0.20) ¹ 1		8/9/01	8/9/01	NAH	EPA 6010B
Chromium		19.1	mo/ko		0.21	0.7	0 1		8/9/01	8/9/01	NAH	EPA 6010B
Lead		15.9	mg/~g		0.30	1.	0 1		8/9/01	8/9/01	NAH	EPA 6010B
Selenium		0.96	mg/kg		0.069	0.2	3 1		8/9/01	8/9/01	NAH	EPA 6010B
Silver		<0.069	mg/kg		0.005	0.02	5 1		8/11/01	8/13/01	NAH	EPA 7471
Mercury		0.034	mg/kg		5.0070	0.02						
Organic Results		<0.0051	ma/ka		0.0051	0.01	6 1		8/10/01	8/29/01	JRC	EPA 8081
4,4'-DDD		-0.0053	mo/kc		0.0063	0.02	20 1		8/10/01	8/29/01	JRC	EPA 8081
4.4'-DDE		-0.0051		1	0.0051	0.0	18 1		8/10/01	8/29/01	JRC	EPA 8081
4,4'-DDT		<0.0076		,	0.0076	0.0	23 1		8/10/01	8/29/01	JRC	EPA 8081
Aldrin		<0.0076	mg/Kg		0.0076	0.0	25 1		8/10/01	8/29/01	JRC	EPA 8081
aipha-BHC		<0.0076	mg/kg		0.0063	0.0	19	n La serie	8/10/01	8/29/01	JRC	EPA 8081
alpha-Chlordane		<0.0063	mg/k	9	0.00051	• 0.0	16		8/10/01	8/29/01	JRC	EPA 8081
beta-BHC		0.011	mg/k	5	0.0031	0.0	113	1	8/10/01	8/29/01	JRC	EPA 8081
Chiordane (Technic	cal)	<0.0038	mg/k	ç	0.0038	0.0		• •	8/10/01	8/29/01	JRC	EPA 8081
delta-BHC		<0.0051	mg/k	g	0.0051	0.0	20	•	8/10/01	8/29/01	JRC	EPA 8081
Dieldrin		<0.0063	mg/l	g	0.0063	0.0	120	•	B/10/0	8/29/01	JRC	EPA 8081
Endosulfan I		<0.0063	mg/l	ς	0.0063	j 0.0	010	1	0/10/0	8/20/01	JRC	EPA 8081
Endosulfan II		<0.0051	mg/l	<g< td=""><td>0.0051</td><td>0.0</td><td>018</td><td>1</td><td>8/10/0</td><td>1 8/29/01</td><td>JRC</td><td>EPA 8081</td></g<>	0.0051	0.0	018	1	8/10/0	1 8/29/01	JRC	EPA 8081
Endosultan sultate	•	<0.0051	mg/	кg	0.005	1 0.0	014	1	0/10/0			

WI DNR Lab Certification Number 15-7066030 DATCP Certification Number: 105-000289

Solid sample results reported on a Dry Weight Basis

4773 Se

Contract #: 1747

Folder #: 18858

12 of 15

0711484	11238	Samole Des	cription:	AREA 3- COMP	OSITE 4				Sampled	: 8	/7/01 155	<u>0</u>
							Qualifier	Prep	Analysis Date	Analys	t Method	
Analyte		Result	Units	LOD	LUU	Dilution		R/10/01	8/29/01	JBC	EPA 8081	· · ·
Endrin		<0.0063	mg/kg	0.0063	-0.020	1		8/10/01	80001	120	EPA BOBI	
Endrin aldehyde		<0.0051	mg/kg	0.0051	0.015	i 1		8/10/01	6/29/01		EDA 8081	
Endrin ketone		<0.0063	mg/kg	0.0063	0.019) 1	•	8/10/01	8/29/01	JHC	EPA 0001	
gamma-Chlordane		<0.0063	mg/kg	0.0063	0.018	3 1		8/10/01	8/29/01	JRC	EPA 8081	
Heptachlor		<0.0063	mg/kg	0.0063	0.020) 1		8/10/01	8/29/01	JRC	EPA 8081	
Heptachlor epoxide		<0.0063	mg/kg	0.0063	0.019	9 1		8/10/01	8/29/01	JRC	EPA 8081	
Lindane		<0.0076	mg/kg	0.0076	0.02	3 1		8/10/01	8/29/01	JRC	EPA 8081	
Methoxychior		<0.0038	mg/kg	0.0038	0.01	0 1		8/10/01	8/29/01	JRC	EPA 8081	
		<0.025	mg/kg	0.025	0.05	1 1		8/10/01	8/29/01	JRC	EPA 8081	•
Toxaphene												
Sub Lab Results Herbicides		SUB		N/A	N/	A 1			8/27/01	PML		
	81239	Sample De	escription:	AREA 4- COM	POSITE	2			Sample	ed:	8/7/01 1	530
CITLAD#.					1.00	Diluti	on Qualifi	Prep er Date	Analysis Date	Anal	yst Method	-
Analyte		Result										
Solids, Percent		95.0	%	N/A	N	/A 1			8/9/01	TAR	EPA 5030	A
Metais Results			maka	0.47	1	.6 1		8/9/01	8/9/01	NAH	EPA 6010	В
Arsenic		2.0	mailia	0.090	0.	30 1		8/9/01	8/9/01	NAH	EPA 6010)B
Barium		21.9	myxy	0.021	0.0	eg 1		8/9/01	8/9/01	NAH	EPA 6010	0B
Cadmium		0.92	mg/kg	0.021	0.0	18 1		8/9/01	8/9/01	NAH	EPA 601	08
Chromium		6.6	mg/kg	0.054	0.	54 I	· . I	8/9/01	8/9/01	NAH	EPA 601	08
Lead		36.0	mg/kg	0.19	. 0		•	8/9/01	8/9/01	NAH	EPA 601	0B
Selenium		0.37	mg/kg	0.27	- 0	.91	•	8/9/01	8/9/01	NAH	EPA 601	OB
Silver		<0.063	mg/kg	0.063	. 0	.21	•	8/11/01	8/13/01	NAH	EPA 747	'1
Mercury		0.037	mg/kg	0.0061	0.0)20	1	011101	.			
Organic Results		<0.042	ma/ka	0.042	2 0	.12	1	8/10/01	8/22/01	JRC	EPA 808	32
Arocior-1010		-0.042	ma/ka	0.042	2 C	.13	1	8/10/01	8/22/01	JRC	EPA 808	32
Arocior-1221		~0.032		0.032	2 0.1	095	1	8/10/0	8/22/01	JRC	EPA 808	32
Aroclor-1232		-0.052		n 0.05:	3 ().15	1	8/10/0	8/22/01	JRC	EPA 80	32
Arocior-1242		<0.000	myr	- 0.03	2 0.	095	1	8/10/0	1 8/22/01	JRC	EPA 80	82
Aroclor-1248		<0.032	mg/K	9 0.00	1 0	053	1	8/10/0	1 8/22/01	JRC	EPA 80	82
Arocior-1254		<0.021	mg/k	9 0.02								

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

•

Contract #: 1747 Folder #: 18858

Project #: 2082398.01160101

13 of 15

alyte xclor-1260 i'-DDD	Result <0.042 <0.042	Units mg/kg	LOD 0.042	100 0	Vilution		Prep	Analysis		
alyte sclor-1260 i'-DDD i'-DDE	<0.042	mg/kg	0.042		mation	Qualifier	Date	Date	Analyst	Method
1-DDD	<0.042			0.12	1.		8/10/01	8/22/01	JRC	EPA 8082
1-DDD	<0.042									
I-DDE		mg/kg	0.042	0.14	10	-	8/10/01	8/29/01	JRC	EPA 8081
1-DUE	<0.052	mg/kg	0.052	0.17	10		8/10/01	8/29/01	JRC	EPA 8081
		ma/kg	N/A	N/A	10		8/10/01	8/29/01	JRC	EPA 8081
1-001	<0.063	ma/ka	0.063	0.19	10		8/10/01	8/29/01	JRC	EPA 8081
drin	<0.063	ma/ka	0.063	0.21	10		8/10/01	8/29/01	JRC	EPA 8081
oha-BHC	-0.057	mo/k0	0.052	0.16	10		8/10/01	8/29/01	JRC	EPA 8081
pha-Chlordane	0.12	mo/ko	0.042 *	0.14	10		8/10/01	8/29/01	JRC	EPA 8081
sta-BHC	0.12	maka	0.031	0.10	10		8/10/01	8/29/01	JRC	EPA 8081
nlordane (Technical)	<0.031	mg/vg	0.042	0.12	10		8/10/01	8/29/01	JRC	EPA 8081
etta-BHC	<0.042	mg/kg	0.052	0.17	10		8/10/01	8/29/01	JRC	EPA 8081
ieldrin	<0.052	mg/kg	0.052	0.14	10		8/10/01	8/29/01	JRC	EPA 8081
ndosultan l	0.069	mg/kg	0.032	0 15	10		8/10/01	8/29/01	JRC	EPA 8081
ndosultan II	0.24	mg/kg	0.042	0.12	10		8/10/01	8/29/01	JRC	EPA 8081
ndosultan sulfate	<0.042	mg/kg	0.042	0.17	10		8/10/01	8/29/01	JRC	EPA 8081
Indrin	<0.052	mg/kg	0.032	0.13	10		8/10/01	8/29/01	JRC	EPA 8081
Endrin aldehyde	<0.042	mg/kg	0.042	0.10	, 10		8/10/01	8/29/01	JRC	EPA 8081
Endrin ketone	0.24	mg/kg	0.052	0.10	5 10		8/10/01	8/29/01	JRC	EPA 8081
jamma-Chlordane	<0.052	mg/kg	0.052	0.1	7 10		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor	<0.052	mg/kg	0.052	0.1	5 10		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor epoxide	<0.052	mg/kg	0.052	0.1	c 10		8/10/01	8/29/01	JRC	EPA 8081
Lindane	<0.063	mg/kg	0.063	0.1	= 10 4 10		8/10/01	8/29/01	JRC	EPA 8081
Methoxychior	<0.031	mg/kg	0.031	0.08	-4 10 		9/10/04	8/20/01	JRC	EPA 8081
Toxaphene	<0.21	mg/kg	0 21	0.4	2 10			G Loro I	5	· · · ·
Sub Lab Results	SUB		N/A	N	/A 1			8/27/01	PML	na in the The second second
	240 Sample [)escription:	AREA 4- CO	MPOSITE	3			Samp	oled:	8/7/01 17
			<u></u>	· · · ·			Pren	Analysis		
Applute	Result	Units	LOD	LOQ	Dilut	on Qual	ifier Date	Date	Ana	lyst Method
мпануте								8/0/01	TAR	EPA 5030/

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

::: :

Solid sample results reported on a Dry Weight Basis

Jeco.

Contract #: 1747 Folder #: 18858

.

14 of 15

Project Name: BRIDGE/BADGER Project #: 2082398.01160101

CTI LAB#:	81240	Sample Des	criptión:	AREA	4- COMP	OSITE 3					Sampled	l: 8/	7/01 17	745
L	<u></u>	Result	Units		LOD	LOQ	Dilutio	n Qua	alifier	Prep Date	Analysis Date	Analys	Method	
Analyte		2.2	mg/kg		0.33	1.1	1	•		8/9/01	8/9/01	NAH	EPA 6010	8
Arsenic		31.5	ma/ka		0.064	0.21	1			8/9/01	8/9/01	NAH	EPA 6010	B
Banum		0.84	ma/ka		0.015	0.049) 1			8/9/01	8/9/01	NAH	EPA 6010	6
Cadmium		83	mo/ko		0.038	0.13	з. Т. Т.			8/9/01	8/9/01	NAH	EPA 6010	В
Chromium		o.u	mo/ko		0.13	0.45	5 1			8/9/01	8/9/01	NAH	EPA 6010	8
Lead		20.2	maka		0.19 *	0.64	ş - 1			8/9/01	8/9/01	NAH	EPA 6010	08
Selenium		0.25	mg/kg		0.045 *	0.1	5 1			8/9/01	8/9/01	NAH	EPA 6010	98
Silver	•	0.045	туку		0.0063 *	0.02	1 1			8/11/01	8/13/01	NAH	EPA 747	1
Mercury		0.020	mg/kg		0.0005	0.02	• •							
Organic Results		<0.044	mg/kg		0.044	0.1	2 1			8/10/01	8/22/01	JRC	EPA 808	2
Arocior-1010		<0.044	mg/kg		0.044	0.1	3 1			8/10/01	8/22/01	JRC	EPA 808	2
Arocioi-1221	•	<0.033	mo/kg		0.033	0.09	8 1			8/10/01	8/22/01	JRC	EPA 808	2
Aroclor-1232		<0.054	ma/ka		0.054	0.1	5 1			8/10/01	8/22/01	JRC	EPA 808	2 0
Aroclor-1242		<0.033	ma/ka		0.033	0.09	18 1			8/10/01	8/22/01	JRC	EPA 808	2
Aroclor-1248		-0.022	mo/kū		0.022	0.05	<u>54</u> 1			8/10/01	8/22/01	JRC	EPA 808	2
Aroclor-1254		<0.022	ma/ka		0.044	0.1	12 1			8/10/01	8/22/01	JRC	EPA 808	2
Aroclor-1260		<0.044												
		<0.043	ma/ka		0.043	0.1	14 . 10) .		8/10/01	8/29/01	JRC	EPA 808	31
4,4-000		<0.054	ma/ka		0.054	0.	17 10	C		8/10/01	8/29/01	JRC	EPA 808	31
4.4 -DDE		<0.043	. mn/kn		0.043	0.	15 1	0		8/10/01	8/29/01	JRC	EPA 808	31
4,4'-DDT		<0.045	mg/kg		0.065	0.	19 1	0		8/10/01	8/29/01	JRC	EPA 808	31
Aldrin		<0.005	maka		0.065	Ò.	22 1	0		8/10/01	8/29/01	JRC	EPA 80	81
alpha-BHC		<0.065	mg/kg		0.054	0	16 1	Ö -		8/10/01	8/29/01	JRC	EPA 80	81
alpha-Chlordane		<0.054	mg/kg		0.043	0	14 1	0		8/10/01	8/29/01	JRC	EPA 80	81
beta-BHC		<0.043	my/ku	1	0.032	0	11 1	0		8/10/01	8/29/01	JRC	EPA 80	81
Chlordane (Technica	1) ·	<0.032	mg/Kg	}	0.002	0	12 1	0		8/10/01	8/29/01	JRC	EPA 80	81
delta-BHC		<0.043	mg/kg)	0.040			10		8/10/01	8/29/01	JRC	EPA 80	81
Dieldnn		<0.054	mg/k	3	0.054		.17			8/10/01	8/29/01	JRC	EPA 80	81
Endosulfan I		<0.054	mg/kj	3	0.054	C C	14) . 1 <i>4</i>)	10		8/10/01	8/29/01	JRC	EPA 80	81
Endosultan II		<0.043	mg/k	9	0.043	C	.15	10		8/10/01	8/29/01	JRC	EPA 80	81
Endosultan sultate		0.13	mg/k	g 	0.043		0.12	10		g/10/01	R/20/01	JRC	EPA 8	081
Endrin		<0.054	mg/k	g	0.054).17	10		8/10/01		IRC	EPA 8	081
Endrin aldenyde		<0.043	mg/k	g	0.043	3 ().13	10		8/10/01) 0/29/01	3.10		•

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

:

Contract #: 1747 Folder #: 18858

15 of 15

Project Name: BRIDGE/BADGER Project #: 2082398.01160101

CTI LAB#:	81240	Sample Des	cription:	AREA 4- COMP	OSITE 3				Sample	id:	8/7/01 1745
			• .				0	Prep	Analysis	Anah	et Method
Analyte		Result	Units	LOD	LOQ	Dilution	Quaimer				
Endrin ketone		0.091	Ting/kg	0.054 *	0.16	5 10		8/10/01	8/29/01	JRC	EPA 8081
amma-Chlordane		<0.054	mg/kg	0.054	0.15	5 10		8/10/01	8/29/01	JRC	EPA 8081
Heotachlor		<0.054	mg/kg	0.054	0.17	7 10		8/10/01	8/29/01	JRC	EPA 8081
Heptachlor epoxide		<0.054	mg/kg	0.054	0.16	6 10		8/10/01	8/29/01	JRC	EPA 8081
Lindane		<0.065	mg/kg	0.065	0.19	9 10		8/10/01	8/29/01	JRC	EPA 8081
Methorychlor		0.11	mg/kg	0.032	0.08	6 10		8/10/01	8/29/01	JRC	EPA 8081
Toxaphene		<0.22	mg/kg	0.22	0.4	3 .10		8/10/01	8/29/01	JRC	EPA 8081
Sub Lab Results Herbicides		SUB		N/A	N/	A 1			8/27/01	PML	

Notes: • Indicates Value in between LOD and LOQ.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

PML

Submitted by:

1

Record Reviewer

WI DNR Lab Certification Number: 15-7066030 DATCP Certification Number: 105-000289

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81230 Area 1-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.15 Dilution Factor: 1 Solids, Total: 79.2% Lab Sample Number: AA11058

	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2.4-D	14	< 14
2.4.5-TP	3.0	< 3.0
2.4.5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		83.3%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Livihan Date: 8/4-4/41

···**-** -

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81231 Area 1-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.14 Dilution Factor: 1 Solids, Total: 79.1%

Compound	Reporting Limit	Sample <u>Result</u>
compound		
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	350
7 4-D	14	< 14
2,4 5-TP	3.0	< 3.0
7 4 5-T	3.0	< 3.0
Dinoseh	5.0	< 5.0
2 4-DR	28	< 28
Picloram	3.4	< 3.4
Rentazon	25	< 25
Daethal	2.1	< 2.1
Trichlonyr	3.2	< 3.2
Bromorynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)	0.0	84.7%
DCAA (Surrogate)		

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Finchine 9124/01 Date:

., -

Sample

Lab Sample Number: AA11059

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81232 Area 2-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.31 Dilution Factor: 1 Solids, Total: 82.0% Lab Sample Number: AA11060

	Reporting	Sample
Compound	Limit	Result
Delegon	28	< 38
Datapon	95	< 8.5
	20	< 38
Dichlorprop	20	< 20
Pentachlorophenol	2.0	< 2.0
2,4-D	14	< 14
2,4,5-TP	3.0	< 3.0
2,4,5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		82.6%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

nevers Approved: MJ 9124/01 Date:

 $\mathbf{\nabla}$

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81231 Area 1-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.14 Dilution Factor: 1 Solids, Total: 79.1% Lab Sample Number: AA11059

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	350
2.4-D	14	< 14
2,4,5-TP	3.0	< 3.0
2.4.5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		84.7%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, W1 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Finshine 9124/01 Date:

•••••

Lab Sample Number: AA11060

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81232 Area 2-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.31 Dilution Factor: 1 Solids, Total: 82.0%

	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2.4-D	14	< 14
2.4.5-TP	3.0	< 3.0
2.4.5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxvnil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		82.6%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718

2

Phone: 608-221-8700 Fax: 608-221-4889

Approved: M Jenske 9124/01 Date:

(

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81233 Area 2-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.17 Dilution Factor: 1 Solids, Total: 80.3% Lab Sample Number: AA11061

	Reporting	Sample
Compound	Limit	Kesun
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
7.4-D	14	< 14
2,1 2 2 4 5-TP	3.0	< 3.0
2,1,5 2. 7 4 5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromorynil	1.8	< 1.8
Chloramhen	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		84.6%

Method Reference: 8151A

WI Lab Certification #113289110

Approved: M. Justins 8/24/01 Date:

·:.

1

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889
Lab Sample Number: AA11062

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81234 Area 4-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/22/01 Concentration: ug/kg dry weight Sample Weight (g): 10.21 Dilution Factor: 1 Solids, Total: 89.4%

s,

	Reporting	Sample
Compound	Limit	Result
Dalanon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2 4-D	14	71
2,4 D 2 A 5-TP	3.0	< 3.0
2,1,5 T	3.0	< 3.0
Dinoseh	5.0	< 5.0
2 4-DR	28	< 28
Picloram	3.4	< 3.4
Rentazon	25	< 25
Decthal	2.1	< 2.1
Trichlonyr	3.2	< 3.2
Bromorynil	1.8	< 1.8
Chloramban	14	< 14
Anifluorfon	8.0	< 8.0
Actituorien	0.0	74.9%
DCAA (Surrogate)		

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889 Approved: M. Level Date: 8/24/01

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81235 Area 3-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted:08/17/01Lab Sample Number:AA11063Date Analyzed:08/22/0108/22/01Concentration:ug/kg dry weightSample Weight (g):10.26Dilution Factor:1Solids, Total:80.7%

	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2.4-D	14	< 14
2,4,5-TP	3.0	< 3.0
2,4,5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2,4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxvnil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		85.2%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. 8 624/01 Date:

Lab Sample Number: AA11064

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81236 Area 3-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/23/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 84.5%

	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	32
2,4-D	14	< 14
2,4,5-TP	3.0	< 3.0
2,4,5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		82.6%

Method Reference: 8151A

WI Lab Certification #113289110

Approved: M. Linck 8/24/61 Date:

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81237 Area 3-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/23/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 80.1% Lab Sample Number: AA11065

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2.4-D	14	< 14
2.4.5-TP	3.0	< 3.0
2.4.5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxvnil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		78.8%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Linghanz 8124/01 Date:

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81238 Area 3-Composite 4 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/23/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 77.5% Lab Sample Number: AA11066

	Reporting	Sample
Compound	Limit	Result
Dalanon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2.4-D	14	< 14
2.4.5-TP	3.0	< 3.0
2.4.5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2.4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxvnil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		75.7%

Method Reference: 8151A

WI Lab Certification #113289110

Approved: M. June Date: 9 (24/6)

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81239 Area 4-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/23/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 94.7%

/kg dry weight): 10.0

*		
	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	3.4
2,4-D	14	27
2,4,5-TP	3.0	< 3.0
2,4,5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2,4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		78.3%

Method Reference: 8151A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Firskue Date: 8/24/01

Lab Sample Number: AA11067

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81240 Area 4-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/17/01 Date Analyzed: 08/23/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 91.9% Lab Sample Number: AA11068

Approved: pl. Lingkins Date: 8/24/6/

	Reporting	Sample
Compound	Limit	Result
Dalapon	38	< 38
Dicamba	8.5	< 8.5
Dichlorprop	38	< 38
Pentachlorophenol	2.0	< 2.0
2,4-D	14	< 14
2,4,5-TP	3.0	< 3.0
2,4,5-T	3.0	< 3.0
Dinoseb	5.0	< 5.0
2,4-DB	28	< 28
Picloram	3.4	< 3.4
Bentazon	25	< 25
Dacthal	2.1	< 2.1
Trichlopyr	3.2	< 3.2
Bromoxynil	1.8	< 1.8
Chloramben	14	< 14
Acifluorfen	8.0	< 8.0
DCAA (Surrogate)		80.2%

Method Reference: 8151A

WI Lab Certification #113289110

Lab Sample Number: AA11058

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81230 Area 1-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.2 Dilution Factor: 1 Solids, Total: 79.2%

Reporting Sample Result Compound Limit < 7.0 EPTC 7.0 < 15 Butylate 15 18 < 18 Trifluralin Desethylatrazine < 6.0 6.0 Desisopropylatrazine 9.5 < 9.5 94 Prometon 3.7 < 3.5 Propazine 3.5 < 2.1 Atrazine 2.1 < 1.0 Simazine 1.0 12 < 12 Acetochlor < 16 Dimethenamid 16 < 10 Alachlor 10 < 16 Metribuzin 16 < 22 Metolachlor 22 < 4.3 4.3 Chloropyrifos < 7.0 Pendamethalin 7.0 4.0 < 4.0 Cvanazine 61.8% Triphenyl Phosphate (Surr)

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Finskers Date: 8/23/51

Lab Sample Number: AA11059

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81231 Area 1-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.3 Dilution Factor: 1 Solids, Total: 79.1%

	Reporting	Sample
Compound	Limit	Result
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	220
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	< 1.0
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate	(Surr)	58.7% *

* = Low surrogate recovery may indicate low bias to sample results.

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Juishans Date: 8/23/01

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81232 Area 2-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.2 Dilution Factor: 1 Solids, Total: 82.0% Lab Sample Number: AA11060

<u>Compound</u>	Reporting <u>Limit</u>	Sample <u>Result</u>
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	59
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	< 1.0
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate (Surr)	62.0%

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Finitary Date: 8/23/01

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81233 Area 2-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.1 Dilution Factor: 1 Solids, Total: 80.3% Lab Sample Number: AA11061

Compound	Limit	Result
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	450
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	8.6
Acetochlur	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate	(Surr)	47.9%

* = Low surrogate recovery may indicate low bias to sample results.

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Linken Date: 8 (23/01

Lab Sample Number: AA11062

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81234 Area 4-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.1 Dilution Factor: 1 Solids, Total: 89.4%

Reporting Sample Compound Limit <u>Result</u> EPTC 7.0 < 7.0 Butvlate 15 < 15 Trifluralin 18 100 Desethvlatrazine 6.0 < 6.0 < 9.5 Desisopropylatrazine 9.5 Prometon 3.7 130 Propazine 8:4 3.5 Atrazine 2.1 18 39 Simazine 1.0 Acetochlor 12 < 12 Dimethenamid 16 < 16 Alachlor 10 560 < 16 Metribuzin 16 < 22 Metolachlor 22 4.3 < 4.3 Chloropyrifos 49 Pendamethalin 7.0 Cvanazine 4.0 < 4.0 Triphenyl Phosphate (Surr) 106.3%

Method Reference: Modified 8141A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M. Junihans Date: 8/23/01

Υ.

Lab Sample Number: AA11063

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101-Purchase Order Number: 18858ECCS Sample Description: 81235 Area 3-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 80.7%

Reporting Sample Compound Limit <u>Result</u> EPTC 7.0 < 7.0 Butylate 15 < 15 18 Trifluralin < 18 Desethylatrazine < 6.0 6.0 9.5 Desisopropylatrazine < 9.5 Prometon 3.7 110 Propazine 3.5 < 3.5 Atrazine 2.1 < 2.1 Simazine 1.0 < 1.0 Acetochlor < 12 12 Dimethenamid 16 < 16 Alachlor 10 < 10 Metribuzin 16 < 16 Metolachlor 22 < 22 Chloropyrifos 4.3 < 4.3 Pendamethalin 7.0 < 7.0Cvanazine 4.0 < 4.0 Triphenyl Phosphate (Su. r) 67.0%

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: N. Jessfers Date: 8/23/81

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81236 Area 3-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.2 Dilution Factor: 1 Solids, Total: 84.5% Lab Sample Number: AA11064

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	160
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	< 1.0
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate (Surr)	45.9%

* = Low surrogate recovery may indicate low bias to sample results.

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Amaking Date: 8/23/01

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81237 Area 3-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.2 Dilution Factor: 1 Solids, Total: 80.1% Lab Sample Number: AA11065

	Reporting	Sample
Compound	<u>Limit</u>	Result
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	800
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	< 1.0
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate	(Surr)	72.9%

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Linghang Date: 8 (23/01

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81238 Area 3-Composite 4 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.3 Dilution Factor: 1 Solids, Total: 77.5% Lab Sample Number: AA11066

	Reporting	Sample		
Compound	Limit	<u>Result</u>		
EPTC	7.0	< 7.0		
Butvlate	15	< 15		
Trifluralin	18	< 18		
Desethvlatrazine	6.0	< 6.0		
Desisopropylatrazine	9.5	< 9.5		
Prometon	3.7	630		
Propazine	3.5	< 3.5		
Atrazine	2.1	< 2.1		
Simazine	1.0	< 1.0		
Acetochlor	12	< 12		
Dimethenamid	16	< 16		
Alachlor	10	< 10		
Metribuzin	16	< 16		
Metolachlor	22	< 22		
Chloropyrifos	4.3	< 4.3		
Pendamethalin	7.0	< 7.0		
Cvanazine	4.0	< 4.0		
Triphenvl Phosphate	(Surr)	69.5%		

Method Reference: Modified 8141A

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: M_ Lingfore Date: 8/23/01

•

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81239 Area 4-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.2 Dilution Factor: 1 Solids, Total: 94.7% Lab Sample Number: AA11067

	Reporting	Sample
Compound	Limit	Result
EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	41
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	350
Propazine	3.5	< 3.5
Atrazine	2.1	8.6
Simazine	1.0	56
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate	(Surr)	62.7%

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: M. Finikars Date: 8/23/01

Lab Sample Number: AA11068

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81240 Area 4-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/13/01 Date Analyzed: 08/16/01 Concentration: ug/kg dry weight Sample Weight (g): 10.1 Dilution Factor: 1 Solids, Total: 91.9%

Sample Weight (g): 10.1 Dilution Factor: 1 Solids, Total: 91.9% Reporting Sample <u>Compound Limit Result</u>

EPTC	7.0	< 7.0
Butylate	15	< 15
Trifluralin	18	< 18
Desethylatrazine	6.0	< 6.0
Desisopropylatrazine	9.5	< 9.5
Prometon	3.7	< 3.7
Propazine	3.5	< 3.5
Atrazine	2.1	< 2.1
Simazine	1.0	14
Acetochlor	12	< 12
Dimethenamid	16	< 16
Alachlor	10	< 10
Metribuzin	16	< 16
Metolachlor	22	< 22
Chloropyrifos	4.3	< 4.3
Pendamethalin	7.0	< 7.0
Cyanazine	4.0	< 4.0
Triphenyl Phosphate (Su	ırr)	66.1%

Method Reference: Modified 8141A

WI Lab Certification #113289110

Approved: N. Initan Date: 8/23/81

1

2

54. 541

11

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81230 Area 1-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 79.2% Lab Sample Number: AA11058

Reporting
CompoundSample
LimitCompoundLimitTebuthiuron20Chlorotoluron (Surr)111.5%

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: Richard Johnson Date: 22400

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81231 Area 1-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 79.1%

Lab Sample Number: AA11059

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>
Tebuthiuron	20	< 20
Chlorotoluron (Surr)		96.1%

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Recharder Johnson Date: 22AUO

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81232 Area 2-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 82.0% Lab Sample Number: AA11060

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>		
Tebuthiuron	20	< 20		
Chlorotoluron (Surr)		93.7%		

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Reilian Johnon Date: 27400

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81233 Area 2-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 80.3% Lab Sample Number: AA11061

ReportingSampleCompoundLimitResultTebuthiuron20< 20</td>Chlorotoluron (Surr)96.5%

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: Rielia delluion Date: 22400

••••

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81234 Area 4-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 89.4% Lab Sample Number: AA11062

<u>Compound</u>	Reporting <u>Limit</u>	Sample <u>Result</u>		
Tebuthiuron	20	< 20		
Chlorotoluron (Surr)		84.3%		

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

Approved: Rielis folewon Date: 224001

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81235 Area 3-Composite 1 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 80.7% Lab Sample Number: AA11063

Reporting
LimitSample
ResultCompoundLimitResultTebuthiuron20< 20
86.9%

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Willie Joluer Date: 22AUD

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81236 Area 3-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 84.5%

Lab Sample Number: AA11064

<u>Compound</u>	Limit	Sample <u>Result</u>		
Tebuthiuron	20	< 20		
Chlorotoluron (Sur	r)	99.9%		

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Reinauf Johnesm Date: 22400 (

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81237 Area 3-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 80.1%

Lab Sample Number: AA11065

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>		
Tebuthiuron	20	< 20		
Chlorotoluron (Surr)		95.7%		

Method Reference: Modified \$321-HPLC UV

WI Lab Certification #113289110

Approved: Relie fluor Date: 251200

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81238 Area 3-Composite 4 Date Collected: 08/07/01 Sample Type: Soil

L

Date Extracted:08/14/01Lab Sample Number:AA11066Date Analyzed:08/15/01Concentration:ug/kg dry weightConcentration:ug/kg dry weightSample Weight (g):10.0Dilution Factor:1Solids, Total:77.5%

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>	Sample <u>Result</u>		
Tebuthiuron	20	28			
Chlorotoluron (Surr)		95.3%			

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Railberd plion Date: 22400

Lab Sample Number: AA11067

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81239 Area 4-Composite 2 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 94.7%

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>
Tebuthiuron	20	33
Chlorotoluron (Surr)		74.0%

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Reclass Joluis Date: 22400

•

E.C.C.S. 2525 Advance Road Madison, WI 53718 Phone: 608-221-8700 Fax: 608-221-4889

6 F 3

Project Name: Montgomery Watson – Bridge/Badger Project Number: 2082398.01160101 Purchase Order Number: 18858ECCS Sample Description: 81240 Area 4-Composite 3 Date Collected: 08/07/01 Sample Type: Soil

Date Extracted: 08/14/01 Date Analyzed: 08/15/01 Concentration: ug/kg dry weight Sample Weight (g): 10.0 Dilution Factor: 1 Solids, Total: 91.9%

- 1

Lab Sample Number: AA11068

Compound	Reporting <u>Limit</u>	Sample <u>Result</u>		
Tebuthiuron	20	< 20		
Chlorotoluron (Surr)		79.0%		

Method Reference: Modified 8321-HPLC UV

WI Lab Certification #113289110

Approved: Reelian Date: 27Au

TURNAROUND TURNAROUND 1 WEEKS (standard) 1 DAY		LAB USE ONLY MATRIX LAB NO.	81230 81232	81235 81234 81235	8/237 8/237 8/239 8/239	2/24	L VAIE IME	8/1/13/2
858 BSR SPECAL INTGOMERY WATS SPECAL INSTRUCTIONS GETADGER UR PM PMI D C 107 C	MOTHER MOTHER	O D D D D D D D D D D D D D D D D D D D	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			VER NO TEMP. NO PRESENT NO PROJUGA NE VEN NO PROJUGA NE VEN NE VEN NO TEMP. OCT. VES NO TEMP. VES NO TEMP. VES NO TEMP. VES NO TEMP. VES N	INNE DATE 8/7/0/ TIME JUTY UT 1 V VIE DATE 81.	RECEIVED FOR LABORATORY BY A MAME OF COURIER.
MONTGOMERY WATSON HARZA CHAIN LOgged By N CHAIN	FROJECT NAME BRIDGE ENG. (150) PROJECT & BRIDGE ENG. (150) 2082398.01160101 Sammens Sammenys	MARK/MAYL/ CONTECTION CONFECTION GRABI SAMPLE ID 60 DATE TIME CONT	R/2104 7120 (ONP HAEA 1 - CANPOSITE / 5 10:00 ANGA 2 - CANPOSITE / 5 10:55 ANGA 2 - CANPOSITE / 5	12:35 AREA 2 - COMPOSITEZ 5 12:35 AREA 4 - COMPOSITE 1 6 13:15 AREA 3 - COMPOSITE 1 5		UNTIL REDUCTIONS: 114 ACCA 4- (DU 105175-5 11/2) SPECIAL INSTAUCTIONS: 114 ARCH AN ANALYS'S SAMPLES RECEIVED ON ICE UNTIL REDUCTON ANALYS'S SAMPLES RECEIVED ON ICE	RELINOUISHED BY: A RELINOUISHED BY: A RELINOUISHED BY: A RELINOUISHED BY: RELINOUISHED BY:	RELINQUISHED BY C-O-C No. 22401

••

·····

Appendix C

Soil Sample Summary Tables

-

Tummary of Soil Sample Results Badger Army Ammunition Plant
--

₽

۲.

						-	-					NR 720 Industrial	NR 605 Hazardous	USUA Goals (molKa)
	AICI	A1C2	A2C1	A2C2	A3C1	A3C2	A3C3	A3C4	A4C1	A4CZ	AAUJ	nienijeje (jejijjaolsau)		
							,						100	16
	15	×	×	×	×	×	×	×	×	×	×	NA (NA	50.	
4.4-000	2.)			×	×	×	24	×	160	×	×	NA (NA	(a)	
4.4.DDE				7.8	×	×	7.8	×	190	×	×	NA (NA	yes (,
4.4-001			<		*	×	×	×	77	×	×	NA (NA) yes	4.4
alpha-Chlorodane	×	× :					13	F	88	120	×	NA (NA	OU C	AN
beta-BHC	2.6	×	× ::		2	- - -	×	×	×	×	×	NA (NA	ou (AN
delta-BHC	×	×	×	< ; ;				×	180	×	×	NA (NA) Yes	2
Dietdrin	×	×	×					×	×	69	×	NA (NA	() Yes	AN
Endosulfan I	×	×	X	×	< ''				1.30	240	×	NA (NA	() Yes	AN
Fodosultan II	×	×	×	×	15	×	<				1.5	NA (NA	Ves	AN
Endosultan sultate	12	×	×	×	×	6	×	× :	070			NA (NA	ves	2.3
Fadio	×	×	×	×	×	×	×	×		<;>		NA (NA	Ves	AN
Endin aldehode	10	×	×	×	×	×	×	×	160			AN AN AN	Sev line	AN
Codia Volvao	×	×	×	×	×	×	1.1	×	0/9	240				4 4
		×	× -	×	×	×	×	×	×	~		NA (N/		NA
gamma-Chiorodane		<u>}</u>	×		×	×	×	×	800	~	110	NA (N)	(Y	
Methoxychior								-						
10,10,000														MA
	2	1950	×	×	×	32	×	×	×	3.		NA (N	A)	
Pentachlorophenol		× · · · · ·		×	×	×	×	×	17	2		NA (N	A)	YN I
2.4-D	<													
EPA 8141A (u0/Kg)			<u>}</u>	×	×	×	×		100	4	-	NA (N	A)	
Trilluralin	·			150	110	1601	800	630	130	35	0	NA (N	V)	AN I
Prometon	47. 	27. 			<u>}</u>	×	.× 		8.4		×	NA (N	P)	AN I
Propazine	×	K							18	8	6	NA (N	A)	AN IO
Atrazine		× } 		< u		×			39	ē.	9	NA (N	A)	V
Simazine	×	* ;		2			×		560		×	NA (N	U)	VN VN
Alachlor		×							49		×	NA (N	(<u>A</u>)	VN
Pendamethalin		×	×	×	<									
EPA 8321-HPLC UV (ug/Kg)								36	×	6	10	NA (N	IA)	NA
Tebuthiuron			×	×	*	<								
EPA 6010B (mg/Kg)			2	10	2.5	2.2	2	5 2.	1.6	2	9	2 1.6 (.0	39) ye	S
Arsenic	· · · ·		200	125	154	135	16	9 14	7 31.7	7 21	9	5 NA (P		S
Barium				74.0	20	0.68	0.8	1 0.6	0.42	2 0.5	12 0.6	510	(B)	12
Cadmium	c:0	0.01	20.0									NA trivalent.	200	
					-							nexavalent (10,		1300
Chrometer	12	4 15.1	1 9.2	11.4	13.6	14.1	1	8	4				501	18
	1	5 25	1 274	1 266	16.5	14.5	₽	3 15.	6					2
Leau		1	16.0 5	1.1	1.2	0.86	6.0	12 0.9	6 0.4	2				
Selenium								×	×		0.0 X	1) NA (1		
Silver														
EPA /4/1 (mg/kg)	0.05	15 0.03	4 0.02	2 0.02	0.0	3 0.02	5 0.03	38 0.03	34 0.03	10.0	37	02 NA (I		
Mercury														
CDA 8082 ((K.c)												NAN V		ac la
						1				×	×-			
					-									

Only detected compounds are listed abova. Complete Laboratory Reports are Included in Attachment A.
AntC1 = Area 1 Composite Sample 1
X = Not Detected at the Limit of Detection
X = Not Detected at the Limit of Detection
X = Not Shazardous Constituent = Any solid wasto that values indicate exceedance of the generic standard.
X = No Shazardous Constituent = Any solid wasto that contains constituents as listed in Wisconsin Administrative Code Chapter NR 605 Lipt Amplicable
X = Not Applicable

		Table 2	nent Levels Found at DAAD	
/ersus USDA Midewin I	Cor nterim Soil Remediatio	nparison of the Highest Contamin on Goals and States of Wisconsin	and Illinois Soil Remediation Goals	for the Protection of Human Health
Contaminant	Highest Badger	USDA Midewin Interim Soil	Wisconsin NR 720	Illinois Section 742 Tier 1
Containmunt	Level Sampled	Remediation Goals	, Industrial (Residential)	Industrial (Residential)
	(ug/kg)	(ug/kg)	ug/kg Soil Remediation	Soil Remediation Objectives
			Keg 9 Objectives	(ug/kg)
			PRG (ug/kg)	
		EPA 808	<u>1</u>	21,000 (2,000)
4.4'-DDD	15	16,000	N (N)	24,000 (3,000)
44'-DDE	160	400	N (N)	17,000 (2,000)
4.4'-DDT	190	2000	1,700 N(N)	17,000 (2,000)
Alpha-Chlorodane	77	4,400	N (N)	1,600 (1,800)
Beta-BHC	140	N	320 N(N)	N (N)
Delta-BHC	21	N	N (N)	N (N)
Dieldrin	180	2,000	300 N(N)	400 (40)
Endosulfan I	69	N	N (N)	12,000,000 (470,000)
Endosulfan II	240	N	N (N)	12,000,000 (470,000)
Endosulfan sulfate	520	N	N (N)	N (N)
Endrin	110	23,000	18,000 N(N)	610,000 (23,000)
Endrin aldehyde	160	N	N (N)	N (N)
Endrin aldenyde	570	N	N (N)	N (N)
Engrin Kelone	11	4,400	N (N)	N (N)
Gamma-Chiorodane	800	N	N (N)	10,000,000 (390,000)
Methoxychiol				
		EPA 815	14	
	760	N	13 FTD N(N)	24,000 (3,000)
Pentachlorophenol	330	N	Lago, Col N(N)	20,000,000 (780,000)
2,4-D	/1		<i><i>v v v v v v v v v v</i></i>	
EDA 81414				
Triflumlin	100	N	63,000 N(N)	N (N)
Tititutanii	800	N	N (N)	N (N)
Prometon (Thazine)	84	N	N (N)	N (N)
Propazine	18	N	2,200 N(N)	72,000,000 (2,700,00)
Atrazine	56	N	N (N)	10,000,000 (390,000)
Simazine	560	N	6,000 N(N)	72,000 (8,000)
Alacmol	49	N	N (N)	N (N)
Pendamethann				
		EPA 8321-H	IPLC UV	NOD
Tebuthiuron (Brulan)	33	N	4,300,000 N(N)	N (N)
1	Propellant B.C.	$\rightarrow PBG$ EPA 60	$\frac{10B}{1}$ $\frac{10B}{10}$ $\frac{1600(39)}{10}$	11.300 (11.300)
Arsenic	3800	16,000 21,000	624 540 1,000 (37)	140,000,000 (5,500,000
Barium	182,000	105,000	1 1/ 10 000 (R (N)	2,000,000 (78,000)
Cadmium	920	13,000	1, 100,000 STU,000 (0,000)	6,100,000 (230,000)
Chromium (Total)	15,100	38,000	10,000 IN(N)	400.000 (400.000)
Lead	274,000	185.000 30,000	7 K 5 0,000 50,000 (50,000)	10,000,000 (390,000)
Selenium	1,600	390,000	1940,000 IN (IN)	10,000,000 (390,000)
Silver	45	390,000	SHOULD N(N)	
		ד גקים ל	171	
			<u> </u>	610,000 (23,000)
Mercury	55	380 100		
		EDA A	082	
		1.000	N (N)	1,000 (1,000)
PCBs	I BDC	1,000		

Notes:

1. "BAAP" means Badger Army Ammunition Plant.

 USDA Midewin Soil Remediation Goals were obtained from Volume I of the report entitled <u>Sampling</u> and <u>Analytical Report Midewin National Tallgrass Prairie</u>, July 1999 prepared for the USDA Forest Service by Barr Engineering Company.

- 3. Wisconsin NR720 Industrial (Residential) Soil Remediation Objectives are based on protection of human health from direct contact through ingestion of soil or inhalation of particulate matter.
- 4. Illinois Section 742 Tier 1 Industrial (Residential) Soil Remediation Objectives are generally based on the protection of human health from direct contact through ingestion of soil. An exception to this is the objective for arsenic, which is based on background levels of arsenic in counties outside metropolitan statistical areas.
- 5. "N" or "(N)" means goals have not been promulgated.
- 6. "ug/kg" means microgram of contaminant per kilogram of soil.
- 7. "BDL" means below detectable levels.

Appendix D

USDA Forest Service Interim Soil Remediation Goals at the Midewin National Tallgrass Prairie

. . .

Soil Analytical Results Midewin National Tallgrass Prairle [concentrations in mg/kg]

							Misce	laneous Source	Areas			
	IICDA Bronced	1 29-0-01	129-C-01	L29-C-02	L29-C-03	L29-C-04	L103-G-01	L103-G-02	L104-G-04	L106-G-01	L117-G-01	L117-G-02
		0/0/11	80/81/11	11/18/98	11/18/98	11/16/98	10/16/98	10/16/98	86/21/11	10/26/98	11/13/98	11/413/98
Parameter	Hemediation Goals	TriMatdy	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix
Saminalle Organic Compound												1
	۰ ۲	<0.33	<0.33	<0.33	<0.33	cc.0>	1	1	<0.33	<0.33	<0.33	<0.33
Acenaphthene	а ч С	<0.33	<0.33	<0.33	<0.33	<0.33	1	1	<0.33	<0.33	<0.33	<0.33
Acenapiumyrene	· ·	<0.33	<0.33	<0.33	<0.33	<0.33	1	:	<0.33	<0.33	<0.33	<0.33
Anintacene		0.065	0.086	<0.33	0.19]	0.061]	:	:	€0.33	<0.33	<0.33	<0.33
	0.78	<0.33	<0.33	<0.33	0.12]	<0.33	t	1	<0.33	<0.33	<0.33	<0.33
Benzo(a)pyrene	, e	0.161	0.131	<0.33	0.2]	0.1	1	1	<0.33	<0.33	<0.33	<0.33
Benzo(b)fluorantnene	יש מ	6607	<0.33	<0.33	<0.33	<0.33	:	1	<0.33	<0.33	<0.33	<0.33
Benzo(g.h.l)perylane	n c	0.0861	0.0821	<0.33	0.11	<0.33	••	1	<0.33	<0.33	<0.33	<0.33
Benzo(k)iluoraninena	110	1110 1110	0.12 lb	<0.33	<0.33	0.088 b		•	<0.33	<0.33	<0.33	<0.33
Bis(2-ethylnexyt)primatate		1660.0	0.12	<0.33	0.22]	0.11	1	ı	<0.33	<0.33	<0.33	<0.33
Citryserie Dihoo-ta hisothracana		<0.33	<0.33	<0.33	<0.33	<0.33	1	•	<0.33	<0.33	<0.33	<0.33
	8.200	<0.33	<0.33	<0.33	<0.33	<0.33	1	ľ	<0.33	<0.33	<0.33	<0.33
Vibelizourali 1 3 Nichlorohanzana	2.000	<0.33	<0.33	<0.33	CC.0>	<0.33	I .	1	<0.33	<0.33	<0.33	<0.33
1, 2. Mohiombenzene	27	<0.33	<0.33	<0.33	<0.33	<0.33		1	<0.33	<0.33	<0.33	<0.33
	240	<0.33	<0.33	<0.33	<0.33	<0.33	1.	1	<0.33	<0.33	<0.33	<0.33
Die brid chthelate	200	<0.33	<0.33	<0.33	<0.33	<0.33	1	ł	<0.33	<0.33	<0.33	<0.33
Discould shifted a	10.000	<0.33	<0.33	<0.33	<0.33	<0.33	1	•	<0.33	<0.33	<0.33	<0.33
	60	0.131	0.14	<0.33	0.28]	0.14]	1	:	<0.33	<0.33	<0.33	<0.33
r luoranti iene		<0.33	<0.33	<0.33	<0.33	<0.33	1	1	<0.33	<0.33	<0.33	<0.33
		<0.33	<0.33	<0.33	<0.33	<0.33	•	1	<0.33	<0.33	<0.33	<0.33
	. •	<0.33	<0.33	<0.33	<0.33	<0.33	1	:	<0.33	<0.33	<0.33	<0.33
Indeno(1,2,3-cd)pyrene o 1111-daachthataac		50.33	<0.33	<0.33	<0.33	<0.33	ł	1	<0.33	<0.33	<0.33	<0.33
2-Meinyinaphinalene	5	50 J3	<0.33	<0.33	<0.33	<0.33	Ľ	1	<0.33	<0.33	<0.33	<0.33
Observations		<0.33	<0.33	<0.33	0.18]	<0.33	:	1	<0.33	<0.33	<0.33	<0.33
Dhand	10.000	<0.33	€0.33	<0.33	<0.33	<0.33	. 1	1	<0.33	<0.33	<0.33	<0.33
Brend	4	0.151	0.13	<0.33	0.36	0.15]	• 1	ł	<0.33	<0.33	<0.33	<0.33
t 2 4. Trichlorohanzena	3.200		:	:	1	ł	:	•	:	1	1	ı
Pesticides/PCBs												
a-Chlordane	4.4	<0.08	<0.0₿	0.0024	<0.08	<0.08	•	1	0.0014	<0.08	<0.08	50.02
n-Chlordane	4.4	0.014	0.017]	0.0012	<0.08	<0.08	:	:	0.0015	<0.08	80.0×	5000 C
4.4'-DDD	16	<0.016	<0.016	<0.016	<0.016	<0.016	• •	I.	<0.016	<0.018	<0.016	
4.4-DDE	0.4	<0.016	<0.016	<0.016	0.0034	<0.016	1	1	<0.016	<0.016	<0.016 0.016	
4.4'-DDT	2	<0.016	<0.016	0.0005	<0.018	<0.016	:	:	<0.018	<0.016	<0.018	20.010
Dieldrin	N 	0.013	0.013	<0.016	<0.016	<0.016	:	1	0.013	<0.018	<0.016	01010×
Endrin	23	<0.016	< 0.016	<0.016	<0.018	<0.016	;	1	<0.018	<0.018	<0.016	20.010 0.000
Hentachlor	112	<0.008	<0.008	<0.008	<0.008	<0.008	:	t	€00.00	<0.008	≤0.008	B00'02
Heptachlor Epoxide	0.63	<0.008	800.0>	<0.008	0.0011	<0.008	:	1	0.0034	<0.008	€0.008	BOO 0>
Isodrin	1000	1	I	1	ı	:	:	1.	:	1	1	1
PCB-1016		<0.16	<0.16	<0.08	<0.08	<0.08	<0.08	≤0.08	€0.0	€0.08	€0.08	€0.08
PCB-1221		<0.16	<0.16	<0.08	<0.08	<0.08	<0.08	<0.08	80.0⊁	<0.08	<0.08	€0.0¥
PCB-1232	-	<0.18	<0.16	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	80.0×
PCB-1242	-	<0.16	<0.16	<0.08	<0.08	<0.08	€0.0 8	<0.08	<0.08	€0.08	€0.08	<0.08 20.08
PCB-1248	•	<0.16	<0.16	<0.08	€0.08	<0.08	40.08	80.0×	€0.08	€0.08	<0.08	<0.08
PCB-1254	- 	<0.32	<0.32	<0.16	0.19	0.14]	<0.16	<0.16	<0.16	¢0.10	<0.16	
PCB-1260	-	2.8	3.2	<0.16	<0.18	<0.18	0.14	0.101	<0.18	<0.15	<0.10	<0'10 <
					с. С. С.							

Soll Analytical Results Midewin National Taligrass Prairie [concentrations in mg/kg]

							W	scellaneous S	ource Areas				
	HCDA Bransed	1121-0-101	1 121-6-02	L 121-G-03	L121-G-04	L121-G-05	L121-G-06	M101-G-02	M105-G-02	M111-G-01	M111-G-05	M111-G-07	M111-G-08
	Gemediation Goale	10/26/98	10/26/98	10/26/98	10/29/98	10/29/98	10/29/98	11/19/98	11/3/98	10/30/98	11/3/98	11/3/98	11/4/98
	For Midewin	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMalrix	TriMatrix	TriMatrix	TriMatrix
Explosives							• {		Ş	7		•	250
A 6. Dinitroaminonhandi (Picramic Add)	4,100	ŧ	1	<50	<50	<50	\$:		Ę	:		2
			;	<2.5	<2.5	<2.5	<2.5	:	<2.5	<2.5	•	t -	<2.5
1,3-Unitropenzene		:	:	<2.5	<2.5	<2.5	<2.5	ł	<2.5	<2.5	:	1	<2.5
2,4-Dinitroloiuene			;	<2.5	<2.5	<2.5	<2.5	1	<2.5	<2.5	Ĩ	•	<2.5
2,6-Dinirotoluene	110	:	:	<2.5	<2.5	<2.5	<2.5	•	<2.5	<2.5	1	ı	<2.5
Cyclonite (1,3,5,7 i etranitro-tetrazocine)	5 . CO	:	:	<2.5	<2.5	<2.5	<2.5	:	<2.5 UC	<2.5	1	:	<2.5
Nirobenzene		:	;	<2.5	<2.5	<2.5	<2.5	1	<2.5	<2.5	1	1	<2.5
2-Narololuene	86	;	:	<2.5	<2.5	<2.5	<2.5	ł	<2.5	<2.5	1	1	<2.5
Hexanydro-1,3,3-1471110-3-111421140-4)	100	1	:	<2.5	<2.5	<2.5	<2.5	:	<2.5	<2.5	;	:	<2.5
n-meinyi-2,4,0-1 etternino-etumie • • • • • • • • • • • • • • • • • • •		:	:	<50	<50	<50	<50		<50	<50	:	:	<50
	~ ~	:	:	<2.5	<2.5	<2.5	<2.5	:	<2.5	<2.5	:	:	<2.5
	16	:	;	<2.5	<2.5	<2.5	<2.5	. 1	<2.5	<2.5	1	1	<2.5
2,4,6-1 nnitrotoluene				1									
Metals/Inorganics	000 00			19AO	6260	11000	10200	5780	2270	11400	12800	9010	12000
Abmlnum	000'CI			0 381	0421	0.811	0.681	0.811	0.15	0.6]	143	13	0.41]
Antimony	5.2	:	1	E P	101	6	7.9	5.3	0.91	5.9	e	10	8.6
Arsenic	101	I		2	23	73	06	343	9.4	118	429	138	122
Barkum			1	<02 202	0.011	<0.2	0.037]	<0.2	<0.2	0.018]	0.6	<0.2	0.065]
Beryllium	<u>;</u>		:	1.6	0.99	0.94	0.91	1.2	0.3	0.76	0.77	0.53	0.33
Cadmium	2 BC	: 1	:	6.4	7.4	F	9	7.1	3.4	13	27	24	12
Critomum, total	00	1	1	3.3	3.9	5.8	1.1	6.4	1.9	5.3	4	60 60	2.2
Coual	E.d.R.	I	:	6.2	11	21	19	20	3.7	16	15	19	12
cupta too	610.000	:	:	0066	13900	21600	19100	20400	4310	17400	20200	15800	18300
101	185	371	24	=	14	18	19	16	0.5	15	661	173	19
		:	1	301	332	482	763	514	83	489	248	683	235
Manugamese		•	;	0.0131	0.023]	0.047	0.045]	0.24	0.015	0.065	<0.1	0.035	0.054
Mercury	1.622	1	:	8.6	:=	23	20	15	4.3	17	Į3	16	=
	UBE	1	;	0.34	0.25]	0.4]	0.38	0.13]	0.21	0.83	0.27]	0.6	0.53
	066	1		. 1.1	<0.2	<0.2	<0.2	0.23	<0.2	0.068	0.051	<0.2	<0.2
Thelline	-	:	:	0.18	0.18	0.36	0.38]	0.11	12	0.27	1.	0.2]	Ţ
Vacadium	344	:	;	13	21	30	29	22	B .4	16	8	28	ŝ
	105	; ;	1	22	40	58	5	149	16	57	64	87	20
2.HT	1												

Appendix E

State of Wisconsin, DNR Chapter NR 720, Soil Cleanup Goals

Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

Chapter NR 720

SOIL CLEANUP STANDARDS

NR 720.01	Ригрозс.	NR 720.09	Determination of residual contaminant levels based on protection of
NR 720.02 NR 720.03	Applicability. Definitions.	NR 720.11	Determining residual contaminant levels based on protection of hu-
NR 720.05 NR 720.07	General. Procedures for establishing soil cleanup standards applicable to a site or facility.	NR 720.19	Procedure for determining soil cleanup standards specific to a site or facility.

NR 720.01 Purpose. The purpose of this chapter is to establish soil cleanup standards, for the remediation of soil contamination, which result in restoration of the environment to the extent practicable, minimize harmful effects to the air, lands and waters of the state and are protective of public health, safety and welfare, and the environment as required by ss. 144.442, 144.76 and 144.765, Stats., and which are consistent with ch. 160, Stats., and ch. NR 140. This chapter is adopted pursuant to ss. 144.431 (1) (a) and (b), 144.442, 144.76, 144.765 and 227.11 (2), Stats.

History: Cr. Register, March, 1995, No. 471, eff. 4-1-95; am., Register, February, 1996, No. 482, eff. 3-1-96.

NR 720.02 Applicability. (1) This chapter applies to all remedial actions taken by responsible parties to address soil contamination after an investigation has been conducted at a site, facility or portion of a site or facility that is subject to regulation under s. 144.442 or 144.76, Stats., regardless of whether there is direct involvement or oversight by the department. This chapter also applies to soil contamination at all of the following:

(a) Solid waste facilities, where remedial action is required by the department pursuant to s. NR 508.20 (11);

Note: Chapter NR 720 does not apply to landspreading regulated under ch. NR 518 or solid waste facilities where ongoing operations are occurring, unless remedial action is required pursuant to s. NR 508.20 (11).

(b) Hazardous waste facilities, where the owner or operator is required to close the facility pursuant to s. 144.64 (2m), Stats., or ch. NR 685, to institute corrective action pursuant to s. 144.735, Stats., or s. NR 635.17, or to meet requirements imposed by the department under s. NR 600.07 where a discharge has occurred. However, if U.S. EPA requires that states employ soil cleanup standards for hazardous waste facilities that are more stringent than the standards in this chapter, the department is obligated under the state's hazardous waste management act, ss. 144.60 to 144.74, Stats., and its hazardous waste program RCRA authorization to apply the more stringent soil cleanup standards.

(c) Wastewater lagoons, storage structures and treatment structures that are abandoned pursuant to s. NR 110.09, 213.07 or 214.08.

Note: Chapter NR 720 applies to abandonment of lagoons, storage structures and treatment structures for sewage treatment facilities projects: abandonment of lagoons, storage structures and treatment structures that receive wastewaters, associated sludges, by-product solids and any resulting leachates from industrial, commercial or agricultural sources, except as provided in s. NR 213.02 (2); and abandonment of land treatment systems for industrial liquid wastes, by-product solids and sludges, except as provided in s. NR 720 does not apply to activities regulated under s. 146.20, Stats., or permitted activities regulated under 40 CFR 503 or ch. NR 204, 206 or 214, including permitted land spreading of sludge or land disposal of wastewaters from municipal and domestic wastewater treatment works and permitted land treatment of industrial liquid wastes, by-product solids and sludges.

(d) Sites where remedial action is being taken by a person who is seeking the liability exemption under s. 144.765, Stats.

(2) This chapter applies to interim actions taken by responsible parties or other persons under s. 144.765. Stats., when at the completion of both the site investigation and interim action taken to address contaminated soil, the responsible parties or persons taking action under s. 144.765. Stats., request that the site or facility be closed out in accordance with ch. NR 726, without taking a subsequent remedial action to address the contaminated soil.

(3) This chapter applies to remedial actions taken by the department where a department-funded response action is being taken under the authority of s. 144.442 or 144.76, Stats.

(4) Concentrations of legally applied pesticides are exempt from the requirements of this chapter when all of the following conditions are met:

(a) The application of the pesticide was done in compliance with:

1. The pesticide label currently registered with the U.S. EPA;

2. Sections 94.67 to 94.71, Stats.; and

3. Rules adopted under ss. 94.67 to 94.71, Stats.

(b) For pesticides that are intended to be applied to the soil, pesticide concentrations exceeding soil cleanup standards are only found in the surface soil layer, where the pesticide is expected to perform its intended purpose, and only at concentrations that would be expected from pesticide application, in compliance with the pesticide label requirements.

Note: The depth of the surface layer of soil will vary depending on the type of pesticide applied and the appropriate intended use of that pesticide.

(5) The department may exercise enforcement discretion on a case-by-case basis and choose to regulate a site, facility or a portion of a site or facility under only one of a number of potentially applicable statutory authorities. However, where overlapping restrictions or requirements apply, the more restrictive control. The department shall, after receipt of a request from a responsible party, provide a letter that indicates which regulatory program or programs the department considers to be applicable.

Note: Sites, facilities or portions of a site or facility that are subject to regulation under s. 144,442 or 144.76, Stats., may also be subject to regulation under other statutes, including solid waste statutes, ss. 144.43 to 144.47, Stats., or the hazardous waste management act, ss. 144.60 to 144.74, Stats., and the administrative rules adopted pursuant to those statutes. One portion of a site or facility may be regulated under a different statutory authority than other portions of that site or facility. When necessary, the department will, to the best of its ability, facilitate coordination between the regulatory programs involved.

(6) The department may take any action within the context of regulatory programs established in statutes or rules outside this chapter, if those actions are necessary to protect public health, welfare or safety or prevent a damaging effect on the environment for present and future uses, whether or not a soil cleanup standard has been adopted under this chapter.

(7) Nothing in this chapter authorizes an impact on soil quality that would cause a violation of a groundwater quality standard contained in ch. NR 140, an impact on soil quality or groundwater quality that would cause a violation of a surface water quality standard contained in chs. NR 102 to 106 or an impact on soil quality that would cause a violation of an air quality standard contained in chs. NR 400 to 499.

History: Cr. Register, March, 1995, No. 471, eff. 4-1-95; cr. (1) (d), am. (2); Register, February, 1996, No. 482, eff. 3-1-96.

NR 720.03 Definitions. In this chapter:

(1) "Aquifer" means a saturated subsurface geological formation of rock or soil.

(2) "Contaminant of concern" means a hazardous substance that is present at a site or facility in such concentrations that the

Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

Note: Numeric residual contaminant levels are determined separately for each exposure or migration pathway of concern at a site. These residual contaminant levels are not the soil cleanup standard for the site. The soil cleanup standard for the site is determined by selecting the lowest concentration from among the individual residual contaminant levels determined for each pathway.

2. A performance standard determined in accordance with s. NR 720.19 (2).

(c) In addition to meeting the requirements of par. (b), a soil cleanup standard developed under this chapter shall comply with the following requirements:

1. Residual soil contamination at the site or facility shall not adversely affect surface water;

2. Residual soil contamination at the site or facility shall not adversely affect a sensitive environment; and

3. Residual soil contamination at the site or facility shall not concentrate through plant uptake and adversely affect the food chain.

Note: It is the department's intention to adopt in the future soil cleanup standards based on protection of human food chain exposures, protection of surface water quality and protection of terrestrial ecosystems after exposure assumptions and methods have been developed to allow the department to calculate soil cleanup standards for these pathways of exposure. Responsible parties are required by ss. NR 720.07 (2) and 720.19 (6) to consider human food chain exposures, the protection of surface water quality and the protection of terrestrial ecosystems, if these pathways are of concern, when determining a residual contaminant level at a site or facility.

(2) COMPLIANCE WITH SOIL CLEANUP STANDARDS. (a) Contaminant concentrations in soil samples shall be determined using a department-approved and appropriate analytical method and reported on a dry weight basis. An appropriate analytical method shall have limits of detection or limits of quantitation, or both, at or below soil cleanup standards where possible. Responsible parties shall report the limit of detection and the limit of quantitation with sample results. The department may require that supporting documentation for the reported limit of detection and limit of quantitation be submitted.

(b) If a soil contaminant concentration in a sample exceeds the soil cleanup standard at or above the limit of quantitation for that soil contaminant, the soil cleanup standard shall be considered to have been exceeded.

(c) If a soil cleanup standard for a soil contaminant is between the limit of detection and the limit of quantitation, the soil cleanup standard shall be considered to be exceeded if the soil contaminant concentration is reported at or above the limit of quantitation.

(d) The following applies when a soil cleanup standard for a soil contaminant is below the limit of detection:

 If a soil contaminant is not detected in a sample, the soil cleanup standard shall not be considered to have been exceeded.

2. If a soil contaminant is reported above the limit of detection but below the limit of quantitation, the soil cleanup standard shall be considered to have been exceeded if the presence of that soil contaminant has been confirmed by the use of an appropriate analytical method.

History: Cr. Register, March, 1995, No. 471, eff. 4-1-95.

NR 720.09 Determination of residual contaminant levels based on protection of groundwater. (1) CRITERIA AND PROCESS USING GENERIC RESIDUAL CONTAMINANT LEVELS. If all of the following criteria are met, responsible parties may use one of the methods in sub. (3) and, where applicable, the standards in sub. (4) to determine residual contaminant levels based on groundwater protection for a site or facility:

(a) An investigation has been conducted and completed in accordance with applicable administrative rules, as specified in s. NR 720.05 (1);

(b) The contaminants of concern are listed in Table 1, except that at sites or facilities with petroleum contamination where gasoline range organics (GRO) or diesel range organics (DRO), or both, are the only contaminants of concern present other than contaminants listed in Table 1, the standards in sub. (4) (a) may be used for non-specific GRO or DRO contamination in addition to

the methods in sub. (3) which are applicable to contaminants listed in Table 1;

(c) The horizontal and vertical degree and extent of contamination is defined;

(d) The vertical distance from the base of the contaminated soil to-carbonate bedrock (limestone or dolostone) or fractured bedrock is one meter (3.28 feet) or greater;

(e) The vertical thickness of the residual soil contamination is 6 meters (19.69 feet) or less; and

(f) None of the residual contaminants or combinations of residual contaminants at the site or facility are known to contribute to facilitated transport or cosolvent effects.

Note: In some cases, a contaminant or combination of contaminants may contribute to an increased potential for migration of contaminants to groundwater by facilitated transport or by acting as a solvent for other contaminants, which would make the use of the values in Table 1 inappropriate. An example of facilitated transport might be polychlorinated biphenyls (PCBs) in the presence of an oily phase. An example of cosolvency might be polycyclic aromatic hydrocarbons (PAHs) in the presence of alcohols, where the alcohol acts to increase the solubility of the PAHs.

Note: If a site or facility meets the criteria in sub. (1), responsible parties are not required to use the methods for generic residual contaminant levels in sub. (3). The procedure in s. NR 720.19 may be used to determine site-specific soil cleanup standards even when the site or facility meets the criteria in sub. (1).

(2) SITE-SPECIFIC PROCESS. If any of the criteria in sub. (1) are not met, responsible parties shall use the procedure in s. NR 720.19 to determine soil cleanup standards specific to a site or facility based on groundwater protection.

(3) METHODS FOR DETERMINING GENERIC RESIDUAL CONTAMI-NANT LEVELS. Responsible parties may select one of the following methods to determine residual contaminant levels based on groundwater protection for sites or facilities that meet all of the criteria in sub. (1) in addition to meeting the requirements of sub. (4), if applicable:

(a) Method 1. Responsible parties may use the residual contaminant levels based on protection of groundwater listed for each substance in Table 1.

(b) Method 2. 1. Responsible parties may determine the residual contaminant levels based on protection of groundwater using the baseline concentration for each substance listed in Table 1 multiplied by a groundwater dilution factor specific to the site or facility determined using parameter values from the site or facility determined in accordance with subd. 2. and a groundwater mixing zone depth of 5 feet (152.4 cm) in the following equation:

$$DF = 1 + \frac{K \times 1 \times d}{R \times 1}$$

Where:

DF = groundwater dilution factor,

- K = hydraulic conductivity (cm/day),
- I = hydraulic gradient (cm/cm)
- d = depth of groundwater mixing zone (cm)
- R = average groundwater recharge rate (cm/day), and
- l = horizontal extent of contaminated soil parallel to the hydraulic gradient (cm).

2. Parameter values specific to the site or facility shall be determined as follows:

a. Hydraulic conductivity shall be determined as the geometric mean of values determined from appropriate aquifer tests. Appropriate aquifer tests may include slug tests and pumping tests, and shall be properly performed using accepted practices.

b. Hydraulic gradient shall be determined using water level measurements from a minimum of 3 groundwater monitoring wells whose screens intersect the same hydrogeologic unit using the procedures specified in s. NR 716.13 (8). In cases where the

W NIG

Unofficial Text (See Printed Volume). Current through date and Register shown on Title Page.

720.19 to determine soil cleanup standards specific to a site or facility based on protection from direct contact.

(5) EXCEPTIONS. If the background concentration for a substance in soil at a site or facility is higher than the residual contaminant level for that substance listed in Table 2 or determined using the procedure in s. NR 720.19 (3), the background concentration in soil may be used as the residual contaminant level for that substance. The background concentration for a substance in soil shall be determined using a department-approved and appropriate method.

Note: Naturally occurring background concentrations of arsenic in soil, for example, may be higher than the residual contaminant level for arsenic listed in Table 2. In such instances, the naturally occurring background concentration should be used as the soil cleanup level.

Table 2

Residual Contaminant Levels Based On

Human Health Risk From Direct Contact Related To Land Use

(milligrams per kilogram)

		-	
Substance	Non-Industrial	Industrial	Basis
Arsenic	0.039	1.6	cancer
Cadmium	8	510	noncancer
Chromium, hexavalent	14	200	cancer
Chromium, trivalent	16,000) NA	noncancer
Lead	50	500	noncancer

NA= Not applicable

Note: Milligrams per kilogram (mg/kg) is equivalent to parts per million (ppm) in soil. Soil concentrations are on a dry weight basis.

Note: The residual contaminant levels in Table 2 are based on protection of human health from direct contact through ingestion of soil or inhalation of particulate matter. These concentrations of hazardous substances in soil may not be protective of other pathways of concern. The definition of direct contact will be expanded in future revisions to include human exposures by inhalation of vapors and dermal absorption. In addition, these levels may be higher than those which would be characteristic of hazardous waste when tested using the toxicity characteristic leaching procedure (TCLP). U.S. EPA Method 1311.

History: Cr. Register, March, 1995, No. 471, eff. 4-1-95.

NR 720.19 Procedure for determining soil cleanup standards specific to a site or facility. (1) GENERAL. (a) Responsible parties shall propose a soil cleanup standard specific to a site or facility in accordance with the requirements of this section when required in ss. NR 720.09 to 720.11 or if it is determined that it is not practicable to achieve the residual contaminant level for a soil contaminant specified in ss. NR 720.09 to 720.11 using on-site remedial action or, if the responsible party chooses to utilize off-site remedial actions, using off-site remedial action or a combination of on-site and off-site remedial actions at a site or facility.

(b) Responsible parties shall establish a soil cleanup standard for a specific soil contaminant or physical location at a site or facility using one of the methods in sub. (2) or (3).

(2) PERFORMANCE STANDARD. If selected, a performance standard shall be established for a remedial action so that the remedial action is operated and maintained, in compliance with chs. NR 722 and 724 when those chapters are applicable to the site or facility, until the lowest concentration that is practicable is achieved or a permanent engineering control is maintained, or both, so that the residual contaminants left in the soil do not pose a threat to public health, safety and welfare or the environment.

Note: Examples of performance standards include the allowable rate of infiltration by soil contaminants into the groundwater after a membrane liner has been installed, or the rate or percentage of removal efficiency offered by an in-situ treatment system at a specific site or facility. At a site or facility where an engineering control is being considered for selection, in accordance with the requirements of ch. NR 722, an engineering control may be selected even though the soil contaminants exceed a residual contaminant level.

(3) RESIDUAL CONTAMINANT LEVELS SPECIFIC TO A SITE OR FA-CILITY. If selected, residual contaminant levels specific to a site or facility shall be established that are protective of public health, safety and welfare and the environment and restore the environment to the lowest concentration practicable, in accordance with the requirements of sub. (4) to (6). Even in cases where the procedure in sub. (3) is selected by the responsible party, the procedure in sub. (2) may be used when the residual contaminant levels established under sub. (3) are not practicable to achieve.

(4) PROTECTION OF GROUNDWATER. (a) Residual contaminant levels for soil based on protection of groundwater shall be developed using the preventive action limits (PALs) established in ch. NR 140 or using procedures consistent with the methodology in ss. 160.13 and 160.15, Stats., and the criteria in s. NR 722.09 (2) (b) 2. when there is no preventive action limit as the target concentrations in groundwater.

Note: In developing a residual contaminant level, any relevant information shall be considered, including public welfare concerns for groundwater, such as taste and odor.

(b) Responsible parties shall use one or more of the methods listed in this paragraph based on scientifically valid procedures that are subject to department review and approval and site-specific geological, physical and chemical conditions to establish residual contaminant levels.

1. A contaminant transport and fate model.

2. Leaching tests appropriate for the site or facility in both application and extent.

3. Any other appropriate method approved by the department for that specific site or facility, or other appropriate method suggested in department guidance.

(5) PROTECTION OF HUMAN HEALTH FROM DIRECT CONTACT. (a) General. Residual contaminant levels for soil based on protection of human health from direct contact shall be developed:

1. For individual compounds using the excess cancer risk of 1×10^{-6} and the hazard quotient for non-carcinogens of one; and

2. So that the cumulative excess cancer risk will not exceed 1×10^{-5} and the hazard index for non-carcinogens will not exceed one for the site or facility.

3. Risks for carcinogens and for non-carcinogens are presumed to be additive within each category, unless there is specific information that demonstrates that an alternative approach is more appropriate.

4. If toxicological indices for both carcinogenic and non-carcinogenic end points exist for a substance, both shall be evaluated and the value that generates the lowest residual contaminant level shall be used for the site or facility.

(b) Methods and procedures. Responsible parties shall determine a residual contaminant level to protect public health from direct contact with soil contamination using scientifically valid procedures and toxicological values approved by the department and the default exposure assumptions identified in par. (c) or alternative assumptions specifically approved by the department in writing.

Note: The department will generally consider toxicological values in the following order: recommendations of the department of health and social services; indices contained in U.S. EPA's Integrated Risk Information System (IRIS); indices contained in U.S. EPA's Health Effects Assessment Summary Tables (HEAST); recommendations of U. S. EPA's Environmental Criteria and Assessment Office; indices withdrawn from IRIS; indices withdrawn from HEAST, and other pertinent toxicological information.

(c) Default exposure assumptions. 1. Non-carcinogens. When the contaminant is not a carcinogen, the following default exposure assumptions shall be used:

a. When the land use of a site or facility is classified as non-industrial, in accordance with s. NR 720.11 (1), incidental ingestion of soil shall be assumed to occur at the rate of 200 mg of soil per day for a 15 kg child for 350 days each year and inhalation of particulate matter shall be assumed to occur at the inhalation rate of 20 m³ of air per day with a concentration of 1.4 g/m³ of contamiAppendix F

State of Illinois Tier One Soil Cleanup Objectives for Residential And Industrial Property

Section 742. APPENDIX B: Tier 1 Tables and Illustrations

Section 742.TABLE A: Tier 1 Soil Remediation Objectives^{*} for Residential Properties

		Exposure Route-Spec	cific Values for Soils	Soil Component of Ingestion Exp Valu	the Groundwater hosure Route Les	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
83-32-9	Acenaphthene	4,700ګ	U	570 ⁶ .	2,900	•
67-64-1	Acetone	7,800 ^b	100,000 ^d	16 ^b	16	•
15972-60-8	Alachlor	8¢	9	0.04	0.2	NA
116-06-3	Aldicarto®	78 ^b	9	0.013	0.07	NA
309-00-2	Aldrin	0.04	36	0.5°	2.5	0.94
120-12-7	Anthracene	23,000 ^b	U	12,000 ^b	59,000	•
1912-24-9	Atrazine°	2700 ^b	U 	0.066	0.33	NA
71-43-2	Benzene	12°	0.8	0.03	0.17	
56-55-3	Benzo(<i>a</i>)anthracene	0.9		2	8	•
205-99-2	Benzo(b)fluoranthene	0.9	u. :	S	25	• 4.

		Exposure Route-Speci	fic Values for Soils	Soil Component of Ingestion Exr Valı	the Groundwater osure Route tes	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
207-08-9	Benzo(k)fluroanthene	96	ی ۲۰۰۰	49	250	•
50-32-8	Benzo(a)pyrene	0.09 ^{e.f}	U I I	8	82	•
111-44-4	Bis(2-chloroethyl)ethcr	0.6°	0.2°. ⁽	0.0004°. ^r	0.0004	0.66
2-18-211	Bis(2-ethylhexyl)phthalate	46°	31,000 ⁴	3,600	31,000 ^d	•
75-27-4	Bromodichloromethane (Dichlorobromonthane)	10°	3,000 ⁴	0.6	0.6	•
75-25-2	Bromoform	816	53°	0.8	0.8	•
71-36-3	Butanol	7,800 ^b	10,000	17 ^b	17	NA
85-68-7	Butyl benzyl phthalate	16,000 ^b	930 ^d	930 ⁴	930 ^d	•
86-74-8	Carbazole	32*	U	0.6	2.8	NA
1563-66-2	Carbofuran°	390 ^b	v	0.22	1.1	NA
75-15-0	Carbon disulfide	7,800 ^b	720 ^d	32 ^b	160	•

ADL (mg/kg) * • + + + * + * • + + -Soil Component of the Groundwater Class II (mg/kg) 270 2.9 800 8.5 0.33 1.7 80 6.5 0.4 Ingestion Exposure Route 0.7 48 Values Class I (mg/kg) 0.85 16° 160 1.5 54° 0.07 0.6 0.7^b 0.4 01 -----, Inhalation (mg/kg) Exposure Route-Specific Values for Soils 1,300⁴ 130^b 0.3° **"**| "| ľ . | ľ 0.3 72° Ĭ Ingestion (mg/kg) 2,300^b 1,600^b 1,600^b 780⁶ 100° 310^b 1.8 88° ň 2° ŝ Chlorodibromomethane (Dibromochloromethane) Chlorobenzene (Monochlorobenzene) Carbon tetrachloride 4-Chloroaniline (p-Chloroaniline) Chemical Name Chloroform Dalapon° Chrysene Chlordane 2,4-D^º DDD DDE 218-01-9 108-90-7 124-48-1 72-55-9 75-99-0 72-54-8 106-47-8 67-66-3 94-75-7 CAS No. 56-23-5 57-74-9

•

•

		Exposure Routo-Speci	fic Values for Soils	Soil Component of Ingestion Exp Valu	the Groundwater osure Route	
CAS No.	Chemical Name	Ingestion (ng/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
50-29-3	DDT	2 ^e	8	32 ^e	160	*
53-70-3	Dibenzo(a,h)anthracene	0.09 ^{c.f}	3	2	7.6	*
96-12-8	1,2-Dibromo-3-chloropropane	0.46°	11 ^م	0.002	0.002	•
106-93-4	1,2-Dibromoethane (Ethylene dibromide)	0.0075°	0.17°	0.0004	0.004	0.005
84-74-2	Di-n-butyl phthalate	7,800 ^b	2,300 ⁴	2,300 ^d	2,300 ^d	*
95-50-1	1,2-Dichlorobenzene (α - Dichlorobenzene)	7,000 ^b	560 ^d	17	43	*
106-46-7	1,4-Dichtorobenzene (<i>p</i> - Dichtorobenzene)	٦	11,000 ^b	2	11	•
91-94-1	3,3'-Dichlorobenzidine	9 1 1 1	U	0.007°.	0.033	1.3
75-34-3	1,1-Dichloroethane	7,800 ^b	1,300 ^b	23 ^b	110	•

		Exposure Route-Speci	fic Values for Soils	Soil Component of Ingestion Exr Valı	the Groundwater osure Route	
CAS No.	Chemical Nane	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
107-06-2	1,2-Dichloroethane (Ethylene dichloride)	٢	0.4 ^e	0.02	0.1	•
75-35-4	1,1-Dichloroethylene	700 ^b	1,500 ^d	0.06	0.3	+
156-59-2	cis-1,2-Dichloroethylene	780 ^b	1,200 ^d	0.4	1.1	÷
156-60-5	trans-1,2-Dichloroethylene	1,600 ^b	3,100 ⁴	0.7	3.4	•
78-87-5	1,2-Dichloropropane	6ء	اځ	0.03	0.15	•
542-75-6	1,3-Dichloropropene (1,3-Dichloropropylene, cis + trans)	6.4 ^e	1.1	0.004°	0.02	0.005
60-57-1	Dieldrin ⁿ	0.04	اد	0.004 ^c	0.02	0.603
84-66-2	Diethyl phthalate	63,000 ^b	2,0004	470 ^b	470	•
105-67-9	2,4-Dimethylphenol	1,600 ^b	U 	db	, 6	•
121-14-2	2,4-Dinitrotoluene	0.9°	c	0.0008°. ^r	0.0008	0.250

ADL (mg/kg) 0.0074 1.005 0.260 0.871 ٨N + + * + + -Soil Component of the Groundwater Ingestion Exposure Route Values Class II (mg/kg) 10,000⁴ 21,000 0.0007 2,800 0.003 110 61 3.3 Ξ 0.4 8 Ś 0.0007^{e,f} 0.0005^{e.f} Class I (mg/kg) 10,000 4,300^b 560^b 0.7 **1**8 0.4 <u></u> 23 2 -Inhalation (mg/kg) Exposure Route-Specific Values for Soils 10,000^d 400⁴ 0.8° 0.1 ĭ "| "| " ľ Ĭ ŝ Ingestion (mg/kg) 3,100^b 1,600^b 7,800^b 3,100^b 1,600^b 0.1 0.07 0.1° 0.4° 470^{b} 23^b 0.9° . alpha-HCH (alpha-BHC) Di-n-octyl phthalate Heptachlor epoxide Hexachlorobenzene 2,6-Dinitrotoluene Chemical Name Ethylbenzene Fluoranthene Endosulfan^e Heptachlor Endothall[®] Fluorene Endrin 1024-57-3 118-74-1 319-84-6 606-20-2 117-84-0 115-29-7 145-73-3 72-20-8 100-41-4 206-44-0 76-44-8 86-73-7 CAS No.

•

. .

ADL (mg/kg) 0.26 . * + + * * * ÷ . + Soil Component of the Groundwater Ingestion Exposure Route ~ Class II (mg/kg) 2,200^d 0.047 780 18 0.1 1.2 0.2 5 2.6 69 8 Values 0.1^{b,f} Class I (mg/kg) 0.009 0.02 12 ^b 160 0.2^b 0.5^b 15^b 400 14 **%** Inhalation (mg/kg) Exposure Route-Specific Values for Soils 4,600^d 170^b "| 92^b ï Ĭ ٩OI 13° 1 401 . Ingestion (mg/kg) 1,600 b 15,600^b 3,900^b 390⁶ 110^b 39⁶ 550^b 0.5 0.9 85° 78⁶ Hexachlorocyclopentadiene gamma-HCH (Lindane)ⁿ Indeno(1,2,3-c,d)pyrene Methylene chloride (Dichloromethane) Methyl bromide (Bromomethane) I lexachloroethane 2-Methylphenol Methoxychlor® Chemical Name Nitrobenzene Naphthalene (o - Cresol) Isophorone CAS No. 193-39-5 91-20-3 98-95-3 74-83-9 75-09-2 95-48-7 72-43-5 67-72-1 58-89-9 77-47-4 78-59-1

•

		Exposure Route-Spec	ific Values for Soils	Soil Component of Ingestion Exp Valt	the Groundwater osure Route	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
9-30-6	N-Nitrosodiphenylamine	130	Ű	e	5.6	*
621-64-7	N-Nitrosodi-n-propylamine	0.09ء،ر	0 	0.00005 ^{e.f}	0.00005	0.0018
108-95-2	Phenol	47,000 ^b	U	100	100	•
1918-02-1	Picloram	5,500 ^b	U	2	20	NA
1336-36-3	Polychlorinated biphenyls (PCBs) ⁿ	41	5	4	4	•
129-00-0	Pyrene	2,300 ^b	U I	4,200 ^b	21,000	•
122-34-9	Simazine°	390 ^b	υ	0.04	0.37	NA
100-42-5	Styrene	16,000 ^b	1,500 ^d	4	18	•
127-18-4	Tetrachloroethylene (Perchloroethylene)	126	11 6	0.06	0.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
108-88-3	Toluene	16,000 ^b	650 ⁴	12	29	+

		Exposure Route-Spec	ific Values for Soils	Soil Component of Ingestion Exp Vah	The Groundwater soure Route	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
8001-35-2	Toxaphene ⁿ	0.6	89°	31	150	•
120-82-1	1,2,4-Trichlorohenzene	780 ^b	3,200°	5	53	•
71-55-6	1,1,1-Trichloroethane	U I	1,200 ^d	2	9.6	-
79-00-5	1,1,2-Trichloroelhane	310 ^b	1,800 ^d	0.02	0.3	٠
79-01-6	Trichloroethylene	58°	۶¢	0.06	0.3	*
108-05-4	Vinyl acetate	78,000 ^b	1,000 ⁶	170 ^b	170	+
75-01-4	Vinyl chloride	0.46°	0.28 [¢]	0.01 ^f	0.07	•
108-38-3	m-Xylene	160,000 ^b	420 ^d	210	210	•
95-47-6	o-Xylene	1 60,000 ^b	410 ^d	190	190	•
106-42-3	p-Xylene	1 60,000 ^b	460 ^d	200	200	*

		Exposure Route-Speci	fic Values for Soils	Soil Component of Ingestion Ext Valı	f the Groundwater posure Route ues	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (ng/kg)	Class II (mg/kg)	ADL (mg/kg)
1330-20-7	Xylenes (total)	160,000 ^b	320 ⁴	150	150	•
	Ionizable Organics					
65-85-0	Benzoic Acid	310,000 ^b	9	400 ^{b.i}	400 ¹	•
95-57-8	2-Chlorophenol	390 ^b	53,000 ^d	4 ^{b,i}	4	•
120-83-2	2,4-Dichlorophenol	230 ^b	U	lbi	1	•
51-28-5	2,4-Dinitrophenol	160 ^b	0	0.2 ^{p,f}	0.2	3.3
88-85-7	Dinoseb ^e	78 ^b	9	0.34 ^{b.i}	3.4 ¹	*
87-86-5	Pentachlorophenol	3¢j	٠ 	0.03 ^{ti}	0.14 ⁱ	•
93-72-1	2,4,5-TP (Silvex)	630 ^b	0	11,	5S ⁱ	•
95-95-4	2,4,5-Trichlorophenol	7,800 ^b	0 1 1	270 ^{b,i}	1,400 ⁱ	•
88-06-2	2,4,6 Trichlorophenol	58°	200°	0.2°. ^{r,i}	0.77 ¹	0.66

nponent of the Uroundwater estion Exposure Route	Values
Values	
	Class II ADL (mg/L) (mg/kg
Class II AI (mg/L) (mg	
Class II (mg/L) (m	
Class II (mg/L) 0.024 ^m	0.024 ^m
Class II (mg/L) 0.024 ^m 0.2 ^m	0.024 ^m 0.2 ^m
Class II (mg/L) 0.024 ^m 2.0 ^m	0.024 ^m 0.2 ^m 2.0 ^m
Class II (mg/L) 0.024 ^m 0.2 ^m 0.5 ^m	0.024 ^m 0.2 ^m 0.5 ^m
Class II (mg/L) 0.024 ^m 0.2 ^m 0.5 ^m 2.0 ^m	0.024 ^m 0.2 ^m 2.0 ^m 0.5 ^m 2.0 ^m
ass I 1g/L) 006m .05m 2.0m 2.0m 2.0m	006 ^m .05 ^m .004 ^m 2.0 ^m
Class I (mg/L) 0.006 ^m 0.05 ^m 2.0 ^m 2.0 ^m 0.005 ^m	0.006 ^m 0.05 ^m 2.0 ^m 0.004 ^m 2.0 ^m
Class I (mg/L) 0.006 ^m 0.05 ^m 0.004 ^m 2.0 ^m 0.005 ^m	0.006 ^m 0.05 ^m 2.0 ^m 2.0 ^m 0.005 ^m
Inhalatic (mg/kg)	
Ingestion (mg/kg)	
Chemical Name	

		Exposure Routo-speci	fic Values for Soils	Soil Component of Ingestion Exp Valı	the Groundwater osure Route ies	
CAS No.	Chemical Name	Ingestion (mg∕kg)	Inhalation (mgkg)	Class I (mg/L)	Class II (mg/L)	ADL (mg/kg)
7440-50-8	Copper ⁿ	2,900 ^b	U I	0.65 ^m	0.65 ^m	•
57-12-5	Cyanide (amenable)	1,600 ^b	U 1 1	0.2 ^{q.m}	0.6 ^{4.m}	•
7782-41-4	Fluoride	4,700 ^b	3	4.0 ^m	4.0 ^m	•
15438-31-0	Iron	U	u 1	5.0 ^m	5.0 ^m	*
7439-92-1	1.ead	400 ^k	U	0.0075 ^m	0.1m	•
7439-96-5	Manganese	3,700 ^b	69,000 ^b	0.15 ^m	10.0 ^m	*
7439-97-6	Mercury ^{1,n,s}	23 ^b	10 ^b	0.002 ^m	0.01 ^m	÷
7440-02-0	Nickel ¹	1,600 ^b	13,000€	0.1 ^m	2.0 ^m	•
14797-55-8	Nitrate as N ^P	130,000 ^b	Ű	10.04	1004	•
7782-49-2	Selenium ^{1,n}	390 ^b	U I	0.05 ^m	0.05 ^m	•

		Exposure Route-spec	ific Values for Soils	Soil Component of Ingestion Ex Val	the Groundwater sosure Route ucs	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/L)	Class II (mg/L)	ADL (mg/kg)
7440-22-4	Silver	390 ^b		0.05 ^m		+
14808-79-8	Sulfate	J	9 - 1 - 1	400 ^m	400 ^m	+
7440-28-0	Thallium	6.3 ^{b,u}	U	0.002 ^m	0.02 ^m	•
7440-62-2	Vanadium	550 ^b	0	0.049 ^m	0.1 ^m	•
7440-66-6	Zinc ¹	23,000	Ű	5.0 ^m	10 ^m	•

:.

"*" indicates that the ADL is less than or equal to the specified remediation objective. NA means not available; no PQL or EQL available in USEPA analytical methods.

4.1

- Soil remediation objectives based on human health criteria only.
 - ^b Calculated values correspond to a target hazard quotient of 1.
 - · No toxicity criteria available for the route of exposure.
- ^d Soil saturation concentration ($C_{[faut]}$) = the concentration at which the absorptive limits of the soil particles, the solubility limits of the available soil moisture, and saturation of soil pore air have been reached. Above the soil saturation concentration, the assumptions regarding vapor transport to air and/or dissolved phase transport to groundwater (for chemicals which are liquid at ambient soil temperatures) have been violated, and alternative modeling approaches are required.
 - Calculated values correspond to a cancer risk level of 1 in 1,000,000.
- Level is at or below Contract Laboratory Program required quantitation limit for Regular Analytical Services (RAS).
- Chemical-specific properties are such that this route is not of concern at any soil contaminant concentration.
- 40 CFR 761 contains applicability requirements and methodologies for the development of PCB remediation objectives. Requests for approval of a Tier 3 evaluation must address the applicability of 40 CFR 761.
 - Soil remediation objective for pH of 6.8. If soil pH is other than 6.8, refer to Appendix B, Tables C and D of this Part.
 - Ingestion soil remediation objective adjusted by a factor of 0.5 to account for dermal route.
- A preliminary remediation goal of 400 mg/kg has been set for lead based on Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, OSWER Directive #9355.4-12.
 - Potential for soil-plant-human exposure.
- Section 742.510.) If the person conducting the remediation wishes to calculate soil remediation objectives based on background concentrations, this should be done in " The person conducting the remediation has the option to use: 1) TCLP or SPLP test results to compare with the remediation objectives listed in this Table; or 2) the total amount of contaminant in the soil sample results to compare with pH specific remediation objectives listed in Appendix B, Table C or D of this Part. (See
 - accordance with Subpart D of this Part.
- For agrichemical facilities, remediation objectives for surficial soils which are based on field application rates may be more appropriate for currently registered The Agency reserves the right to evaluate the potential for remaining contaminant concentrations to pose significant threats to crops, livestock, or wildlife.
 - pesticides. Consult the Agency for further information.
- For agrichemical facilities, soil remediation objectives based on site-specific background concentrations of Nitrate as N may be more appropriate. Such determinations
 - shall be conducted in accordance with the procedures set forth in Subparts D and I of this Part.
 - ⁴ The TCLP extraction must be done using water at a pH of 7.0.
 - Value based on dietary Reference Dose.
- Value for Ingestion based on Reference Dose for Mercuric chloride (CAS No. 7487-94-7); value for Inhalation based on Reference Concentration for elemental Mercury (CAS No. 7439-97-6).
 - For the ingestion route for arsenic, see 742. Appendix A, Table G.
- Value based on Reference Dose for Thallium sulfate (CAS No. 7446-18-6).

(Source: Amended at 25 Ill. Reg. 10374, effective August 15, 2001)

Section 742. APPENDIX B: Tier 1 Tables and Illustrations

Section 742. Table B: Tier I Soil Remediation Objectives^a for Industrial/Commercial Properties

		Exp	osure Route-Spec	cific Values for Sc	oils -	Soil Compo	nent of the	
		-	•			Groundwate Exposure	r Ingestion e Route	<u>, , , , , , , , , , , , , , , , , , , </u>
						•		
		Indust Comm	rial- ercial	Constr Wo	uction rker	Valı	S	
CAS No.	Chennical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	ClassII (mg/kg)	ADL (mg/kg)
83-32-9	Acenaphthene	120,000 ^b	3	120,000 ^b	,	570 ^b	2,900	·
67-64-1	Acetone	200,000 ^b	100,000 ^d	200,000 ^b	100,000	16 ⁶	16	*
15972-60-8	Alachlor°	72°	U.	1,600°	°	0.04	0.2	NA
116-06-3	Aldicarb°	2,000 ^b	3	200 ^b	U	0.013	0.07	NA
309-00-2	Aldrin	0.3*	6.6°	6.1 ^b	9.3°	0.5°	2.5	0.94
120-12-7	Anthracene	610,000 ^b	3	610,000 ^b	J.	12,000 ^b	59,000	*
1912-24-9	Atrazine ^o	72,000 ^b	о 	7,100 ^b	9	0.066	0.33	NA
71-43-2	Benzene	100	1.6°	2,300	2.2°	0.03	0.17	*

-

<u>.</u> 4

 $\mathbf{v}_{i}^{(1)}$

•

		EX	posure Route-Spec	cific Values for Sc	slic	Soil Compo Groundwate Exposure	nent of the r Ingestion e Route	<u>, e ,</u>
		Indus Comm	trial- lercial	Constr Wc	ruction orker	Vah	nes	
No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
-2	Carbofuran°	10,000 ^b	U I	1,000 ^b	3	0.22	1.1	NA
	Carbon disulfide	200,000 ⁶	720 ^d	20,000 ^b	9.0 ^b	32 ^b	160	•_
	Carbon tetrachloride	44°	0.64	410 ^b	0.90°	0.07	0.33	•
	Chlordane	1.6°	140°	100 b	22 ^b	10	48	•
æ	4 - Chloroaniline (p-Chloroaniline)	8,200 ^b	°	820 ^b	U	0.7 ^b	0.7	•
Ĺ	Chlorohenzene (Monochlorobenzene)	41,000 ^b	210 ^b	4,100 ^b	٩٤.1	-	6.5	*
-	Chlorodibromomethane (Dibromochloromethane)	41,000 ^b	1,300 ^d	41,000 ^b	1,300 ^d	0.4	0.4	• • • • • • • • • • • • • • • • • • •
	Chloroform	940°	0.54	2,000 ^b	0.76	0.6	2.9	•
6	Chrysene	780€	5	17,000°	9	160	800	•
	2,4-D°	20,000 ^b	3	2,000 ^b	3	1.5	7.7	•

		Exi	oosure Route-Spee	cific Values for So	siic	Soil Compo Groundwate Exposure	ment of the rr Ingestion e Route	
		Indust	Irial- ercial	Constr Wo	nıction ırker	Valt	nes	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
15-99-0	Dalapon°	19 ¦000¢	3	6,100 ^b	U	0.85	8.5	*
72-54-8	DDD	24 ^e	U	520°	U	16°	80	+
72-55-9	DDE	17°	v	370°	U,	54°	270	*
50-29-3	DDT	17°	1,500°	100 ^b	2,100€	32°	160	*
53-70-3	Dibenzo(a.h)anthracene	0.8	c	17°	Ű	2	7.6	•
96-12-8	1,2-Dibromo-3-chloropropane	4°	17 ^b	89°	0.11 ^b	0.002	0.002	*
106-93-4	1,2-Dibromoethane (Ethylene dibromide)	0.07	0.32	۱.5°	0.45°	0.0004	0.004	0.005
84-74-2	Di-n-butyl phthalate	200,000 ^b	2,300 ^d	200,000 ^b	2,300 ^d	2,300 ^d	2,300 ^d	•
95-50-1	1,2-Dichlorobenzene (o - Dichlorobenzene)	180,000 ^b	560 ^d	18,000 ^b	310 ^b	17	43	•
106-46-7	1,4-Dichlorobenzene (p - Dichlorobenzene)	U I	17,000 ^b	3	340 ^b	2	П	*

		Ext	oosure Route-Spe	cific Values for Sc	sis	So Compone Groundwate Exposure	il nt of the r Ingestion e Route	<u>,</u>
		Indusi Comm	Irial- ercial	Constr Wo	uction rker	Valı	ន្ម	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
91-94-1	3,3'-Dichlorobenzidine	13*	9 .	280°	5	0 [.] 007 ^{e,t}	0.033	1.3
75-34-3	1,1-Dichloroethane	200,000 ^b	1,700 ^d	200,000 ^b	130 ^b	23 ^b	110	+
107-06-2	1,2-Dichloroethane (Ethylene dichloride)	63°	0.70°	1,400	0.99°	0.02	0.1	•
75-35-4	1,1-Dichloroethylene	18,000 ^b	1,500 ^d	1,800 ^b	300'	0.06	0.3	•
156-59-2	cis-1, 2-Dichloroethylene	20,000 ^b	1,200 ^d	20,000 ^b	1,200 ^d	0.4	1.1	•
156-60-5	Irans-1,2-Dichloroethylene	41,000 ^b	3,100 ^d	41,000 ^b	3,100 ^d	0.7	3.4	•
78-87-5	1,2-Dichloropropane	84°	23 ^b	1,800	0.50 ^b	0.03	0.15	•
542-75-6	1,3-Dichloropropene (1.3-Dichloropropene (1.3-Dichloropropylene, <i>cis</i> + <i>trans</i>)	S7¢	2.1 ^c	1,200°	0.39 ^b	0.004°	0.02	, 0.005
60-57-1	Dieldrin ⁿ	0.4 ^c	2.2 ^e	7.8 ^e	3.1°	0.004	0.02	0.603
84-66-2	Dicthyl phthalate	1,000,000 ^b	2,000 ^d	1,000,000 ^b	2,000 ⁴	470 ^b	470	•
			-					

				· · · · · · · · · · · · · · · · · · ·	Exposure		-
	Indust Comme	rial- ercial	Constr Wo	uction rker	Valı	ស្ន	
hemicał Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
enol	41,000 ^b	°	41,000 ^b	3	9 ^b	6	•
ine	8.4 ^c	3	180°	•	0.0008 ^{e,f}	0.0008	0.250
the	8.4 ^e	2	180°	3	0.0007 ^{e.f}	0.0007	0.260
alate	41,000	10,000 ^d	4,100 ^b	10,000 ^d	10,000 ^d	10,000 ^d	•
	12,000 ^b	3	1,200 ^b	v	18 ^b	90	•
	41,000	J	4,100 ^b	U	0.4	0.4	NA
	610 ^b	0	61 ^b	U I		S	•
	200,000 ⁶	400 ^d	20,000 ^b	58 ⁶	13	19	•
	82,000 ^b	U	82,000 ^b	2	4,300 ^b	21,000	•
	82,000 ^b	°	82,000 ^b	5	560 ^h	2,800	•
	١c	11°	28°	16°	23	110	•
	alaic	alate 41,000 ^e 12,000 ^b 41,000 ^e 610 ^b 200,000 ^b 82,000 ^b 1 ^e	alate 41,000 ^e 10,000 ^d 12,000 ^b ^c 41,000 ^c ^c 610 ^b ^c 200,000 ^b 400 ^d 82,000 ^b ^c 1 ^c 11 ^c	alate $41,000^{\circ}$ $10,000^{\circ}$ $4,100^{\circ}$ $12,000^{\circ}$ c $1,200^{\circ}$ $41,000^{\circ}$ c $4,100^{\circ}$ 510° c 61° $200,000^{\circ}$ 400° $20,000^{\circ}$ $82,000^{\circ}$ c $82,000^{\circ}$ $82,000^{\circ}$ c $82,000^{\circ}$ $1c$ 11° 28°	alate $41,000^{\circ}$ $10,000^{\circ}$ $4,100^{\circ}$ $10,000^{\circ}$ $12,000^{\circ}$ \dots° $4,100^{\circ}$ \dots° $41,000^{\circ}$ \dots° $4,100^{\circ}$ \dots° 510° \dots° 61° \dots° $200,000^{\circ}$ 400° $20,000^{\circ}$ 58° $82,000^{\circ}$ \dots° $82,000^{\circ}$ \dots° $82,000^{\circ}$ \dots° $82,000^{\circ}$ \dots° 1° 11° 28° \dots°	alate $41,000^{\circ}$ $10,000^{\circ}$ $4,100^{\circ}$ $10,000^{\circ}$ $10,000^{\circ}$ $12,000^{\circ}$ $\dots \in$ $1,200^{\circ}$ $\dots \in$ 18° $41,000^{\circ}$ $\dots \in$ $4,100^{\circ}$ $\dots \in$ 18° 610° $\dots \in$ 61° $\dots \in$ $1,0,00^{\circ}$ $200,000^{\circ}$ 400° $20,000^{\circ}$ 58° 13 $82,000^{\circ}$ $\dots - \epsilon$ $82,000^{\circ}$ $-\dots - \epsilon$ $82,000^{\circ}$ $82,000^{\circ}$ $\dots - \epsilon$ $82,000^{\circ}$ $\dots - \epsilon$ 58° 1° 11° 20° 20° 20° $82,000^{\circ}$ $\dots - \epsilon$ $82,000^{\circ}$ 10° 58° 1° 11° 28° 16° 560°	alate $41,000^{\circ}$ $10,000^{\circ}$

.

		ADL (mgAg)	1.005	*	0.0074	•	*	•	*	•	#	•	
onent of the er Ingestion e Route	ncs	Class II (mg/kg)	3.3	=	0.003	0.047	2,200 ^d	2.6	69	8	780	1.2	
Soil Compo Groundwat Exposur	Vat	Class I (mg/kg)	0.7	2	0.0005°. ^f	0.009	400	0.5 ^b	14	8 ^b	160	0.2 ^b	
oils	ruction orker	Inhalation (mg/kg)	13°	2.6 ^e	2.1 ^e	0	1.1 ^b	9	o	4,600 ^d	°,	3.9 ^b	
cific Values for S	Const Wc	Ingestion (mg/kg)	2.7 ^b	78°	20 ^e	96	14,000 ^b	2,000 ^b	170°	410,000 ^b	1,000 ⁴	ا,000	
posure Route-Spe	strial- nercial	Inhalation (mg/kg)	9.2	1.8	۱.5	°	16 ^b	Ű	J.	4,600 ^d	3	١۶ ^ʰ	
х	Indus Comm	Ingestion (mg/kg)	0.6	4c	0.9	4 e	14,000 ^b	2,000 ^b	8e	410,000 ^b	10,000 ^b	2,900	
		Chemical Name	Heptachlor epoxide	I lexachlorobenzene	alpha-HCH (alpha-BHC)	gamma-HCH (Lindane) ^a	I lexach lorocyclopentadiene	Ilexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	Methoxychlor ^o	Methyl bromide (Bromomethane)	
		CAS No.	1024-57-3	118-74-1	319-84-6	58-89-9	77-47-4	67-72-1	193-39-5	78-59-1	72-43-5	74-83-9	

_		

		Ext	osure Route-Spe	cific Values for So	lis	Soil Compo	nent of the	
						Groundwate Exposur	e Route	
		Indust Comm	Irial- ercial	Consti Wo	uction ırker	Valı	ទា	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mgAg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
75-09-2	Methylene chloride (Dichloromethane)	760°	24°	12,000 ^b	34°	0.02	0.2	•
95-48-7	2-Methylphenol (o - Cresol)	100,000	200 200 200 200 200 200 200 200 200 200	100,000 ^b	u	١S ^b	15	•
86-30-6	N-Nitrosodiphenylamine	1,200	0	25,000 [€]	U	-	5.6	•
621-64-7	N-Nitrosodi-n-propylamine	0.8	¢	18°		0.00005°. ^r	0.00005	0.0018
91-20-3	Naphthalene	41,000 ^b	270 ^b	4,100 ^b	1.8 ^b	12 ^b	18	+
98-95-3	Nitrobenzene	1,000 ^b	140 ^b	1,000 ^b	9.4 ^b	0.1 ^{b.f}	0.1	0.26
108-95-2	Phenol	1,000,000 ^b		120,000 ^b	y	100 ^b	100	•
1918-02-1	Picloram [°]	140,000 ^b	J	14,000 ^b	9	2	20	NA
1336-36-3	Polychlorinated biphenyls (PCBs) ⁿ	4	c,h	41	c.h	£	ų	+
129-00-0	Pyrene	61,000 ^b	3	61,000 ^b	9 	4,200 ^b	21,000	•

.

		EXI	oosure Route-Spe	cific Values for So	sio	Soil Compo Groundwate Exposur	onent of the er Ingestion e Route	
		Indust Comm	Irial- ercial	Constr Wo	uction rker	Valı	ues	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg⁄kg)
122-34-9	Simazine°	4000'01	3	1,000 ^b	, , , , , , , , , , , , , , , , , , ,	0.04	0.37	NA
100-42-5	Styrene	410,000 ^b	1,500 ^d	41,000 ^b	430 ^b	4	18	•
127-18-4	Tetrachloroethylene (Perchloroethylene)	011	20 ^c	2,400 ^e	28€	0.06	0.3	•
108-88-3	Toluene	410,000 ^b	650 ^d	410,000 ^b	42 ^b	12	29	•
8001-35-2	Toxaphene ⁿ	5.2	170 ^e	110	240€	31	150	•
120-82-1	1,2,4-Trichlorobenzene	20,000 ^b	3,200 ^d	2,000 ^b	920 ^b	S	53	+
71-55-6	1,1,1.Trichloroethane	J	1,200 ^d	9	1,200 ^d	2	9.6	+
79-00-5	1,1,2-Trichloroethane	8,200 ^b	1,800 ^d	8,200 ^b	1,800 ^d	0.02	0.3	*
29-01-6	Trichloroethylene	520°	8.9*	1,200 ^b	12 ^e	0.06	0.3	•
108-05-4	Vinyl acetate	1,000,000 ^b	1,600 ^b	200,000 ⁶	10 ^b	170 ^b	170	•

		ğ	posure Route-Spe	cific Values for S	oils	Soil Compo Groundwate Exposur	nent of the rr Ingestion e Route	
		Indus Comm	trial- ercial	Const We	nıction ərker	Val	S	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/kg)	Class II (mg/kg)	ADL (mg/kg)
75-01-4	Vinyl chloride	7.9°	1.1	170°	1.1 ^b	0.01 ^r	0.07	*
108-38-3	m-Xylene	1,000,000	420 ^d	410,000 ^b	420 ^d	210	210	•
95-47-6	o-Xylene	1,000,000	410 ^d	410,000 ^b	410 ^d	190	190	+
106-42-3	p-Xy lene	1,000,000	460 ⁴	410,000 ^b	460 ^d	200	200	.•
1330-20-7	Xylenes (total)	1,000,000 ^b	320 ^d	410,000 ^b	320 ^d	150	150	*
	Ionizable Organics							
65-85-0	Benzoic Acid	1,000,000 ^b		820,000 ^b	9 	400 ^{b,i}	400 ⁱ	+
95-57-8	2-Chlorophenol	10,000 ^b	53,000 ^d	10,000 ^b	53,0004	4 ^{b,i}	20 ⁱ	•
120-83-2	2,4-Dichlorophenol	6,100 ^b	0	610 ^b	,	l b,i	1	*
51-28-5	2,4-Dinitrophenol	4,100 ^b	.	410 ^b	.	0.2 ^{b.f.i}	0.2 ⁱ	3.3
88-85-7	Dinoseb®	2,000 ^b		200 ⁶	C	0.34 ^{b,i}	3.4 ⁱ	*

÷

		I	- î			
		ADL (mg/kg)	*	*	•	0.66
ment of the er Ingestion e Route	lues	Class II (mg/kg)	0.14 ⁱ	SS ⁱ	1,400 ^ì	0.77 ⁱ
Soil Compo Groundwate Exposure	Val	Class I (mg/kg)	0.03 ^{ri}	11 ⁱ	270 ^{b,i}	0.2°.6.1
oils	nıction ırker	Inhalation (mg/kg)	·····	U	,	540°
ceific Values for S	Consti Wo	Ingestion (mg/kg)	520 ^{¢.j}	1,600 ^b	200,000 ^b	11,000
posure Route-Spe	strial- nercial	Inhalation (mg/kg)	J	U	د 	390°
ē	Indu	Ingestion (mg/kg)	24°J	16,000 ^b	200,000 ^b	520"
		Chemical Name	Pentachlorophenol	2,4,5-TP (Silvex)	2,4,5-Trichlorophenol	2,4,6- Trichlorophenol
		CAS No.	87-86-5	93-72-1	95-95-4	88-06-2

		ADL (mg/kg)		•	•	•	•	*	٠	•	*	*	•
oonent of the ter Ingestion are Route	alues	Class II (mg/L)		0.024 ^m	0.2 ^m	2.0 ^m	0.5 ^m	2.0 ^m	0.05 ^m	. 200 ^m	"0"1	5	
Soil Comp Groundwa Exposi	Ň	Class I (mg/L)		0.006	0.05 ^m	2.0 ^m	0.004 ^m	2.0 ^m	0.005 ^m	200 ^m	0.1 ^m	8	
S	ction er	Inhalation (mg/kg)		υ,	25,000 [€]	870,000 ^b	44,000 ^e	1,000,000	59,000°	0	690 ^b	U J	690 ^b
cific Values for Soil	Constru Work	Ingestion (mg/kg)		82 ^b	61 ^b	14,000 ^b	410 ^h	18,000 ^b	200 ^{b.r}	U I	4,100 ^b	310,000 ^b	4,100 ^b
posure Route-Spe	trial- ercial	Inhalation (mg/kg)		U	1,200*	910,000 ^b	2,100	1,000,000	2,800°	ð	420°	0	420°
	Indus Comm	Ingestion (mg/kg)		820 ^b	-	140,000 ^b	4,100 ^b	180,000 ^b	2,000 ^{b.r}	Û	6,100 ^b	1,000,000 ^b	6,100 ^b
		Chemical Name	Inorganics	Antimony	Arsenic ^{1.n}	Banum	Beryllium	Boron	Cadmium ^{1,n}	Chloride	Chromium, total	Chromium, ion, trivalent	Chromium, ion, hexavalent
		CAS No.		7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-42-8	7440-43-9	16887-00-6	7440-47-3	16065-83-1	18540-29-9

:1)

		EX N	posure Route-Spe	ccific Values for So	ils	Soil Compo Groundwat Exposu	onent of the er Ingestion re Route	
		Indust Comme	trial- ercial	Constr Wor	uction ker	Va	S	
CAS No.	Chemical Name	Ingestion (mg/kg)	Inhalation (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	Class I (mg/L)	Class II (mg/L)	ADL (mg/kg)
7440-48-4	Cobalt	120,000 ^b	0	12,000 ^b	2	1.0"	1.0 ^m	*
7440-50-8	Copper"	82,000 ^b	э	8,200 ^b	J	0.65 ^m	0.65 ^m	
57-12-5	Cyanide (amenable)	41,000 ^b	U	4,100 ^b	U,	0.2 ^{q.m}	0.6 ^{q.m}	+
7782-41-4	Fluoride	120,000 ^b	c	12,000 ^b	u I	4.0 ^m	4.0 ^m	*
15438-31-0	Iron		5	9	U I	5.0 ^m	5.0 ^m	•
7439-92-1	Lead	400 ^k	C.	400 ^k	.	0.0075 ^m	0.1 ^m	•
7439-96-5	Manganese	96,000 ^b	91,000 ⁶	9,600 ^b	8,700 ^b	0.15 ^m	10.0 ^m	•
7439-97-6	Mercury ^{1,n,s}	610 ^b	540,000 ^b	61 ^b	52,000 ^b	0.002 ^m	0.01 ^m	•
7440-02-0	Nickel ¹	41,000 ^b	21,000	4,100 ^b	440,000°	0.1	2.0 ^m	•
14797-55-8	Nitrate as N ^p	1,000,000 ^b	0	330,000 ^h	0	10.04	100	•
7782-49-2	Selenium ^{1,n}	10,000 ^b	3	1,000 ^b	Ű	0.05 ^m	0.05 ^m	•

		ADL (mg/kg)	•	*	•	•	•
oonent of the iter Ingestion ure Route	ahtes	Class II (mg/L)		400 ^m	0.02 ^m	0.1 ^m	10 ^m
Soil Comj Groundwa Exposi	>	Class I (mg/L)	0.05 ^m	400 ^m	0.002 ^m	0.049 ^m	5.0 ^m
ils	uction rker	Inhalation (mg/kg)	9	3	۰ 	د	ť
ecific Values for So	Conste Wo	Ingestion (mg/kg)	1,000 ^b	U	160 ^{b,u}	1,400 ^b	61,000 ^b
cposure Route-Spo	trial- vercial	Inhalation (mg/kg)	U I	9	U I I I	J	U U
£	Indus Comr	Ingestion (mg/kg)	10,000 ^b	2	160 ^{h.u}	14,000 ^b	610,000 ^b
		Chemical Name	Silver	Sulfate	Thallium	Vanadium	Zinc ¹
		CAS No.	7440-22-4	14808-79-8	7440-28-0	7440-62-2	7440-66-6

"*" indicates that the ADL is less than or equal to the specified remediation objective.

...

NA means Not Available; no PQL or EQL available in USEPA analytical methods.

- Soil remediation objectives based on human health criteria only.
- ^b Calculated values correspond to a target hazard quotient of 1.
 - ^c No toxicity criteria available for this route of exposure.
- soil pore air have been reached. Above the soil saturation concentration, the assumptions regarding vapor transport to air and/or dissolved phase transport to groundwater (for Soil saturation concentration (C_{[sul}) = the concentration at which the absorptive limits of the soil particles, the solubility limits of the available soil moisture, and saturation of chemicals which are liquid at ambient soil temperatures) have been violated, and altemative modeling approaches are required.
 - Calculated values correspond to a cancer risk level of 1 in 1,000,000.
- Level is at or below Contract Laboratory Program required quantitation limit for Regular Analytical Services (RAS).
 - ¹ Chemical-specific properties are such that this route is not of concern at any soil contaminant concentration.
- 40 CFR 761 contains applicability requirements and methodologies for the development of PCB remediation objectives. Requests for approval of a Tier 3 evaluation must address the applicability of 40 CFR 761.
- Soil remediation objective for pH of 6.8. If soil pH is other than 6.8, refer to Appendix B, Tables C and D in this Part.
- Ingestion soil remediation objective adjusted by a factor of 0.5 to account for dermal route.
- A preliminary remediation goal of 400 mg/kg has been set for lead based on Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, OSWER Directive #9355.4-12.
- Potential for soil-plant-human exposure.
- amount of contaminant in the soil sample results to compare with pH specific remediation objectives listed in Appendix B, Table C or D of this Part. (See Section 742,510.) If the person conducting the remediation wishes to calculate soil remediation objectives based on background concentrations, this should be done in accordance with Subpart D of ^m The person conducting the remediation has the option to use: (1) TCLP or SPLP test results to compare with the remediation objectives listed in this Table; or (2) the total this Part.
 - The Agency reserves the right to evaluate the potential for remaining contaminant concentrations to pose significant threats to crops, livestock, or wildlife.
- For agrichemical facilities, remediation objectives for surficial soils which are based on field application rates may be more appropriate for currently registered pesticides. Consult the Agency for further information.
 - ^P For agrichemical facilities, soil remediation objectives based on site-specific background concentrations of Nitrate as N may be more appropriate. Such determinations shall be conducted in accordance with the procedures set forth in Subparts D and I of this Part.
 - ⁹ The TCLP extraction must be done using water at a pH of 7.0.
 - ^c Value based on dietary Reference Dose.
- Value for Ingestion based on Reference Dose for Mercuric cliloride (CAS No. 7487-94-7); value for Inhalation based on Reference Concentration for elemental Mercury (CAS No. 7439-97-6)
- ¹ For the ingestion route for arsenic for industrial/commercial, see 742. Appendix A, Table G.
- * Value based on Reference Dose for Thallium sulfate (CAS No. 7446-18-6).
- Calculated values correspond to soil concentrations that should not result in air concentrations that exceed criteria for workplace air.

(Source: Amended at 25 Ill. Reg. 10374, effective August 15, 2001)

Section 742. APPENDIX B: Tier 1 Tables and Illustrations

••••

÷.,

Section 742. Table C: pH Specific Soil Remediation Objectives for Inorganics and Ionizing Organics for the Soil Component of the Groundwater Ingestion Route (Chss I Groundwater)

				_						-			
pH 8.75 to 9.0		5	33	-	•	•	21	•	40		.	1.3	•
p11 8.25 to 8.74		5	32	1		•	24	.	40	•	•	1.8	•
pH 7.75 to 8.24		S	31	2,100	8,000	430	28	330,000	40	8.0	3,800	2.4	110
pH 7.25 to 7.74		5	30	1,800	1,000	59	32	330,000	40	6.4	700	3.3	39
pH 6.9 to 7.24		S	29	1,700	140	11	36	200,000	40	3.3	180	4.5	13
pH 6.65 to 6.89		S	29	1,600	63	7.5	38	130,000	40	2.1	130	5.2	8.5
pII 6.25 to 6.64		5	29	1,500	22	5.2	40	59,000	40	0.89	100	6.3	4.4
pH 5.75 to 6.24		S	28	1,200	6.6	3.7	46	11,000	40	0.15	76	8.8	1.5
pt1 5.25 to 5.74		5	27	850	3.4	2.7	54	2,100	40	0.03	56	- 12	0.62
pH 4.75 to 5.24		5	26	490	2.1	1.7	62	580	40	0.01	36	17	0.33
pH 4.5 to 4.74		5	25	260	1.1	1.0	70	330	40	0.01	20	24	0.24
Chemical (totals) (mg/kg)	Inorganics	Antimony	Arsenic	Banùum	Beryllium	Cadmium	Chromium (+6)	Copper	Cyanide	Mercury	Nickel	Selenium	Silver

United States Department of Agriculture

Research, Education and Economics Agricultural Research Service

January 8, 2003

Subject: Summary of Soil Sampling Activities – October 2002, USDA/Badger Army Ammunition Plant, Baraboo, Wisconsin

To: Adrianna D. Hewings Midwest Area Director

From: Steven Pitts Midwest Area Environmental Protection Specialist

1. The subject document details the results from the last round of testing conducted at the Badger Army Ammunition Plant. The sampling and testing was conducted in regards to concerns relating to contamination at the USDA/Badger site that could have the potential to delay property transfer of the Badger-USDA sites. The conclusion of the testing and analysis as provided in the cover letter of the report is:

"All soil analytical results were compared to the most stringent Wis. Administrative Code, CH. NR. 720 Residual Contaminant Level (RCL), scenarios available."

"None of the composite soil samples analyzed were above these conservative RCL Scenarios."

2. If there are any questions or concerns, please feel free to contact me at (309) 681-6644 or via email at spitts@mwa.ars.usda.gov.

Enclosure: Summary of Soil Sampling Activities – October 2002, Tank Farm, Trap Area, and Southwest Quadrant, USDA/Badger Army Ammunition Plant, Baraboo, Wisconsin

cc: P. Barry, FD

T. Fox, OGC P. Jovanovich, FD SHEMB N. Martin, RL, DFRC E. Reilly, FD RPMB C. Romine, MWA SHEM D. Strub, MWA AO L. Theesfeld, MWA RPS R. Walgenbach, FM DFRC

DEPARTMENT OF HEALTH & HUMAN SERVICES

Program Support Center

CHICAGO AREA OFFICE 536 S. CLARK STREET ROOM 714 CHICAGO, IL 60605 PHONE # 312-886-0413 FAX # 312-886-0434

December 12, 2002

Caryl Romine Area Safety & Occupational Health Manager USDA Agricultural Research Service 1815 N. University Peoria, IL 61604

Dear Ms. Romine:

Enclosed you will find the final report for the soil sampling work performed at Badger Army Ammunition Plant (BAAP) for the United States Department of Agriculture (USDA) on October 29 and 30, 2002. This work was conducted to determine if certain areas of BAAP that USDA wishes to acquire can be considered reasonably free of lead and hydrocarbon contamination.

Bridge Environmental developed the scope of the project in conjunction with USDA personnel, supervised fieldwork and reviewed analytical results contained in the MWH report of findings. The report was conducted by Mr. Dennis Bridge with report reviewed and approved by Ms. Michelle C. Stemmons, FOH Environmental Health Manager. We appreciate this opportunity to provide consulting services for the U.S. Department of Agriculture. Should questions arise concerning this report or if FOH may be of further services, please do not hesitate to contact me at 312-886-0413.

Sincerely,

tommons

Michelle C. Stemmons, MS Environmental Health Manager Federal Occupational Health

Enclosure original (1) copy

December 6, 2002

Mr. Dennis Bridge, CIH, CSP, PE Bridge Environmental Management Group P.O. Box 229 Lake Zurich, Illinois 60047

Re: Summary of Soil Sampling Activities - October 2002 Tank Farm, Trap Area, and Southwest Quadrant USDA/ Badger Army Ammunition Plant, Baraboo, Wisconsin

Dear Mr. Bridge:

This letter summarizes soil sampling activities and analytical results for soil samples collected by MWH Americas, Inc. (MWH) at the Badger Army Ammunition Plant located in Baraboo, Wisconsin on October 29 and 30, 2002. Enclosed Table 1 summarizes analytical results for soil samples collected from the Tank Farm, Trap Area, and Southwest Quadrant (previously referenced as Area 4 in MWH proposal dated September 11, 2002). Soil samples were hand delivered to and analyzed by CT Laboratories in Baraboo, Wisconsin by EPA Method SW846-8270C for SVOCs and by EPA Method 6010B for total lead. A copy of analytical results from CT Labs is also enclosed.

All soil analytical results were compared to the most stringent Wis. Administrative Code, Ch. NR 720 Residual Contaminant Level (RCL) scenarios available. For example, residential classification of land was selected instead of industrial, and a child's exposure rate was considered over an adult's exposure rate for the compounds of concern listed in Table 1. None of the composite soil samples analyzed were above these conservative RCL scenarios.

Table 2 summarizes the GIS coordinates for all sample locations. The coordinates are in the Wisconsin State Plane UTM coordinate system using NAD 27 as the horizontal datum. Some of the initial sample locations coordinates collected on October 29, 2002 were recorded in the NAD 83 version of the Wisconsin State Plane coordinate system. Due to difficulties with the Trimble[®] GPS receiver on October 30, 2002, resurveying of these sample locations in the field with the GPS unit in desired NAD 27 coordinates was not possible. NAD 83 coordinates were converted to NAD 27 coordinates by MWH using CORPSCON transformation software. Table 2 and Drawings B1 and B2 display coordinates and sample locations in NAD 27 coordinates of the Wisconsin State Plane system. Drawings B1 and B2 were generated from a base map of the BAAP prepared from a November 1994 aerial photograph by Aero-Metric Engineering.

If you have any questions or comments on the information provided in this letter, please call us at (608) 231-4747. Thank you again for the opportunity to provide environmental services to BEMG.

Sincerely,

MWH

bachonfa

John R. Marchewka Engineer

Michael G. Collentine, P.G. Principal Hydrogeologist

Enclosures: Table 1 - Summary of Soil Sample Analytical Results (October 2002) Table 2 - Summary of Soil Sample Coordinates (October 2002) Drawing B1 - Basewide Site Features Map Drawing B2 - USDA Soil Sample Locations - October 2002 Soil Sampling Analytical Report - November 19, 2002

JRM/vlr/ndj/MGC \\Mad1-server2\Main\Jobs\208\2536\01\\wp\\ltr\99_Bridge.doc 2082536.01160101 MAD-1

Mr. Dennis Bridge

TABLE 1

Summary of Soil Sample Analytical Results - October 2002 Tank Farm, Trap Area, and Southwest Quadrant **Badger Army Ammunition Plant** Baraboo, WI.

		[
Commis I contion	Date Sampled	Total lead	Bis(2-ethylexy)phthalate ⁽¹⁾	Di-n-butylphthalate	Ethyl acetate
Sample Location	10/20/2002	NA I		<0.17	< 0.083
TF-1-6-12	10/29/2002			<0.16	<0.079
TF-1-24-36	10/29/2002			<0.16	<0.079
TF-2-6-12	10/29/2002			0.10	<0.081
TF-2-24-36	10/29/2002	NA		12	<0.081
TF-3-6-12	10/29/2002	NA	0.70	0.24	<0.077
TF-3-24-36	10/29/2002	NA NA	3.6	0.24	<0.07
TF-4-6-12	10/29/2002	NA	1.3	4.9	<0.007
TF-4-24-36	10/29/2002	NA	1.6	0.23	-0.070
Trap 1 ⁽³⁾	10/29/2002	25.9	NA	NA	
Tran 7	10/30/2002	12.7	NA	NA	NA
	10/30/2002	13	NA	NA	NA NA
Trong A	10/30/2002	12.9	NA	NA	NA NA
11ap 4	10/30/2002	13.2	NA	NA	NA NA
	10/30/2002	14 2	NA	NA	NA NA
1 rap o	10/20/2002	11 5	NA	NA	NA
	10/30/2002		 NTA	NA	NA
SWQ1 ⁽³⁾	10/29/2002	12.5		NA	NA
SWQ2	10/29/2002	11.9	<u>NA</u>	NA NA	NA
SWQ3	10/29/2002	13.4	<u>NA</u>	- NA	1 NA
SWQ4	10/29/2002	12.8	NA		T NA
SWQ5	10/29/2002	16.1	NA NA		NA NA
SWQ6	10/29/2002	16.2	NA NA	NA	NT
NR 720 RCL ⁽²⁾		50	4.6	16,000	UN

Notes:

ND - No Generic RCL calculated for this coumpound

NA - Not Analyzed

The "6-12" and "24-36" nomenclature attached behind Tank Farm sample locations TF-1 through TF-4 represent the depth in inches below ground surface at which the soil sample was collected.

Footnotes:

- (1) Di-n-butylphthalate, ethyl acetate and total lead were requested as target analytes. When detected, bis(2-ethylhexyl)phthalate concentrations were reported.
- (2) The most stringent RCL attainable is reported on this table. The generic NR 720 RCL for lead is listed. Site specific direct contact RCLs for bis(2-ethylhex1)phthalate (residential child/adult cancer value) and di-n-butylphthalate and ethyl acetate (both residential child noncancer value) were calculated according to NR 720
- (3) Trap and SWQ samples were composite samples from locations shown on Drawing B2, USDA soil sample locations - October 2002.

TABLE 2

Summary of Soil Sample Coordinates - October 2002 Tank Farm, Trap Area, and Southwest Quadrant Badger Army Ammunition Plant Baraboo, Wl.

	Wisconsin State Plane Coordinates (NAD 27)							
Sample Location	Northing ⁽¹⁾	Easting ⁽¹⁾						
TF-1	493870	2066078						
TF-2	493873	2066052						
TF-3	493852	2066058						
TF-4	493849	2066069						
Trap la	492756	2065299						
Trap Ib	492687	2065359						
Trap 1c	492868	2065281						
Trap 2a	493935	2064821						
Trap 2b	493944	2064669						
Trap 2c	493925	2064965						
Trap 3a	493736	2065477						
Trap 3b	493731	2065344						
Trap 3c	493717	2065607						
Ттар 4а	493706	2065813						
Trap 4b	493715	2065680						
Trap 4c	493705	2065947						
Trap 5a	493664	2066458						
Trap 5b	493687	2066326						
Trap 5c	493656	2066594						
Тгар ба	492915	2066707						
Trap 6b	492788	2066676						
Тгар бс	493031	2066734						
Trap 7a	493172	2066762						
Trap 7b	493305	2066779						
Тгар 7с	493042	2066722						
SWQ-1A	487109	2066394						
SWQ-1B	487070	2066278						
SWQ-1C	487142	2066520						
SWQ-2A	489354	2066781						
SWQ-2B	489204	2066780						
SWQ-2C	489497	2066790						
SWQ-3A	485995	2065557						
SWQ-3B	485847	2065526						
SWQ-3C	486137	2065585						
SWQ-4A	490527	2065342						
SWQ-4B	490595	2065445						
SWQ-4C	490448	2065225						
SWQ-5A	484915	2064330						
SWQ-5B	484916	2064392						
SWQ-5C	484929	2064273						
SWQ-6A	489720	2064351						
SWQ-6B	489775	2064407						
SWQ-6C	489687	2064299						

Footnotes: (1) SWQ coordinates and Tank Farm (TF) coordinates converted from NAD 83 to NAD 27 using CORPSCON software.

. •

SOIL SAMPLING ANALYTICAL REPORT - NOVEMBER 19, 2002

1230 Lange Court Baraboo, WI 53913-3109 Phone: (800) 228-3012 Fax: (608) 356-2766 www.ctlaboratories.com

ANALYTICAL REPORT

Page 1 of 5 1.57

ONTGOMERY WATSON HARZA ARK PAULI VE SCIENCE COURT ADISON. WI 53711

BRIDGE/BADGER Project Name: Contract #: 1747 Project #: 2082537.01160101 Folder #: 30348 Purchase Order #: Arrival Temperature: See COC Report Date: 11/19/2002 Date Received: 10/30/2002 Reprint Date:

									Sampled:	10/29	2002 1445	
TILAB#: 160384	Sample Description:		TF-3-24-36		·							
		Units		LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method	
alyte organic Results lids, Percent	88.2	%		N/A	N/A	1			10/30/2002	GCE	FPA 5030A	
aanic Results s(2-ethylhexyl)phthalale	3.6	mg/kg		0.12 0.16	0.3	9 1 2 1	M.Y	11/12/200 11/12/200	11/14/2002 11/14/2002	EAM EAM	EPA 8270 EPA 8270	
-n-butylphthalate	.0.24 <0.077	mg/kg		0.077	0.2	26 1		11/5/200	2 11/5/2002	RLD	EPA 8260	
thyl acetate							· · · · · · · · · · · · · · · · · · ·		Sampleo	J: 10	/29/2002 150	5

					<u></u>		14.1	Sampled:	10/29	/2002 1505
CTI LAB#: 160385	Sample Descri	puon: TF	-4-h-1/				Prep	Analysis Date	Analyst	Method
) paivte	Result	Units	LOD	LOQ	Dilution	Qualifier	Date			
norganic Results Solids, Percent	78.2	%	N/A	N/A	1			10/30/2002	GCE	EPA 5030A
Organic Results	+ 3	mg/kg	n 14	0.43	11 1 - 1 - 1	M.Y	11/12/200	11/14/2002		FPA 8270
Bis(2-ethylhexyl)phthalate	4.9	mg/kg	0.18	0.59	∋ 1		11/12/200	11/14/2002		
	<0.087	mg/kg	0.087	0.2	91		11/5/2002	11/5/2002	RLD	EPA 8260
Einyi aceiaie		1			· .			Sample	d: 10/	29/2002 152

CTILLAB#: 16038	5 Samp	le Descr	iption:	TF-4-24-	36							
		ent	Units		LOD	LOQ	Dilution	Qualifier	Prep Date	Analysis Date	Analyst	Method
Analyte										40/20/2002	GCE	EPA 5030A
Inoraanic Results Solids, Percent	86.7	•	%		N/A	N/A	1			10/30/2002	- COL	EPA 8270
Ornanic Results					0 13	0.3	9 1	M,Y	11/12/200	11/14/2002	EAM	
Bis(2-ethylhexyl)phthalale	e 1,6		mg/kg	•	0.15				11/12/200	11/14/2002	2 EAM	EPA 8270
Di-n-butylphthalate	0.2	3	mg/kg		0.16 *	0.5	3 1		• • • • •			•

TLaboratories

Project #: 2082537.01160101

Contract #: 1747 Folder #: 30348

Page 2 of 5

·			ion: TE	4.24.36				Sampled:	10/29/	2002 1525
CTI LAB#: 16	50386	Sample Descript				·				
nalvte		Result	Units	LOD	LOQ Dilui	tion Qualifie	Prep Date	Analysis Date	Analyst	Method
thyl acetale		<0.078	mg/kg	0.078	0.27	• • •	11/5/200	11/5/2002	RLD I	EPA 8260
								Sampled	10/29	/2002 1620
CTI LAB#: 1	60387	Sample Descrip	tion: T	RAP 1						
	· · ·	Posult	Units	LOD	LOQ Dilu	ution Qualif	Prep ier Date	Analysis Date	Analyst	Method
norganic Results Solids, Percent		81.8	%	N/A	N/A	1		10/30/200	2 GCE	EPA 5030A
Metals Results Lead		25.9	mg/kg	0.17	0.58	1	10/31/2	00 11/4/2002	NAH	EPA 6010B
0711 4 8 4	460289	Sample Descr	iption:	TRAP 2				Sample	10/3	0/2002 0815
CIILAB#:	160388		tinite	100		lution Quali	Prep ifier Date	Analysis Date	Analys	t Method
Analyte		Result	Units							
Inorganic Result Solids, Percent	S	79.3	%	N/A	N/A	1		10/30/20	02 GCE	EPA 5030A
als Results		12.7	mg/kg	0.17	0.56	1	10/31/	200 11/4/200	2 NAH	EPA 6010B
CTU AB#	160389	Sample Desc	ription:	TRAP 3				Sampl	ed: 10/	30/2002 0855
C11040#.	100000				100 D	ilution Qua	Pre lifier Dat	p Analysis e Date	Analy	st Method
Analyte		Result	Units				·····			
Inorganic Resul Solids, Percent	ts	83.8	%	N/A	N/A	1		10/30/20	002 GCE	EPA 5030A
Metals Results		13.0	mg/kg	0.17	0.55	1	10/31	1/200 11/4/20	D2 NAH	EPA 6010B
CTI LAB#:	16039	0 Sample Des	cription:	TRAP 4				Samp	led: 10	/30/2002 0915
4		Result	Units	LOD	LOQ	Dilution Qu	Pr alifier Da	ep Analysis ate Date	Anah	yst Method
Inorganic Resu Solids, Percent	ılts	81.6	%	N/A	N/A	1	•	10/30/2	002 GCE	EPA 5030A
Metals Results		12.9	mg/kg	0.17	0.58	1	10/3	1/200 11/4/20	002 NAH	EPA 6010B
		od Sample De	scription:	TRAP 5				Sarr	pled: 1	0/30/2002 095
CTI LAB#:	1603	g1 Sample De				Dilution O	P uplifier D	rep Analysis Date Date	Ana	lyst Method
Analyte		Result	Units	s LOE		Dilution Q				
Inorganic Res Solids, Percent	ults	80.8	%	N/	A N/A	. 1		10/30/	2002 GCE	EPA 5030A
Metals Result	S	13.2	mg/kg	0.1	8 0.59) 1	10/	31/200 11/4/2	002 NA	H EPA 6010E

MONTGOMERY WATSON HARZA

Contract #: 1747 Folder #: 30348

Page 3 of 5

Project Name: BRIDGE/BADGER Project #: 2082537.01160101

	150202	Sample Descri	iption: TR	AP 6				Sampled:	10/3	0/2002	
CTI LAB#:	160392	Gampio e e				uion Qualifier	Prep Date	Analysis Date	Analyst	Meth	od
alyte		Result	Units	LOD	LUQ Dire						
organic Result	S	77.7	%	N/A	N/A	1		10/30/200	2 GCE	EPA !	5030A
etals Results	·	14.2	mg/kg	0.18	0.61	1	10/31/200	11/4/2002		EPA	6010B
	400202	Sample Desc	ription: T	RAP 7				Sample	a: 10/	30/200	<u></u>
CTI LAB#:	100333					lution Qualifie	Prep Date	Analysis Date	Analy	st Me	hod
nalyte		Result	Units	100	LOG						
norganic Resul Solids, Percent	ts	80.5	%	N/A	N/A	1		10/30/20	02 GCE	EPA	5030A
Metals Results		11.5	mg/kg	0.18	0.59	1	10/31/20	00 11/4/200	12 NAH	EPA	6010B
	40020	A Sample De	scription:	SWQ 1		· · · ·	·	Samp	ed: 10	5/29/20	02 0900
CTI LAB#:	16033			1.00	100 0	Dilution Qualifi	Prep er Date	Analysis Date	Anal	lyst M	ethod
Analyte		Result	Units								
Sonds, Percent	ults	81.1	%	N/A	N/A	1		10/30/2	002 GCE	EP	A 2030A
Metals Results	5	12.5	mg/kg	0.18	0.60	1.	10/31/	200 11/4/20	02 NAH	+ EF	002 0933
CTILAB#	1603	95 Sample D	escription:	SWQ 2							
		Result	Units	LOD	LOQ	Dilution Quali	Prej fier Dat	p Analysis e Date	An	alyst	Method
Analyte Inorganic Res Solids, Percent	sults	80.0	%	N//	N/A	, 1		10/30/	2002 GC	EE	PA 5030A
Metals Resul	ts	11.9	mg/kg	0.1	7 0.56	5 1	10/31	/200 11/4/2	2002 NA	H E	PA 6010B
-	160	306 Sample	Description:	SWQ 3	•			5a	mpied:	10/29	2002 1020
CTILAB#:	180	Resu	lt Unit:	s LO	D LOQ	Dilution Qua	Pr Difier Da	ep Analys ate Date	is A	naiyst	Method
Inorganic Re Solids Percer	esults	79.8	%	N	IA N/	A 1		10/3	0/2002 G	CE	EPA 5030A
Metals Resu	ults	13.4	mg/kg	0.	18 0.5	j 9 1	10/3	31/200 11/4	12002 N	IAH	EPA 6010B
Leau			Description	SWO 4	·····	· · · · ·		S	ampled:	10/2	9/2002 1108
CTI LAB#:	16	0397 Sample				Dilution Of	alifier [Prep Analy Date Dat	sis e	Analys	Method
Analyte Inorganic R	esults	Res 79.8	ult Uni %	ts LO	N/A N	I/A 1		10/	30/2002	GCE	EPA 5030A

Metals Results

MONTGOMERY WATSON HARZA

Contract #: 1747 Folder #: 30348

Page 4 of 5

CILABORATORIES Project #: 2082537.01160101

	160397	Sample Descrip	tion: S	WQ 4				Sampled:	10/29	12002 (100
CTI LAB#:	160397					ing Qualifier	Prep Date	Analysis Date	Analyst	Method
nalyte		Result	Units			ion duamic	10/31/200	11/4/2002	NAH	EPA 6010B
ad		12.8	mg/kg	0.17	0.56			Sampled:	· 10/2	9/2002 1238
CTI LAB#:	160398	Sample Descri	ption: S	SWQ 5	<u> </u>					
	· · · · ·	Result	Units	LOD	LOQ Dih	ition Qualifie	Prep r Date	Analysis Date	Analyst	Method
nalyte Iorganic Resul	ts	*0.0	~ %	N/A	N/A	1		10/30/2002	GCE	EPA 5030A
olids, Percent letals Results		16.1	mg/kg	0.17	0.58	1	10/31/20	11/4/2002	NAH	EPA 6010B
ead		Comple Desc	ription:	SWQ 6				Sampled	: 10/	29/2002 1255
CTI LAB#:	160399			1.00		lution Qualifi	Prep lier Date	Analysis Date	Analy	st Method
Analyte norganic Resu Solids, Percent	ults	Result 77.9	%	N/A	N/A	1		10/30/200	2 GCE	EPA 5030A
Vetals Results	5	16.2	mg/kg	0.17	0.57	1	10/31/2	00 11/4/200	2 NAH	EPA 6010B
CTI LAB#:	16040	0 Sample Des	cription:	TF-1- 6-12	,					•
L		Result	Units	LOD	100 0	ilution Qual	Prep ifier Date	Analysis Date	Anat	y st Method
Inorganic Res Solids, Percent	ults	82.3	%	N/A	N/A	1	•	10/30/20	02 GCE	EPA 5030A
Organic Resu	ilts Iale	<0.17	mg/kg	0.17	0.56	1	11/12/	200 11/14/20	002 EAN	EPA 8270
Ethyl acetate		<0.083	mg/kg	0.083	0.28	1	11/5/2	002 11/5/20	02 RLC	EPA 8260
				75 4 04 26				Sam	oled:	10/29/2002 134
CTI LAB#:	1604	101 Sample Do	escription:	[F-1-24-30			Pre	p Analysis Date	Ал	alyst Method
Analyte	•	Result	Unil	ts LOI	, rođ	Dilution Qu	anner Du			
Inorganic Re Solids, Percer	esults nt	85.8	%	N/	A N/A	1		10/30/	2002 GC	E EPA 5030/
Organic Res Di-n-butylphth	sults palate	<0.16	mg/kg	g 0.1	6 0.5	31	11/12	2/200 11/14/	2002 EA	M EPA 8270
Ethyl acelale		<0.079	mg/k	g 0.0	79 0.2	7 1	11/5	/2002 11/5/2	2002 RI	D EPA 8260

MONTGOMERY WATSON HARZA

Contract #: 1747 Folder #: 30348

Page 5 of 5

٠

Project #: 2082537.01160101

				5 2 5 12					Sampled:	10/29	/2002 1355
CTI LAB#:	160402	Sample Descrip		F-2-0-12				Prep A	nalysis Date	Analyst	Method
Lnalyte		Result	Units	LOD	LOQ	Dilution Qu	valitier				
norganic Result Solids, Percent	S	86.1	%	N/A	N/A	1			10/30/2002	GCE	EPA 5030A
Organic Results Di-n-butylphthalate	e	<0.16	mg/kg	0.16	0.53	1 -		1/12/200	11/14/2002	EAM	EPA 8270
Ethyl acelale		<0.079	mg/kg	0.079	0.27	1		11/5/2002	11/5/2002	RLD	EPA 8260
				75 0 04 26					Sampled	: 10/2	29/2002 1410
CTI LAB#:	160403	Sample Desc	ription:	17-2-24-30				Been	Analysis		
Analyte		Result	Units	LOD	LOQ	Dilution	Qualifier	Date	Date	Analys	t Method
Inorganic Resu	ults	84.1	%	N/A	N//	A 1			10/30/200	2 GCE	EPA 5030A
Organic Resul	ts ale	0.19	mg/kg	0.17	• 0.5	51		11/12/20	0 11/14/200	2 EAM	EPA 8270
acetate		<0.081	mg/kg	0.081	0.2	7 1		11/5/200	2 11/5/200	2 RLD	EPA 8260
				75 0 6 10					Sample	ed: 1()/29/2002 1425
CTI LAB#:	16040)4 Sample De	scription:	11-3-6-12					A husin		
Analyte		Result	Units	LOD	LOQ	Dilution	n Qualifi	Prep er Date	Date	Anal	yst Method `
Inorganic Res Solids, Percent	sults	84.7	%	N/A	A N	VA 1			10/30/20	002 GCE	EPA 5030A
Organic Resi	ults doobthalat	e 0.70	mg/kg	0.13	30.	40 1	M,Y	11/12/2	00 11/14/2	002 EAN	EPA 8270
Di-n-butylphthi	alate	1.2	mg/kg	0.1	7 0.	.54 1		11/12/2	00 11/14/2	002 EAN	n Ern 0210
Ethyl acetale		<0.081	mg/kg	0.08	1 0	.27 1		11/5/20	02 11/5/20	02 RL	EPA 8260

Notes: * Indicates Value in between LOD and LOQ.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

PML

Submitted by:

Record Reviewer

5

QC Qualifiers

•••	QC Qualifiers	•
	Description	
Cose	Description of the averaged calibration criteria within acceptable limits.	
A	Analyte averaged in associated Method Blank,	
в	Analyte detected in associate the second sec	
C	Toxicity present in BOD samples.	
D	Diluted Out	
E	Safe, No Total Colliform Detected.	
F	Unsafe, Total Collform detected, no E. Coll detected.	-
G	Unsafe, Total Coliform detected and E. Coli detected.	
н	Holding time exceeded.	
j	Estimated value.	
1	Significant peaks were detected outside the chromatographic window.	
M M	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.	
N	Insufficient BOD oxygen depletion.	· .
Ö	Complete BOD oxygen depletion.	-
p	Concentration of analyte differs more than 40% between primary and confirmation analysis	3.
•	Laboratory Control Sample outside acceptance limits.	1. A.
В	See Narrative at end of report.	
	Surroute standard recovery outside acceptance limits due to apparent matrix effects.	
. 3	Some received with improper preservation or temperature.	
1	Bained Quantitation or Reporting Limit due to limited sample amount or dilution for matrix	background interierence
V	Raised quantitation of the below program minimum.	
W	Sample allocative calibration range.	
X	Analyte exceeded constance and a state acceptance limits.	
Y	Kepiicate/Duplicate precision subject acception	
z	Calibration Chiena exceeded.	

.

....

155 (40 A B) 000000 1997-1997 TIME HAPPH poton. AES. 16039 なってき 102500 LAB NO. 160315 TURNAROUND 20/02/01 LAB USE ONLY Br weeks (stand 1 week 3 DAYS 1 DAY DATE 1 10402 h 0403 -20402 160403 ARENO! 10401 112 160396 00395 46504 5500 100 395 MATRIX C PECFA WI LUST ACT 307 REPORT DRY WT SPECIAL INSTRUCTIONS: <u>وج</u>ومد و الم الم Q 202 い の ROJ, MGR NAME OF COURIER: . 51m211 Ż AIRBILL NUMBER: REMARKS SIGNATURE i, V, 2%.0 25. . 26,3 r Cooler # 180 TAMPER EVIDENT SEAL INTACT? ____YES ____NO ____NOT PRESENT ပ္ခ RECEIVED FOR LABORATORY BY: YES X NO TEMP: 5.9 CHAIN OF CUSTODY RECORD RECEIVED BY: RECEIVED BY: 2/6 RECEIVED BY: 7 7 7 7 50 7 7 ን 7 7 TIME 7 SAMPLES RECEIVED ON ICE? JUL N 2 NO. OF CONTAINERS 10/02/ DATE 0/04/10 SEAL NO .: , -36 3 - 26 ų 2) 1537. SAMPLE ID レム 1 •• 0 てへ ļ PROJECT #: c 5 NO4 K-W I SN QZ 1-2-2 STATE ... SIGNATURE η ۱ 3 ſ SNQ SEL 3 ı L R (02 380 623 628 Come GRB Comp 683 COLLECTION COLLECTION GBABA DATE TIME COMP į Cont いもち くらや よろう C-O-C No. 22973 MONTGOMERY WATSON HARZA ý 52 340 0 0933 1,238 108 320 5 ちじつ 1250 SPECIAL INSTRUCTIONS: 2060 r z ģ RELINQUISHED BY: 2 RELINQUISHED BY RELINQUISHED BY RELINQUISHED B PROJECT NAME: 24 759/02 r ĉ 160/01 SAMPLER X 1 담

1

TURNAROUND TURNAROUND TO WEEK 3 DAYS 1 DAY		LAB USE ONLY ATRIX LAB NO.	160385	160389	16030	16031	- or yru	DATE TIME		10/30/05- 1222	
SPECIAL INSTRUCTIONS: PECFA. WI LUST ACT 307 ACT 307 MDTHER:		REMARKS	1, 1, 2011 / July 1				PROJ MGR	SIGNATURE		et a lon talle.	NAME OF COURIER:
WATS' PMI		× ×	<u> </u>				NO NOT PRESENT		:0 BY. :D BY:	ер вү: ер ғоя laboratory by: <i>М</i>	
ilder #: 30348 mpany: MONTGON oject: BRIDGE/BADGER bgged By: GRB PM: 1		NO. OF CON	422				NT SEAL INTACT?YES	DATE TIME	1) 2 4 2 4 2 12 10 RECEIVE	RECEIVE	
P-1 120 - 120 - 10	14, P, PROJECT # 211 3083537. 21	10 Len For B/ SAMPLE ID	18 77-3-24-36 28 71-4-6-12 00-6-4-24-36	40 TRAP 1	10 7040 2 10 10 40 4	11 78 AP 7	TAMPER EVIDEN SEAL NO.: SAMPLES RECE	SIGNATURE	Mundas for		
MONTGOMERY WATSON HARTA	PROJECT NAME: Earl grow At County	SAMPLERISH COLLECTION GRAE	10/24/02 /505 6A	10/10/10/20 61	0915 CM	1620 Cm	SPECIAL INSTRUCTIONS:		RELINOUISHED BY	RELINOUISHED BY	C-O-C No. 22971

j 🖣