

PICATINNY ARSENAL TASK ORDER 27 RCRA SUBPART X PERMIT MONITORING ROUND E

GROUNDWATER ASSESSMENT REPORT

Prepared by:

Shaw Environmental & Infrastructure, Inc.

111 Howard Blvd, Suite 110 Mt Arlington, NJ 07856 **APRIL 2003**

U.S. Army Corps of EngineersBaltimore District

Total Environmental Restoration Contract (TERC) Number DACA31-95-D-0083

DEPARTMENT OF THE ARMY

UNITED STATES ARMY TANK - AUTOMOTIVE AND ARMAMENTS COMMAND ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER PICATINNY ARSENAL, NEW JERSEY 07806-5000

April 09, 2003

Environmental Affairs Division

SUBJECT: Submittal of RCRA Subpart X Permit Monitoring, Round E for Supart X Permit Application, U.S. Army Research Development and Engineering Center, Picatinny Arsenal, NJ

Mr. John Scott
Chief, Bureau of Hazardous Waste
And Transfer Facilities
Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414

Dear Mr. Scott:

Enclosed for your information is report entitled "RCRA Subpart X Permit Monitoring, Round E." The sampling was performed on September 18 & 19 of 2002 and represent the first semi-annual event after the one year of quarterly sampling as was presented in the letter of December 12th, 2002.

We realize that the NJDEP is considering our responses to comments in your January 2nd letter invalidating the previous groundwater results. Therefore, the report will only get reviewed if the issues of your letter are positively resolved. However, a table was prepared as part of the report that indicates the certification status of each lab per analyte. Only a few analytes were tested at labs not certified but these are not considered CoCs per the statistical report provided last year.

We have received your letter of April 02 and have suspended groundwater sampling for the Open Detonation Area until two (2) weeks after the issues are resolved.

If you should need additional information on this matter, please contact Mr. Ted Gabel at (973) 724-6748.

Sincerely yours,

Tom Solecki Chief, Environmental Affairs Copies of Letter Furnished:

Greg Zalaskus, NJDEP

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Date: April 09, 2003,

Mr. Tom Solecki,

Chief of Environmental Affairs

Picatinny Arsenal

	TECHNICAL-RE	/IEW RECORD		
PROJECT NAME: RCRA Monitoring for the Open Detonation Area	PROJECT NO.: 66727 (003 01	catinny Arsenal	
DOCUMENT NAME/DATE: Picatinny Arse Round E- Gro	enal, RCRA Subpart X Perroundwater Assessment Rep	nit Monitoring oort - September 20	02	
DRAFTX DRAFT FINAL	FINAL	REVISION NO		
AUTHOR(s): G. Maresca				
MANAGEMENT REVIEWER: D. Schicho				
EDITORIAL REVIEWER: D. Schicho				
ENGINEERING REVIEWER:	•			
GEOLOGY REVIEWER: NA				
CHEMISTRY REVIEWER: NA				
HEALTH & SAFETY REVIEWER: NA				
OTHER REVIEWER* (Specialist as require	ed):			
OTHER REVIEWER* (Specialist as require	ed):	•		
NUMBER OF COPIES/DISTRIBUTION FO	OR REVIEW:1			
DATE DOCUMENT RELEASED FOR REV				
DATE DOCUMENT DUE TO LEAD AUTHO				
pringrisenes principal residences				
THE APPLICATION OF THE APPLICATI	ROPRIATE SIGNATURE(S DIBEFORE RELEASE OF	MUST BE COMP	ETED AND SUMENT	
REVIEWER SIGNATU	JRE	DATE		INITIAL IF N/A
MANAGEMENT OK:	20	3/19/03	3	
EDITORIAL OK:	G / *	3/19/03	•	
ENGINEERING OK:				
GEOLOGY OK:				
CHEMISTRY OK:				·
HEALTH & SAFETY OK:				
OTHER REVIEWER:				

boundary of the installation, and Interstate 80, which is located 1 mile to the southeast of the main gate.

The OD study area, about 4 acres in extent, is located along Gorge Road in Area N of PTA, approximately 1.5 miles west of Lake Denmark. This area is located in the northern most area of the arsenal and is very remote from other facilities. The site consists of a large pile of sand along the eastern side and a sand-filled bunker at its northern end. The site is situated in an alluvial valley bordered by Green Pond Mountain to the west and Copperas Mountain to the east, that separates this area from the Lake Denmark basin (Figure 1-2).

1.3 Site History

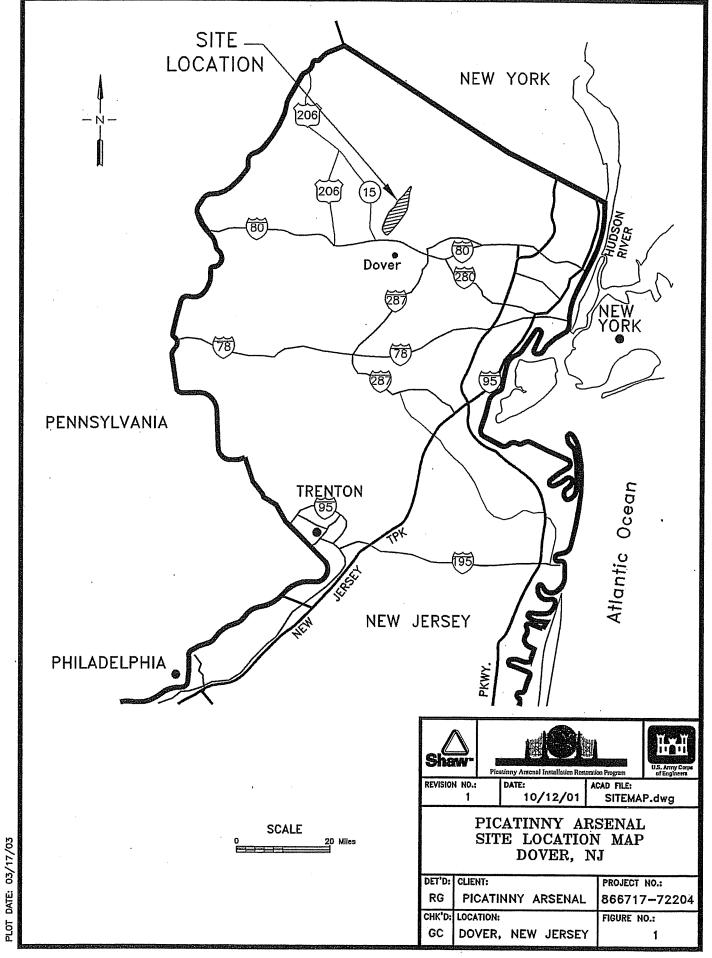
The Gorge is used to test large and small caliber weapons, ammunition, and various explosive devices as well as the OD of waste ordnance and explosives. The OD operations are conducted in the large sandpit along the eastern side of the Gorge (Figure 1-3).

A RCRA Part B permit application was submitted by Picatinny Arsenal to USEPA, Region 2 in November 1985 for the operation and monitoring of the OD area. The permit application was updated, revised and resubmitted in November 1988. Picatinny received a Notice of Deficiency (NOD) from USEPA and the permit application was revised in July 1993 and September 1994 and resubmitted to USEPA.

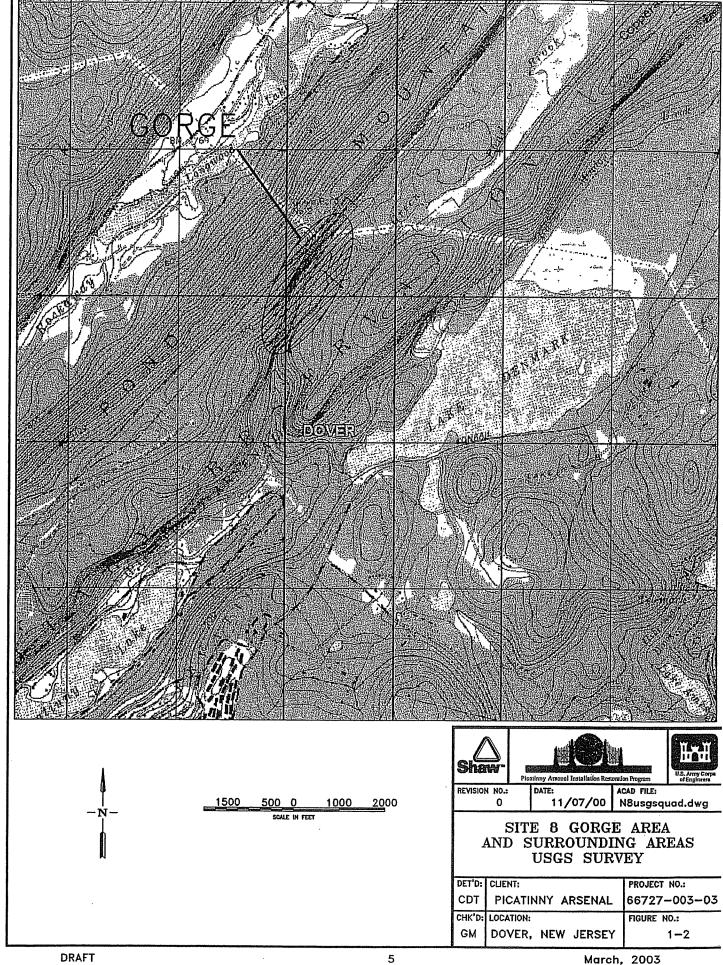
Operating at the Open Detonation (OD) Area under Interim status, Picatinny installed six monitoring wells and conducted quarterly groundwater sampling from February 1999 to October 1999. Chemical analysis of the groundwater samples was for eight metals and six explosive compounds. Two additional sampling events were conducted in March and April 2000 to verify elevated levels of lead in two downgradient monitoring wells. Analytical data from these six sampling events are presented in the Summary of Groundwater Sampling Results from February 1999 to October 2000 (IT, 2001a).

During this time, New Jersey took primacy over RCRA enforcement within the state from USEPA. The New Jersey Department of Environmental Protection (NJDEP) issued a NOD on the revised 1994 permit application. The permit application was revised and updated and submitted to NJDEP in November 2000. Based on comments and discussions with NJDEP, the revised permit application contained an expanded analytical list for groundwater sampling (Appendix A). It should be noted that white phosphorous and red phosphorous could not be analyzed for because there is currently no approved or certified analytical method. In order to develop analytical methods, standards for these two compounds would be required. Standards were not readily available for either compound. The permit application is currently still under review by NJDEP.

In March 2001, Picatinny received a letter from NJDEP requesting that quarterly sampling be resumed for two years at the OD Area (ODA). The letter also requested that in addition to the expanded analyte list contained in the revised permit application (Nov. 2000), groundwater samples also be analyzed for VOCs with additional compounds, SVOCs with additional compounds, and pesticides/PCBs with additional compounds. A copy of this letter is included in Appendix A. Picatinny agreed to conduct quarterly groundwater sampling for the expanded analyte list contained in the revised permit application for one year (four consecutive quarters). Picatinny also agreed to analyze for the additional compounds requested by NJDEP (i.e., VOCs with additional compounds, SVOCs with additional compounds, and pesticides/PCBs with additional compounds) for two consecutive quarters. In June 2001, NJDEP notified Picatinny that the reduced sampling duration was acceptable (See Appendix A for a copy of this correspondence).


The first round of quarterly groundwater sampling with the expanded analyte list (Round A) was conducted from June 20 to June 25, 2001. Analytical results from that sampling are presented in the Round A Groundwater Assessment Report, October 2001 (IT, 2001b). The second quarter of groundwater sampling was performed from September 25 to September 27, 2001. Analytical results are presented in the Round B Groundwater Assessment Report, January 2002 (IT,

2002a). The third round (Round C) of groundwater sampling was conducted from January 15 to 17, 2002. Analytical results are presented in the *Round C Groundwater Assessment Report*, *April 2002* (IT, 2002b). The fourth quarter (Round D) of groundwater sampling was conducted at Site 8 on April 16 and 17, 2002. Analytical results are presented in the *Round D Groundwater Assessment Report*, *August 2002* (IT, 2002c).


For the Round C and Round D sampling events, the analytical suite was reduced as discussed at the regulatory meeting conducted on November 20, 2001(see Appendix C for a copy of the meeting minutes). The following compounds, which were only required to be sampled for a minimum of two consecutive quarters, were eliminated from the analytical program, because none of these compounds were detected at concentrations above their respective LOCs: VOCs with additional alcohol compounds, SVOCs with additional compounds, and pesticides/PCBs with additional compounds. One exception was ethylene oxide. Future sampling rounds will include ethylene oxide in the analytical program unless the statistical evaluation of the data indicates that the single ethylene oxide exceedance is not statistically significant. As a result of recent sampling at the ODA, which identified depleted uranium (DU) in the surface and subsurface soil, DU was added to the Round C and Round D groundwater analytical suite.

In accordance with the permit application and NJDEP correspondence, a statistical evaluation of the quarterly groundwater data was conducted after one year to develop a reduced analytical program on a semi-annual basis. The statistical evaluation performed on the groundwater data, the results of the evaluation, and the revised analytical program for the RCRA unit were documented in the *Evaluation of Quarterly Groundwater Data* (IT 2002d), which was submitted to NJDEP on December 12, 2002.

As a result of the data screening and statistical evaluation process, the sampling program for the OD area within the Gorge region of PTA has been revised for subsequent sampling events. Table 1-1 presents the compounds eliminated from the RCRA permit groundwater monitoring program along with an explanation for its removal. Table 1-2 presents the compounds retained for future sampling events along with an explanation for its continued analysis.

DRAFT

.

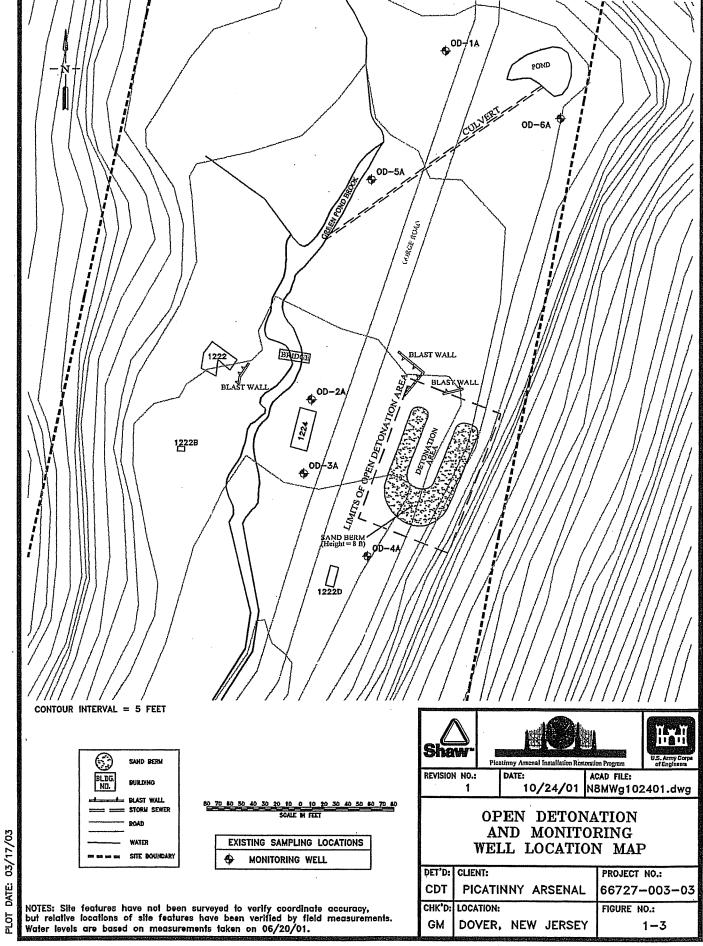


Table 1-1
Compounds Eliminated from the RCRA GW Monitoring Program at the Open Detonation Area, Picatinny Arsenal, New Jersey

	Quarters	
Compounds	Analyzec	Rationale for Elimination
TCL Volatile Organic Compounds with		
Additional Alcohol Compounds	2	No concentrations detected above LOCs. 1
TCL Semivolatile Organic Compounds	2	No concentrations detected above LOCs.
Diphenylamine, aniline, carbazole	2	No concentrations detected above EQLs.
TCL PCBs/Pesticides and Mirex	2	No concentrations detected above EQLs.
Organophosphorous Pesticides	·	
(malathion and diazinon)	4	No concentrations detected above EQLs.
Exotic Explosives		
(DEGDN, TEGDN, TMEDN, DATB, HNS)	4	No concentrations detected above EQLs.
Nitroesters - nitrocellulose, nitroguanidine,		
nitroglycerine	4	No concentrations detected above EQLs.
·		LOC exceedances are below background
TAL Metals	4	threshold values.
Additional Metals (boron, titanium, silicon,		
molybedenum, tin, tungsten, strontium,		
zirconium)	4	No concentrations detected above LOCs.
Cyanides	4	No concentrations detected above EQLs.
Anions	4	No concentrations detected above LOCs.

Notes -

LOC = Level of Concern.

EQL = Estimated Quantitation Limit.

¹ - Ethylene Oxide, which was detected above the LOC in Round 2, was analyzed for four quarters. An ANOVA for ethylene oxide indicated the exceedance was not statistically significant and could be eliminated from further analyses.

Table 1-2 RCRA Groundwater Monitoring Program at the Open Detonation Area, Picatinny Arsenal, New Jersey

Compounds	Rationale for Retention
Baseline Explosives	RDX detected above LOC in each round.
Perchlorates	Perchlorates detected in OD Area each round and detected above LOC during a previous sampling event using the bailer method.
Lead	Lead detected above LOCs during previous sampling events using the bailer method.

2.0 PHYSICAL CHARACTERISTICS

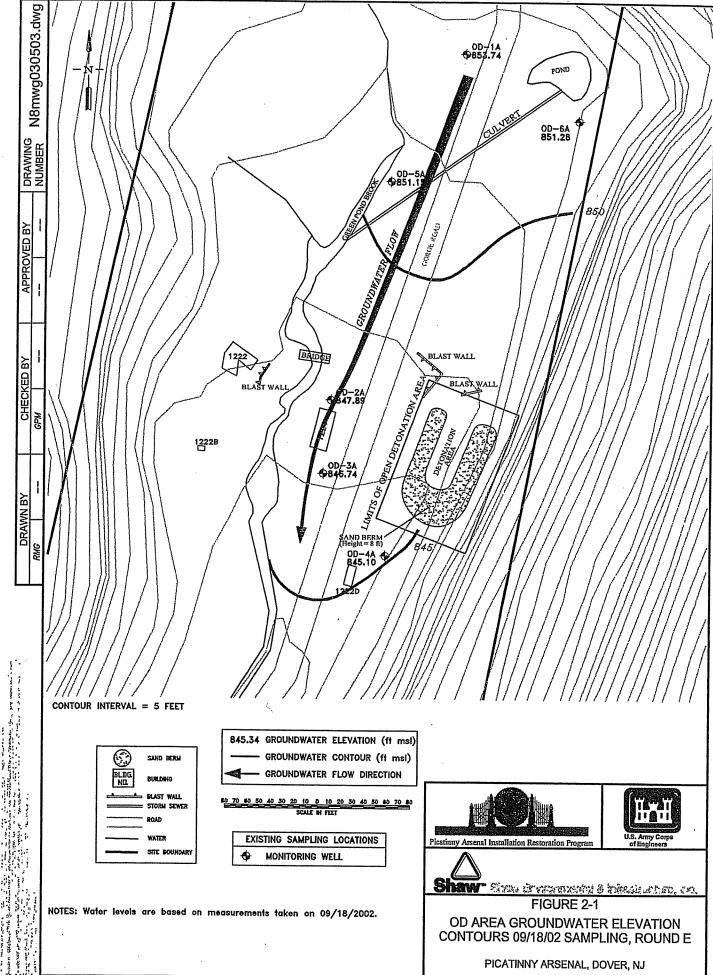
2.1 Topography/Surface Water Hydrology

The OD area lies in a low lying valley, relative to the surrounding topography, bordered by steeply sloping ridges of Green Pond Mountain to the west and undifferentiated metamorphic/igneous rock to the east (Copperas Mountain). These ridges reach an average elevation of 1,000 to 1,100 feet mean sea level (MSL) within 500 feet of the valley axis. The elevation of the Site 8 area varies from 840 to 870 feet MSL and averages 200 to 500 feet in width in the study area. The surface water from this region flows down the steep valley walls via a number of small, unnamed, streams, ditches, and culverts to the valley axis where it contributes to the base flow of Green Pond Brook. Green Pond Brook in this area averages 5 to 10 feet in width and approximately 2 to 3 feet in depth. Green Pond Brook flows to the south along the valley axis at a steep (approx. 9:1 ft) gradient to the confluence with Burnt Meadow Brook in the main valley of PTA where it eventually discharges to the southwest into Picatinny Lake.

2.2 Geology

The geology of the OD area was determined by reviewing lithologic boring logs recorded during the advancement of the six Gorge wells installed for the RCRA Subpart X permit monitoring program. Bedrock compositions in this area were interpreted through outcrop observations and confirmed with the use of geologic maps published on the regional geology. The lithologic boring logs indicate that the site overburden is composed of a poorly sorted heterogeneous mixture of boulders and gravel in a silty sand matrix, with trace amounts of clay. This variable sedimentary sequence is a function of the complex geomorphic conditions in the Gorge resulting from the redistribution of glacial, talus, and stream related sediments that occur in the valley. The low occurrence of clay in the interval investigated (0-20 feet below ground surface) and relatively high hydraulic conductivity observed in the aquifer (Section 2.3) suggest that fluvial processes were the primary mechanism in the redistribution and deposition of sediments in the Gorge. The boring logs reveal that a maximum of 3 to 10 feet of artificial fill composed of varying amounts of sand, gravel, cobbles, boulders, and rubble covers the entire site. Bedrock was not encountered during the advancement of borings in the OD area; therefore, accurate depth to bedrock and overburden thickness estimations could not be determined. As a result, identification and placement of the fault transecting the valley was indeterminable from the limited subsurface investigation. Bedrock composition west of the fault is described from outcrops as oxidized quartz pebble conglomerate of the Green Pond Syncline. Undifferentiated granitic gneiss composed of varying degrees of hornblende, quartz, plagioclase feldspar, potassium feldspar, and mica is identified in outcrops east of the fault.

2.3 Hydrogeology


Two aquifers are presumed to exist in the Gorge area: an overburden aquifer and a bedrock aquifer. The hydrogeology of the OD area was determined through the evaluation of well development data from the six Gorge area wells installed into the unconfined overburden aquifer. Potentiometric surface gradients and groundwater flow directions were determined using static water level measurements collected from the wells (Figure 2-1). The horizontal hydraulic gradient along the flow axis between monitoring well OD-1A and OD-3A was measured at 0.0184. No wells were installed into the fractured bedrock aquifer underlying the OD area, therefore, accurate estimations of fractured bedrock aquifer characteristics were indeterminable.

Overburden aquifer characteristics were estimated using measurements obtained during well development of the Site 8 wells. Flow rate (Q) and drawdown ($h_0 - h$) data, from the wells which exhibited equilibrium of these variables during purging, were applied to the Razack and Huntley (1991) partially penetrating well equation to determine a transmissivity (T) value for the Gorge area aquifer.

$$T = 33.6 \left(\frac{Q}{h_0 - h} \right)^{0.67}$$

This formula utilizes a correlation coefficient of 0.67 for the empirical relationship between transmissivity and specific capacity, which is derived from the flow rate and drawdown data of the wells. Gorge area well data applied to this formula yielded transmissivity values ranging from 246.1 ft²/day from OD-5A, to 618.3 ft²/day from OD-2A. Hydraulic conductivity values, based on these transmissivity results and a theoretical aquifer thickness of 30 feet, ranged from 8.20 ft/day at OD-5A, to 20.61 ft/day at OD-2A. Monitoring wells OD-3A and OD-4A did not exhibit any drawdown during development, at purge rates equal to those used on the other Gorge wells applied to the formula. Therefore, transmissivity and hydraulic conductivity values are presumably higher since purge rates of equal magnitude failed to drawdown the standing water column in the well. Although accurate calculations could not be performed for these wells, transmissivity and hydraulic conductivity values are not likely to exceed 1,000 ft²/day and 33.33 ft/day respectfully, based on the subsurface lithology at these locations.

In summation, the OD area overburden aquifer characteristics are approximated at 8.20 ft/day to 33.33 ft/day for hydraulic conductivity, and 246.1 ft²/day to 1,000 ft²/day for aquifer transmissivity. These values are typical for the types of sediments identified during borehole advancement of the monitoring wells located in the area, and are representative of values that are anticipated for wells with yields such as those observed at Site 8.

DRAFT

• ì . ter jart 1904 –

3.0 FIELD ACTIVITIES

3.1 Groundwater Sampling Field Measurements

Prior to sampling, the Site 8 wells were opened and the headspaces were immediately screened using an 11.7eV lamp Photoionization Detector (PID) to identify the presence of Volatile Organic Compounds (VOCs) in the wells. None of the monitoring wells registered VOC levels in excess of background. At no time during the sampling event were VOCs detected in breathable air space.

Physical measurements of groundwater level, well depth, and PVC well casing height were collected using a decontaminated electronic water level indicator. This information was recorded onto pre-sample purge forms. A potentiometric surface map was generated from these measurements in order to evaluate groundwater flow direction and gradient (Figure 2-1).

3.2 Groundwater Purging and Sampling

Adjustable rate, stainless steel submersible pumps, attached to dedicated Teflon-lined polyethylene tubing, were utilized to remove the required groundwater volume from the wells prior to sampling. In order to minimize drawdown and prevent turbulent groundwater flow into the well casing during purging, purge rates were maintained at an average of 500 ml/min. Monitoring wells were purged by removing water from the center of the water column or screened interval, allowing groundwater indigenous to the aquifer to enter the well. The efficiency of stagnant casing water removal from the well was monitored approximately every five minutes throughout the purge by evaluating the stability of groundwater quality parameters obtained using a YSI water quality analyzer. The parameters collected before and during groundwater evacuation included pH, temperature, specific conductance, dissolved oxygen (DO), oxidation/reduction potential (ORP), and turbidity. A summary of the groundwater quality measurements for each location is provided in Table 3-1. Evacuation of the well continued until the water quality parameters stabilized for three successive readings as follows: 10% for DO, ORP and turbidity; 3% for specific conductance; 5% for pH (Puls et al, 1992), and 1% for temperature, indicating water representative of the aquifer was being obtained.

Groundwater samples were collected directly from the Teflon-lined tubing at a flow rate of 100 to 250 ml/min. Pre-preserved, laboratory-supplied sample bottles were filled and immediately chilled at 4°C in laboratory-supplied sample coolers for shipment. Severn Trent Laboratories (STL), an NJDEP-certified laboratory, performed all the analyses. All analyses for the Round E sampling event were performed under NJDEP certification except for the radioisotopes of bismuth, lead and americium, which are not a requirement of the RCRA Subpart X permit, and thallium. A table listing the Round E analytes and the STL certification is presented in Appendix D. All samples were shipped overnight delivery to STL in Canton, Ohio (ethylene oxide, metals, anions and radiological analyses); Knoxville, Tennessee (explosives analyses); and Sacramento, California (thallium and perchlorate analyses). Post-sampling water quality parameters are provided in Table 3-1. Groundwater purging and sample collection were conducted in accordance with the procedures and guidelines detailed in the approved *Picatinny Arsenal Facility-Wide Field Sampling Plan*, (ICF KE, 1998).

TABLE 3-1
Summary of Monitoring Well Field Measurements for the OD Area - Round E RCRA Permit Monitoring
September 18 and 19, 2002

Well ID	OD-1A	OD-2A	OD-3A	OD-4A	OD-5A	OD-6A
NJ Permit No.	22-33305	22-33306	22-33307	22-33308	22-37389	22-37390
Depth To Water (ft.	7.06	2.98	0.39	2.06	3.98	10.44
bgs)						
Well Depth (ft. bgs)	13.71	12.51	11.45	11.60	19.54	21.16
Purge Rate (ml/min)	500	500	500	500	500	500
Volume Purged (liters) Sample Depth (ft. bgs)	25.0 10.00	17.5 8.00	17.5	20.0	45.0	20.0
Sample Depth (it. bgs)	10.00	0.00	6.00	6.00	14.00	17.00
INITIAI		,	,			
INITIAL PARAMETERS	1	,				
pH	5.36	5.70	6.00	5.76	5.88	5.18
Temperature (°C)	15.50	20.12	12.85	14.34	17.29	15.77
		•				
Conductivity (μS/cm)	91	149	74 .	87	91	63
Dissolved Oxygen	6.96	4.27	13.57		9.84	
(mg/L)	404	400				
Redox (mV)	184 3.0	128	224	259	55.2	171
Turbidity (NTU)	3.0	8.0	0.0	569	100	128
CULAL DADAMETERS				·		
FINAL PARAMETERS Ph	5.53	5.74	5.98	5.91	E 00	E 04
Temperature (°C)	15.98	20.15	13.12	15.15	5.92 16.46	5.84 16.75
1						
Conductivity (µS/cm)	93	149	75	68	92	74
Dissolved Oxygen		2.34	11.19		3.32	-
(mg/L)	216	440	000	0.40	0.4	407
Redox (mV) Turbidity (NTU)	0.0	113 0.0	222 0.0	242 9.0	34 7.3	127
I dibidity (NTO)	0.0	0.0	0.0	9.0	1.5	9.1

⁻⁻ Dissolved oxygen readings from the water quality analyzer were inaccurate.

3.3 Quality Control Samples

Quality Control (QC) samples were collected during the field investigation, to check for cross-contamination during the handling of sampling materials, as well as monitor the performance of analytical contracting services. The following QC samples were collected during Round "E" of the Picatinny Arsenal, Subpart X RCRA Permit Monitoring program:

- Rinsate Blank sample GW091802R1 was collected for the groundwater samples by pumping analyte-free water through Teflon-lined tubing, using a decontaminated twoinch adjustable rate Grundfos pump, into the applicable sample containers. This sample was collected on September 18, 2002.
- Trip Blank samples GW091802T1 and GW091902T1 were prepared using analytefree distilled water.

All groundwater samples were submitted for data validation by an independent subcontractor, as required by NJDEP. The analytical data were validated based upon laboratory QC criteria and pertinent USEPA Region 2 data validation functional guidelines. Data validation reports for the groundwater data packages are presented, under separate cover as Appendix E. Analytical data packages will also be provided under separate cover in Full NJDEP Regulatory Deliverables Format.

4.0 CHEMICAL ANALYTICAL RESULTS

4.1 Introduction

Round E groundwater analytical results, collected and analyzed in accordance with the groundwater monitoring program, were evaluated by comparing groundwater constituent concentrations with several sources of established groundwater quality standards. This was conducted to contrast upgradient and downgradient constituent concentrations with administrated maximum contaminant limits. No inorganic concentrations exceeded their respective RCRA Maximum Concentration Standards in the six OD area wells. Several metals including cadmium, cobalt, potassium, and vanadium and the anion, sulfide were detected in the groundwater rinsate blank sample collected in conjunction with the sampling event (Table 4-1). Ethylene oxide, which was the only VOC analyzed for in the groundwater samples, was not detected in the two trip blanks.

Summary tables listing all the compounds analyzed for during this sampling event are provided as Appendix B. For compounds, which were not detected in the sample, the RL/SQL is listed with any applicable data qualifiers. Full Electronic Data Deliverables packages for this sampling round will be provided at a later date. Data validation reports for all groundwater parameters are also provided, under separate cover, as Appendix D. A summary of the groundwater analytical results for Round E along with reference groundwater quality standards and RCRA Maximum Concentration Limit Standards is provided in Table 4-2.

4.2 Summary of Chemical Constituents Detected in Groundwater

Ethylene oxide was the only VOC analyzed for in the Round E samples. Ethylene oxide was not detected in any wells (Table 4-2) including OD-2A, which contained ethylene oxide during Round B.

With the exception of upgradient wells OD-5A and OD-6A, HMX and RDX were detected in each well. Concentrations of HMX ranged from an estimated concentration of 0.45 μ g/L at OD-3A to 8.00 μ g/L at OD-1A. The LOC for HMX is 400 μ g/L. RDX concentrations ranged from an estimated level of 0.19 μ g/L at OD-3A to 7.60 μ g/L at OD-2A. The maximum RDX concentration was identified at OD-2A, located approximately 80 feet downgradient of the Open Detonation Area. The RDX concentrations detected at OD-1A (3.5 μ g/L), OD-2A (7.6 μ g/L), and OD-4A (3.0 μ g/L) exceed the RDX LOC of 0.61 μ g/L. No other explosives were detected in the samples.

Monitoring wells OD-2A and OD-4A, which are located closest to the RCRA unit have historically contained RDX at concentrations in excess of the LOC. Figure 4-1 is a graph of RDX concentrations detected at these wells since 1999. It should be noted that the groundwater samples from the four sampling events in 1999 were collected with bailers. All subsequent samples for explosives analysis were collected by the low-flow pumping method. The graph indicates that the RDX concentrations reported at OD-4A have maintained relatively constant ranging from 3.5 μ g/L to 5.5 μ g/L. The RDX levels detected in OD-2A have varied and exhibited an increase with the switch to the low-flow sampling methodology.

Aluminum, iron and manganese, which are common naturally occurring elements, were detected at elevated concentrations above LOCs in nearly every well with the exception of OD-3A. These metals are commonly identified at high concentrations throughout the facility and are believed to be the result of weathering of the local bedrock rather than a site-related source. As part of the data screening process for the *Evaluation of Quarterly Groundwater Data* (IT, 2002d), background threshold values were determined for aluminum, iron and manganese. The background threshold values were calculated as the mean concentration from the three upgradient wells (OD-1A, OD-5A, and OD-6A) plus three standard deviations as recommended by USEPA Region 2. Concentrations of aluminum, iron, and manganese in the downgradient

wells (OD-2A, OD-3A, and OD-4A) were compared to the background threshold values. Concentrations of these compounds in the downgradient wells did not exceed the background threshold values. Lead and arsenic were the only other metals detected in excess of LOCs. Lead was identified in OD-4A at 26 μ g/L and in OD-6A at 19 μ g/L, which exceed the LOC of 10 μ g/L. The arsenic concentration reported in OD-6A was 22 μ g/L, which is above the LOC of 8 μ g/L. However, the arsenic and lead concentrations are below the RCRA Maximum Contaminant Standard for lead and arsenic, 50 μ g/L.

Eight anions including perchlorates were detected in the six monitoring wells. The perchlorate concentration identified in OD-1A was 48 μ g/L, which exceeds the LOC of 18 μ g/L. All other anion concentrations were below LOCs.

Radiological analyses for gamma spectroscopy, uranium isotopes, and radium-226 and its daughters were also conducted at the request of PTA's Radiation Protection Office to determine the impact of the recent identification of radiological parameters in the soil at the OD area to the groundwater. Six radiological compounds were detected in the samples including bismuth-214, lead-214, radium-226, and the three isotopes of uranium. Since there are no LOCs for these compounds in groundwater (with the exception of radium-226) and no background levels have been established for groundwater, the analytical results were compared to the background surface water levels.

Radium-226, which has a groundwater LOC of 5 pCi/L, was detected in three wells. The maximum concentration of radium-226 was 0.33 pCi/L reported in OD-4A. The three uranium isotopes were only detected in OD-6A. The concentrations of uranium-234 (2.62 pCi/L), uranium-235 (0.17 pCi/L), and uranium-238 (3.22 pCi/L) detected in OD-6A exceed the surface water background levels established during the *Picatinny Arsenal Facility-Wide Background Investigation* (IT, 2002f). The two remaining radiological compounds, bismuth-214 and lead-214, were not analyzed as part of the background investigation. In order to evaluate the concentrations of these two compounds, the concentrations detected in the upgradient wells were compared with the concentrations in the downgradient wells. The highest concentrations of bismuth-214 and lead-214 were identified in upgradient well OD-6A. The next highest concentrations were reported in OD-4A, the well closest to the RCRA unit. The pattern of radiological concentrations does not indicate significant impact to groundwater from radiological contamination in the soil at the OD area.

It should be noted that all of the additional compounds recommended for elimination in the *Evaluation of Quarterly Groundwater Data* (IT, 2002d) [Table 1-1] were either not detected (ethylene oxide) or detected at concentrations below LOCs (all anions with the exception of perchlorates and most TAL metals). Perchlorates and lead, which were detected above LOCs in Round E, will be retained for analysis during future sampling events, as recommended in the *Evaluation of Quarterly Groundwater Data* (IT, 2002d). Arsenic, which was also detected above the LOC in one well during Round E will also continue to be analyzed for in the subsequent sampling rounds. It should also be noted that no inorganic compounds were detected in the groundwater samples above RCRA concentration limits described in 40 CFR Part 264 Subpart F 264.94.

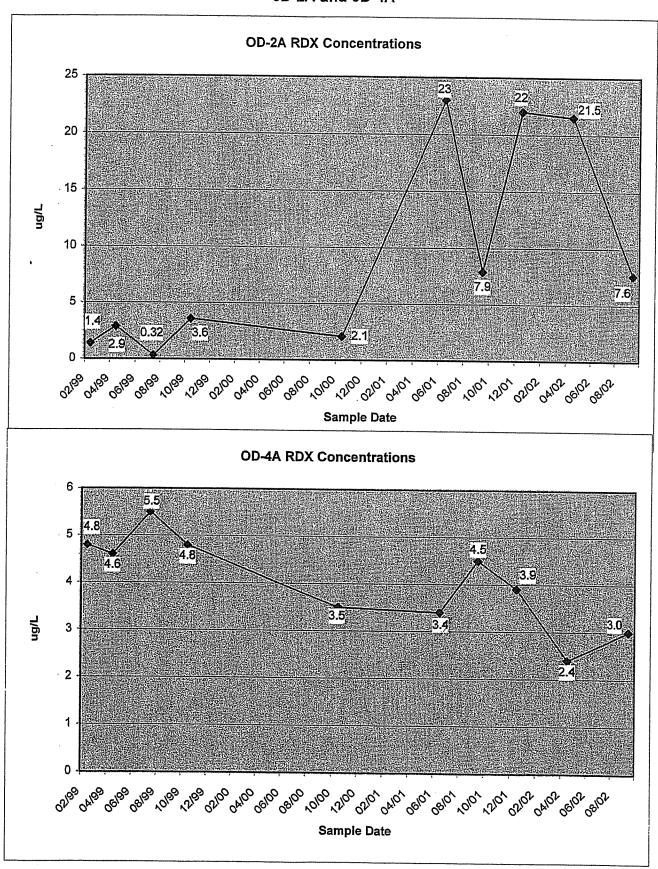
TABLE 4-1 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS DETECTED IN RINSE BLANK (µg/L; Rads - pCi/L)

PICATINNY ARSENAL

	Analytical Results									
Sample ID:		GW091802R1								
Date Sampled:			09/18/02							
Depth Sampled (ft):		_								
Chemical	Result	Q	RL/EQL	SQL	Lab					
Volatiles										
Explosives										
inorganics										
Cadmium	0.300	J	2.00	0.280	QT					
Cobalt	1.10	J	50.0	0.740	QT					
Potassium	170	J	5,000	23.0	QT					
Vanadium	0.780	J	50.0	0.670	QT					
Anions										
Sulfide	1,000		1,000	250	QT					
Radiologicals		1147-1141								

Q = Flags/Qualifiers (QA/QC):

J = Detect, value is an estimate of the concentration.


U = Non-detect, value is the detection limit.

QT = Quanterra Laboratories, Inc.

RL/EQL = Reporting Limit / Estimated Quantitation Limit

SQL = Sample Quantitation Limit

FIGURE 4-1 RDX Concentrations over Time in 0D-2A and 0D-4A

5.0 ADDITIONAL INVESTIGATIONS

As approved in correspondence from NJDEP to PTA dated June 21, 2001 (Appendix A) and discussed at the November 20, 2001 meeting at PTA (Appendix C), the groundwater sampling program for the OD Area has been reduced from quarterly sampling events to semi-annual events. The resultant data from the four quarterly sampling events (Rounds A to D) have been statistically evaluated in accordance with 40 CFR Part 264. Based on the results of the statistical evaluation, a semi-annual monitoring program was developed and submitted to NJDEP for approval in December 2002 (IT, 2002d). The next semi-annual groundwater sampling event for the OD area (Round F) was scheduled for March 2003. However, due to the recent issues with laboratory certification and rejection of the analytical data, the groundwater sampling has been postponed until these issues can be resolved with NJDEP. The Army notified NJDEP of their intention to discontinue the groundwater sampling in correspondence submitted to NJDEP at the March 18, 2003 technical meeting in Trenton. The Army requests NJDEP concurrence on the reduced analytical program presented in the Evaluation of Quarterly Groundwater Data (IT. 2002d) prior to the next sampling event. The groundwater sampling will be resumed two weeks after resolution of the issues outlined in NJDEP correspondence to Picatinny Arsenal dated January 2, 2003.

6.0 REFERENCES

Drake, A. A., Jr., Volkert, R. A., Monteverde, D.H., Herman, G.C., Houghton, H.F., Parker, R.A., Dalton, R.F., 1996." Bedrock Geologic Map of Northern New Jersey," New Jersey Geological Survey, Miscellaneous Investigation Series Map I-2540-A, Sheet 1 of 2, Scale 1: 100,000.

Fetter, C.W., 1994. Applied Hydrogeology, Third Edition. Englewood Cliffs, NJ: Prentice Hall, p. 257.

ICF Kaiser Engineers, Inc. (ICF KE), 1998. Final Picatinny Arsenal Facility-Wide Field Sampling Plan. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2001a. Summary of Groundwater Sampling Results from February 1999 to October 2000. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2001b. *Round A Groundwater Assessment Report, October 2001*. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2002a. Round B Groundwater Assessment Report, January 2002. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2002b. *Round C Groundwater Assessment Report, April 2002*. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2002c. *Picatinny Arsenal Facility-Wide Background Investigation*. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2002d. *Evaluation of Quarterly Groundwater Data*. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

IT Corporation, Inc. (IT), 2003. Round D Groundwater Assessment Report, September 2002. Prepared for the U.S. Army Corps of Engineers, Baltimore District.

Puls, R.W., Powell, R.M., Bledsoe, B., Clark, D.A., and Paul, C.J., 1992. *Metals in Groundwater: Artifacts and Reproducibility.* Hazardous Waste and Hazardous Materials. Volume 9, No. 2.

TABLE 4-2 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L) PICATINNY ARSENAL

	PICATINNY ARSENAL															
		0	Analytical Results													
	Sample ID:				OD-1A			OD-2A			OD-3A		OD-4A		OD-5A	OD-6A
 -		Date Sampled: Depth Sampled (ft):			09/19/02 5.0 - 10.0			09/18/02		İ	09/18/0		09/18/0		09/19/02	09/19/02
	<u> </u>	. Deptir Campled (it).	RCRA Maximum		5.0 - 10.0			10.0 - 15.	.0		10.0 - 15	1.0	10.0 - 15).U	10.0 - 15.0	10.0 - 20.0
	LOC (a):	Source	Concentration		l											
Chemical			Limit (b):	Result Q	RL/EQL	SQL La	Result (RLEQL	. SQL L	ab Result	Q RL/EQL	SQL Lat	Result Q RL/EQ	L SQL Lab	Result Q RL/EQL SQL	Lab Result Q RL/EQL SQL Lab
Volatiles																
Explosives									prouse e							
HMX	400	HA	NA NA	8.00	0.500	0.100 QT	3.60	0.500	0.100	QT 0.450	J 0.500	0.100 QT	1.80 J 0.500	0.100 QT	0.500 U 0.500 0.100	QT 0.500 U 0.500 0.100 QT
RDX	0.61	RBC	NA NA	3,50 J	0.500	0.130 QT	Server and server street	0.500		OT 0.190	J 0.500	0.130 QT	- Landaria de la companione de la compan			
Inorgánics											agi a taga					
Aluminum	200	Quality Criteria, NJPQL	NA NA	410	92.0	57.0 QT	180	92.0	57.0	QT 92.0	U 92.0	57.0 QT	2,400 92.0	57.0 QT	310 92.0 57.0	QT 2,300 92.0 57.0 QT
Arsenic	8	NJPQL	50.0	2.70 J	4.00	2.10 QT	2.30	4.00	2.10	2T 2.60	J 4.00	2.10 QT	- International Control of the Contr	2.10 QT	300000000000000000000000000000000000000	QT 22.0 J 4.00 2.10 QT
Barium	2,000	MCL, Quality Criteria, MCLG	1,000	52.0 J	200	0.940 QT	130	200	 	T 7.00	J 200	0.940 QT		0.940 QT	 	QT 64.0 J 200 0.940 QT
Beryllium	4	MCL, MCLG	NA	2.00 U	2.00	0.600 QT	1	2.00	0.600	QT 2.00	U 2.00	0.600 QT	2.00 U 2.00	0.600 QT		QT 3.10 2.00 0.600 QT
Cadmium	4	Quality Criteria	100	0.590 J	2.00	0.280 QT	0.600	2.00	0.280	QT 2.00	U 2.00	0.280 QT	0.920 J 2.00	0.280 QT	2.00 U 2.00 0.280	QT 0.540 J 2.00 0.280 QT
Calcium	400,000	ADI	NA	7,800 J	5,000	59.0 QT	10,600 .	5,000	59.0	7,900	J 5,000	59.0 QT	6,700 J 5,000	59.0 QT	3,900 J 5,000 59.0	QT 6,400 J 5,000 59.0 QT
Chromium	100	MCL, Quality Criteria, MCLG	50	5.50 J	10.0	1.50 QT	10.0 l	10.0	1.50	QT 2.90	J 10.0	1.50 QT	3.70 J 10.0	1.50 QT	4.70 J 10.0 1.50	QT 2.10 J 10.0 1.50 QT
Cobalt	730	RBC	. NA	50.0 U	50.0	0.740 QT	2.90	50.0	0.740	QT 1.00	J 50.0	0.740 QT	4.30 J 50.0	0.740 QT	3.30 J 50.0 0.740	QT 3.90 J 50.0 0.740 QT
Copper	1,000	Quality Criteria, NJPQL	NA	4.00 J	9.00	1.70 QT	15.0	9.00	1.70	QT 2.10	J 9.00	1.70 QT	45.0 9.00	1.70 QT	5.40 J 9.00 1.70	QT. 43.0 J 9.00 1.70 QT
Iron	300	Quality Criteria	NA .	670 J	100	42.0 QT	2,600	100	42.0	QT 42.0	J 100	42.0 QT	3,700 J 100	42.0 QT	3,600 J 100 42.0	QT 79 000 J 100 42.0 QT
Lead	10	NJPQL	50	3.00 U	3.00	1.60 QT	3.00 t	3.00	1.60	QT 3.00	U 3.00	1.60 QT	26.0 3.00	1.60 QT	3.00 U 3.00 1.60	QT 19.0 3.00 1.60 QT
Magnesium	80,500	ADI	NA	2,400 J	5,000	35.0 QT	3,600	5,000	35.0	1,700	J 5,000	35.0 QT	1,900 J 5,000	35.0 QT	1,400 J 5,000 35.0	QT 2,100 J 5,000 35.0 QT
Manganese	50	Quality Criteria	NA	59:0 J	15.0	0.680 QT	1,400	15.0	0.680	QT 1.20	J 15.0	0.680 QT	220 J 15.0	0.680 QT	4,100 J 15.0 0.680	QT 1,000 J 15.0 0.680 QT
Mercury	2	MCL, Quality Criteria, MCLG	2.0	0.0920 U	0.0920	0.0870 QT	0.0920 L	0.0920	0.0870	QT 0.0920	U 0.0920	0.0870 QT	0.170 0.0920	0.0870 QT	0.0920 U 0.0920 0.0870	QT 0.120 0.0920 0.0870 QT
Nickel	100	Quality Criteria	NA NA	6.90 J	40.0	2.90 QT	3.40	40.0	2.90	QT 3.10	J 40.0	2.90 QT	4.80 J 40.0	2.90 QT	6.80 J 40.0 2.90	QT 7.50 J 40.0 2.90 QT
Potassium	100,000	ADI	NA	480 J	5,000	23.0 QT	890	5,000	23.0	O00	J 5,000	23.0 QT	1,100 J 5,000	23.0 QT	660 J 5,000 23.0	QT 600 J 5,000 23.0 QT
Silver	2	NJPQL	50	4.00 U	4.00	0.980 QT	4.00 L	4.00	0.980 0	2T 4.00	U 4.00	0.980 QT	4.00 U 4.00	0.980 QT	4.00 U 4.00 0.980	QT 1.70 J 4.00 0.980 QT
Sodium	50,000	Quality Criteria	NA	3,300 J	5,000	360 QT	4,900	5,000	360 0	2,900	J 5,000	360 QT	1,700 J 5,000	360 QT	5,000 5,000 360	QT 1,800 J 5,000 360 QT
Vanadium Zinc	260	RBC	NA	2.40 J	50.0	0.670 QT	0.850	50.0		OT 50.0	U 50.0	0.670 QT		0.670 QT		QT 1.90 J 50.0 0.670 QT
Anions	5,000	Quality Criteria	NA	30.0	20.0	14.0 QT	57.0	20.0	14.0	ат 20.0 і	U 20.0	14.0 QT	43.0 20.0	14.0 QT	42.0 20.0 14.0	QT 84.0 20.0 14.0 QT
(Carlotte and Carlotte and Carl																
Ammonia Chloride	500	Quality Criteria	NA .	88.0 J	200	34.0 QT	82.0	200	·	QT 110	J 200	34.0 QT	94.0 J 200	34.0 QT	170 J 200 34.0	QT 150 J 200 34.0 QT
<u> </u>	250,000	Quality Criteria	NA NA	3,860	1,000	94.0 QT	 	1,000		QT 2,520	1,000	94.0 QT				QT 1,320 1,000 94.0 QT
Fluoride Nitrate	2,000	Quality Criteria	NA NA	180 J	1,000	3.90 QT	80.0	1,000	3.90 (J 1,000	3.90 QT				QT 100 J 1,000 3.90 QT
Perchlorate		MCL, Quality Criteria, MCLG	NA NA	500 U	500	7.60 QT		500	7.60		J 500	7.60 QT		7.60 QT		QT 110 J 500 7.60 QT
	18	AL	NA NA	48.4		2.00 QT		4.00		OT 4.00	U 4.00	2.00 QT		2.00 QT	 	
Phosphorus Sulfate	250,000	NA Outlibe Criteria	NA NA	100 U	100	15.0 QT		100		QT 31.0	J 100	15.0 QT		75.0 QT		
Radiologicals	1 200,000	Quality Criteria	NA I	12,700	1,000	110 QT	9,440	1,000	110 (рт 9,440 i	1,000	110 QT	10,600 1,000	110 QT	12,000 1,000 110	QT 8,550 ; 1,000 ! 110 QT
Bismuth-214																
Lead-214		NA NA	NA NA	36.0 UJ	53.0	53.0 QT	59.0	51.0	51.0		J 78.0	78.0 QT		93.0 QT		
Radium-226	5	NA NA	. NA	54.0 J		47.0 QT		J 48.0	48.0		J 21.0	21.0 QT				
Uranium-234	-	MCL	NA NA		····	0.300 QT		0.220		QT 0.140		0.220 QT			<u> </u>	
Uranium-235		NA .	NA NA			0.140 QT		0.130		QT 0.0650		0.140 QT				
Uranium-238	-=+	NA NA	· NA			0.170 QT				O.0100						
	<u> </u>	to be Considered for Blacking	NA NA	0.0190 U	0.120	0.120 QT	0.0660 L	0.140	1.0.140 (21 U.0480	U 0.130	0.130 QT	0.190 U 0.250	0.250 QT	0.0370 U 0.0990 0.0990	QT 3.22 0.180 0.180 QT

⁽a) See the "ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater" table for a complete list of LOC values. Groundwater samples were compared to the lower of the Federal MCLs, the New Jersey State MCLs, the New Jersey

TABLE 4-2 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L)

					PICATINNY ARSI	ENAL		•		
		Sample ID:		00.14						
		Date Sampled: Depth Sampled (ft):		OD-1A 09/19/02 5.0 - 10,0	OD-2A 09/18/02 10.0 - 15.0	OD-3A 09/18/02	OD-4A 09/18/02	OD-5A 09/19/02	OD-6A 09/19/02	
	LOC (a):	Source	RCRA Maximum Concentration		10.3 - 10.0	10.0 - 15.0	10.0 - 15,0	10.0 - 15.0	10.0 - 20.0	
Chemical Groundwater Quality Criteria	or PQLs (whichev	er is higher), or any non	Limit (b):	Result Q RL/EQL SQL LE	ib Result Q RL/EQL SQL La	ab Result Q RL/EQL SQL Lab	Result Q RL/EQL SQL Lab	Result Q RL/EQL SQL Lab	Result Q RL/EQL SQL Lat	

Region III Tap Water (noncarcinogenic or carcinogenic 10⁻⁶) RBCs. based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC). ADI = Allowable Daily Intake

AL = Action Level

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal

NA = No value available.

NJPQL = New Jersey State Practical Quantitation Limit

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit/Estimated Quantitation Limit

SQL = Sample Quantitation Limit

State of New Jersey

Department of Environmental Protection

Robert C. Shinn, J.
Commissioner

DONALD T. DIFRANCESCO
Acting Governor

Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414
Tel. # (609) 292-9880
Fax. # (609) 633-9839
www.state.ni.us/dep/dshw/hwtf

Thomas J. Solecki
Chief, Environmental
Affairs Division
Department of the Army
U.S. Army Armament Research,
Development and Engineering Center
Picatinny Arsenal, New Jersey 07806-5000

MAR 0 7 2001

Re: Interim Status Groundwater Monitoring for the Open Detonation of Waste Explosives, Department of the Army, U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, Federal Enclave Located in Morris County, USEPA ID No. NJ3 210 020 704

Dear Mr. Solecki:

The New Jersey Department of Environmental Protection (Department), Division of Solid and Hazardous Waste, Bureau of Hazardous Waste and Transfer Facilities (Bureau) is in receipt of your September 8, 2000, letter. The letter states that Picatinny Arsenal will perform groundwater sampling at the open detonation range for the constituents listed in your September 8, 2000, letter in accordance with the procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998. Low flow sampling will be used for all of the constituents and New Jersey approved bailer methods will be employed for a separate analysis of metals only. The letter also requests concurrence with your interpretation that the interim status open burning or detonation of waste explosives is subject to 40 C.F.R. 265.382 and not 40 C.F.R. Part 265, Subparts M or N and, therefore, does not require groundwater monitoring provided it does not threaten human health or the environment.

The Bureau concurs with your statement that the interim status open burning and detonation of waste explosives is subject to the requirements of 40 C.F.R. 265.382 and not 40 C.F.R. Part 265, Subparts M or N. However, 40 C.F.R. 265.382, in part, states that owners or operators choosing to open burn or detonate must do so in a manner that does not threaten human health or the environment.

The Bureau has determined that, the operation of the open detonation range is a potential threat to human health and the environment because the open detonation of waste explosives takes place directly on the ground without the use of any engineering controls that would prevent the migration of hazardous waste or hazardous waste constituents to the soils or groundwater. Furthermore, in order for the Bureau to determine if the unit is being operated in a manner that does not threaten human health or the environment, as required by 40 C.F.R. 265.382, groundwater monitoring must be conducted.

In addition, the Bureau in conjunction with its support group, the Bureau of Groundwater Pollution Abatement, has made the following determinations regarding its review of four rounds of groundwater monitoring data collected at the open detonation range designated as Rounds A through D for the first quarter through the fourth quarter, respectively, of 1999:

A) Round A:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-3A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in background monitoring well OD-6A and the downgradient compliance well OD-4A. The RDX concentration in the downgradient compliance monitoring well OD-4A is greater than the concentration in background monitoring well OD-6A.

B) Round B:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-2A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for arsenic and lead in downgradient compliance monitoring well OD-4A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring wells OD-2A and OD-4A. The criteria exceedences are also significantly greater than background monitoring well sample concentrations (See Attachment).

C) Round C:

Class IIA groundwater quality criteria have been exceeded for cadmium, lead and arsenic in downgradient compliance monitoring well OD-2A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for cadmium and lead in downgradient compliance monitoring well OD-4A. These criteria exceedences are also

significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring well OD-4A. This criteria exceedence is also significantly greater than background monitoring well sample concentrations (See Attachment).

D) Round D:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-2A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for cadmium, lead and arsenic in downgradient compliance monitoring well OD-4A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring wells OD-2A, OD-4A and OD-5A. These criteria exceedences are also significantly greater than background monitoring well sample concentrations (See Attachment).

In addition, during a February 10, 2000, meeting Picatinny Arsenal presented data to the Department indicating that the concentration of lead in the surface water adjacent to the open detonation unit is above surface water quality criteria.

The data referenced in A through D above indicates that a release of hazardous waste or hazardous waste constituents has occurred from the open detonation range. Furthermore, the release has entered the groundwater and has migrated to the subsurface environment and the surface water and may have an adverse effect on human health or the environment.

Please be advised that the Bureau has transferred the information listed in items A through D above to the Bureau of Site Assessment for integration into the Department's "Case Management Strategy" for assignment to the appropriate Bureau for any possible future Departmental action regarding this matter. Please note that this Bureau will not be the lead for oversight of any possible future Departmental remediation of this release.

Regarding your statement that the groundwater will be sampled for the constituents listed in your September 8, 2000, letter in accordance with the procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 using low flow sampling for all of the constituents and New Jersey approved bailer methods for a separate analysis of metals only, the Bureau concurs that the above referenced procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 should be used. However, the Bureau does not agree with the proposed list of constituents. Instead, the Bureau has determined that the groundwater must be sampled and analyzed for the following constituents listed in the PICATINNY

ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 and other constituents deemed appropriate by the Bureau:

Table 4-5 TCL Volatile Organic Compounds with Additional Compounds;

Table 4-6 Semivolatile Organic Compounds with Additional Compounds and n-nitrosodimethylamine (NDMA);

Table 4-7 TAL Metals with Additional Elements;

Table 4-8 Cyanides;

Table 4-10 Anions;

Table 4-12 Explosives with Additional Compounds and diphenylamine, dieethyleneglycol dinitrate (DEGDN), triethyleneglycol dinitrate (TEGDN), trimethyleneglycol dinitrate (TMETN). 1,3-diamino-2, 4,6-trinitrobenzene (DATB), HNS, perchlorates, white and red phosphorus, ammonium pirate and nitrate and nitrite (As nitrogen);

Table 4-13 TCL Pesticides/PCBs with Additional Compounds; and

Conventional Parameters: pH, temperature (°C), specific conductance (µS), dissolved oxygen (mg/l) and turbidity (NTU).

The Department offers certifications for the following SW846 Methods: 8330, 8331, 8332 and 7580. Therefore, if your facility chooses a commercial laboratory for these analyses, the laboratory must be New Jersey certified for these methods. However, if your facility chooses a Federal Department of Defense laboratory for these analyses, New Jersey certification of that laboratory is not required. In addition, please note that white phosphorus can be measured directly by using SW846 Method 7580. Ammonium picrate can be analyzed in water by High Pressure Liquid Chromatography (HPLC). This test can be used instead of analyzing for ammonia and picric acid individually. However, if ammonia and picric acid are analyzed, the facility must be able to demonstrate the relationship of the concentration of both compounds to the actual molar ratio of ammonium picrate in the groundwater.

Based on the above determinations, Picatinny Arsenal must begin quarterly groundwater monitoring during interim status at the open detonation range for the constituents listed above within three (3) months from the date of this letter. After eight (8) quarters of groundwater monitoring data have been collected and reviewed by the Department, the Bureau will reevaluate the constituents for which sampling and analysis must be performed. All groundwater samples must be collected and analyzed in accordance with the procedures specified in the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998. In addition, the Bureau requests that all future groundwater monitoring and validation data for the open detonation range be sent to this Bureau within three (3) months from the date of sampling.

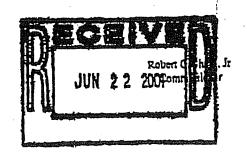
Should you have any questions regarding this matter, please E-mail John P. Scott of my staff at iscott@dep.state.ni.us or call him at (609) 292-9880.

Very truly yours,

Anthony Fontana, Chief Bureau of Hazardous Waste and Transfer Facilities

EP58/JPS
Document: PASUBX12
Attachment

C: Tracy Grabiak, BGWPA, with attachment
Joseph Marchesani, BGWPA, with attachment
James Kealy, BEERA, with attachment
Greg Zalaskus, BCM, with attachment
Kathleen Grimes, BEMQA, with attachment
Jeff Sterling, BHWCE-Northern, with attachment
Barry Tornick, USEPA, Region II, with attachment
Stephen Shukailo, Mayor, Town of Dover, with attachment
Russel Felter, Mayor, Jefferson Township, with attachment
Harry R. Shupe, Mayor, Wharton Borough, with attachment
Joeseph Lebar, Mayor, Rockaway Borough, with attachment
John P. Inglesino, Mayor, Rockaway Township, with attachment
Sandy Urgo, Mayor, Roxbury Township, with attachment
Paul Minenna, Councilman, Rockaway Township, with attachment



State of New Jersey

DONALD T. DIFRANCESCO
Acting Governor

Department of Environmental Protection
Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414
Tel. # (609) 292-9880
Fax. # (609) 633-9839

www.siste.ni ns/den/dshw/hwif

JUN 2 1 2001

Thomas J. Solecki
Chief, Environmental
Affairs Division
Department of the Army
U.S. Army Armament Research,
Development and Engineering Center
Picatinny Arsenal, New Jersey 07806-5000

Re: Interim Status Groundwater Monitoring for the Open Detonation of Waste Explosives, Department of the Army, U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, Federal Enclave Located in Morris County, USEPA ID No. NJ3 210 020 704

Dear Mr. Solecki:

The New Jersey Department of Environmental Protection (Department), Division of Solid and Hazardous Waste, Bureau of Hazardous Waste and Transfer Facilities (Bureau) is in receipt of your May 3, 2001, letter. The letter contains comments on the Burcau's March 7, 2001, letter regarding the interim status groundwater monitoring requirements for the open detonation of waste explosives. The Bureau has reviewed the comments submitted and has made the following determinations:

Commont # 1

A quarterly monitoring program will be committed to for all existing open detonation wells for one year for all constituents listed in the revised Subpart X permit application. The resultant data will be used to develop a semi-annual monitoring program in compliance with 40 C.F.R. Part 264. The four quarters of monitoring data is also consistent with the State equivalent of 40 C.F.R. Part 270.

Response

The Department does not agree that the Federal requirement is equivalent to the State requirement. N.J.A.C. 7:26E-6.1(e) requires eight quarters of monitoring and, therefore, is more stringent than the Federal requirement. However, the Department agrees to grant a variance to reduce the frequency of monitoring from eight to four quarters provided the four quarters of monitoring are consecutive.

Regarding your statement that the resultant data will be used to develop a semi-annual monitoring program in compliance with 40 C.F.R. Part 264. Proposals to sample the monitoring wells at a decreased frequency will only be considered by the Department after four consecutive quarters of monitoring data have been collected and reviewed.

Comments # 2 and 3

Picatinny Arsenal will analyze the additional parameters requested in your letter, which are not listed in the Subpart X permit application for the first two quarters of the monitoring program. The following parameters are not included in the Subpart X permit application:

- TCL Volatiles and additional compounds. a) **b**)
- Semi-volatile organic compounds with additional compounds and NDMA. c)
- TCI. pesticides/PCBs with additional compounds.

Analysis of these compounds will continue if the resultant data indicates levels above the detection

The Bureau's letter did not provide any justification for the inclusion of the above listed compounds in the groundwater-monitoring program. The Subpart X permit application provides justification for the inclusion or elimination of compounds based on historical records. The record indicates that these compounds were never tested or disposed of at the open detonation range. Therefore, two rounds of sampling are sufficient for monitoring purposes. Response

The Department agrees that two rounds of sampling are adequate for monitoring of the above referenced compounds. In addition, the use of detection limits for determining if analysis will continue is acceptable provided the detection limits have been approved by the Department. However, detection limits were not included in your submittal. Therefore, please submit this information, for the Department's review and approval, within thirty (30) days from the date of this letter.

Comment # 4

New Jersey certified laboratories will be used for methods requiring State certification.

Response

The Department concurs with the comment,

Comment # 5

Groundwater sampling will be performed using low-flow methodology that was approved in the Field Sampling Plan (FSP) for all parameters including the inorganics. The USEPAs directives and quidance clearly maintains the superiority of low-flow methodology for providing a representative sample with

regard to evaluating metal concentrations in groundwater. Decisions will not be based on the results of unfiltered groundwater samples based on samples with traditional bailer methods.

Response

I.ow flow sampling is acceptable as long as conventional bailer sampling is also conducted. Any sampling that does not include conventional bailer sampling will be at your own risk.

Comment # 6

All data, monitoring results and validation reports will be submitted within one hundred days after the last day of the quarterly sampling event. This conforms with Picatinny Arsenal's Facility Wide Sampling Plan (FSP) that was submitted as part of the Subpart X permit application. Any subsequent comments on the adequacy or completeness of the FSP by the Department as part of the Subpart X permit application process will not invalidate the data from the sampling.

Response

The Department agrees that all data, monitoring results and validation reports may be submitted within one hundred days after the last day of the quarterly sampling event. However, the Department does not agree that any subsequent comments on the adequacy or completeness of the FSF by the Department as part of the Subpart X permit application process will not invalidate the data from the sampling. Any written correspondence from the Department that is issued prior to any sampling event must be adhered to.

Picatinny Arsenal shall conduct the first round of quarterly groundwater sampling within thirty (30) days from the date of this letter. The groundwater sampling and analysis shall adhere to the requirements of this letter in conjunction with the Bureau's letter of March 7, 2001.

Should you have any questions regarding this matter, please E-mail John P. Scott at iscott@dep.state.ni.us or call him at 609-292-9880.

Very truly yours,

Anthony Fontana, Chief Bureau of Hazardous Waste and Transfer Facilities

EP58/JPS

Barry Tornick, USEPA, Region II C: Jeffrey Sterling, BHWCE, Northern Region Tracy Grabiak, GWFA Document: PASUBX22

11

TABLE 1
GROUNDWATER MONITORING CONSTITUENTS FOR THE DETECTION MONITORING SYSTEM
AT THE OPEN DETONATION AREA

Parameter	Compounds	Criterion
Explosives	2,4-Dinitrotoluene	1.0 μg/L
	1,3-Dinitrobenzene	TBD
	1,3,5-Trinitrobenzene	TBD
	2,4,6-Trinitrotoluene	44.0 μg/L
	2,6-Dinitrotoluene	1.0 μg/L
	Cyclotetramethylene tetranitramine (HMX)	35.0 μg/L
	Cyclotrimethylene trinitramine (RDX)	35.0 μg/L
	N-Methyl-N-2,4,6-tetranitroaniline (Tetryl)	TBD
	4-Amino-2,6-dinitrotoluene	TBD
	2-Amino-4,6-dinitrotoluene	TBD
	Nitrobenzene	TBD
	2-Nitrotoluene	TBD
	3-Nitrotoluene	TBD
	4-Nitrotoluene	TBD
	Nitroguanidine	TBD
,	Pentaerythritol tetranitrate (PETN)	TBD
	Nitrocellulose	TBD
	Picric acid	0.5 mg/L
	Ammonium Picrate	TBD
	Tetrazene	TBD
	Nitroglycerin (NG)	TBD
	Diethyleneglycol Dinitrate DEGDN	TBD
·	Triethyleneglycol Dinitrate TEGDN	TBD
	Trimethyleneglycol Dinitrate TMETN	TBD
	1,3-Diamino-2,4,6-trinitrobenzene DATB	TBD
	2,2',4,4',6,6'-Hexanitrostilbene HNS	TBD
Metals	Aluminum	TBD
	Antimony	TBD
	Arsenic	0.05 mg/L
-	Barium	1.00 mg/L
	Beryllium	TBD
	Cadmium	0.01 mg/L
	Calcium	TBD
-	Chromium	0.05 mg/L
-	Copper	TBD
 	Copper	TBD
}	Iron Lead	TBD
}	Lead Magnesium	0.05 mg/L
 	Manganese	TBD
-	Mercury	TBD
	Nickel	0.002 mg/L
ŀ	Potassium	TBD
}	Selenium	TBD
	Silver	0.01 mg/L
 	Sodium	0.05 mg/L
	Thallium	TBD TBD
	manum	I I DD

TABLE 1 (CONTINUED) GROUNDWATER MONITORING CONSTITUENTS FOR THE DETECTION MONITORING SYSTEM AT THE OPEN DETONATION AREA

Parameter	Compounds	Griterion
Metals	Vanadium	TBD
	Zinc	TBD
	Boron	TBD
	Titanium	TBD
	. Strontium	TBD
	Zirconium	TBD
	Silicon	TBD
	Tin	TBD
	Tungsten	TBD
	Molybdenum	TBD
Semivolatile	Diphenylamine	TBD
Anions	Perchlorate	TBD
	No 2 - No 3 (as N)	10.0 mg/L
	Ammonia	TBD
White Phosphorous	White Phosphorous	TBD
Red Phosphorous	Red Phosphorous	TBD

Legend:

μg/L micrograms per liter mg/L milligrams per liter TBD To Be Determined

TABLE B-1 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS ANALYZED IN GROUNDWATER (µg/L; Rads - pCi/L)

	1 1	Sample ID:		OD-1/	\		OD-2A				cal Results						<u> </u>		
		Date Sampled: Depth Sampled (ft):	•	09/19/0			09/18/02		OD-3/			OD-4A			OD-5	Ą		OD-6	. ^
		Debui Sampleα (π):		5.0 - 10	.0		0.0 - 15.0		09/18/0 10.0 - 15	_	İ	09/18/02			09/19/			09/19/	
	LOC (a):	Source	RCRA Maximum Concentration						10.0 - 18	7		10.0 - 15.0)		10.0 - 1	5.0		10.0 - 2	
hemical		Course	Limit (b):	B		1 1													
nions			CONTRACTOR OF THE PROPERTY OF	Result Q RL/EQI	. SQL Lab	Result Q	RL/EQL SQL L	ab Result C	RUEQL	SQL Lab	Result	Q RL/EQL	001						1
mmonia	500	Quality Criteria									ACCOUNT NOTICE OF	W NDEQL	SQL Lab	Result	Q RL/EQ	L SQL L	ab Resul	t Q RL/E	DL SQL
hloride	250,000	Quality Criteria	NA .	88.0 J 200	34.0 QT	82.0 J	200 34.0 0	T 110 J	J 200	T 010 (
uoride	2,000	Quality Criteria	· NA	3,860 1,000	94.0 QT	4,810	1,000 94.0 0			34.0 QT	94.0	J 200	34.0 QT	170	J 200	34.0	T 150	J 200	34.0
itrate			NA	180 J 1,000	3.90 QT	80.0 J	1 1 1 1 1 1	T 50.0 J	1,000	94.0 QT	1,250	1,000	94.0 QT	4,010	1,000				
itrite	1,000	MCL, Quality Criteria, MCLG	NA	500 U 500	7.60 QT	150 J	500 7.60 0		1,000	3.90 QT	50.0	J 1,000	3.90 QT	40.0	J 1,000	3.90 C		J 1,000	
erchlorate	18	MCL, Quality Criteria, MCLG	NA	500 U 500	20.0 QT	500 U			500	7.60 QT	140 .	J 500	7.60 QT	500	U 500	7.60 C		J 500	7.60
osphorus	- 10 	AL	NA NA	48.4 4.00	2.00 QT	11.2	500 20.0 C		500	20.0 QT	500 t	ال 500	20.0 QT	500	U 500	20.0 C		U 500	20.0
Ifate	250,000	NA NA	NA	100 U 100	15.0 QT	39.0 J			4.00	2.00 QT	6.70	4.00	2.00 QT	4.00	U 4.00	2.00 Q		U 4.00	
Ilfide	250,000	Quality Criteria	NA NA	12,700 1,000	110 QT				100	15.0 QT	2,900	500	75.0 QT	59.0	J 100	15.0 Q			2.00
adiologicals		NA	NA	3,700 R 1,000	250 QT		1,000 110 Q 1,000 250 Q		1,000	110 QT	10,600	1,000	110 QT	12,000	1,000	110 Q			
nericium-241							250 250 0	T. 530 R	1,000	250 QT	530 F	1,000	250 QT	2,800	R 1,000	250 Q			
smuth-212	-	NA	NA .	-6.00 U 57.0	57.0 QT	-7.00 U	55.0 55.0 Q											111111111111111	250
smuth-214	1 = 1	NA NA	NA	-66.0 U 120	120 QT	44.0 U			1 00.0	65.0 QT	7.00 L	27.0	27.0 QT	-10.0	UI 54.0	54.0 Q	-21.0	111 000	
esium-137	 	. NA	NA	36.0 UJ 53.0	53.0 QT		180 180 Q	10.0	210	210 QT	-40.0 L	250	250 QT	99.0	U 220	220 Q		U 30.0	30.0
obalt-60		NA NA	NA	0.200 U 14.0	14.0 QT		51.0 51.0 Q		78.0	78.0 QT	270 J	93.0	93.0 QT	41.0	UJ 48.0	48.0 Q		U 200	200
ad-212		NA NA	NA	1.10 U 16.0	16.0 QT		14.0 14.0 Q		18.0	18.0 QT	-0.400 U	19.0	19.0 QT	-1.90	U 12.0	12.0 Q		J 31.0	31.0
ad-214		NA	NA	-26.0 U 22.0	22.0 QT		11.0 11.0 Q		14.0	14.0 QT	-0.500 U	21.0	21.0 QT		U 16.0	16.0 Q	-	U 23.0	23.0
dium-226	 	NA NA	NA	54.0 J 47.0	47.0 QT		23.0 23.0 QT		27.0	27.0 QT	-21.0 U	24.0	24.0 QT		U 25.0	25.0 Q		U 22.0	22.0
lium-228	5	MCL	NA	0.250 U 0.300	0.300 QT		48.0 48.0 QT		21.0	21.0 QT	196 J	28.0	28.0 QT	65.0	J 26.0	 		U 29.0	29.0
nium-234		NA .		0.440 U 0.870	0.870 QT		0.220 0.220 QT	0.140 U	0.220	0.220 QT	0.230 J	0.220		-0.0400	U 0.240			J 32.0	32.0
nium-235		NA NA			0.140 QT		0.640 0.640 QT			0.620 QT	0.310 U	 		0.370	U 0.760			J 0.230	0.230
num-235		NA								0.140 QT	0.0900 U			0.0750	U 0.120		1	U 0.920	0.920
	<u> </u>	NA be Considered for Picatinny Airever is higher), or any non-zero			0.170 Q1	-0.00500 U C	0.120 0.120 QT	0.0100 U	0.160	0.160 QT .	U 00800.0				U 0.180	0.120 QT 0.180 QT	.A	J 0.160	0.160

Quality Criteria or PQLs (whichever is higher), or any non-zero Federal MCLG. If the above are not available, groundwater comparison criteria are based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA Region III Tap Water (noncarcinogenic or carcinogenic 10-6) RBCs.

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC).

ADI = Allowable Daily Intake

AL = Action Level

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal NA = No value available.

NJPQL = New Jersey State Practical Quantitation Limit

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit/Estimated Quantitation Limit

SQL = Sample Quantitation Limit

TABLE B-1 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS ANALYZED IN GROUNDWATER (µg/L; Rads - pCi/L)

PICATINNY ARSENAL	NAL	SE	RS	Α	ΙÝ	IN	TIN	CÁ	PI
-------------------	-----	----	----	---	----	----	-----	----	----

														,	Analytic	cal Results										
		Sample ID:			OD-1A	•	Ī		OD-2	A			OD.	-3A		(OD-4/	<i>/</i>			OD-5A	·	1		OD-6A	
·		Date Sampled:			09/19/0	2			09/18/				09/1	8/02			09/18/0	2			09/19/0	2			09/19/02	
	ļ	Depth Sampled (ft):			5.0 - 10	.0			10.0 - 1	5.0			10.0 -	- 15.0			10.0 - 1	5.0	l		10.0 - 15	5.0			10.0 - 20.0)
Ohamiaal	LOC (a	Source	RCRA Maximum Concentration																ŀ							
Chemical			Limit (b):	Result (RL/EQI	SQL	Lab	Result	Q RUE	OL SQL	Lab	Result	Q RL/E	QL SQI	L Lab	Result	Q RL/EC	L SQL	Lab	Result 0	RLEQI	. SQL	Lab	Result	Q RL/EQL	SQL Lat
Volatiles						建建設													NEW T					reneral Terretari		
Ethylene Oxide	0.023	RBC	NA .	1,000 L	J 1,000	530	QT	1,000	UJ 1,00	0 530	QT	1,000	UJ 1,00	00 530	QŤ	1,000	JJ 1,000	530	QT	1,000 U	J 1,000	530	QΤ	1,000	UJ 1,000	530 QT
Explosives																		G THE HARR								
1,3-Dinitrobenzene	1	HA	NA	0.200	0.200	0.0800	QT	0.200	U 0.20	0.0800	QT	0.200	U 0.20	0.080	00 QT	0.200	U 0.200	0.0800	ΩТ	0.200 U	0.200	0.0800	QT	0.200	U 0.200	0.0800 QT
2,4-Dinitrotoluene	.10	NJPQL	NA	0.200 L	0.200	0.0700	QT	0.200	U 0.20		$\dot{-}$		U 0.20	 	00 QT	0.200	U 0.200		-	0.200 L	0.200	0.0700		0.200		0.0700 QT
2,6-Dinitrotoluene	10	NJPQL	NA .	0.200 L	0.200	0.110		0.200	U 0.20				U 0.20		0 QT	0.200	U 0.200			0.200 L	0.200	0.110		0.200	U 0.200	0.110 QT
2-amino-4,6-Dinitrotoluene	2.2	RBC	NA .	0.200 L	0.200	0.0900		0.200	U 0.20		+				00 QT	0.200	U 0.200			0.200 L	0.200			0.200	U 0.200	0.0900 QT
4-amino-2,6-Dinitrotoluene	2.2	RBC	NA NA	0.200 L	0.200	0.110		0.200	U 0.20			0.200	U 0.20		0 QT	0.200	U 0.200			0.200 L	0.200			0.200		
HMX	400	HA	NA NA	8.00	0.500	 		3.60	0.50			0.450	J 0.50			1.80	J 0.500		+-+	0.500 L	0.500			0.500	U 0.200	0.110 QT
Nitrobenzene	10	NJPQL	NA	0.200 L	0.200	+		0.200	U 0.20			0.200	U 0.20			0.200	U 0.200		+	0.200 L	0.500	0.100		0.500	U 0.500	0.100 QT 0.0700 QT
2-Nitrotoluene	61	RBC	NA	0.200 L	0.200	 		0.200	U 0.20			0.200	U 0.20		0 QT	0.200	U 0.200			0.200 L						
3-Nitrotoluene	120	RBC	NA NA	0.200 L	0.200	+		0.200	U 0.20			0.200	U 0.20		0 QT	0.200	U 0.200			0.200 t	J 0.200 J 0.200			0.200	U 0.200	0.140 QT
4-Nitrotoluene	61	RBC	NA	0.200 U	0.200	 		0.200	U 0.20			<u> </u>	U 0.20			0.200	U 0.200		+	0.200 L					U 0.200	0.130 QT
RDX	0.61	RBC	NA NA	3.50	0.500	 	COLUMN TO A STATE OF THE PERSON AND A STATE	7.60	J 0.50				J 0.50		0 QT	3.00	3730		QT		0.200			0.200	U 0.200	0.170 QT
Tetryl	370	RBC	NA NA	0.200 U	0.200	 	18/2/6	0.200	U 0.20			0.190	U 0,20		<u></u>	FIRE LITTER AND MANAGEMENTS	U 0.500			0.500 L	0.500	0.130	 	0.500	U 0.500	0.130 QT
1,3,5-Trinitrobenzene	1,100	RBC	NA NA	0.200 U	0.200			0.200	U 0.20										+	0.200 L	0.200			0.200	U 0.200	0.170 QT
·2,4,6-Trinitrotoluene	2	HA	NA NA	0.200 U	0.200	0.0800			U 0.20			0.200	U 0.20		0 QT		U 0.200		-	0.200 L	0.200		-		U 0.200	0.110 QT
Inorganics	P. Burker				ackernsses	10.0000	SECTION AND ADDRESS OF THE PARTY OF THE PART	0.200	70.20	0.0000	300 M	0.200	0 0.20	0.080	yernement	0.200	U 0.200	0.0800	QT	0.200 L	0.200	0.0800	QT	0.200	U 0.200	0.0800 QT
Aluminum	200	Quality Criteria, NJPQL	NA	410	1 02 0	E7.0		400	1 00 0	1 57.0		200											SELECTION			
Antimony	6	MCL, MCLG	NA NA	10.0 U	92.0	 	QT	180	92.0		QT	92.0	U 92.0			2,400	92.0		QT	310	92.0	57.0		2,300	92.0	57.0 QT
Arsenic	8	NJPQL	50.0	2.70 J		 	QT	10.0	U 10.0		QT	10.0	U 10.0				U 10.0		QT	10.0 L	10.0	3.40			U 10.0	3.40 QT
Barium	2,000	MCL, Quality Criteria, MCLG	1;000	52.0 J	4.00 200	 		2.30	J 4.00		QT		J 4.00			4.00	U 4.00		QT	3.20	4.00	2.10	1 22/2	22.0	J 4.00	2.10 QT
Beryllium	4	MCL, MCLG	NA	2.00 U	2.00		QT	130	J 200			7.00	J 200			27.0	J 200	0.940		50.0	200			64.0	J 200	0.940 QT
Cadmium	4	Quality Criteria	100	0.590 J	2.00	 		2.00	U 2.00		1-1	2.00	U 2.00			2.00	U 2.00		+	2.00 L	2.00			3.10	2.00	0.600 QT
Calcium	400,000	ADI	NA NA	7,800 J	 	 		0.600	J 2.00		QT	2.00	U 2.00	<u>-</u>	0 QT	0.920	J 2.00		QT	2.00 L	2.00	0.280		0.540	J 2.00	0.280 QT
Chromium	100	MCL, Quality Criteria, MCLG	50		5,000	 		10,600	J 5,000		QT	7,900	J 5,00			6,700	J 5,000		QT	3,900	5,000			6,400	J 5,000	59.0 QT
Cobalt	730	RBC	NA NA	5.50 J	10.0	 		10.0	U 10.0		QT	2.90	J 10.0			3.70	J 10.0		QT	4.70	10.0			2.10	J 10.0	1.50 QT
Copper	1,000	Quality Criteria, NJPQL	NA NA	50.0 U	50.0			2.90	J 50.0		QT	1.00	J 50.0			4.30	J 50.0		QT	3.30	50.0	0.740		3.90	J 50.0	0.740 QT
iron	300	Quality Criteria		4.00 J	9.00		2892	15.0	J 9.00		QT	2.10	J 9.00			45.0	9.00		QT	5.40	9.00	1.70	QT	43.0	J 9.00	1.70 QT
Lead	10	NJPQL	NA FO	12:00.1.16:16:5:TW.00.16:\$1:\$1:5:00.	100			2,600	100		QT		J 100) QT		100		QT		100			79,000	J 100	42.0 QT
Magnesium	80,500	ADI	50	3.00 U	3.00			3.00	U 3.00		-				QT	N-25-1111	3.00			3.00 L	3.00		QT		3.00	1.60 QT
Manganese	50	Quality Criteria	NA NA	2,400 J	5,000			3,600	J 5,000			1,700			QT	1,900	J 5,000			1.400	5,000			2,100	J 5,000	35.0 QT
Mercury	2		NA .	59.0 J	15.0			1,400	J 15.0			1.20	J 15.0		0 от	**************************************	15.0			1,100	15.0	0.680		1,000	15.0	0.680 QT
Nickel	100	MCL, Quality Criteria, MCLG	2.0	0.0920 U	0.0920	0.0870		0.0920	U 0.092			0.0920			70 QT	0.170	0.0920	— і ———		0.0920 L		0.0870		0.120	0.0920	
Potassium	100,000	Quality Criteria	NA NA	6.90 J	40.0	2.90		3.40	J 40.0			3.10	J 40.0		QT QT	4.80	J 40.0		QT	6.80	40.0	2.90		7.50	J · 40.0	2.90 QT
Selenium	50	ADI	NA .	480 J	 	23.0		890	J 5,000				J 5,00		QT	. 1,100	J 5,000		QT	660	5,000	23.0	QT	600	J 5,000	23.0 QT
Silver		MCL, Quality Criteria, MCLG	10	5.00 U	5.00	4.70		5.00	U 5.00				U 5.00		QT	5.00	U 5.00	4.70	QT	5.00 L	5.00	4.70	QT	5.00	U 5.00	4.70 QT
Sodium	2.	NJPQL	50	4.00 U	4.00			4.00	U 4.00		-	4.00	U 4.00		0 QT	4.00	U 4.00	0.980	QT	4.00 L	4.00	0.980	QT	1.70	J 4.00	0.980 QT
Thallium	50,000	Quality Criteria	NA NA	3,300 J	5,000			4,900	J 5,000		-	2,900	J 5,00	00 360	QT	1,700	J 5,000	360	QT	5,000	5,000	360	QT	1,800	J 5,000	360 QT
/anadium	0.5	Quality Criteria, MCLG	NA	1.00 U	1.00			1.00	U 1.00	0.340	QT	1.00	U 1.00	0 0.34	0 QT	1.00	U 1.00	0.340	QT	1.00 L	1.00	0.340	QT	1.00	U 1.00	0.340 QT
Zinc	260	RBC	NA	2.40 J	50.0	0.670		0.850	J 50.0	0.670	QT	50.0	U 50.0	0.67	0 QT	4.40	J 50.0	0.670	QT	1.20	50.0	0.670	QT	1.90	J 50.0	0.670 QT
	5,000	Quality Criteria	NA	30.0	20.0	14.0	ΣT	57.0	20.0	. 14.0	QT	20.0	U 20.0	0 14.0	QT	43.0	20.0			42.0	20.0			84.0	20.0	14.0 QT

TABLE B-2 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS ANALYZED IN RINSE BLANK (μg/L; Rads - pCi/L) PICATINNY ARSENAL

	TINNT ARS	·	nalytical Res	ults	
Sample ID:			GW091802R		
Date Sampled:			09/18/02		
Depth Sampled (ft):	Result				
Volatiles	Result	Q	RL/EQL	SQL	Lab
Ethylene Oxide	1,000	UJ	1 000	500	
Explosives			1,000	530	QT
1,3-Dinitrobenzene	0.200	U	7 0 000	1 00000	
2,4-Dinitrotoluene	0.200	U	0.200	0.0800	QT
2,6-Dinitrotoluene	0.200	U	0.200	0.0700	QT
2-amino-4,6-Dinitrotoluene	0.200	U	0.200	0.110	QT
4-amino-2,6-Dinitrotoluene	0.200	U	0.200	0.0900	QT
HMX	0.500	U	0.200	0.110	QT
Nitrobenzene	0.200	U	0.500	0.100	QT
2-Nitrotoluene	0.200	U	0.200	0.0700	QT
3-Nitrotoluene	0.200	U	0.200	0.140	QT
4-Nitrotoluene	0.200	U	0.200	0.130 0.170	QT
RDX	0.500	U	0.500	0.170	QT
Tetryl	0.200	U	0.200	0.130	QT
1,3,5-Trinitrobenzene	0.200	U	0.200	0.170	QT
2,4,6-Trinitrotoluene	0.200	U	0.200	0.0800	QT . QT
in norganics					
Aluminum	92.0	U	92.0	57.0	QT
Antimony	10.0	U	10.0	3.40	QT
Arsenic	4.00	U	4.00	2.10	QT
Barium	200	υ	200	0.940	QT
Beryllium	2.00	U	2.00	0.600	QT
Cadmium	0.300	J	2.00	0.280	QT
Calcium	5,000	U	5,000	59.0	QT
Chromium	10.0	U	10.0	1.50	QT
Cobalt	1.10	J	50.0	0.740	QT
Copper	9.00	U	9.00	1.70	QT
Iron	100	υ	100	42.0	QT
Lead	3.00	U	3.00	1.60	QT
Magnesium	5,000	U	5,000	35.0	QT
Manganese	15.0	U.	15.0	0.680	QT
Mercury	0.0920	U	0.0920	0.0870	QT
Nickel	40.0	U	40.0	2.90	QT
Potassium	170	J	5,000	23,0	QT
Seleniụm	5.00	U	5.00	4.70	QT
Silver	4.00	U	4.00	0.980	QT
Sodium	5,000	U	5,000	360	QT
Thallium	1.00	U	1.00	0.340	QT
Vanadium	0.780	J	50.0	0.670	QT
Zinc	20.0	U	20.0	14.0	QT

TABLE B-2 GORGE QUARTERLY SAMPLING SUMMARY OF CHEMICALS ANALYZED IN RINSE BLANK (µg/L; Rads - pCi/L) PICATINNY ARSENAL

		A	nalytical Res	ults	
Sample ID:			GW091802R	1	
Date Sampled:			09/18/02		
Depth Sampled (ft): Chemical	Result				
Anions	Result	Q	RL/EQL	SQL	Lab
Section and administration of the section of the se					
Ammonia	200	U	200	34.0	QT
Chloride	1,000	U	1,000	94.0	QT
Fluoride	1,000	U	1,000	3.90	QT
Nitrate	500	υ	500	7.60	QT
Nitrite	500	υ	500	20.0	QT
Perchlorate	4.00	U	4.00	2.00	QT
Phosphorus	100	U	100	15.0	QT
Sulfate	1,000	U	1,000	110	QT.
Sulfide	1,000	ĺ	1,000	250	QT
VRadiologicals		TE STE			
Americium-241	-18.0	υ	29.0	29.0	QT
Bismuth-212	60.0	U	230	230	QT
Bismuth-214	3.00	U	40.0	40.0	QT
Cesium-137	-14.5	U	16.0	16.0	QΤ
Cobalt-60	-7.65	U	21.0	21.0	QT
Lead-212	-5.00	Ų	28.0	28.0	QT
Lead-214	-4.00	U	34.0	34.0	QT
Radium-226	0.0700	U	0.220	0.220	QT
Radium-228	0.0300	Ü	0.700	0.700	.QT
Uranium-234	0.0680	U	0.110	0.110	QT
Uranium-235	-0.00900	U	0.130	0.130	QT
Uranium-238	-0.00380	U	0.0900	0.0900	QT

Q = Flags/Qualifiers (QA/QC):

J = Detect, value is an estimate of the concentration.

U = Non-detect, value is the detection limit.

QT = Quanterra Laboratories, Inc.

RL/EQL = Reporting Limit / Estimated Quantitation Limit

SQL = Sample Quantitation Limit

SUMMARY OF CHEMICALS ANALYZED IN TRIP BLANK (µg/L) **GORGE QUARTERLY SAMPLING** PICATINNY ARSENAL TABLE B-3

		,		Ar	alytica	Analytical Results				
Sample ID:		U	GW091802T1					GW091902T1		
Date Sampled:			09/18/02					09/19/02		
Depth Sampled (ft):			-			-		ł		
Chemical	Result	Ö	RL/EQL	SQL	Lab	Result	O	RUEQL	SQL	Lab
Volatiles										
Ethylene Oxide	1,000	S	1,000	530	QT	QT 1,000 UJ	S	1,000	530	ΩT

Q = Flags/Qualifiers (QA/QC):

J = Detect, value is an estimate of the concentration.

U = Non-detect, value is the detection limit.

QT = Quanterra Laboratories, Inc.

RL/EQL = Reporting Limit / Estimated Quantitation Limit SQL = Sample Quantitation Limit

DEPARTMENT OF THE ARMY

UNITED STATES ARMY TANK - AUTOMOTIVE AND ARMAMENTS COMMAND ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER PICATINNY ARSENAL NEW JERSEY 07806-5000

December 17, 2001

Environmental Affairs Division

SUBJECT: Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)/Interagency Agreement (IAG) Administrative Docket No. II-CERCLA-FFA-001-04: Submittal of Meeting Minutes of November 20th meeting and enclosures: Review is ER-A eligible.

Mr. Gregory Zalaskus
New Jersey Department of Environmental Protection
Division of Responsible Party Site Remediation
Bureau of Case Management,
401 East State Street, Floor 5
P.O. Box 028
Trenton, New Jersey 08625-0028

Mr. William Roach U.S. Environmental Protection Agency Region II 290 Broadway, 18th Floor New York, New York 10007-1866

Dear Sirs:

Enclosed for your records are copies of the final minutes of the November 20th, 2001 meeting held at Picatinny. We received no response to my email of December $6^{\rm th}$ requesting comments to a draft version of these minutes.

I am also enclosing for your records the following packages including the revised maps discussed at the meeting, letter to the Nuclear Regulatory Commission, sampling maps at the Open Detonation Area and the agenda.

I ask that you call me at (973) 724-6748 with any concerns regarding this matter.

Sincerely,

Ted Gabel

Project Manager for

Environmental Restoration

Meeting Minutes for November 20, 2001 Meeting between PTA, NJDEP, USEPA, USACE, and the IT Corporation

Meeting Attendees: Mr. Ted Gabel, PTA EAO

Mr. Paul Reibel, PTA EAO

Mr. Joe Fabiano, PTA EAO Mr. Paul Reed, PTA EAO

Ms. Nancy Flaherty, USACE

Mr. Jim Kealy, NJDEP

Mr. Joe Marchesani, NJDEP

Mr. John Scott, NJDEP

Mr. Bill Roach, USEPA

Mr. Jerry Maresca, IT Corporation Mr. Doug Schicho, IT Corporation

Ms. Eileen Heider, PTA Range Safe Program

Mr. Doug Bell and others from BEM

Mr. Gary Kosteck, PTA

The meeting was held at the Picatinny Arsenal Environmental Affairs Office.

The meeting followed an agenda prepared by the Environmental Affairs Office. However, the discussions which took place at the meeting did not follow the agenda order. The discussion below appears in the order discussed.

- Next Meeting, RAB Meeting Next Week, 5-Year Review and USEPA Response to Letter from Picatinny, NJDEP DSMOA issues, General Overview of Schedule and Other Related Items, and the update on 20/24 and 13 Sites RODs or the IC Issue and what to do.
 - -Next meeting no firm date for the next meeting was established
 - -RAB Next Week The RAB scheduled for November 29th was discussed. Area C is going to be a major issue. Other topics include the USEPA 5-year review. Ted Gabel asked if a public notice for the 5-year review was going to be made. Bill Roach said he thought it would.

- **-USEPA 5-Year Review -** Ted Gabel asked if a public notice for the 5-year review was going to be made. Bill Roach said he thought it would.
- **-NJDEP DSMOA Issues** They were not discussed because Greg Zalaskus was not present.
- -General Overview of Schedule and Other Issues The main item discussed was the Area D Groundwater Feasibility Study. The USEPA discussed the position currently being drafted with regard to the interim action at the Building 24 groundwater plume. The discussion went on to cover the issues surrounding the Area D Groundwater FS. EPA does not believe the current pumping system is an effective hydraulic barrier. Mr. Marchesani delivered comments to the FS recalibration on 9/25. Responses to these comments were made on 10/8/01 and discussed at the 10/10/01 meeting. At the 10/10/01 meeting, some Area D issues were diverted until a later time. Joe Marchesani discussed his concerns with the currently proposed remedy (PRB). He indicated that the selected remedy for the Building 24 plume must include a well head protection plan. This plan must be submitted at the same time as the FS. The remedy must demonstrate that the drinking water production well is protected from plume impact. The well head protection must include a program for monitoring the drinking water wells and modeling the potential for continued impact. The remedy for the entire plume must include a simulation with the well pumping so that the remedy compensates for its effect. Wellhead treatment can be part of the remedy. The Army took this matter under advisement and did not agree to the additional documentation requested at the meeting and would wait until it received written documentation that the plan is required before the ROD.

The addition of a sixth well and potentially a seventh extraction well was then discussed. The USEPA indicated that it may require a seventh extraction well. At the meeting the Army directed IT to begin modeling simulations for a sixth and seventh extraction well and begin preparations for the installation of two additional extraction wells. ***Note that after the meeting the Army decided that potentially installing a seventh well would not be done unless the USEPA requested it

in writing. IT was then directed to model a sixth and seventh well but only plan on installing a sixth well for the time being.

The USEPA indicated that finalization of the FS must include an exit strategy for turning off the interim action pump and treat after the wall is installed (this had been agreed to at the last April IAP meeting.)

2. Green Pond Brook Additional Sampling

Doug Schicho distributed a sampling map depicting the locations of proposed surface water samples in Green Pond Brook. The samples were proposed to be collected from each location sampled by USGS in 1997. The regulators agreed with all of the proposed locations but requested that one additional location be added adjacent to the location of minipiezometer MP-2.3. Picatinny agreed to comply with this request. The sampling was scheduled for the week of November 26.

3. Group I Report and Investigation: General Overview

a. **USEPA Comments** – The USEPA had recently provided comments to the document both the report and the investigation. The Army had highlighted comments concerning the investigative report to discuss at the meeting. The remainder of the comments would be resolved with a written response or clarification. The following is a summary of the discussions that took place on selected USEPA comments.

GENERAL COMMENTS

- 3. The Army clarified that 25% validation was required under the facility-wide QAPP. The regulators agreed.
- 17. After hearing the Army's clarification of the rationale for selecting the well location, the USEPA accepted the proposed location in the work plan. Joe Marchesani requested that an additional bedrock well be installed. No consensus was reached on the request for an additional well.

SPECIFIC COMMENTS

34. The Army has to ensure that metals are kept as COCs and sampled as part of the post-remediation sampling.

- 37. Sampling for PCBs was already proposed in the work plan section of the document. The USEPA withdrew the comment based on that clarification.
- 41. After clarification the USEPA withdrew the comment. Therefore, sampling for Methylene Chloride is not required at 40MW-4.
- 44. The USEPA is not going to require the additional deep hydropunch samples.
- 73. The Army indicated that it has good knowledge of the site-specific geology and does not believe there are any groundwater seeps or distinct surface water drainage pathways in that area. Based on this clarification, the USEPA is not going to require additional surface water samples at Site 40.
- 74. The Army explained why a composite sample was being collected. The USEPA concurred and will not require changing this sample.
- 75. The Army withdrew its request for approval for subsequent sampling locations.
- 77. The Army explained why additional delineation for RDX near 93MW-1 was unnecessary. Based on this explanation, USEPA rescinded the recommendation.
- 78. The Army agreed to collect a sediment sample in Picatinny Lake downgradient of former sample 93SP-2 and analyze the sample for metals and explosives, as requested. EPA also noted that there should be a consideration of the removal and disposal of Flare Island.
- 79. The Army agreed to add SVOCs to the sample as requested.
- 80. No piezometers are required at Site 156.
- 82. Explosives will be added to the groundwater analyses for 93MW-1.

BTAG COMMENTS

2. The Army agreed to collect two sediment samples in the lake from the locations where the two stormwater drainage pipes discharge.

Action Item: IT is to provide written responses to the USEPA comments on the report. Following EPA approval of the RTC

document, the Group 1 Report will be finalized. .The Workplan will be modified based upon the approval of these minutes.

- b. NJDEP Comments No formal NJDEP comments had been received. Joe Marchesani indicated that he had reviewed the document and made comments. The comments had not been formally released by the NJDEP yet. However, he said that his primary comment was that he wanted one additional bedrock well. The well was discussed but no consensus was reached regarding the addition of this well.
- c. The report and Work Plan Resubmittals IT will prepare written responses to the USEPA comments on the Report. Following EPA approval of the RTC document, the Group 1 Report will be finalized.
- d. Potential Study Area It was noted that Envirogen and WES both received copies of the Report in order to assess the viability of a treatability study.

4. Open Detonation Area Subpart X Permit

Recent RCRA Groundwater Data and Next Sampling Round – Jerry Maresca summarized the new data. Most of the new data is similar to previous rounds. There was one new detection of ethylene oxide, which exceeded the LOC. Perchlorate, which had been detected above the LOC is now below the LOC. The Army had previously stated that certain parameters that had not been detected in the initial rounds of sampling would be dropped from subsequent rounds. Some parameters would be dropped after 2 rounds and others will be dropped after 4 rounds. The NJDEP acknowledged that they were aware of this and it is acceptable to them.

a. Depleted Uranium results – Ted Gabel provided a letter from Picatinny to the Nuclear Regulatory Commission (Attachment 1) that indicated that soil sampling found depleted uranium (DU) in the surface and subsurface soils. NRC sampling protocols were followed during this sample collection and analysis. The NJDEP and EPA had been told of this in a September 6th letter summarizing the plan action of radioactive investigations. The NJDEP had provided Picatinny with clean-up levels for depleted uranium. These levels must be used for data comparison for all additional sampling rounds.

Action Item: Based on these results, IT is to add DU to the next round of groundwater sampling. Samples for DU analysis will be

collected by a bailer as well as the low-flow method. The analysis should be carried out by alpha spectrometry at an NRC-approved and NJDEP approved laboratory by the sampling and analysis methodology specified by the PTA Radiation Protection Office.

b. Montclair State University Results – Joe Marchesani distributed data (Attachment 2) recently derived from groundwater analysis for colloidal metals at two wells in this area. One concern that he voiced was that the subsurface at the OD area may be favorable for the transport of fine particles. These fine particles may be the cause of the elevated readings of lead found in the two OD area wells. While it appears that these particles are traveling to the downgradient wells, they will not be able to travel a long distance. It is likely that the subsurface geology of gravel and boulders found at the OD area does not exist as you approach the valley floor from the Gorge. After the geology changes to a less conductive substrate, the fine particles will not transported. However, there is a concern that the stream may be impacted.

Action item: Collect surface water and sediment samples in the Gorge area for metals and DU analysis. It was agreed that 1 sample will be collected upgradient of the OD area, 2 samples will be collected near the wells adjacent to the OD area, and 1 sample will be collected near the gate entrance to the OD area. The proposed sampling locations are shown on Figure 8-1, which has been included as Attachment 3.

c. Status of the Subpart X – The NJDEP indicated that the review of the Subpart X was ongoing. Joe Marchesani indicated that approval could be problematic due to the lead contamination. EPA is advising the NJDEP that a permit cannot be issued for a RCRA unit that is contributing to groundwater contamination. Particularly, the lead contamination of groundwater. NJDEP could deny the permit based on this issue. Two options exist if the permit is denied. The first is Alternate Technology and the second is Delay of Closure. Delay of Closure would result in the OD area only being used for "emergencies".

Action Item: John Scott indicated that he would provide the Army with an example of a draft delay of closure submittal.

d. What's Next and Recap – The next step is the ongoing NJDEP review of the Subpart X submission and the Army sampling at the OD Area.

- 5. ARS Study ARS presented the results, which were also provided in their report. ARS will complete one last round of groundwater sampling in November.
- a. Area B FS and the Next Step The Army did state that we will be developing a proposed plan based on the approval status of the FS.
- **b. Schedule and General Approach** The pilot scale HRC study will be scoped and scheduled.
- 6. Bench Scale Studies on Area E BEM asked for input into the work plan dated October 2001. Doug Schicho indicated that IT had reviewed the chemical oxidation portion of the work plan and found that it would provide the data needed for the FS. The matrix demand data to be provided by BEM will allow the cost estimate for chemical oxidation to be fine tuned. The representatives of the Army, NJDEP and EPA who were all provided copies of this Workplan offered no comments. Ellen Heidner stated that this signified an approval of the Workplan and BEM would initiate the proposal.
- 7. Phase II Additional Sampling Site maps with proposed sample locations were provided for the meeting. The sampling proposals were reviewed for each site. The agreements are summarized below:
 - Site 33 Agreed to add one surface soil sample for arsenic analysis.
 - Site 40 The proposed sampling is acceptable.
 - Site 65 Agreed to add one surface soil sample for arsenic analysis.
 - Site 71 The proposed sampling is acceptable.
 - Site 79 The proposed sampling is acceptable.
 - Site 82 The proposed sampling is acceptable.
 - Site 90 The proposed sampling is acceptable.
 - Site 93 Agreed to add copper to the proposed sample analysis.
 - Site 97 The proposed sampling is acceptable.
 - **Site 102** Agreed to collect additional hydropunch groundwater samples for the delineation of lead. The hydropunch samples will be filtered to reduce the turbidity.
 - Site 105 The proposed sampling is acceptable.

Site 108 – Agreed to collect one surface water sample off of Flare Island for SVOCs and metals analyses. Agreed to collect a deep soil sample on Flare Island for SVOCs and metals analyses.

Site 137 - The proposed sampling is acceptable.

Site 148 - The proposed sampling is acceptable.

Site 149 - The proposed sampling is acceptable.

Site 150 – Agreed to add one surface soil sample for lead analysis.

Site 158 – Agreed to collect additional sediment samples at two locations further into Picatinny Lake. Samples will be collected from 0-1 ft bgs and 2-3 ft bgs at each location and analyzed for metals.

Site 178 - The proposed sampling is acceptable.

Site 2 (Building 3517) - The proposed sampling is acceptable.

Site 48 - The proposed sampling is acceptable.

No comments were received on the following sites for which no further sampling was proposed — Sites 46, 47, 50, 70, 83, 109, 113, 156, 159, 203, 175, 3, 189, Building 3250, and Bear Swamp Brook.

The additional sampling locations for Sites 33, 65, 93, 102, 108, 150 and 158 are shown on the figures included as **Attachment 4**.

Picatinny Arsenal NJDEP Certification Statement Gorge Quarterly Sampling Sampling Date: September 2003 Report Date: March 2003

Analyte	Analytical Method.	NJDEP Certification Labilia
Ethylene Oxide	8015B	Aqueous: North Canton OH001
Prep Methods for Volatiles	5030B, 5035, 5035 Methanol	Aqueous: North Canton OH001
Metal		
Aluminum	6010B	Aqueous: North Canton OH001
Antimony	(6010B	Aqueous: North Canton OH001
Arsenic	6010B	Aqueous: North Canton OH001
Barium	6010B	Aqueous: North Canton OH001
Beryllium	6010B	Aqueous: North Canton OH001
Cadmium	6010B	Aqueous: North Canton OH001
Calcium	6010B	Aqueous: North Canton OH001
Chromium	6010B	Aqueous: North Canton OH001
Cobalt	6010B	Aqueous: North Canton OH001
Copper	6010B	Aqueous: North Canton OH001
Iron	6010B	Aqueous: North Canton OH001
Lead	6010B	Aqueous: North Canton OH001
Magnesium	6010B	Aqueous: North Canton OH001
Manganese	6010B	Aqueous: North Canton OH001
Mercury	7470A	Aqueous: North Canton OH001
Nickel	6010B	Aqueous: North Canton OH001
Potassium	6010B	Aqueous: North Canton OH001
Selenium	6010B	Aqueous: North Canton OH001
Silver	6010B	Aqueous: North Canton OH001

Picatinny Arsenal NJDEP Certification Statement (continued) Gorge Quarterly Sampling Sampling Date: September 2003 Report Date: March 2003

Analyte	Analytical Method	NJDEP Centification LabyiD
Sodium	6010B	Aqueous: North Canton OH001
Thallium (ICP/MS)	Not Certified: 0	Certification Pending
Vanadium	.6010B	Aqueous: North Canton OH001
Zinc	6010B	Aqueous: North Canton OH001
Prep Methods for Metals	3005A, 3010A, 3015, 3050B, 3051, 3052, 3060A	Aqueous: North Canton OH001
Anions		
Ammonium (Ammonia as Nitrogen)	350.2, 350.3	Aqueous: North Canton OH001
Chloride	300.DA	Aqueous: North Canton OH001
Fluoride	300.0A	Aqueous: North Canton OH001
Nitrate (NO₃)	300.0A	Aqueous: North Canton OH001
Nitrite (NO₂)	300.0A	Aqueous: North Canton OH001
Sulfate	300.0A	Aqueous: North Canton OH001
Sulfide	367.1	Aqueous: North Canton OH001
Total Phosphorous	365.2	Aqueous: North Canton OH001
Perchlorate	314.1	Aqueous: Sacramento CA005
Explosives		
2,4-Dinitrotoluene	8330	Aqueous: Knoxville TN001
1,3-Dinitrobenzene	8330	Aqueous: Knoxville TN001
1,3,5-Trinitrobenzene	8330	Aqueous: Knoxville TN001
2,4,6-Trinitrotoluene	8330	Aqueous: Knoxville TN001
2,6-Dinitrotoluene	8330	Aqueous: Knoxville TN001
Cyclotetramethylene tetranitramine (HMX)	8330	Aqueous: Knoxville TN001

Picatinny Arsenal NJDEP Certification Statement (continued) Gorge Quarterly Sampling Sampling Date: September 2003 Report Date: March 2003

The Continue and the Continue Managers Managers are represented as a continue of the continue	milion reservois responsa en la companya del companya de la companya de la companya del companya de la companya	4
Analyte	Analytical Method	NJDEP Certification Lab ID
Cyclotrimethylene trinitramine (RDX)	8330	Aqueous: Knoxville TN001
N-Methyl-N,2,4,6-tetranitroaniline (Tetryl)	8330	Aqueous: Knoxville TN001
Nitrobenzene	8330	Aqueous: Knoxville TN001
4-Amino-2,6-dinitrotoluene	8330	Aqueous: Knoxville TN001
2-Amino-4,6-dinitrotoluene	8330	Aqueous: Knoxville TN001
2-Nitrotoluene	8330	Aqueous: Knoxville TN001
4-Nitrotoluene	8330	Aqueous: Knoxville TN001
3-Nitrotoluene	8330	Aqueous: Knoxville TN001
Radiologica	is,	
Bismuth-212	Not	Certified
Bismuth-214	Not	Certified
Uranium-234	USEPA 908.0	Aqueous: St Louis MO002
Uranium -238	USEPA 908.0	Aqueous: St Louis MO002
. Uranium -235	USEPA 908.0	Aqueous: St Louis MO002
Cesium - 137	USEPA Method. 901.1	Aqueous: St Louis MO002
. Americium - 241	Not	Certified
Lead-212	Not	Certified
Lead-214	Not	Certified
Radium - 226	USEPA Method 903.0	Aqueous: St Louis MO002
Radium-228	USEPA 904.0	Aqueous: St Louis MO002
Cobalt - 60	USEPA Method 901.1	Aqueous: St Louis MO002

. J. (... :

ATTACHMENT T PROTECTION OF GROUNDWATER

T.0 Introduction

A groundwater protection plan is presented that will allow for detection of potential contamination releases from the Open Detonation (OD) Area at Picatinny Arsenal. The plan is a revision and restructuring of the document originally prepared by Foster Wheeler for the Subpart X permit application submitted to USEPA on November 4, 1988 by ARDEC at Picatinny Arsenal, New Jersey. This plan was revised in 1994, 2000 and 2005 in response to Notices of Deficiency (NOD) received by ARDEC from USEPA on July 31, 1992 and March 9, 1993 and from NJDEP on September 21, 1999 and July 20, 2005.

The groundwater protection program is discussed in detail below and in two appendices. Appendix T-1 (Hydrogeological Investigation Report) presents regional geology and topographic information, site-specific geology and hydrogeology for the OD Area, a description of the site, location and description of the installed monitoring well network with installation and construction details, identification of the uppermost aquifer, and existing groundwater monitoring chemical data.

Appendix T-2 (Groundwater Sampling and Analysis Plan) discusses chemical sampling parameters, analytical methods, quality assurance /quality control measures, sampling frequency, and sampling procedures.

The information in this section is being provided according to 40 CFR 264.95, 264.97, 264.98 and 270.14(c).

T.1 Regional Geology

The regional geology at Picatinny Arsenal is discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

T.2 Topographic Information

The OD area occupies approximately one-third acre in the four acre Gorge area. The Gorge is located approximately 0.4 miles west of Lake Denmark along Gorge Rd. (Figure T-1). Green Pond Brook, which runs through the site, follows the steeply sloped north-south trending valley that encloses the OD area. Topographic relief at the OD area is fairly rugged with elevations varying from about 850 feet MSL at the OD area to over 1200 feet MSL in the surrounding ridges. The location of the open detonation pits is presented in Figure T-2.

Topographic information required by 40 CFR 270.14(c) is described below. This requirement includes delineating the point of compliance and presenting the location of groundwater monitoring wells to be included in the detection monitoring system.

T.2.1 Point of Compliance

Figure T-3 identifies the point of compliance for the OD area. Although the actual OD operational area is defined by the extent of the mine sand (with a 30 foot buffer), the point of compliance has been extended because of the potential risk of damage to monitoring wells from detonations at the site and the testing of conventional weapons in the same area. Placing the point of compliance at a different location beyond the operating area is in accordance with the Draft Permit Writers Guidance Document for 40 CFR 264, Subpart X.

T.2.2 Location of Groundwater Monitoring Wells

The location of the groundwater detection monitoring system is presented in Figure T-3. The first four wells (OD-1A through OD-4A) were installed in November 1993. The last two wells of the network (OD-5A and OD-6A) were installed in December 1998.

T.2.3 Seismic Standard

Because New Jersey is not listed in Appendix VI of 40 CFR 264, the seismic considerations for location standards do not apply. This conclusion is in accordance with 40 CFR 264.18 (a) and 270.14 (b) (11)(i-ii).

T.2.4 Regional Hydrogeology

Regional hydrogeology of the Arsenal area is discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

T.2.5 Site Specific Hydrogeology

Site Specific hydrogeology is discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

T.2.6 Identification of the Uppermost Aquifer

The identification of the uppermost aquifer was completed by the installation of the monitoring well network at the OD area. The uppermost aquifer is an unconfined (water table) aquifer in the unconsolidated glacial sediments overlying the basement rocks of the Gorge.

T.2.6.1 Groundwater Occurrence

Water level data has been collected from all six OD area wells during all eight rounds of groundwater sampling from 1999 to 2002. Depth to groundwater ranges from 0.0 to 11.65 feet bgs. While water levels changed from round to round, changes were minimal and consistent across the site so that there was little change in the groundwater gradient and flow direction between the sampling rounds.

T.2.6.2 Groundwater Flow Rate and Direction

The direction of groundwater flow is towards Green Pond Brook with a strong down-valley component. Groundwater flow contour maps and detailed discussion of flow rates and aquifer characteristics are discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

T.2.7 Existing Groundwater Contamination

As stated previously, four rounds of groundwater samples were collected in 1999 and analyzed for compounds identified in the 1994 permit application. The results of the four rounds of sampling are discussed in detail in Appendix T-1, Hydrogeologic Report. Chemical results indicated that there were concentrations of RDX and HMX in both upgradient and downgradient wells ranging from 0.22 to $4.8~\mu g/L$.

Two metals exceeded RCRA Maximum Concentration Limits (MCL). Mercury was detected only once at a concentration of 3.8 μ g/L, exceeding the MCL of 2.0 μ g/L. Lead was detected in down gradient wells in all four rounds of sampling at concentrations ranging from 57.2 to 390 μ g/L, exceeding the MCL of 50 μ g/L.

Following receipt of NJDEP's letters on March 7, 2001 and June 21, 2001, the Army conducted another four rounds of groundwater sampling for an extensive list of analytes outlined in the NJDEP correspondence. Only six compounds were detected above Levels of Concern (LOCs). Volatile organic compound ethylene oxide and explosive compound 2,4,6-trinitrotoluene (TNT) were detected above their respective LOCs of 0.023 μ g/L and 2.0 μ g/L in one well (OD-2A) during one round of sampling.

RDX was detected in excess of the LOC of 0.61 μ g/L in downgradient wells OD-2A and OD-4A in all four rounds. RDX concentrations in these two wells ranged from 2.4 μ g/L to 23.0 μ g/L. RDX was also detected in upgradient well OD-1A at concentrations above the LOC during two sampling events with a maximum concentration of 3.50 μ g/L.

Aluminum, iron and manganese were also identified in excess of their LOCs. LOC exceedances for these three metals were reported in all wells with the exception of OD-3A. These three inorganic compounds are common naturally occurring metals that are detected throughout Picatinny Arsenal at elevated levels in the soil and groundwater. The levels are believed to be related to the weathering of the local bedrock and are not likely site-related.

No RCRA metals were detected above the RCRA MCLs. Sampling for lead using the low-flow method indicated that dissolved lead concentrations were below the MCL of 50 μ g/L Explosive compounds – diethyleneglycol dinitrate (DEGDN); triethyleneglycol dinitrate (TEGDN); trimethethyleneglycol dinitrate (TMEDN); 1,3-diamino-2,4,6-trinitrobenzene (DATB); and 2,2,'4,4,'6,6'-hexanitrostilbene (HNS) were not detected in any round. Chemical results are discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

Soil contamination data for the OD area that has been previously collected is discussed in Section II.B.3

T.2.8 Detection Monitoring System

A groundwater detection monitoring system consisting of six overburden monitoring wells has been installed at the OD area. Construction details, well placement, boring logs and other details of the detection system are discussed in detail in Appendix T-1, Hydrogeologic Investigation Report.

T.2.8.1 Compliance Monitoring

Compliance monitoring will be performed on a quarterly basis at the OD Area in accordance with the Bureau of Hazardous Waste and Transfer Facilities' March 7, 2001 letter and subsequent revisions. All correspondence between NJDEP and Picatinny Arsenal regarding the groundwater compliance monitoring program is included in (Attachment T-3). The determination of the presence and concentration of hazardous constituents in the groundwater will be made from statistical evaluations of the results from four (4) consecutive quarterly groundwater monitoring events. Background concentrations will be established from the upgradient monitoring wells. The resultant data will be used to develop a semi-annual monitoring program in compliance with 40 CFR Part 264. All subsequent sampling events will be conducted on a semi-annual basis for a reduced analytical program derived from the statistical evaluation of the groundwater data. All laboratories will use certified methods for each analysis, and the laboratories will also be certified in accordance with NJAC 7:26 – 7.18.

T.2.9 Groundwater Sampling and Analysis Plan

A groundwater sampling and analysis plan for the Open Detonation Area is presented in Appendix T-2 in accordance with 40 CFR 264.97 (d) - (i). The plan includes a description of sample collection procedures, preservation and shipment methods, chain of custody control methods, quality assurance/quality control measures, and analytical procedures.

All data will be reported and used to evaluate potential contaminate sources, distribution, and migration.

T.2.9.1 Constituents to be Monitored

The constituents that will be monitored in the groundwater detection system are listed in Table T-1. The list was determined based on the nature of the waste handled at the OD Area as described in section I.C.1, soil contamination identified in the OD Area, on the persistence, mobility and toxicity of the constituents, and negotiations with NJDEP. The sample containers and preservation methods to be used for sampling these constituents are listed in Table T-2

The following constituents will be analyzed for a minimum of four (4) consecutive quarters:

- Explosives
- Organophosphorous pesticides (malathion and diazinon)
- Nitroesters (nitrocellulose, nitroguanidine, nitroglycerine)
- TAL Metals
- Additional metals (boron, molybdenum, silicon, strontium, tin, titanium, tungsten, zirconium)
- Cyanides
- Anions including perchlorates
- Depleted Uranium including individual uranium isotopes
- Radioanalytes (Gamma Emitters)

The remaining analytes will be analyzed for a minimum of two consecutive quarters:

- TCL VOCs with additional alcohol compounds
- TCL SVOCs with additional compounds and n-nitrosodiphenylamine
- Diphenylamine, aniline, carbazole
- TCL PCBs, pesticides and mirex

Analysis of these compounds will continue if the resultant data indicate levels above the LOC for that compound. Levels of concern for groundwater are listed in Table T-3.

Groundwater levels will be measured during every sampling event. Levels will be measured to the nearest 0.01 foot. Static water level and well depth measurements will be obtained using an electric water level sounding device. The tape will be rinsed with distilled water, cloth-wiped, and allowed to air dry between consecutive water level measurements. All measurements of the depth to groundwater and well depth will be referenced to a permanently marked reference point on the monitoring wells (highest point on the top rim of the PVC casing). Personnel will also note any physical changes to the well or the concrete pad.

The goal of low-flow sampling is to collect more representative samples by matching the intake velocity of the sampling device with the natural groundwater flow velocity, thereby reducing sample disturbances. The primary advantage of this procedure is the collection of low turbidity samples (i.e., samples with low concentrations of suspended

particles) and the reduction of sample aeration, resulting in samples which are more representative of true aquifer conditions. Low flow sampling also, in most cases, reduces the volume of groundwater purged from the well.

This sampling procedure involves removing groundwater from a monitoring well using a variable speed stainless-steel electric-powered submersible pump placed at the screened interval. The pump intake will be kept at least two feet above the bottom of the monitoring well to prevent mobilization of any sediment present in the bottom of the well. The depth to which the pump is lowered and the sample collected will be recorded so that the pump can be placed in the same location during future sampling events.

Before pumping begins, the water level in the monitoring well will be measured. The water level will be measured at a minimum of every three to five minutes during pumping. Pumping rates will be less than 500 mL per minute. Ideally, a pumping rate will be maintained that results in a stabilized water level (less than 0.3 ft drawdown) in the monitoring well. Water quality parameters (i.e., pH, temperature, conductivity, DO, turbidity, and ORP) will be measured on three to five minute intervals for stabilization. Stabilization will be defined by the following variances between three successive readings: turbidity, DO and ORP within 10%; conductivity within 3%; pH within 5%; and temperature within 1° C. If the water quality parameters do not stabilize, pre-sample purging will continue until one well volume has been removed or a purge time of two hours has been exceeded.

If drawdown in the monitoring well is greater than 0.3 feet, the pumping rate will be reduced to match the recharge rate of the well, taking care to maintain pump suction and avoid air entrainment in the tubing. If drawdown continues despite reducing the pumping rate, then the following alternative method will be used:

If the groundwater level in the monitoring well stabilizes at some level above the top of the screened interval, pumping will continue until the water quality parameters stabilize. At a minimum, three times the volume of the groundwater drawdown in the monitoring well will be removed prior to groundwater sampling.

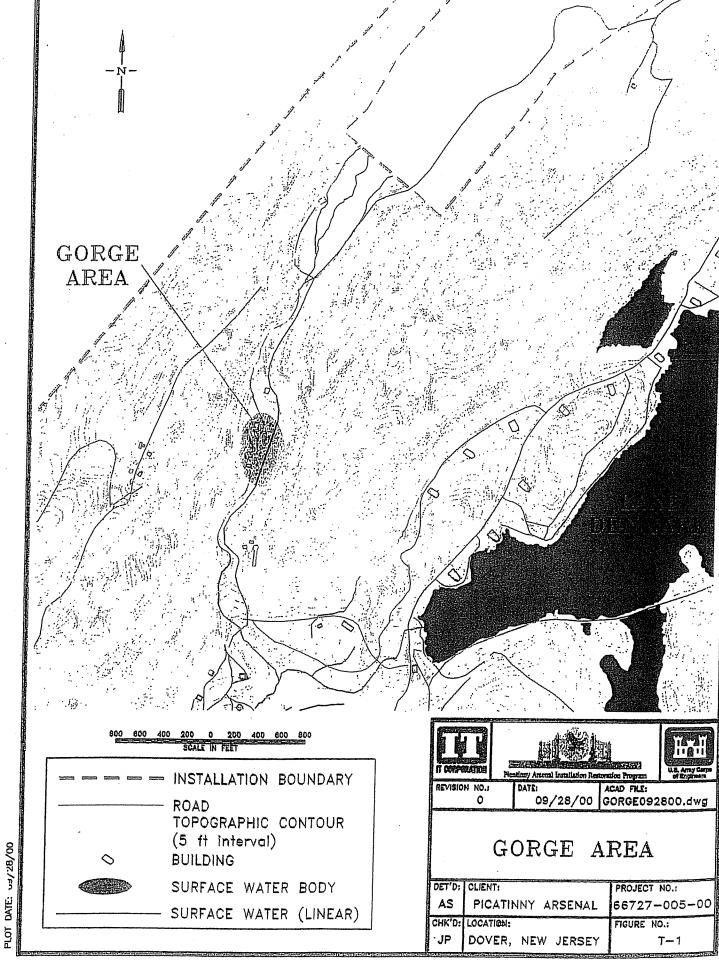
Teflon® tubing, connected to the pump with stainless-steel clamps, will be used in collecting low-flow groundwater samples. The tubing will be dedicated to each individual well. Sample bottles will be filled in order of decreasing analyte volatility and preserved according to the aqueous preservation procedures provided in Table T-2 Entrainment of air in the tubing must not occur. The sampling sequences associated with each event will be documented in the field logbook. VOC samples will be collected first and directly into pre-preserved sample containers. The amount of HCL required for preservation will be determined using an acid blank with well purge water prior to sampling each well. All containers will be filled by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence.

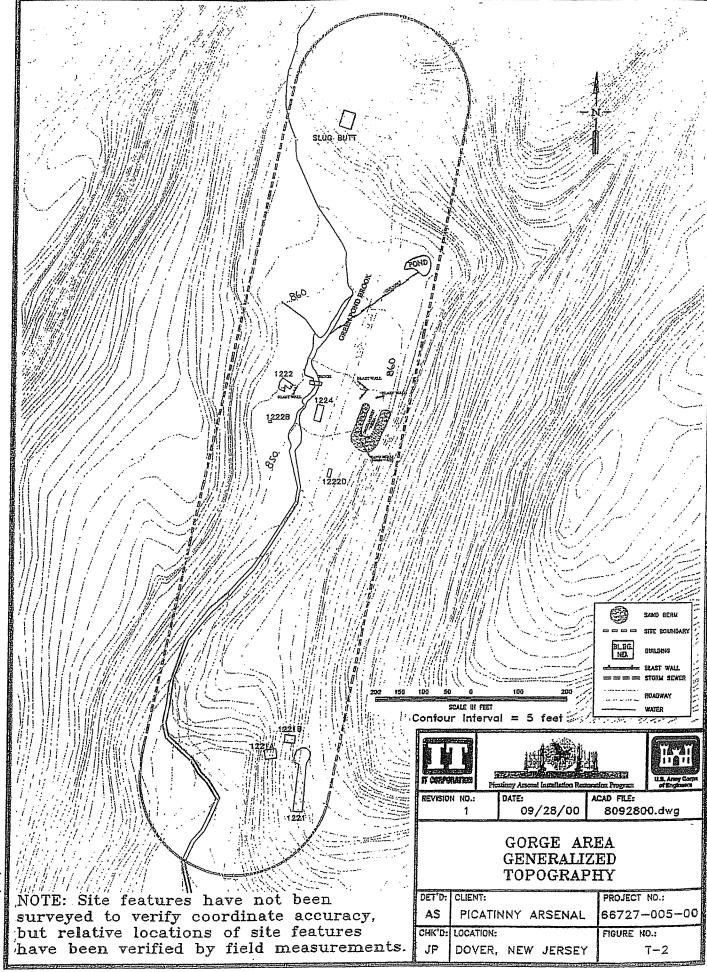
Two-inch diameter, variable speed stainless steel submersible pumps will be used for presample purging as well as monitoring well sampling. The submersible pumps will be decontaminated after each use according to the following procedure:

- a. Wash and flush approximately 10 gallons with presampled and approved water through the pump
- b. Wash and flush approximately 10 gallons of alconox (low phosphate detergent) through the pump
- c. Wash and flush approximately 10 gallons of presampled and approved water through the pump
- d. Wash and flush approximately 10 gallons demonstrated analyte-free water through the pump
- g. Air dry
- h. Wrap with aluminum foil (shiny side out)

The decontamination procedure is consistent with the "Decontamination of Pumps" described in the NJDEP *Field Sampling Procedures Manual* (NJDEP, 1992). Dedicated Teflon-lined tubing will only be decontaminated prior to its first use.

T.2.9.2 Sampling Frequency


Groundwater samples will be collected from the monitoring wells quarterly for the first year. Some constituents, which were never tested or disposed of at the OD Area, will only be analyzed for two events (Section T.2.9.1). After the first year, the resultant data will be statistically evaluated and used to develop a semi-annual monitoring program.


Groundwater levels will be measured during every sampling event. Groundwater contour maps will be prepared to show the horizontal direction of groundwater flow and to determine the flow rate.

					1		
			•				
		,				J.	
		į.					
			•				
							·
·							
						•	
			*				
	V						
							•

	1					
		•				
*						
			•			
	•					
	•					
	·			•		
	•				٠	
				,		
		·				
			·			
				•		
•						
•						
				•		
	•					
					•	
	•					i
	•					
						•

2LOT DATE: 09/28/0

. -

.

•		
•		
	•	
		·
	·	
•	•	
•		
	,	
·	•	
	· ·	

Picatinny Subpart X Permit Page 1 of 23

Table T-1
Picatinny Detonation Area
Subpart X Permit
Groundwater Analytical Parameters, Methods, Laboratories and Certifications

act of		Analytigatiwethoa		Line in the second seco		Eligible for Reporting	
	Extraction		HE WAS BEEN TO THE	Matrix, Analyte Gode	liab ID		
				"Volatiles			
1,1-Dichloroethene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04220	STL North Canton OH001	Yes	
	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04260	STL North Canton OH001	Yes	
trans-1,2-Dichloroethene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW; SHW07.04230	STL North Canton OH001	yek.	
1,1-Dichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04200	STL North Canton OH001	Yes	
Chloroform	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04150	STL North Canton OH001	Yes	
1,1,1-Trichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04290	STL North Canton OH001	Yes	
Trichloroethene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04310	STL North Canton OH001	Yes	
Tetrachloroethene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04280	STL North Canton OH001	Yes	
1,2-Dibromoethane	SW-846 5030B, Rev. 2, 12/96	. N/A	SW-846 8260B, Rev. 2, 12/96	NPW; SHW07.04185	STL North Canton none	Yes	

Picatinny Subpart X Permit Page 2 of 23

Table T-1 (continued) Picatinny Open Detonation Area Subpart X Permit Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

		in in the state of					
	11. Extraction	Clean-ub	ub.	Maritx. Analyte Gode			
Benzeņe	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04010	STL North Canton OH001	Yes	
Toluene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04070	STL North Canton OH001	Yes	
1,1-Dichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04200	STL North Canton OH001	Yes	
1,1-Dichloroethylene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04220	STL North Canton OH001	Yes	
1,1,1-Trichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04290	STL North Canton OH001	Yes	
1,1,2-Trichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04300	STL North Canton OH001	Yes	
1,1,2,2-Tetrachloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04270	STL North Canton OH001	SeY	
1,2-Dichloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04210	STL North Canton OH001	Yes	
1,2-Dichloropropane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04240	STL North Canton OHOO1	Yes	
2-Butanone	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04360	STL North Canton OH001	Yes	
2-Hexanone	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04370	STL North Canton OH001	Yes	
						The state of the s	

Picatinny Subpart X Permit Page 3 of 23

Table T-1 (continued) Picatinny Open Detonation Area Subpart X Permit Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

	ElgibereReportinu		Signal Ales	Yes									
•			STL North Canton	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton	STL North Canton OH001					
il fatt data—		Watelk: Analyte Gode	NPW: SHW07.04380	NPW: SHW07.04340	NPW: SHW07.04090	NPW: SHW07,04100	NPW: SHW07.04110	NPW: SHW07.04350	NPW: SHW07.04327	NPW; SHW07,04120	NPW: SHW07.04020	NPW: SHW07.04130	NPW: SHW07.04150
en de martin (m. 1885). En trada en em 1885 (en 1885).		Analysis	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B; Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96			
	Ang Artical Method	Clear	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
e Today say say and say and		Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2; 12/96	SW-846 5030B, Rev. 2, 12/96
			4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	Acetone	Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Vinyl Acetate	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform

NPW: Non-Potable Water

Picatinny Subpart X Permit Page 4 of 23

		Yes	Yes	Хех	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Labin I	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001				
NVDEED SENTITION AS A SECOND SENTING SERVICE OF SECOND SERVICE OF SECOND SECOND SERVICE OF SECOND SE		NPW: SHW07.04160	NPW: SHW07.04235	NPW: SHW07.04250	NPW: SHW07.04180	NPW: SHW07.04190	NPW: SHW07.04060	NPW: SHW07.04550	NPW: SHW07.04280	NPW: SHW07,04070	NPW: SHW07.04230	NPW: SHW07.04170
	Landa Sisteman	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
No.		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96
NAME OF THE PROPERTY OF THE PR		Chloromethane	c/s-1,2-Dichloroethene	c/ṣ-1,3-Dichloropropene	Dibromochloromethane	Dichlorodifluoromethane (Freon 12)	Ethylbenzene	Styrene	Tetrachloroethylene	Toluene	Trans-1,2-Dichloroethene ^a	Trans-1,3-Dichloropropene

Picatinny Subpart X Permit Page 5 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

39 <u>20</u> 184194		Analytical Metro		i jo	nitication	ELIGIBIES OF REPORTS	
・ 1000年 - 10	Extraction	Clean In	kanalysist	j j	Eab D		
Trichlorofluoromethane (Freon 11)	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW; SHW07,04320	STL North Canton	Yes	
Trichloroethylene	SW-846 5030B, Rev. 2, 12/96.	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04310	STL North Canton	Yes	
Vinyl Chloride	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07,04330	STL North Canton	Yes	
Total Xylene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04080	STL North Canton	Yes	
Acetonitrile	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07,04398	STL North Canton	Yes	
1,1,2-Trichloro-1,2,2- trifluoroethane (Freon 113)	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04322	STL North Canton	Yes	
lodomethane (Methyl lodide)	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04375	STL North Canton	Yes	
1,1,1,2-Tetrachloroethane	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04560	STL North Canton	Yes	
2-Chloroethyl Vinyl Ether	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04140	STL North Canton	Yes	
1,2-Dibromo-3-chloropropene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04187	STL North Canton	Yes	
trans-1,4-Dichloro-2-butene	SW-846 5030B, Rev. 2, 12/96	N/A	SW-846 8260B, Rev. 2, 12/96	NPW: SHW07.04255	STL North Canton	Yes	
			11.	1			

Picatinny Subpart X Permit Page 6 of 23

Eligible to Report NU		Yes .		Yes	Yes	Yes		Yes	Yes	Yes
icalion and	Labio	STL North Canton OH001		Environmental Science Corporation TN002	Environmental Science Corporation TN002	Environmental Science Corporation TN002		STL North Canton OH001	STL North Canton OH001	STL North Canton OH001
NUDERICETHICALION	Matrix: Analyte Gode	NPW: SHW07.04325	AdditionaliAiconais	NPW: SHW07.04259	NPW: SHW07.04377	NPW: SHW07.04395	Semivolatiles	NPW: SHW07.05691	NPW: SHW07.05120	NPW: SHW07.05692
	And Andrews	SW-846 8260B, Rev. 2, 12/96	Addition Addition	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96		SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96.	SW-846 8270C, Rev. 3, 12/96
grapheal (Metabol	Cleaning in	N/A		N/A	. N/A	N/A		N/A	N/A	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96		SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96		SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Mnalyte		1,2,3-Trichloropropane		Ethanol	Isopropanol	tert-Butyl alcohol		.1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	1,3-Dichlorobenzene

Picatinny Subpart X Permit Page 7 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

STATE OF THE PROPERTY OF THE P		Andrews International		INDEP Certification	(Cation	Eligible to Report Nu	Sommen
	Extraction	C (Cleaning)		And Welston Material Analyte Code			
1,4-Dichlorobenzene	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05700	STL North Canton OH001	2	
2-Chloronaphthalene	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05070	STL North Canton OH001	Yes	
2-Chlorophenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05450	STL North Canton OH001	Yes	
2-Methylnaphthalene .	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05400	STL North Canton	Yes	
2-Methylphenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05500	STL North Canton OH001	Yes	
2-Nitroaniline	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05060	STL North Canton	Yes	
2-Nitrophenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07,05520	STL North Canton OH001	Yes	
2,4-Dichlorophenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05460	STL North Canton	Yes	
2,4-Dimethylphenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05470	STL North Canton OH001	Yes	
2,4-Dinitrophenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05480	STL North Canton OH001	Yes	
2,4-Dinitrotoluene	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05170	STL North Canton OH001	Yes	

Picatinny Subpart X Permit Page 8 of 23

900		Analyticelinethoc		WWIDER GENTRER OF THE PARTY OF	Canon district	Eligible ronger ministration	
	Extraction	Cleantuble The Control of the Contro	Andreas Andreas	Matrix: Analytelcode			
2,4,5-Trichlorophenol	SW-846.3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05560	STL North Canton OH001	Yes	स्त करण स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स
2,4,6-Trichlorophenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05570	STL North Canton	Yes	
2,6-Dinitrotoluene	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05180	STL North Canton OH001	Yes	
3-Nitroaniline	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05062	STL North Canton OH001	Yes	
3,3'-Dichlorobenzidine	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05040	STL North Canton OH001	Yes	
4-Bromophenyi-phenylether	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05160	STL North Canton OH001	Yes	
4-Chloro-3-methylphenol	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05440	STL North Canton OH001	Yes	
4-Chloroaniline	SW-846 3520C, Rev, 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05050	STL North Canton OH001	Yes	
4-Chlorophenyl-phenylether	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05150	STL North Canton OH001	Yes	
4-Methylphenol	SW-846 3520C, Rev. 3, 12/96	ΝΆ	SW-846 8270C, Rev. 3, 12/96	NPW: SHW07.05510	STL North Canton OH001	Yes.	
			***************************************	77]	

Picatinny Subpart X Permit Page 9 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

	TILL THE SECOND SALES	32-34 E			,						
			Yes								
(Fation		STL North Canton	STL North Canton OH001	STL North Canton	STL North Canton	STL North Canton	S:TL North Canton	STL North Canton	STL North Canton	STL North Canton	STL North Canton OH001
INTERIOR INT	Matrix: Analytelicode	NPW: SHW07.05063	NPW: SHW07.05530	NPW; SHW07.05490	NPW: SHW07.05270	NPW: SHW07.05290	NPW: SHW07.05280	NPW: SHW07.05300	NPW: SHW07.05310	NPW: SHW07.05320	NPW: SHW07.05330
	Carle Walsh	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96
Analytica	i Clean	N/A	A/N.	N/A	N/A	N/A	N/A	N/A	· N/A	N/A	N/A
		SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
20		4-Nitroaniline	4-Nitrophenol	4,6-Dinitro-2-methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,l]perylene

Picatlnny Subpart X Permit Page 10 of 23

	Orlos:		J			
Yes	STL North Canton	NPW: SHW07.05230	SW-846 8270C, Rev. 3, 12/96	N/A	SW-846 3520C, Rev. 3, 12/96	Diethylphthalate
Yes	STL North Canton OH001	NPW: SHW07.05240	SW-846 8270C, Rev. 3, 12/96	N/A	Sw-846 3520C, Rev. 3, 12/96	Dimethylphthalate
Yes	STL North Canton OH001	NPW: SHW07.05600	SW-846 8270C, Rev. 3, 12/96	N/A	Sw-846 3520C, Rev. 3, 12/96	. Dibenzofuran
Yes	STL North Canton OH001	NPW: SHW07:05048	SW-846 8270C, Rev. 3, 12/96	N/A	SW-846 3520C, Rev. 3, 12/96	Aniline
Yes	STL North Canton OH001	NPW: SHW07,05030	SW-846 8270C, Rev. 3, 12/96	N/A	Rev. 3, 12/96	Carbazole
Yes	STL North Canton OH001	NPW: SHW07.05140	Sw-846 8270C, Rev. 3, 12/96	N/A	Rev. 3, 12/96	Bis(2-chloroisopropyl)ether
Yes	STL North Canton OH001	NPW; SHW07,05210	SW-846 8270C, Rev. 3, 12/96	N/A	Rev. 3, 12/96	Butylbenzylphthalate
Yes	STL North Canton OH001	NPW: SHW07.05132	SW-846 8270C, Rev. 3, 12/96	N/A	SW-846 3520C, Rev. 3, 12/96	Bis(2-chloroethyl)ether
Yes	STL North Canton OH001	NPW: SHW07.05130	SW-846 8270C, Rev. 3, 12/96	N/A	Svv-846 3520C, Rev. 3, 12/96	Bis(2-chloroethoxy)methane
Yes	STL North Canton OH001	NPW: SHW07.05340	SW-846 8270C, Rev. 3, 12/96	N/A	SW-846 3520C, Rev. 3, 12/96	Benzo[k]fluoranthene
		Marikanahaye code	ublitation of the second of th		Extraction The Clean	
Eligibis in Reporting	in the second of	AND DEFICE CHARTER OF THE PROPERTY OF THE PROP	(Methods)	TANAL CALINELLOCAL	Analytical	e in the second
1	THE PARTY OF THE PARTY OF THE		是一种一种,所以不是一种。	THE PROPERTY OF THE PARTY OF TH		

Picatinny Subpart X Permit Page 11 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

NUDE PICENTIFICATION TO THE PROPERTY OF THE PR	STL North Canton OH001 STL North	07.05380 Canton Yes 07.05380 Canton Yes OH001	None No No Labs	STL North Yes - 8/26/05	l ^o	S	o		S
			Ļ	NPW: SHW07.05080 Can	NPW: SHW07.05090 Cant	NPW: SHW07.05100 STL N	NPW: SHW07.05110	PLO F	NPW; SHW07.05390 Cante
SW-846 8270C, NF Rev. 3, 12/96 SW-846 8270C, NF Rev. 3, 12/96 SW-846 8270C, NF Rev. 3, 12/96				SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96		SW-846 8270C, Rev. 3, 12/96
N/A N/A	N/A		N/A	· N/A	N/A	N/A	N/A		N/A
SW-846 3520C, Rev. 3, 12/96 SW-846 3520C, Rev. 3, 12/96 SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96 SW-846 8330,	SW-846 8330,	nev. u, 9/94 (modified)	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C,	Rev. 3, 12/96
Bis(2-ethylhexyl)phthalate Fluoranthene	·	riuorene	Diphenylamine (HPLC/UV)	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	

NPW: Non-Potable Water

Picatinny Subpart X Permit Page 12 of 23

Table T-1 (continued) Picatinny Open Detonation Area Subpart X Permit Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

A THE STREET OF		Yes								
I Call of the second se	1	STL North Canton	OH001 STL North Cariton	STL North Canton	STL North Canton	STL North Canton OH001				
NADER CETHING TO THE	Matrix: Analyte Code	NPW: SHW07.05200	NPW: SHW07,05410	NPW: SHW07.05006	NPW: SHW07.05004	NPW: SHW07.05260	NPW: SHW07.05540	NPW: SHW07.05420	NPW: SHW07.05550	NPW: SHW07.05430
	Analysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96
Amayitigalimeth	Glean-up	N/A	N/A .	N/A						
100 N	(Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Analyte		Nitrobenzene	Naphthalene	N-nitroso-di-n-propylamine	N-nitroso-di-phenylamine¹	Di-n-octylphthalate	Pentachlorophenol	Phenanthrene	Phenol	Ругеле

Cannot be distinguished from Diphenylamine

NPW: Non-Potable Water

Picatinny Subpart X Permit Page 13 of 23

		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes
	010	STL North Canton OH001	STL North Canton	STL North Canton		STL Knoxville TN001	KnoxvIIIe TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001
THE REPORT OF THE PROPERTY OF	Marix Anglyte Gode	NPW: SHW07.05350	NPW: SHW07.05250	NPW: SHW07.05360	Seviso Seviso	NPW: SHW06.28100	NPW: SHW06.28040	NPW: SHW06,28030	NPW: SHW06.28070	NPW: SHW06.28110	NPW: SHW06.28010	NPW: SHW06.28020
	r Paransista	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	sexijogiyes:	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94
Analyticalinethods	Color Color	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	. N/A
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	Address - Sheet and the	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94
	E FEXITAGION	Сһгуѕепе	Di-n-butylphthalate	Dibenz[a,h]anthracene		2,4-Dinitrotoluene	1,3-Dinitrobenzene	1,3,5-Trinitrobenzene	2,4,6-Trinitrotoluene	2,6-Dinitrotoluene	Cyclotetramethylene tetranitramine (HMX)	Oyclotrimethylene trinitramine (RDX)

Picatinny Subpart X Permit Page 14 of 23

Table T-1 (continued) Picatinny Open Detonation Area Subpart X Permit Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

Whally'e		Analyticalmethod			Ileation in the second	EligibletorReportivu	Eligible to Report NICE III
	EX.	Glean-up		Matrix: Analyte Codes 4: Tablib	Ten (Tablib)	大学品等于23	
N-Methyl-N,2,4,6- tetranitroanlline (Tetryl)	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06.28050	Knoxville TN001	Yes Yes	
Nitrobenzene	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06.28060	Knoxville TN001	Yes	
Nitrocellulose	USEPA 353.2 (modiffed)	N/A	· USEPA 353.2 (modified)	Not Certified In NJDEP Database	None	No	User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP
Nitroglycerin	SW-846 8332 Rev. 0, 12/96	N/A	SW-846 8332.Rev. 0, 12/96	NPW: SHW06.29100	Knoxville TN001	Yes	Vatabase as of 8/26/05
Nitroguanidine	SW-846 8330, Rev. 0, 9/94 (modified)	N/A	SW-846 8330, Rev. 0, 9/94 (modified)	Not Certified in NJDEP Database	None	No	User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP
Pentaerythritol tetranitrate (PETN)	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06,28045	Knoxville TN001	Yes	Database as of 8/26/05
4-Amino-2,6-dinitrotoluene	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06.28080	Knoxville TN001	Yes	
2-Amino-4,6-dinitrotoluene	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW; SHW06.28090	Knoxville TN001	Yes	
2-Nitrotoluene	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06.28120	Knoxville TN001	Yes	
4-Nitrotoluene	SW-846 8330, Rev. 0, 9/94	N/A	SW-846 8330, Rev. 0, 9/94	NPW: SHW06.28140	Knoxville TN001	Yes	
					•		

Picatinny Subpart X Permit Page 15 of 23

	A STATE OF THE STA												
			A Pes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	inganon and a second		Knoxvijle TN001		North Canton OH001	North Canton OH001	North Canton OH001	North Canton	North Canton	North Canton	North Canton	North Canton	North Canton OH001
	NUDER CONTRACTION	Matrix Araliyie Code	NPW: SHW06.28130	Metals of the	NPW: SHW04.05000	NPW: SHW04,07000	NPW: SHW04.09500	NPW: SHW04.11500	NPW: SHW04.13500	NPW: SHW04.16000	NPW: SHW04.17500	NPW: SHW04.18500	NPW: SHW04.22500
		Ahalysis	SW-846 8330, Rev. 0, 9/94		SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96
CHARLES FOR THE	AhatylicaliMetrod	Tiolean up	N/A		-N/A	N/A	N/A	. W/A	N/A	N/A	N/A	. A/N	N/A
		Extraction	SW-846 8330, Rev. 0, 9/94		SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92
	74	では、 一年 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の	3-Nitrotoluene		Aluminum (Trace ICP)	Antimony (ICP/MS)	Arsenic (ICP/MS)	Barlum (Trace ICP)	Beryllium (Trace ICP)	Cadmium (ICP/MS)	Calcium (Trace ICP)	Chromium (Trace ICP)	Cobalt (Trace ICP)

Picatinny Subpart X Permit Page 16 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

Elgible for Rebor		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001
Nabepression of the state of th		NPW: SHW04,24500	NPW: SHW04.26005	NPW: SHW04.28000	NPW: SHW04.30500	NPW: SHW04.31500	NPW:WPP04.33000	NPW: SHW04.35500	NPW: SHW04.38000	NPW: SHW04,40600	NPW: SHW04.41000
	H Analys	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 7470A, Rev. 1, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96
alytic		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction =	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	EPA 245.1	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, 1 Rev. 1 7/92	SW-846 3005, Rev. 1 7/92
WANTED WAS		Copper (Trace ICP)	Iron (ICP/MS)	Lead (ICP/MS)	Magnesium (Trace ICP)	Manganese (Trace ICP)	Mercury	Nickel (Trace ICP)	. Potassium (ICP)	Selenium (ICP/MS)	Silver (ICP)

Picatinny Subpart X Permit Page 17 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

										User Defined Method for Picatinny Arsenal	
Eligibe to Reportivu		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Y.es	Yes
lication		North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	STL Pittsburgh PA005	North Canton OH001
NUDEPICE HITICATION	Matrix Analyze Code	NPW: SHW04.43000	NPW: SHW04.45500	NPW: SHW04.47500	NPW: SHW04.49000	NPW: SHW04.15100	NPW: SHW04,47100	NPW: WPP04.52050	NPW: SHW04.47170	NPW: SHW04,44001	Other Picatinny Arsenal Project
	E PANALYSIS	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	EPA 200.7	SW-846 6020, Rev. 0, 9/94	SW-846 6020, Rev. 0, 9/94 (modified)	SW-846 6020, Rev. 0, 9/94
Analytical Method	Clean-up	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 N/A
	Extraction	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	EPA 200.7	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92 (modified)	SW-846 3005, Rev. 1 7/92
Aliaby		Sodium (ICP)	Thallium (ICP/MS)	Vanadium (ICP)	Zinc (Trace ICP)	Boron (ICP)	Tin (Trace ICP)	Titanium (ICP)	. Tungsten (ICP/MS)	Strontium (ICP/MS)	Zirconlum (ICP/MS)

Picatinny Subpart X Permit Page 18 of 23

假的红	<u> </u>			-	:41		94				- _T	·
		User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP Database as of 8/26/05; Request analysis of Silica (SiO) in lent of Silican (Si)	(10) 100 100 100 100 100 100 100 100 100									
E G D G C E E E E E E E E E E E E E E E E E E		ON.	Yes		Yes		Yes	Yes	Yes	Yes	Yes	Yes
	Eabibi	None	North Canton OH001		North Canton OH001		North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001
NUDEPOCRIFICATION	Matrix: Analyte/Code	Not Certified in NJDEP Database	NPW: SHW04.34005	Cyanide	NPW: SHW09.05000	des/PGBs	NPW: SHW06.12010	NPW: SHW06.13110	NPW; SHW06.13120	NPW: SHW06.13130	NPW: SHW06.13140	NPW: SHW06.13150
	The Analysis -	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94		SW-846 Method 9012A, Rev. 3, 12/96	Resticions/PGBs	SW-846 8081A, Rev. 1, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96
		N/A	N/A		N/A		, N/A	N/A	N/A	N/A	N/A	N/A
Test	Extraction	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92		SW-846 Method 9012A, Rev. 3, 12/96		SW-846 3520C, Rev. 3, 12/96	.SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96			
- Autoritaria		Sillcon (ICP)	Molybdenum (ICP/MS)	中に	Total Cyanide		Aldrin	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248

Picatinny Subpart X Permit Page 19 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

		Yes												
		North Canton OH001	North Canton	North Canton OH001	North Canton OH001									
IN SECTION IN THE PROPERTY OF	Matrix: Analyte Code	NPW: SHW06.13160	NPW: SHW06.13170	NPW: SHW06.12020	NPW: SHW06,12030	NPW: SHW06.12040	NPW: SHW06.12050	NPW: SHW06.12060	NPW: SHW06.12090	NPW: SHW06.12100	NPW: SHW06.12110	NPW: SHW06.12120	NPW: SHW06.12130	NPW: SHW06.12140
	ENLANAIVSIS DE	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96
Analiyicaliyistho	(Clean up)	N/A	N/A	N/A	N/A	. N/A	N/A	N/A	· N/A	N/A	N/A	N/A	N/A	· N/A
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Annaly (Cal		Aroclor-1254	Aroclor-1260	alpha-BHC	beta-BHC	delta-BHC	gamma-BHO (lindane)	Chlordane (technical)	P,P'-000	P,P'-DDE	P,P'-00T	Dieldrin	Endosulfan A	Endosulfan B

Picatinny Subpart X Permit Page 20 of 23

		は 100mm 10		記録をなければ、1985年を表現していません。 では、1985年を表現していません。			
		Analytical Wethoc		NIDER COLUMNIA		Eligible to Reporting	
	Extraction	in recieation	A NUMBER OF STREET			Dail of the second seco	
Endosulfan sulfate	SW-846 3520C,	N/A	SW-846 8081A,	NDM: OUNGO CONTO	North Canton		
Fodgio	SW-846 3520C,		Hev. 1, 12/96	06121.00001.10.00	OH001	Yes	•
111111	Rev. 3, 12/96	N/A ·	Rev. 1, 12/96	NPW: SHW06.12160	North Canton OH001	Yes	
Endrin aldehyde	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 12/96	NPW: SHW06.12170	North Canton	Yes	
Endrin ketone	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 12/96	NPW: SHW06.12180	North Canton	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Heptachlor	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 12/96	NPW: SHW06.12190	North Canton	S	
Heptachlor epoxide	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 12/96	NPW: SHW06.12200	North Canton	5 0	
Methoxychlor	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 12/96	NPW: SHW06.12210	North Canton)	
Toxaphene	SW-846 3520C, Rev. 3, 12/96	. N/A	SW-846 8081A, Bey 1 12/96	NPW: SHW06.12220	North Canton	20 >	
Mirex	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8081A, Rev. 1, 1906	NPW: SHW06,12212	North Canton		
			The Contract of the Contract o	Organophosphonolskeshickes	OH001	Se l	
Malathian	SW-846 3520C.		SW-946 0444A				
- Maranilori	Rev. 3, 12/96	N/Ą.	Rev. 1, 9/94	NPW: SHW06.21060	North Canton OH001	Yes	
Diazinon	SW-846 3520C, Rev. 3, 12/96	N/A	SW-846 8141A, Rev. 1, 9/94	NPW: SHW06.21040	North Canton OH001	Yes	
				Julion Short			
			The state of the s	MANAGEMENT OF THE SECOND STATES	建筑的建筑和建筑的		

Picatinny Subpart X Permit Page 21 of 23

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

			T. T. T. T. T. T. T. T. T. T. T. T. T. T	1			
	Yes	STL St. Louis MO002	WPP04,52500	. EPA 200.8	N/A	EPA 200.8	Total Uranium (mass)
				Depleter			
As per NJDEP, Method 314 is acceptable for the analysis of Groundwater	Yes	Knoxville TN001	SDW:SDW02,31120	EPA 314.0	N/A	EPA 314.0	Perchlorate
	Yes	North Canton OH001	NPW: WPP02.34000	EPA 365.2	N/A	EPA 365.2	Total Phosphorous
	Yes	North Canton OH001	NPW: WPP02,47500	EPA 376.1	N/A	EPA 376.1	Sulfide
	Yes	North Canton OH001	NPW: SHW09.13050	SW-846 9056, Rev. 0, 12/96	N/A	SW-846 9056, Rev. 0, 12/96	Sulfate
	Yes	North Canton OH001	NPW: SHW09.29150	SW-846 9056, Rev. 0, 12/96	N/A	SW-846 9056, Rev. 0, 12/96	Nitrite (NO ₂)
	Yes	North Canton OH001	NPW: SHW09,30150	SW-846 9056, Rev. 0, 12/96	N/A	SW-846 9056, Rev. 0, 12/96	Nitrate (NO ₃)
	Yes	North Canton OH001	NPW: SHW09.34150	SW-846 9056, Rev. 0, 12/96	N/A	SW-846 9056, Rev. 0, 12/96	Fluoride
	Yes	North Canton OH001	NPW: SHW09.33100	SW-846 9056, Rev. 0, 12/96	N/A	SW-846 9056, Rev. 0, 12/96	Chloride
	Yes	North Canton OH001	NPW; WPP02,03500.	EPA 350.3 Electrode	. N/A	EPA 350.2 Distillation	Ammonium (Ammonia as Nitrogen)
		Labio	2 32 H3 PC	Analysis	Licies Haub	Extraction	
	Eligible to Report National	Meation:		Po	Analylicallyethod		Analyte
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TO THE COURT OF THE PERSON NAMED IN COLUMN NAM	。 10.1511年1月1日日 10.1511日日 10.1511日	はあれたは正成ななないと	では、 ないのでは、 ないの	

NPW: Non-Potable Water

Picatinny Subpart X Permit Page 22 of 23

Table T-1 (continued) Picatinny Open Detonation Area Subpart X Permit Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

NPW:SHW09.6010 USACE USA	Maywood, NJ 07607 201-226-6680		111010		·		_	
May May	Laboratory 100 West Hunter Ave,	Yes	FUSRAP Lab	NPW: SHW09.60110	SW-846 9320, Rev. 0, 9/86		N/A	Rev. 0, 9/86 N/A
Provided Provided	USACE FUSRAP Maywood		HO 401		E 0000 070 710			
The control of the	334-272-2234				• .	ㅗ		
Procession	1000 Monticello Ct							
Page Page	LABORATORY	Yes	לאט רמט אין טטיי	NPW: SHW09.60105	EPA 903.1		C	
Figure F	ENVIRONMENTAL							
NPW:SHW09.60310	201-226-6680							
Name	Maywood, INJ U/60/	,						
NPW:SHW09.60310 USACE US	Margan M. 04604	3	02022					
NWIDER Certification Eligible (Cereportinus Comment Cereportinus Certification Cer	100 West Hinter Ave	√es	FUSRAP Lab	NPW: SHW09.60120	DOE 4.5.2.3	<u> </u>	N/A —	N/A
NPW:SHW09.60310 USACE US	USACE FUSRAP Maywood		USACE			(
NPW:SHW09.60310 USACE US	201-226-6680							
Maywood, NJ OFGOT CLADE	Maywood, NJ 07607		02022					
NPW:SHW09.60310 FUSAP Lab Yes 100 West Hunter Ave, Maywood, NJ 07607	100 West Hunter Ave.	Yes	FUSHAP Lab	NFW:SHW09.60310	20-0-02			
MADER Confinention Eligible for Reporting	Laboratory		USACE				N/A	DOE U-02
MUDEP Certification Eligible Cereporting	201-226-6680					L		
NPW:SHW09.60310 FUSACE Ves Ves Laboratory Luboratory Lubor	Maywood, NJ 07607		סבסבק					
NPW:SHW09.60310 FUSACE USACE USACE FUSAAP Maywood USACE FUSAAP MAXWOOD USACE FUSAAF MAXWOOD USACE FUSAAP MAXWOOD USACE FUSAAF MAXWOOD U	100 West Hunter Ave.	Yes	FUSRAP Lab	NPW;SHW09,60310	מייט ש	<u>.</u>	<u> </u>	
NAUDE PLOCENTIFICATION WAITING CORRESPONDENCY WAITING CORRESPONDENCY WASHWOOD, 60310 USACE Labit DE USACE Laboratory Ves USACE FUSRAP Maywoo Laboratory Ves Maywood, NJ 07607 201-225-6880	USACE FUSRAP Maywood		USACE		2 2 2 3 3 4 4		δ/N	DOE U-02
NPW:SHW09.60310 FUSACE O2022 Yes Maywood, NJ 07607	201-226-6680					Ļ		
MAITHX.Analyte Godge Watthx.Analyte Godge USACE FUSACE PUSACE PUS	Maywood, NJ 07607		02022	=====		-		
What is well as the second of	100 West Hunter Ave.	Yes	-	NFW:SHW08,60310		******		-
WARTIN Analyte Google Laberton Control of the Contr	Laboratory .						N/A	DOE U-02
MALIA MARINESSE CONTROLLED TO THE PROPERTY OF				CONTRACTOR OF THE CONTRACTOR O	DOE U-02			
CALION MAN TO THE STATE OF THE			Labild:		Ahaiysis		Clean.up	
ELIGIB ELIGIBETORINUS IN THE STATE OF THE ST					The state of the s			
	Comment.	Eligible to Report N						
The state of the s						8	IIAnalytical Method	MARINETER

Table T-1 (continued)
Picatinny Open Detonation Area
Subpart X Permit
Groundwater Monitoring Analytical Parameters, Methods, Laboratories, Certifications

	USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607
Eligibio Reportivi	Yes
	USACE FUSRAP Lab 02022
Matrix: Analyteics	NPW: SHW09.60130
	DOE 4.5.2.3
Analytical Memo	N/A
ugiyê iyg	DOE 4,5.2,3
AMMINTE	Cobalt – 60

Table T-2 Groundwater Sampling and Testing Requirements Open Detonation Area Picatinny Arsenal, New Jersey

Anayke	Samples 2 Containe 3	a Preservative	Holding 25
TCL Volatile Organic Compounds + Additional Alcohol Compounds	40 ml glass vial with teflon- lined septum	HCl to pH < 2 Cool to 4°C	7 days
TCL Semivolatile Organic Compounds + Mirex, Diphenylamine, carbazole, anilne	2 liter amber glass with Teflon lined cap	Cool to 4°C	7 days to extraction 40 days after extraction
TCL Pesticides/PCBs	2 liter amber glass with Teffon lined cap	Cool to 4°C	7 days to extraction 40 days after extraction
Organophosphorous Pesticides	2 liter amber glass with Teflon lined cap	Cool to 4°C	7 days to extraction 40 days after extraction
Explosives including nitroesters	4 liter amber glass with Teflon lined cap	Cool to 4°C	7 days
TAL Metals + Boron, Titanium, Strontium, Tin, Silicon, Molybdenum, Tungsten, Zirconium	1 Liter polyethylene	HNO ₃ to pH < 2 Cool to 4° C	6 months (except Mercury, 28 days)
Cyanide	1 Liter polyethylene	Na OH to pH > 12 Cool to 4° C	14 days
Ammonia	500 ml polyethylene	H₂SO₄ to pH < 2 Cool to 4°C	28 days
Chloride	500 ml polyethylene	Cool to 4°C	28 days
Flouride	500 ml polyethylene	Cool to 4°C	. 28 days
Nitrite	500 ml polyethylene	Cool to 4°C	48 hours
Nitrate	500 ml polyethylene	Cool to 4°C	48 hours
Total Phosphorous	1 Liter polyethylene	. H₂SO₄ to pH < 2 Cool to 4°C	28 days
Sulfide	1 Liter polyethylene	Na OH to pH > 12 Cool to 4° C	7 days
Perchlorate	500 ml polyethylene	Cool to 4°C	48 days
Depleted Uranium	2 liter amber glass with Teflon lined cap	HNO3 to pH < 2 Cool to 4° C	6 months
Gamma Spectroscopy	2 liter amber glass with Teflon lined cap	HNO3 to pH < 2 Cool to 4° C	6 months

APPENDIX T-1.A BORING LOGS

	:				
			•		
·					·
			·		
	•				. •
				,	
•					•
·	· ·		. •		
			•		
			·		

WELL CONSTRUCTION LOG Well OD-1A

	Project: Open Detonation Area - Task 8 Well: OD-1.
	Town/City: Picatinny Arsenal (PTA)
:	County Morris
,	Permit No. NJ 2233305
(5.	Land Surface Elevation
Top of Well Casing 2 ft	and Datum 862.5 feet Estimated: X Surveyed:
Ground Level	Installation Date(s): 11/19/93
Concrete Ped	Drilling Method: Air hammer
	Drilling Contractor: Diamond Drilling
5 inch diameter	Drilling Fluid: none
drilled hale	
Well casing type. 1 inca diameter. PVC	Development Technique(s) and Date(s):
	11/23/93. suction pump
Grout	
A	Fluid Loss During Drilling: N/A gallons
Bentanite Seal	Water Removed During Development: 525 gallons
2 ft. pellets	Static Depth to Water: 6.63 feet below M.P.
	Pumping Depth to Water: 9.45 feet below M.P.
(1 Screen Top	Pumping Duration: 2.50 hours. M.P top of casing
	Yield: 3.5 gpm Date: 11/23/94
Well Screen Type.	Specific Capacity: 1.2 gpm/ft
PVC_ 20 slot	Well Purpose: ; monitoring
Gravel Pack	
	Remarks: No problems at this location with caving of boulders.
	11/23/93 Specific Conductivity = 60 μs/cm, temp = 10.0°C
14 (t Bottom Plug	On 12/16/93 @ 1500 hrs depth to water was 6.42 ft below top of PVC.
Bentonile plug and seal	casing
18 It Total Depth	
measuring point is ground level	

Prepared by:

Joe Lysonski

Anderson-Mulholland & Associates, Inc.

Project:

Boring Melt IA Project No Size Started Start		SAMPLEJOURE LUG		
Ste Docation PTA - 01) Area Stated 11/11/13 Conting Completed (1/19/43) Total Depth Drilled 18 Jeet Hole Diameter inches Type of Sample! Length and Diameter of Coring Device Sampling Interval Jeet Land-Surface Elev. Jeet C Surveyed C Estimated Datum Drilling Fluid Used Drilling Fluid Used Drilling Fluid Used Drilling Fluid Used Drilling Method Drilling Fluid Used Drilling Method Drilling Met	Boring/Well 1A Project/N	a	Page d	
Total Depth Onlied 18 feet Hole Diameter inches Type of Sample/ Coring Device Sampling Interval feet Land-Surface Elev. feet C Surveyed Estimated Datum Drilling Fluid Used Drilling Method Drilling Fluid Used Drilling Method Drilling Fluid Used Drilling Method Drilling Method Drilling Method Sample/Core Depth Green Pepth From To Recovery Bross or Bross per to Inches Sample/Core Depth Inches Sample/Core Depth Inches Sample/Core Depth Inches The Drilling Method Drilling Method Drilling Method Drilling Method Drilling Method From To Recovery Heart Drivery Inches Sample/Core Depth Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches The Driver Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches The Driver Inches Sample/Core Depth Inches The Driver Inches Sample/Core Depth Inches The Driver Inches The Driver Inches Sample/Core Depth Inches The Driver Inches	Site Location PTA - 00	Area Drilling 11/11/93	Drilling Completed (1/19/=3	
Land-Surface Elev	Total Depth Orilled 15 fee	Type of Sam Hole Diameterinches Coring Device	ople/ . / / · · · · · · · · · · · · · · · ·	_
Drilling Contractor Prepared By Corr From To (Pert) A and, gravel, bouldars clame light from No decrease the desired state of the desired state of the desired state of the desired state of the desired state of the desired state of the desired state of the desired state of the desired state of the desired state of the desired of the				et
Contractor Jean and Dulling Dritter Helper Prepared By JC Ly South. Hammer Weight Drop inches Sample/Core Depth (Seet Description To Recovery From To Recovery Recov		•	ethod	
By Grant and a Core of Property Core of Property of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Boose and stated of Stat	Contractor Dear on			
(bot briow land strice) From To Recovery (Pressure or Bloss per 6 Inches) 3 18/1 Aunt and John Sample/Core Description Auntace fill 5-19, some such, dank brown No sourcours how of catar until dit 12 lf byl, More clayer at thus location that at other well locations. Hole remained open without any covery perblame.	By	Hammer Weight	HammerDrcpinche	s
Sumple Core Description Sumple Core Descripti	(fact before land surface) Core Pressure	or ·		
3 1841 Aand, morel, boulders claim light brown No obvious claw of cater until abt 12 ft bigh. More clayer at this location that at other week locations. Hole remained open without any covery publicus.			-	• .
No obvious class of enter until alt 12 It bigh. More clayer at their location that of other well locations. Hole remained open without any coving problems.	0 3/4	surface fill 5 ig some	and, dark brown	Ī
No decrous show of enter until alt 12 It light. More clayer at their location that of other well locations. Hole remained open without any covering publicus.		sand, gravel, boulders cla	men luld brown	l
Hole remarked open without any coving problems.		1 - 11	/	Ì
Coving problems.		12 ff bigh More charge	at the location	Ī
Coving problems.		that it other well locate	me.	
Coving publicus.		Hole remarced open with	nont any	
		coving prolan.	(
		0 1		
			·	
	·			
	-	VIII W		
			•	1
			· · · · · · · · · · · · · · · · · · ·	
			-	
			,	1
				i
				1
·		· · · · · · · · · · · · · · · · · · ·		` `

I

. F .

WELL CONSTRUCTION LOG Well OD-2A

•	Permit No.
	Land Surfa
··· (r ·	and Datum
Top of Well Cosing 2 ft	Installation
Ground Level	Drilling Me
Concrete Pad	. Drilling Co
NN .	Drilling Flu
6 inch digmeter drilled hale	Developmen
Well casing type.	11/22/1993.
Grout nent cement	Fluid Loss I
9 in.	Water Remo
	Static Depth
Bentonite Seal	Pumping De
	Pumping Du
	Yield:
2 ft. 9 in. Screen Top	Specific Cap
	Well Purpos
Well Screen Type,	•
- Z inch diameter. PVC 20 slat	Remarks:
	of boulders.
Crevel Peck	Low yielding
	On 12/16/93
	casing.
12 ft. 9in. Battom Plug	***************************************
Bentonite plug and seal	***************************************
17 It Tolci Depth	

Project:	Open D	etonat	ion Area - Tasl	c 8	Well:	OD-2A
Town/City:	Picating	ıy Ars	enal (PTA), OI	Аге:	<u>a</u>	
County.	Morris	····	•		State	NJ
Permit No.	NJ 2233	306				-
Land Surface	: Elevatio	n				
and Datum	850.5	feet	Estimated: X	(_Surveyed:	
Installation D	ate(s):		11/19/93	•		•
Drilling Met	nod:		Air hammer			
Drilling Cont	ractor:		Diamond Dril	ling		
Drilling Fluid	i:		none	₹"		
Development	Techniqu	1c(s) a	nd Date(s):			
11/22/1993, s	uction pu	mp	,			
Fluid Loss Du	uring Dril	ling:	N/A			gallons
Water Remov	ed Durin	g Deve	elopment:		est. 60	gallons
Static Depth t	o Water:		5.62 on 11/23/	93 ·	feet below l	MP.
Pumping Dep	th to Wat	er.	not measured		feet below l	vLP.
Pumping Dura	ation:	1	hours	MLP	top of casin	<u> </u>
Yield:	low	gpm			Date:	
Specific Capa	city:				•	
Well Purpose:	- V.:	monit	oring			
Remarks:	Difficult (to set	casing and scre	en be	cause of cav	ing
of boulders. H	Iad to set	tempo	orary surface ca	sing	to keep hole	ореп.
Low yielding	well.					<u></u>
On 12/16/93 (@ 1542 h	rs dep	th to water was	5.27	·ft below top	ofPVC
casing.	•					
			•			
			-			

measuring point is ground level

Anderson-Mulholland & Associates, Inc.

Joe Lysonski

Prepared by:

SAMPLE/CORE LOG

Boring/ Site	weil <u>01</u> 1 <u>0</u> ç)-ZA 1	Project/Na_	Precidence Arrend, Tente 8 Page d Drilling Ansa Staned 11/19/73 Completed
Total De		ed <u>17</u> neter		type of Sample! Hole Diameter 6 inches Coring Device Sampling Interval
			leet	☐ Surveyed ☐ Estimated Datum
Drilling	Fluid Use	ed		Drilling Method.
Drilling Contract	ter	Deam	iond D	roling Co. Driller Bruk Helper
Prepare Rv	d Jo	C 1450	יטאבן	Hammer Hammer Weight
Sample/C	Core Depth land surface) To		Time/Hydraulic Pressure or Blows per 6 Inches	Sample/Core Description
0	3			And sound and lost from
				sent a growd, self dark brown
3	17			ivater at 40° bolow ground land
<u> </u>				boullers, soul great rold - class
				sir bulbles him an hammer coming to
	•		-	surper is within a 15' radius of well.
				No evidence of an bellelas in wearly
				Them Paul Brook.
	-	·		
	-			AND THE RESERVE OF THE PERSON
		• /		
-				
		_		
•.				
				· Lipond.
•	•	·		JU

i

WELL CONSTRUCTION LOG Well OD-3A

		Project: Open Detonation Area - Task 8 Well: O	D-3
	•	Town/City: Picatinny Arsenal (PTA)	<i>U-</i> 3.
•		County Morris	
	•	Permit No. NJ 2233307	NJ
		Land Surface Elevation	,
. /	. '	and Datum 846.0 feet Estimated: X Surveyed:	
(-F Top of William	Installation Date(s): 11/17/93-11/18/93	
	Top of Well Casing 2 ft	Drilling Method: Air hammer	
	+	Drilling Contractor: Diamond Drilling	
	Concrete Pad	Drilling Fluid: none	
HI.		TO TO TO TO TO TO TO TO TO TO TO TO TO T	
	drilled hole	Development Technique(s) and Date(s):	-
H.	Well cosing type	11/19/93, suction pump	
	PVC 457U 1785 F460	, and parties	
	Grout ceet cement	Fluid Loss During Drilling: N/A gallor	
	· ·	Water Removed Davis D. 1	
	Bentanite Seal	CALL' D	15
HH	1 ft. 1 in. bentonite pellets	There is a second of the second	
	,		
		Vield:	
	1 ft. 6 ta. Screen Top		/93
	W.H.D.	THE AN AND AND AND AND AND AND AND AND AND	
11	Well Screen Type,	Well Purpose: monitoring	
計	ASTM 1785, F480		
	☑ Gravel Pack		
		Remarks: Difficult drilling because of caving of boulders.	
161		On 12/16/93 @ 1543 hrs depth to water was 3.21 ft below top of PV	rC_
1.0+	1 ft. 6 in. Bottom Plug	casing.	
	Bentanite plug and sect 17 It Total Depth		
	- to total Depth		
suring point is	graund level		

Project:

Open Detonation Area - Task 8

Prepared by:

Well:

Joe Lysonski

Anderson-Mulholland & Associates, Inc.

:...

SAMPLE/CORE LOG

Rorina∕\	tell 3	71	Project/Na _		Paged
Cita .			-	Držing Started	Dolling (i/,1/i3 Completed 1/18/i3
			leel leel	Hole Diameter 6 inches	Coring Device
ength a d Coring	nd Diar Device	neter 2			Sampling Intervalfeet
.and-Sur	face Ele	ev	feet	☐ Surveyed ☐ Estimated	Datum
orilling F	luid Usa	ed			Drilling Method
محالتمم		_	<u>-</u>		rillerHelper
reparec	J 	٠,	C. Lyso		Hammer Hammer
Зу			.C. C450	199 <u>F</u>]	Dropinches
Sample/Cr feet below k	and surface)	Core Recover			•
From	ъ —	(Met)	Inches		emple/Core Description
0	3			surface ochurce	rt
3	17'			to seld clay 4 6	orders (Grean Poul composition
				water at elt 3 km	1
				1 ()	much 45 min often parce in
	+	<u> </u>	1		2 / 00
					to chez, boullers
		<u> </u>		to come at	around 8 ft
				Duel to 17 wet.	cley boulder
					:
			<u> </u>		- Adday (
				,	
				·	
	*			•	
		<u> </u>			
		-			
					· Klyma
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

WELL CONSTRUCTION LOG Well OD-4A

measuring point is ground level

		Townselly. Picanning Arsenai (PTA)
	<i>:</i>	County Morris State NJ
•		Permit No. NJ 2233308
		Land Surface Elevation
	Top of Well Casing 2 It	and Datum 847.0 feet Estimated: X Surveyed:
<u>.</u>		Installation Date(s): 11/18/93
	Ground Level	Drilling Method: Air hammer
¥	Concrete Pad	Drilling Contractor: Diamond Drilling
	II I	Drilling Fluid: none
	6inch diameter	
	drilled hole	Development Technique(s) and Date(s):
	Well casing type.	11/19/93, suction pump 1
	PVC	
	Grout	Fluid Loss During Drilling: N/A gallons
	1 11. 3 in.	Water Removed During Development: 60 gallons
	Bentanite Seal	Static Depth to Water: 4.56 feet below M.P.
		Pumping Depth to Water: 5.85 feet below M.P.
	1111	Pumping Duration: 0.33 hours M.P top of casing
		Yield: 3 gpm Date: 11/19/93
	2 11. 7 in. Screen Top	Specific Capacity: 2.3 gpm/ft
_		Well Purpose: monitoring
	Well Screen Type.	487
••	PVC 20 slot	
·		Remarks: Difficult drilling because of caving of boulders. Had to
	Gravel Pack	set temporary surface casing to prevent caving.
	[]	On 12/16/93 @, 1545 hrs depth to water was 4.19 ft below top of PVC
		casing.
	Bentonite plug and seat	
	17 It Total Depth	

Project:

Open Detonation Area - Task 8

Prepared by:

Well:

Joe Lysonski

Anderson-Mulholiand & Associates, Inc.

OD-4A

SAMPLE/CORE LOG

Boring∕\	veil 00	-4A Pr	cject/Na	Page \alpha \tage \alpha \tage \tage \alpha \tage
Site ₹~ation		P	TA-0	D Drilling D Started 11/15/73 Completed
notal Dep	oth Drille	d	leet H	Icle Diameter 6 inches Coring Device
	g Device			
Land-Su	rface Ele	V	feet	☐ Surveyed ☐ Estimated Datum
Orilling F	Fluid Use	ed	•	•
Contract	or	Dian	oul Dre	OriterHelper
Prepared By	<u> </u>	Ic.	Lyson	OriterHelper
	ore Depth		Time/Hydraulic Processes or Blows per I	:.
From	TA	(Seet)	Inches	Semple/Core Description
0	3.			sand grevel selly dock brown
3	17			toulders sand grad day
				boulders mostly congosit of those look
				boulders mostly confound of Ilrum Pord
l' .	•			
	•			
		·		
	1			
	-			
	<u> </u>			7,5,44
	ļ			
	<u> </u>			
				·
		 -		
	+			h) (.
	 			The state of the s
L				

1 11011170		2. Protective Cover:	
	ISTRUCTION DIAGRAM	· B Above Ground	
Facility/Project Name: PTA	100.27-170000	☐ Flush Cover	
Well Name: OD-5A		A. Inside Diameter:	
I I Data Wall Installad. I Co. h	-	Ø Steel	
UTM Coordinates of W.		Other	
	E:	D. Drainage Port Size:	
All measurements are referenced below ground surface.		3. Surface Protection:	
grand sarides.			
A. Protective Cover Interval	$11 \boxed{1}$	B. Location: Corners	
2.5 FT TO 2.5 FT		4. Informal Mortar Collar	
B. Well Casing Stickup 9.5 FT TO 2.0FT		A. Composition: N'est Clonest	
		B. Quantity: 5 gaillors	
C. Mortar Collar Interval		5. Grout Seal:	
•	1 1 12 12 1	A. Composition: Portkend Type I	
40	1 1 12 12 1	Bentonite Quantity: 300	
E. Primary Seal Interval 9.5 FT TO 4.0 FT	1 1 1 1 1 1		
F. Screened Interval		~ .	
19.5 FT TO 9.5 FT	5		
	1 1 12 12 1	• •	
G. Screen-Battom Plug			
H. Filter Pack Interval		Bentonite Slurry:	
200FT TO 5.0FT		El Sand:	
I. Backfill Interval		C. Installation method:	
		☐ Tremle Pumped 👸 Gravity	
USCS Classification of soil near screen		7. Filter Pack:	
GP CI CI CO M	E		
SW SP SM SC			
ML MH CL CH CH .			
padrock []		-	
Drilling method used:			
Hollow Stemmed Auger			
-> Air Rofary		Other:	
Other		9. Well Screen: D	
Size and type of bit:		A. Manufacturer: Bedrack	
6" Hammer		B. Composition: YVC C. Slot Size: 0.061"	
Drilling fluid used:	Flush Cover Gravity Filter Pack: A. Composition: Bentonte Pallats: Bentont		
Water Air 6 Mud		10 Backfill:	
None Lost: O GAL		•	
Comments:	i 10		
Countain 2:	1 - (/////	Other:	
	1		

APPENDIX T-2

GROUNDWATER SAMPLING AND ANALYSIS PLAN

. •

APPENDIX T-2 OD AREA GROUNDWATER SAMPLING AND ANALYSIS PLAN

1.0 Introduction

This document presents the groundwater sampling and analysis plan (SAP) for the RCRA detection monitoring system at the Open Detonation Area (ODA) at Picatinny Arsenal, New Jersey. The SAP is being provided in accordance with 40 CFR 264.97. The plan presents a description of the groundwater detection monitoring system, a discussion of field sampling activities and the analytical parameters to be sampled for at the six wells in the ODA. All sampling activities will be conducted in accordance with this SAP.

The list of constituents that will be analyzed in groundwater at he ODA is discussed in Section 4.0. The list includes all constituents previously detected in soil and groundwater samples plus additional parameters requested by NJDEP. Sample parameters and analytical methods are listed in **Table T-1** of Attachment T, Protection of Groundwater. All parameters will be analyzed using certified methods and laboratories, when available.

2.0 Groundwater Detection Monitoring System

The system of detection monitoring wells at the ODA is shown in Figure 3-1 of Appendix T-1. The network consists of six overburden wells to monitor constituents in the groundwater at the ODA. Details of well construction and installation are presented in Appendix T-1, Hydrogeologic Investigation Report. Figure 3-1 also presents groundwater elevation contours and groundwater flow direction. Groundwater flow in the shallow aquifer is influenced by topography and Green Pond Brook. Groundwater flow is towards Green Pond Brook with a strong down valley component. Wells OD-2A, OD-3A and OD-4A are down or side gradient to the ODA and constitute the point of compliance for the ODA.

3.0 Groundwater Sampling

Procedures and protocols for collecting groundwater samples, sample preservation and shipment, and chain of custody control are discussed in the following sections.

3.1 Groundwater Sample Collection

All groundwater samples to be collected from monitoring wells will be collected using low-flow purging and sampling techniques to minimize disturbance to the water column in the well. Water levels will be measured in each well before purging and prior to sample collection.

The goal of low-flow sampling is to collect more representative samples by matching the intake velocity of the sampling device with the natural groundwater flow velocity, thereby reducing sample disturbances. The primary advantage of this procedure is the collection of low turbidity samples (i.e., samples with low concentrations of suspended particles) and the reduction of sample aeration, resulting in samples which are more representative of true aquifer conditions. Low flow sampling also, in most cases, reduces the volume of groundwater purged from the well.

This sampling procedure involves removing groundwater from a monitoring well using a variable speed stainless-steel electric-powered submersible pump placed at the screened interval. The pump intake will be kept at least two feet above the bottom of the monitoring well to prevent mobilization of any sediment present in the bottom of the well. The depth to which the pump is lowered and the sample collected will be recorded so that the pump can be placed in the same location during future sampling events.

Before pumping begins, the water level in the monitoring well will be measured. The water level will be measured at a minimum of every three to five minutes during pumping. Pumping rates will be less than 500 mL per minute. Ideally, a pumping rate will be maintained that results in a stabilized water level (less than 0.3 ft drawdown) in the monitoring well. Water quality parameters (i.e., pH, temperature, conductivity, DO, turbidity, and ORP) will be measured on three to five minute intervals for stabilization. Stabilization will be defined by the following variances between three successive readings: turbidity, DO and ORP within 10%; conductivity within 3%; pH within 5%; and temperature within 1° C. If the water quality parameters do not stabilize, pre-sample purging will continue until one well volume has been removed or a purge time of two hours has been exceeded.

If drawdown in the monitoring well is greater than 0.3 feet, the pumping rate will be reduced to match the recharge rate of the well, taking care to maintain pump suction and avoid air entrainment in the tubing. If drawdown continues despite reducing the pumping rate, then the following alternative method will be used:

If the groundwater level in the monitoring well stabilizes at some level above the top of the screened interval, pumping will continue until the water quality parameters stabilize. At a minimum, three times the volume of the groundwater drawdown in the monitoring well will be removed prior to groundwater sampling.

Teflon® tubing, connected to the pump with stainless-steel clamps, will be used in collecting low-flow groundwater samples. The tubing will be dedicated to each individual well. Sample bottles will be filled in order of decreasing analyte volatility and preserved according to the aqueous preservation procedures provided in Table T-2 of Attachment T, Protection of Groundwater. Entrainment of air in the tubing must not occur. The sampling sequences associated with each event will be documented in the field logbook. VOC samples will be collected first and directly into pre-preserved sample containers. The amount of HCL required for preservation will be determined using an acid blank with well purge water prior to sampling each well. All containers will be filled by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence.

Two-inch diameter, variable speed stainless steel submersible pumps will be used for presample purging as well as monitoring well sampling. The submersible pumps will be decontaminated after each use according to the following procedure:

- a. Wash and flush approximately 10 gallons with presampled and approved water through the pump
- b. Wash and flush approximately 10 gallons of alconox (low phosphate detergent) through the pump
- c. Wash and flush approximately 10 gallons of presampled and approved water through the pump
- d. Wash and flush approximately 10 gallons demonstrated analyte-free water through the pump
- g. Air dry
- h. Wrap with aluminum foil (shiny side out)

The decontamination procedure is consistent with the "Decontamination of Pumps" described in the NJDEP *Field Sampling Procedures Manual* (NJDEP, 1992). Dedicated Teflon-lined tubing will only be decontaminated prior to its first use.

3.2 Quality Control

The following types of field quality control samples will be collected during each round: equipment rinse blanks and field duplicate samples. The methods and frequency for collection of these QC samples are described briefly below.

Laboratory QA/QC will be reported in the analytical laboratory deliverables and will include method (laboratory) blanks, laboratory control (check) samples, laboratory duplicates, surrogate percent recovery, matrix spike/matrix spike duplicates, holding times, method detection limits, and a report narrative. The QA/QC will not be used to correct data.

3.2.1 Field/Rinse Blank Samples

The purpose of a field/rinse blank is to place a mechanism of control on sample equipment handling, preparation, storage, and shipment. The field/rinse blank travels and is stored with the sample bottles, and is also representative of bottle shipment effects on sample quality. The field/rinse blank is primarily used to indicate potential contamination from ambient air as well as from sampling instruments used to collect and transfer samples from point of collection into sample containers.

At the field location, in an area suspected to be contaminated, reagent-grade water prepared at the laboratory is poured into or over properly decontaminated sampling equipment and collected in the appropriate sample bottles. Field/rinse blanks will be submitted for the complete suite of analyses performed per matrix. Field/rinse blank samples will be collected at a frequency of one per type of equipment per decontamination event.

3.2.2 Field Duplicate Samples

Field duplicate samples are a second sample collected at the same location as the original sample. Duplicate samples will be collected simultaneously or in immediate succession, using identical sampling techniques, and treated in an identical manner during storage, transportation, and analysis to provide information on sampling precision as well as analytical precision. Duplicate samples will be collected at a frequency of 1 in 20 samples

3.3 Sample Management

The procedures described in this section ensure that once representative environmental samples are obtained, they are properly containerized, preserved, shipped and handled in a manner that maintains their chemical integrity. The use of these techniques will endure the representativeness of a sample and significantly reduce the possibility of sample contamination from external sources.

3.3.1 Sample Containers

All sample containers for laboratory analysis will be pre-cleaned and provided by the analytical laboratory(ies).

3.3.2 Sample Preservation and Holding Times

Chemical preservatives are required for select aqueous samples to retard degradation during shipment and storage prior to laboratory analysis. Preservatives will be added to appropriate samples at the time of collection. In addition to chemical preservatives, samples for chemical analysis will be transported to the laboratory in temperature-controlled coolers. The types of preservation required for aqueous samples collected during the field sampling activities at the ODA as well as holding times, are contained in **Table T-2** of Attachment T, Protection of Groundwater. Ice will be used to maintain the internal cooler temperature at 4°C.

3.3.4 Sample Documentation

Accountability for a sample begins when the ample is collected from its natural environment. A bound field logbook will be maintained to record the acquisition of each sample. Chain-of-

custody records for all environmental samples and field QC samples, laboratory results and any other data generated as a result of sampling activities at the ODA will be maintained on file. Sampling locations will be noted on site figures, which will become part of the permanent project records.

3.3.5 Data Management

Hard copies of the data will be provided in a report to NJDEP following validation of the data. The analytical data results will be validated in accordance with the USEPA Region II Standard Operating Procedure HP-6 Revision 11 (March 2001).

4.0 Sampling Frequency and Chemical Analysis

The constituents that will be monitored in the groundwater detection system are listed in **Table T-1** of Attachment T, Protection of Groundwater. The list was determined based on the nature of the waste handled at the OD Area as described in section I.C.1, soil and groundwater contamination identified in the OD Area, on the persistence, mobility and toxicity of the constituents, and negotiations with NJDEP. The sample containers and preservation methods to be used for sampling these constituents are listed in **Table T-2** of Attachment T, Protection of Groundwater.

The following constituents will be analyzed for a minimum of four (4) consecutive quarters:

- Explosives
- Organophosphorous pesticides (malathion and diazinon)
- Nitroesters (nitrocellulose, nitroguanidine, nitroglycerine)
- TAL Metals
- Additional metals (boron, molybdenum, silicon, strontium, tin, titanium, tungsten, zirconium)
- Cyanides
- Anions including perchlorates
- Depleted Uranium including individual uranium isotopes
- Radioanalytes (Gamma Emitters)

The remaining analytes will be analyzed for a minimum of two consecutive quarters:

- TCL VOCs with additional alcohol compounds
- TCL SVOCs with additional compounds and n-nitrosodiphenylamine
- Diphenylamine, aniline, carbazole
- TCL PCBs, pesticides and mirex

Analysis of these compounds will continue if the resultant data indicate levels above the LOC for that compound. Levels of concern for groundwater are listed in **Table T-3** of Attachment T, Protection of Groundwater.

Groundwater levels will be measured during every sampling event. Levels will be measured to the nearest 0.01 foot. Static water level and well depth measurements will be obtained using an electric water level sounding device. The tape will be rinsed with distilled water, cloth-wiped, and allowed to air dry between consecutive water level measurements. All measurements of the depth to groundwater and well depth will be referenced to a permanently marked reference point on the monitoring wells (highest point on the top rim of the PVC casing). Personnel will also note any physical changes to the well or the concrete pad.

After the first year, the resultant data will be statistically evaluated and used to develop a semiannual monitoring program. A groundwater assessment report will be submitted to NJDEP within 90 days of each sampling event. Groundwater contour maps will be prepared to show the horizontal direction of groundwater flow and to determine the flow rate. Laboratory data packages and data validation packages will also be submitted to NJDEP for each sampling event.

4.1 Statistical Procedures

Background concentration values from upgradient wells for constituents being monitored will be determined by computing the arithmetic mean from at least four sampling events. If any of the results are below detection limits, then half the detection limit will be used in the computation of the mean. An appropriate statistical method will be selected according to 40 CFR 264.97(h).

When sufficient groundwater monitoring data is acquired at the ODA, Picatinny will select an appropriate statistical method that will demonstrate compliance with the performance standards set forth below:

- The test should be conducted separately for each constituent detected in the well;
- The method should be appropriate for the noted distribution of chemical parameters or constituents, and more than one method may be required;
- Any practical quantitation limit (PQL) used in the method should be the lowest concentration level within levels of precision/accuracy for routine lab operations; and
- The selected method(s) should include procedures to control or correct for seasonal and spatial variability and temporal correlation in data.

The choice of statistical test will depend on the nature of the data and its distribution. If the proportion of the detected values is 50% or more, an analysis of variance (ANOVA) procedure will be preferred, although tolerance limits, prediction intervals or control charts may be used.

If an ANOVA procedure is used and the proportion of non-detects is less than 15%, then a non-parametric one-way ANOVA method will be used. If the proportion of non-detects is greater than 15%, a one-way parametric ANOVA procedure will be used. If the data is log-normally distributed, it will be transferred to a normal distribution before the statistical analysis.

If sampling data does not conform to any uniform distribution, the data will be ranked and a non-parametric statistical test will be proposed.

4.2 Record Keeping and Reporting

Records of groundwater chemical analysis and statistical evaluations for the ODA will be kept in ARDEC Environmental Affairs Division files at Picatinny Arsenal. Records will be kept in a manner to facilitate evaluation of potential statistically significant increases in contamination. Additionally, files containing all notifications to the Director of the Division of Solid and Hazardous Waste of NJDEP will be maintained. The records and files will be kept for 30 years beyond the active life of the facility and throughout the post-closure care period.

Computer records of the groundwater sampling results will also be maintained in the PTA Geographical Information System (GIS).

The following procedures will be implemented if there is statistically significant evidence that a release of contamination for any constituent or parameter is apparent at any compliance point monitoring well.

Notify the Director of this finding in writing within seven days;

- Submit a compliance monitoring plan meeting the requirements of 40CFR 264.99 within 90 days;
- Submit an engineering feasibility plan within 180 days for a corrective action program
 unless all constituents identified are listed in Table 1 of 40 CFR 264.94, and their
 concentrations do not exceed their respective maximum values presented in Table 1 of
 40 CFR 264.94, unless alternative cleanup levels (ACLs) have been approved.
- If appropriate, submit a demonstration that a source other than the regulated unit caused the contamination.

APPENDIX T-3

NJDEP CORRESPONDENCE REGARDING GROUNDWATER SAMPLING AND ANALYSIS AT THE OD AREA

. •

State of New Jersey

Department of Environmental Protection

Robert C. Shinn, Ja Commissioner

DONALD T. DIFRANCESCO
Acting Governor

Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414:

Trenton, New Jersey 08625-0414
Tel. # (609) 292-9880
Fax. # (609) 633-9839

www.state.nl.us/dep/dshw/hwtf

Thomas J. Solecki
Chief, Environmental
Affairs Division
Department of the Army
U.S. Army Armament Research,
Development and Engineering Center
Picatinny Arsenal, New Jersey 07806-5000

MAR 0 7 2001

Re:

Interim Status Groundwater Monitoring for the Open Detonation of Waste Explosives, Department of the Army, U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, Federal Enclave Located in Morris County, USEPA ID No. NJ3 210 020 704

Dear Mr. Solecki:

The New Jersey Department of Environmental Protection (Department), Division of Solid and Hazardous Waste, Bureau of Hazardous Waste and Transfer Facilities (Bureau) is in receipt of your September 8, 2000, letter. The letter states that Picatinny Arsenal will perform groundwater sampling at the open detonation range for the constituents listed in your September 8, 2000, letter in accordance with the procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998. Low flow sampling will be used for all of the constituents and New Jersey approved bailer methods will be employed for a separate analysis of metals only. The letter also requests concurrence with your interpretation that the interim status open burning or detonation of waste explosives is subject to 40 C.F.R. 265.382 and not 40 C.F.R. Part 265, Subparts M or N and, therefore, does not require groundwater monitoring provided it does not threaten human health or the environment.

The Bureau concurs with your statement that the interim status open burning and detonation of waste explosives is subject to the requirements of 40 C.F.R. 265.382 and not 40 C.F.R. Part 265, Subparts M or N. However, 40 C.F.R. 265.382, in part, states that owners or operators choosing to open burn or detonate must do so in a manner that does not threaten human health or the environment.

The Bureau has determined that, the operation of the open detonation range is a potential threat to human health and the environment because the open detonation of waste explosives takes place directly on the ground without the use of any engineering controls that would prevent the migration of hazardous waste or hazardous waste constituents to the soils or groundwater. Furthermore, in order for the Bureau to determine if the unit is being operated in a manner that does not threaten human health or the environment, as required by 40 C.F.R. 265.382, groundwater monitoring must be conducted.

In addition, the Bureau in conjunction with its support group, the Bureau of Groundwater Pollution Abatement, has made the following determinations regarding its review of four rounds of groundwater monitoring data collected at the open detonation range designated as Rounds A through D for the first quarter through the fourth quarter, respectively, of 1999:

A) Round A:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-3A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in background monitoring well OD-6A and the downgradient compliance well OD-4A. The RDX concentration in the downgradient compliance monitoring well OD-4A is greater than the concentration in background monitoring well OD-6A.

B) Round B:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-2A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for arsenic and lead in downgradient compliance monitoring well OD-4A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring wells OD-2A and OD-4A. The criteria exceedences are also significantly greater than background monitoring well sample concentrations (See Attachment).

C) Round C:

Class IIA groundwater quality criteria have been exceeded for cadmium, lead and arsenic in downgradient compliance monitoring well OD-2A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for cadmium and lead in downgradient compliance monitoring well OD-4A. These criteria exceedences are also

significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring well OD-4A. This criteria exceedence is also significantly greater than background monitoring well sample concentrations (See Attachment).

D) Round D:

Class IIA groundwater quality criteria have been exceeded for lead in downgradient compliance monitoring well OD-2A. This criteria exceedence is also significantly greater than the background monitoring well sample concentrations (See Attachment);

Class IIA groundwater quality criteria have been exceeded for cadmium, lead and arsenic in downgradient compliance monitoring well OD-4A. These criteria exceedences are also significantly greater than the background monitoring well sample concentrations (See Attachment); and

Federal Lifetime Drinking Water Health Advisory criteria for RDX have been exceeded in downgradient compliance monitoring wells OD-2A, OD-4A and OD-5A. These criteria exceedences are also significantly greater than background monitoring well sample concentrations (See Attachment).

In addition, during a February 10, 2000, meeting Picatinny Arsenal presented data to the Department indicating that the concentration of lead in the surface water adjacent to the open detonation unit is above surface water quality criteria.

The data referenced in A through D above indicates that a release of hazardous waste or hazardous waste constituents has occurred from the open detonation range. Furthermore, the release has entered the groundwater and has migrated to the subsurface environment and the surface water and may have an adverse effect on human health or the environment.

Please be advised that the Bureau has transferred the information listed in items A through D above to the Bureau of Site Assessment for integration into the Department's "Case Management Strategy" for assignment to the appropriate Bureau for any possible future Departmental action regarding this matter. Please note that this Bureau will not be the lead for oversight of any possible future Departmental remediation of this release.

Regarding your statement that the groundwater will be sampled for the constituents listed in your September 8, 2000, letter in accordance with the procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 using low flow sampling for all of the constituents and New Jersey approved bailer methods for a separate analysis of metals only, the Bureau concurs that the above referenced procedures of the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 should be used. However, the Bureau does not agree with the proposed list of constituents. Instead, the Bureau has determined that the groundwater must be sampled and analyzed for the following constituents listed in the PICATINNY

ARSENAL FACILITY-WIDE FIELD SAMPLING PLAN dated September 1998 and other constituents deemed appropriate by the Bureau:

Table 4-5 TCL Volatile Organic Compounds with Additional Compounds;

Table 4-6 Semivolatile Organic Compounds with Additional Compounds and n-nitrosodimethylamine (NDMA);

Table 4-7 TAL Metals with Additional Elements;

Table 4-8 Cyanides;

Table 4-10 Anions;

Table 4-12 Explosives with Additional Compounds and diphenylamine, dieethyleneglycol dinitrate (DEGDN), triethyleneglycol dinitrate (TEGDN), trimethyleneglycol dinitrate (TMETN), 1,3-diamino-2, 4,6-trinitrobenzene (DATB), HNS, perchlorates, white and red phosphorus, ammonium pirate and nitrate and nitrite (As nitrogen);

Table 4-13 TCL Pesticides/PCBs with Additional Compounds; and

Conventional Parameters: pH, temperature (°C), specific conductance (µS), dissolved oxygen (mg/l) and turbidity (NTU).

The Department offers certifications for the following SW846 Methods: 8330, 8331, 8332 and 7580. Therefore, if your facility chooses a commercial laboratory for these analyses, the laboratory must be New Jersey certified for these methods. However, if your facility chooses a Federal Department of Defense laboratory for these analyses, New Jersey certification of that laboratory is not required. In addition, please note that white phosphorus can be measured directly by using SW846 Method 7580. Ammonium picrate can be analyzed in water by High Pressure Liquid Chromatography (HPLC). This test can be used instead of analyzing for ammonia and picric acid individually. However, if ammonia and picric acid are analyzed, the facility must be able to demonstrate the relationship of the concentration of both compounds to the actual molar ratio of ammonium picrate in the groundwater.

Based on the above determinations, Picatinny Arsenal must begin quarterly groundwater monitoring during interim status at the open detonation range for the constituents listed above within three (3) months from the date of this letter. After eight (8) quarters of groundwater monitoring data have been collected and reviewed by the Department, the Bureau will reevaluate the constituents for which sampling and analysis must be performed. All groundwater samples must be collected and analyzed in accordance with the procedures specified in the PICATINNY ARSENAL FACILITY-WIDE FIELD SAMPLING BLAN dated September 1998. In addition, the Bureau requests that all future groundwater monitoring and validation data for the open detonation range be sent to this Bureau within three (3) months from the date of sampling.

Should you have any questions regarding this matter, please E-mail John P. Scott of my staff at iscott@dep.state.nj.us or call him at (609) 292-9880.

Very truly yours,

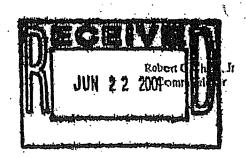
Anthony Fontana, Chief Bureau of Hazardous Waste and Transfer Facilities

EP58/JPS

Document: PASUBX12

Attachment

C: Tracy Grabiak, BGWPA, with attachment
Joseph Marchesani, BGWPA, with attachment
James Kealy, BEERA, with attachment
Greg Zalaskus, BCM, with attachment
Kathleen Grimes, BEMQA, with attachment
Jeff Sterling, BHWCE-Northern, with attachment
Barry Tornick, USEPA, Region II, with attachment
Stephen Shukailo, Mayor, Town of Dover, with attachment
Russel Felter, Mayor, Jefferson Township, with attachment
Harry R. Shupe, Mayor, Wharton Borough, with attachment
Joeseph Lebar, Mayor, Rockaway Borough, with attachment
John P. Inglesino, Mayor, Rockaway Township, with attachment
Sandy Urgo, Mayor, Roxbury Township, with attachment


Paul Minenna, Councilman, Rockaway Township, with attachment

State of New Jersey

DONALD T. DIFRANCESCO
Acting Governor

Department of Environmental Protection
Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414
Tel. # (609) 292-9880
Fax. # (609) 633-9839
www.state.nl.us/dep/dshw/hwtf

1005 1 2 MIC

Thomas J. Solecki
Chief, Environmental
Affairs Division
Department of the Army
U.S. Army Armament Research,
Development and Engineering Center
Picatinny Arsenal, New Jersey 07806-5000

Ro: Interim Status Groundwater Monitoring for the Open Detonation of Waste Explosives, Department of the Army, U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, Federal Enclave Located in Morris County, USEPA ID No. NJ3 210 020 704

Dear Mr. Solecki:

The New Jersey Department of Environmental Protection (Department), Division of Solid and Mazardous Waste, Bureau of Hazardous Waste and Transfer Facilities (Bureau) is in receipt of your May 3, 2001, letter. The letter contains comments on the Burcau's March 7, 2001, letter regarding the interim status groundwater monitoring requirements for the open detonation of waste explosives. The Eureau has reviewed the comments submitted and has made the following determinations:

Commont # 1

A quarterly monitoring program will be committed to for all existing open detonation wells for one year for all constituents listed in the revised Subpart X permit application. The resultant data will be used to develop a semi-annual monitoring program in compliance with 40 C.F.R. Part 264. The four quarters of monitoring data is also consistent with the State equivalent of 40 C.F.R. Part 270.

Response

The Department does not agree that the Federal requirement is equivalent to the State requirement. N.J.A.C. 7:26B-6.1(e) requires eight quarters of monitoring and, therefore, is more stringent than the Federal requirement. However, the Department agrees to grant a variance to reduce the frequency of monitoring from eight to four quarters provided the four quarters of monitoring are consecutive.

Regarding your statement that the resultant data will be used to develop a semi-annual monitoring program in compliance with 40 C.F.R. Part 264. Proposals to sample the monitoring wells at a decreased frequency will only be considered by the Department after four consecutive quarters of

Comments # 2 and 3

Picatinny Arsenal will analyze the additional parameters requested in your letter, which are not listed in the Subpart X permit application for the first two quarters of the monitoring program. The following

TCL Volatiles and additional compounds. bì

Semi-volatile organic compounds with additional compounds and NDMA, c)

TCI. pesticides/PCBs with additional compounds.

Analysis of these compounds will continue if the resultant data indicates levels above the detection

The Bureau's letter did not provide any justification for the inclusion of the above listed compounds in the groundwater-monitoring program. The Subpart X permit application provides justification for the inclusion or elimination of compounds based on historical records. The record indicates that these compounds were never tested or disposed of at the open detonation range. Therefore, two rounds of Response.

The Department agrees that two rounds of sampling are adequate for monitoring of the above referenced compounds. In addition, the use of detection limits for determining if analysis will continue is acceptable provided the detection limits have been approved by the Department. However, detection limits were not included in your submittal. Therefore, please submit this information, for the Department's review and approval, within thirty (30) days from the date of this letter.

Comment # 4

New Jersey certified laboratories will be used for methods requiring State certification. Response

The Department concurs with the comment,

Comment # 5

Groundwater sampling will be performed using low-flow methodology that was approved in the Field Sampling Plan (FSP) for all parameters including the inorganics. The USEPAs directives and quidance clearly maintains the superiority of low-flow methodology for providing a representative sample with

regard to evaluating metal concentrations in groundwater. Decisions will not be based on the results of unfiltered groundwater samples based on samples with traditional bailer methods.

Response

Low flow sampling is acceptable as long as conventional bailer sampling is also conducted. Any sampling that does not include conventional bailer sampling will be at your own risk.

Comment # 6

All data, monitoring results and validation reports will be submitted within one hundred days after the last day of the quarterly sampling event. This conforms with Picatinny Arsenal's Facility Wide Sampling Plan (FSP) that was submitted as part of the Subpart X permit application. Any subsequent comments on the adequacy or completeness of the FSP by the Department as part of the Subpart X permit application process will not invalidate the data from the sampling.

Response

The Department agrees that all data, monitoring results and validation reports may be submitted within one hundred days after the last day of the quarterly sampling event. However, the Department does not agree that any subsequent comments on the adequacy or completeness of the FSP by the Department as part of the Subpart X permit application process will not invalidate the data from the sampling. Any written correspondence from the Department that is issued prior to any sampling event must be adhered to.

Picatinny Arsenal shall conduct the first round of quarterly groundwater sampling within thirty (30) days from the date of this letter. The groundwater sampling and analysis shall adhere to the requirements of this letter in conjunction with the Bureau's letter of March 7, 2001.

Should you have any questions regarding this matter, please E-mail John P. Scott at iscott@dep.state.ni.us or call him at 609-292-9880.

Very truly yours,

Anthony Fontana, Chief Bureau of Hazardous Waste and Transfer Facilities

EP58/JPS

C: Barry Tomick, USEFA, Region II
Jeffrey Sterling, BHWCE, Northern Region
Tracy Grabiak, GWPA
Document: PASUBX22

DEPARTMENT OF THE ARMY

UNITED STATES ARMY INSTALLATION MANAGEMENT AGENCY NORTHEAST REGIONAL OFFICE GARRISON PICATINNY ARSENAL, NEW JERSEY 07806-5000

August 31, 2005

DETORIAL CONTROLLED DOCUMENT

Environmental Affairs Directorate

SUBJECT: Request for a Forty Five (45) day Extension for Submittal of a Response to Technical Notice of Deficiency, November 2000 Subpart X Permit Application for Open Detonation, U.S. Army Armament Research Development and Engineering Center, Picatinny Arsenal, Morris County, EPA ID No. NJ3 210 020 704

Mr. Anthony Fontana, Chief
Bureau of Hazardous Waste and Transfer Facilities
New Jersey Department of Environmental Protection
Division of Solid and Hazardous Waste
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414

Dear Mr. Fontana:

Picatinny requests a Forty Five (45) day extension from the September 4, 2005 deadline given in your July 6, 2005, letter. The extension is needed to give contractor personnel adequate time to prepare responses to NJDEP comments and for ARDEC to review responses.

You also request in regard to groundwater (part 4 of the attachment) that we "resume sampling ninety (90) days of the date of the letter" and for Picatinny to comply with your March 7th and June 21, 2001 letters. For Picatinny to ensure the data resultant from this sampling is acceptable to NJDEP and to clear up statements at our June 9th meeting in Trenton that a new groundwater sampling work plan be developed for approval before implementation of the quarterly groundwater monitoring, we request the following concurrence or guidance on four points.

1) Request NJDEP agreement to proposed analytes included in the attached table for the quarterly groundwater monitoring program:

Picatinny will include the analysis for most of the parameters in accordance with the Bureau's March 7, 2001 and subsequently revised June 21, 2001 letters. However, based on Ms. Grimes' statements at the June 9, 2005 meeting and consistent with your December 31st 2003 letter, the results from analyses which were performed by Crane Naval Warfare Center are acceptable to NJDEP and those compounds will not have to be re-sampled. The 4 quarters of results were all non-detects.

Hence, the program does not include the explosives:

- 1. diethyleneglycol dinitrate (DEGDN),
- triethyleneglycol dinitrate (TEGDN),
- trimethyleneglycol dinitrate (TMEDN),

- 4. 1,3-diamino-2, 4,6-trinitrobenzene (DATB); and 5. 2'4,4,'6,6'-hexanitrostilbene (HNS).
- 2) Verify that the information in the attached table regarding laboratory certification is up-to-date. Our contractor's, Shaw Environmental's, chemist is permitted to speak directly to your laboratory certification and data quality personnel.
- 3) Request for guidance regarding the few cases of analytes in which there is no certified methods and/or no certified laboratory for the analyte (e.g., diphenylamine, zirconium, and uranium isotopes). In this case we request that Shaw Environmental's chemist be permitted to speak directly to your laboratory certification and data quality personnel.
- 4) Request for use of certified drinking water analytical methods to analyze the non-potable well water from the ODA in cases where a certified method does not exist for non-potable water (e.g., perchlorate, cobalt-60).

Once we have resolved these issues and have reached agreement that the result data will be acceptable to NJDEP, we will resume the groundwater sampling at the Open Detonation Area within 10 days of receipt of your concurrence on the four points noted above. We appreciate any efforts you can do to expedite this matter.

If you have any questions please feel free to contact Freddy Sanchez at 973-724-5948 or myself at 973-724-5818.

Sincerely,

Thomas A. Solecki

Director, Environmental Affairs

Directorate

Picatinny Subpart X Permit Page 1 of 23

Table I.C-3 Groundwater
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Vilcal Method NUDEP: Certification Eligible to Report NU Comment	Seansup Analysis Matrix: Analyte Gode Lab ID	Volatiles	N/A SW-846 8260B, NPW: SHW07.04220 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04260 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04230 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04200 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04150 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04290 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04310 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04280 Canton Yes OH001	N/A SW-846 8260B, NPW: SHW07.04185 Canton none Yes
AnalyticalMethod	Clean;up Anally							1			
	- Extraction		SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2. 12/96							
Amalyte			1,1-Dichloroethene	Methylene Chloride	trans-1,2-Dichloroethene	1,1-Dichloroethane	Chloroform	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	1,2-Dibromoethane

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Eligibie to: Rebortinu		Yes	Yes								
			. >	-	<i>></i>	>	*		>	>	> -
ication		STL North Canton OH001	STL North Canton OH001								
NUBER Certification	Matrix-Analyte Gode	NPW: SHW07.04010	NPW: SHW07.04070	NPW: SHW07.04200	NPW: SHW07.04220	NPW: SHW07.04290	NPW: SHW07.04300	NPW: SHW07.04270	NPW: SHW07.04210	NPW: SHW07.04240	NPW: SHW07.04360
Po	Analysis	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	. SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
Anafytical Metho	Glean-up	ŃΑ	N/A	N/A	. N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96
Analyte		Benzene	Toluene	1,1-Dichloroethane	1,1-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,2-Dichloroethane	1,2-Dichloropropane	2-Butanone

Picatinny Subpart X Permit Page 3 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment	Comment										
Eligible to Report NA	Eligible to: Report NJ Data		Yes	Yes	Yes	Yes	Yes	SeY.	sek	Yes	Yes
ication	LabiD	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North ·· Canton OH001
NUDEP Certification	Matrix: Analyte Code	NPW: SHW07.04370	NPW: SHW07.04380	NPW: SHW07.04340	NPW: SHW07.04090	NPW: SHW07.04100	NPW: SHW07,04110	NPW: SHW07.04350	NPW: SHW07.04327	NPW: SHW07.04120	NPW: SHW07.04020
	Analysis	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
Analytical Metho	dn-ueajó	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96
Analye		ż-Hexanone	4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	Acetone	Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Vinyl Acetate	Carbon Tetrachloride	. Chlorobenzene

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

The Continent											
Eligible to: Report Nu Data	Eligible to Report Nu Data		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
cation	Labilo	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001						
NIDERICertification	Matrix: Analyte Gode	NPW: SHW07.04130	NPW: SHW07.04150	NPW: SHW07.04160	NPW: SHW07.04235	NPW: SHW07.04250	NPW: SHW07.04180	NPW: SHW07.04190	NPW: SHW07.04060	NPW: SHW07.04550	NPW: SHW07.04280
D	Analysis	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
Analytical Wetho	©lean up	N/A	W/N	N/A	N/A	N/A	N/A	. N/A	N/A	Ņ/A	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96
Analyte		Chloroethane	Chloroform	Chloromethane	ais-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dichlorodifluoromethane (Freon 12)	Ethylbenzene	Styrene	Tetrachloroethylene

Picatinny Subpart X Permit Page 5 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Picatinny Subpart X Permit Page 6 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment										
Eligible to ReportiNJ		Yes	Yes	sө,	sө,	Yes		Yes	Yes	Yes
cation	Labilo	STL North Canton OH001		Environmental Science Corporation TN002	Environmental Science Corporation TN002	Environmental Science Corporation TN002				
NUDEP: Certification	Matrix: Analyte Gode	NPW: SHW07.04560	NPW: SHW07.04140	NPW: SHW07.04187	NPW: SHW07.04255	NPW: SHW07.04325	Additional Alcohols	NPW: SHW07.04259	NPW: SHW07.04377	NPW: SHW07.04395
p	Analysis	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	Addition	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
AnalyticalMethod	dnyusajo i	N/A	N/A	N/A	Y/N	N/A		V/N	V/N	N/A
	Extraction	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96	SW-846 5030B, Rev. 2, 12/96		SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96	SW-846 8260B, Rev. 2, 12/96
Analyter		1,1,1,2-Tetrachloroethane	2-Chloroethyl Vinyl Ether	1,2-Dibromo-3-chloropropene	trans-1,4-Dichloro-2-butene	1,2,3-Trichloropropane		Ethanol	Isopropanol	tert-Butyl alcohol

Picatinny Subpart X Permit Page 7 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Adalytical Method Eligible to Report NU Comment	Clean-tp: Ahalysis Matrix, Analyte; Code LabilD:	Analysis Matrix: Aralyse Goder	N/A SW-846 8270C, NPW: SHW07.05691	, N/A SW-846 8270C, NPW: SHW07.05120 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05692 Canton Yes OH001	. N/A SW-846 8270C, NPW: SHW07.05700 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05070 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05450 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05400 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05500 Canton Yes OH001	N/A SW-846 8270C, NPW: SHW07.05060 Canton Yes OH001	THOM IFO
Analytical Metrod	Cleanup	Clean-up	·									VIS
	Extraction	Extraction	SW-845 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	C/M_8/6 3500C
Analyte			1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	

Picatinny Subpart X Permit Page 8 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

flication Eligible to Report Nu. Eligible to Bata Data		STL North Canton Ves OH001	STL North Canton Ves OH001	STL·North Yes OH001	STL North Canton OH001	STL North Yes OH001	STL North Canton Yes OH001	STL North Yes OH001	STL.North Yes OH001	STL North Yes OH001	STL North Canton Yes
(UDEP.Certfication		NPW: SHW07.05460	NPW: SHW07.05470	NPW: SHW07.05480	NPW: SHW07.05170	NPW: SHW07.05560	NPW: SHW07.05570	NPW: SHW07.05180	NPW: SHW07.05062	NPW: SHW07.05040	NPW: SHW07.05160
d Analysis	Allalysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96
Analytical Metho	i Clean-up	N/A									
rollsening.	rs, Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Analyte		2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,4,5-Trichlorophenol	2;4,6-Trichlorophenol	2,6-Dinitrotoluene	3-Nitroaniline	3,3'-Dichlorobenzidine	4-Bromophenyl-phenylether

Picatinny Subpart X Permit Page 9 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment						,					
Eligible to Report Nu		Yes									
cation	(Cabilo	STL North Canton OH001									
NUBEP: Certification	Matrix: Analyte Gode	NPW: SHW07.05440	NPW: SHW07.05050	NPW: SHW07.05150	NPW: SHW07.05510	NPW: SHW07.05063	NPW: SHW07.05530	NPW: SHW07.05490	NPW: SHW07.05270	NPW: SHW07.05290	NPW: SHW07.05280
P	Analysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96
Analytical Metho	Glean-up	N/A									
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Supplied to the state of the st		4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl-phenylether	4-Methylphenol	4-Nitroaniline	-4-Nitrophenol	4,6-Dinitro-2-methylphenol	Acenaphthene	Acenaphthylene	Anthracene

Plcatinny Subpart X Permit Page 10 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Eligibie to Report Nu Data	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ability and a second	STL North Canton OH001									
NJDEP Certification	NPW: SHW07.05300	NPW: SHW07.05310	NPW: SHW07.05320	NPW: SHW07.05330	NPW: SHW07.05340	NPW: SHW07.05130	NPW: SHW07.05132	NPW: SHW07.05210	NPW: SHW07.05140	NPW: SHW07.05030
i Analysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C; Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846.8270C,. Rev. 3, 12/96
Analytical Method	N/A									
Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846.3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	. SW-846 3520C, Rev. 3, 12/96			
Analine	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Bis(2-chloroethoxy)methane	Bis(2-chloroethyl)ether	Butylbenzylphthalate	Bis(2-chloroisopropyl)ether	Carbazole

Picatinny Subpart X Permit Page 11 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

I.N.V.									User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP Database using HPLC as of 8/26/05	
Eligible to Report NU		Yes	Yes	Yes	Yes	Yes	хөХ	Yes	o N	Yes
cation	I STATE OF THE STA	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	None	STL North Canton OH001
NIDEP Certification	Matrix: Analyteicode	NPW: SHW07.05048	NPW: SHW07.05600	NPW: SHW07.05240	NPW: SHW07.05230	NPW: SHW07.05220	NPW: SHW07.05370	NPW: SHW07.05380	Not Certified in NJDEP Database	NPW: SHW07.05080
	Analysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8330, Rev. 0, 9/94 (modified)	SW-846 8270C, Rev. 3, 12/96
Analytical Method	. Clear up	N/A	N/A							
	EXTRACTION	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev: 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 8330, Rev. 0, 9/94 (modified)	SW-846 3520C, Rev. 3, 12/96
Analyto		Anline	Dibenzofuran	Dimethylphthalate	Diethylphthalate	Bis(2-ethylhexyl)phthalate	Fluoranthene	Fluorene	Diphenylamine (HPLC/UV)	Hexachlorobenzene

Table I.C.3 Groundwater (continued) Picatinny Burning Ground Subpart X Permit Groundwater Monitoring NPW Certification Analytical Parameters

Oomment			•							
Eligible forReporting		Yes								
cation	Olopa September 1	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001	STL North Canton OH001
WIDEPCertification	Matrix, Analyte Gode	NPW: SHW07.05090	NPW: SHW07.05100	NPW: SHW07.05110	NPW: SHW07.05390	NPW: SHW07.05190	NPW: SHW07.05200	NPW: SHW07.05410	NPW: SHW07.05006	NPW: SHW07.05004
þ	Analysis	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96	SW-846 8270C, Rev. 3, 12/96
Analytical/Metho	Cleanup	N/A								
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
Analyte		Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-c,d)pyrene	Isophorone	Nitrobenzene	Naphthalene	N-nitroso-di-n-propylamine	N-nitroso-di-phenylamine ¹

¹ Cannot be distinguished from Diphenylamine

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Picatinny Subpart X Permit Page 14 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

nn Eligibie jo Reportivu	Labid	Knoxville Yes TN001	Knoxville Yes TN001	Knoxville Yes TN001	Knoxville Yes TN001	Knoxville Yes TN001	Knoxville Yes	Knoxville Yes TN001	Knoxville Yes TN001	None No No Labs listed in NJDEP Database as of 8/26/05	Knoxville Yes TN001
NUDEP.Conflication	Matrix, Analyte Gode	NPW: SHW06.28040	NPW: SHW06.28030	NPW; SHW06,28070	NPW: SHW06.28110	NPW: SHW06.28010	NPW: SHW06.28020	NPW: SHW06.28050	NPW: SHW06.28060	Not Certified in NJDEP Database	NPW: SHW06.29100
, p	Analysis	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	USEPA 353.2 (modified)	SW-846 8332 Rev. 0. 12/96
AnalyticalMetho	olean-up	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	, N/A	N/A
	Extraction	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	USEPA 353.2 (modified)	SW-846 8332 Rev. 0, 12/96
Analyte		1,3-Dinitrobenzene	1,3,5-Trinitrobenzene	2,4,6-Trinitrotoluene	2,6-Dinitrotoluene	Cyclotetramethylene tetranitramine (HMX)	Cyclotrimethylene trinitramine (RDX)	N-Methyi-N,2,4,6- tetranitroaniline (Tetryl)	Nitrobenzene	Nitrocellulose	Nitroglycerin

Picatinny Subpart X Permit Page 15 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Conment	User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP Database as of 8/26/05									
Eligible to Report Nu Data	No	Yes	Yes	Yes	Yes	. Yes	Yes		Yes	Yes
cation	None	Knoxville TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001	Knoxville TN001		North Canton OH001	North Canton OH001
NUBEP Gentification	. Not Certified in NJDEP Database	NPW: SHW06.28045	NPW: SHW06.28080	NPW: SHW06.28090	NPW: SHW06.28120	NPW: SHW06.28140	NPW: SHW06.28130	Metals	NPW: SHW04.05000	NPW: SHW04.07000
d Anālysis	SW-846 8330, Rev. 0, 9/94 (modified)	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94		SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94
Analytical Method	N/A	W/A	N/A	N/A	A/N	. A/N	Y/N		V/A	N/A
Extraction	SW-846 8330, Rev. 0, 9/94 (modified)	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94	SW-846 8330, Rev. 0, 9/94		SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92
Analyte	Nitroguanidine	Pentaerythritol tetranitrate (PETN)	4-Amino-2,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Nitrotoluene	4-Nitrotoluene	3-Nitrotoluene		Aluminum (Trace ICP)	Antimony (ICP/MS)

Picatinny Subpart X Permit Page 16 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Common											
Eligible to Report NU		Yes	. Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
cation	Labilo L	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	· North Canton OH001	North Canton OH001	North Canton OH001	North Canton . OH001
NUDEP Certification	Matrix, Analyte Gode	NPW: SHW04.09500	NPW: SHW04.11500	NPW: SHW04.13500	NPW: SHW04.16000	NPW: SHW04.17500	NPW: SHW04.18500	NPW: SHW04.22500	NPW: SHW04.24500	NPW: SHW04.26005	NPW: SHW04.28000
	Analysis	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6020, Rev. 0, 9/94
AnalyticalMetho	. Glean-up	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92
Ánalyte		Arsenic (ICP/MS)	Barium (Trace ICP)	Beryllium (Trace ICP)	Cadmium (ICP/MS)	Calcium (Trace ICP)	Chromium (Trace ICP)	Cobalt (Trace ICP)	Copper (Trace ICP)	Iron (ICP/MS)	Lead (ICP/MS)

Picatinny Subpart X Permit Page 17 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment											
Eligibie: to Report NU		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	. Yes
cation	Labid	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton · OH001	North Canton OH001	North Canton OH001
NJDEP: Certification	Matrix: Analyte Gode	NPW: SHW04.30500	NPW: SHW04.31500	NPW:WPP04.33000	NPW: SHW04.35500	NPW: SHW04.38000	NPW: SHW04.40600	NPW: SHW04.41000	NPW: SHW04.43000	NPW: SHW04.45500	NPW: SHW04.47500
	Analysis	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 7470A, Rev. 1, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96	SW-846 6010B, Rev. 2, 12/96	SW-846 6020, Rev. 0, 9/94	SW-846 6010B, Rev. 2, 12/96
AnalyticaliMethod		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Extraction	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	EPA 245.1	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1.7/92	SW-846 3005, Rev. 1 7/92	SW-846 3005, Rev. 1 7/92
Analyte		Magnesium (Trace ICP)	Manganese (Trace ICP)	Mercury	Nickel (Trace ICP)	Potassium (ICP)	Selenium (ICP/MS)	Silver (ICP)	Sodium (ICP)	Thallium (ICP/MS)	Vanadium (ICP)

Picatinny Subpart X Permit Page 18 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

		Analytical Methoc		NUDER Certification	callon	Eligible to Report IV	0 0 0 0 0 0 0
	Extraction	i - Clean-úp	Analysis	Matrix: Analyte Gode			
Zinc (Trace ICP)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6010B, Rev. 2, 12/96	NPW: SHW04.49000	North Canton OH001	Yes	
Boron (ICP)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6010B, Rev. 2, 12/96	NPW: SHW04.15100	North Canton OH001	Yes	
Tin (Trace ICP)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6010B, Rev. 2, 12/96	NPW: SHW04.47100	North Canton OH001	Yes	
Titanium (ICP)	EPA 200.7	N/A	EPA 200.7	NPW: WPP04.52050	North Cariton OH001	Yes	
Tungsten (ICP/MS)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6020, Rev. 0, 9/94	NPW: SHW04.47170	North Canton OH001	Yes	
Strontium (ICP/MS)	SW-846 3005, Rev. 1 7/92 (modified)	. N/A	SW-846 6020, Rev. 0, 9/94 (modified)	NPW: SHW04.44001	STL Pittsburgh PA005	Yes	User Defined Method for Picatinny Arsenal
Zirconium (ICP/MS)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6020, Rev. 0, 9/94	Not Certified in NJDEP Database	None	No	User Defined Method for Picatinny Arsenal; No Labs listed in NJDEP Database as of 8/26/05
Silloon (ICP)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6010B, · Rev. 2, 12/96	Not Gertifled in NJDEP Database	None	No	User-Defined Method for Picatinny Arsenal; No Labs listed in NJDEP Database as of 8/26/05; Request analysis of Silica (SiO ₂) in lieu of Silicon (Si)
Molybdenum (ICP/MS)	SW-846 3005, Rev. 1 7/92	N/A	SW-846 6020, Rev. 0, 9/94	NPW: SHW04.34005	North Canton OH001	Yes	

Table I.C.3 Groundwater (continued) Picatinny Burning Ground Subpart X Permit Groundwater Monitoring NPW Certification Analytical Parameters

	Comment												
	Eligible to Report NJ. Data		Yes		Yes								
	cation		North Canton OH001		North Canton OH001								
	NJDEP Certification Matrix: Analyte Code	<u> </u>	NPW: SHW09.05000	Pesticides/PCBs	NPW: SHW06.12010	NPW: SHW06.13110	NPW: SHW06.13120	NPW: SHW06.13130	NPW: SHW06.13140	NPW: SHW06.13150	NPW: SHW06.13160	NPW: SHW06.13170	. NPW: SHW06.12020
-	d. Amalysis.		SW-846 Method 9012A, Rev. 3, 12/96	Pestici	SW-846 8081A, Rev. 1, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8082, Rev. 0, 12/96	SW-846 8081A, Rev. 1, 12/96
	Analytical Method		N/A		N/A								
. , , , , , , , , , , , , , , , , , , ,	Extraction		SW-846 Method 9012A, Rev. 3, 12/96		SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96
	Analyte		Total Cyanide		Aldrin	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	alpha-BHC

Picatinny Subpart X Permit Page 20 of 23

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment			·										
Eligible to Report NJ		Yes											
cation	Edbillo	North Canton OH001											
NUDEP Certification	Matrix: Analyte Gode	NPW: SHW06.12030	NPW: SHW06.12040	NPW: SHW06.12050	NPW: SHW06.12060	NPW: SHW06.12090	NPW: SHW06.12100	NPW: SHW06.12110	NPW: SHW06.12120	NPW; SHW06.12130	NPW: SHW06.12140	NPW: SHW06.12150	NPW: SHW06.12160
7.0	Analysis	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846.8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96				
Analytical Metho	'Glean-up	N/A											
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846-3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96						
Analyte		beta-BHC	delta-BHC	gamma-BHC (lindane)	Chlordane (technical)	OQO-,4'4	P,P'.DDE	P.PDDT	Dieldrin	Endosulfan A	Endosulfan B	Endosulfan sulfate	Endrin

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Eligibie to Report Nu Data		Yes		Yes	Yes		Yes						
cation	The soul of the so	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001	North Canton OH001		North Canton OH001	North Canton OH001		North Canton OH001
NJDEPIGERIHICATION	Marrix Analyte Cole	NPW: SHW06.12170	NPW: SHW06.12180	NPW: SHW06.12190	NPW: SHW06.12200	NPW: SHW06.12210	NPW: SHW06.12220	NPW: SHW06.12212	Organophosphorous Pesticides	NPW: SHW06.21060	NPW: SHW06.21040	Anions	NPW: WPP02.03500
	Analysis	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	SW-846 8081A, Rev. 1, 12/96	Organophospl	SW-846 8141A, Rev. 1, 9/94	SW-846 8141A, Rev. 1, 9/94	A CONTRACTOR	EPA 350.3 Electrode
Analytica (Metho	Clean-up	W/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A
	Extraction	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96		SW-846 3520C, Rev. 3, 12/96	SW-846 3520C, Rev. 3, 12/96		ÉPA 350.2 Distillation
Analyte		Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene	Mirex		Malathion	Diazinon		Ammonium (Ammonia as Nitrogen)

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Comment								que en entre en en entre en entre en entre en entre en en entre en entre en entre en entre en entre en entre en entre en entre en entre en entre en entre en en entre en en entre en en entre en en entre en en en entre en en en en en en en en en en en en en	Need to request to NJDEP the application of the SDW Matrix to NPW Matrix		
Eligible to Report N.		Yes	Yes	Yes	Yes	Yes	Yes	Yes	No – Request to NJDEP for using SDW code for NPW		Yes
cation	in LabiD	North Canton OH001	North Canton OH001	North Canton OH001	Knoxville TN001		STL St. Louis MO002				
NUDER Certification	Watelx: Analyte Gode	NPW: SHW09.33100	NPW: SHW09.34150	NPW; SHW09.30150	NPW: SHW09.29150	NPW: SHW09.13050	NPW: WPP02.47500	NPW: WPP02.34000	SDW:SDW02.31120	Depleted Uranium	WPP04,52500
	Analysis	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	_ EPA 376:1	EPA 365.2	EPA 314.0	ajelde d	EPA 200.8
Analytical Metho	din de la	N/A	N/A	V/N	N/A	N/A.	N/A	N/A	N/A		
	f. Extraction	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	SW-846 9056, Rev. 0, 12/96	EPA 376.1	EPA 365.2	EPA 314.0		EPA 200.8
. Analyte		Chloride	Fluoride	Nitrate (NO ₃)	Nitrite (NO ₂)	Sulfate	Sulfide	Total Phosphorous	Perchlorate		Total Uranium (mass)

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

Analyte		Analytical Method		NJDEP Certification	cailon	Eligibie to Report M.	Commonic
	Extraction	Clean-up:	Analysis	Matrix: Analyte Gode	Eab ID		
Uranium -238 (radiological)				Not Certified in NJDEP Database	None	No	No Labs listed in NJDEP Database as of 8/26/05
Uranium -235 (radiological)				Not Certified in NJDEP Database	None	ON	No Labs listed in NJDEP Database as of 8/26/05
Cesium - 137	EPA 901.1	N/A	EPA 901.1	WPP09.03100	Paragon Analytics CO003	Yes	Alternate Laboratory
Radium - 226	EPA 903.1	N/A	· · EPA 903.1	WPP09,0600	Paragon · Analytics CO003	Yes	Alternate Laboratory
Radium-228	EPA 904	N/A	EPA 904	WPP09.06020	Paragon Analytics CO003	Yes	Alternate Laboratory
Cobalt – 60	EPA 901.1	N/A	EPA 901.1	SDW07.03120	STL St. Louis MO002	No – Request to NJDEP for using SDW code for NPW	Need to request to NJDEP the application of the SDW Matrix to NPW Matrix

	· :		
			•
. •			
		,	•

٠. .

State of New Jersey -DEPARTMENT OF ENVIRONMENTAL PROTECTION.

N S. CORZINE Governor

Lisa P. Jackson Commissioner

Division of Remediation Management and Response Hazardous Site Science Element Office of Data Quality P.O. Box 413

Trenton, New Jersey 08625-0413

MEMORANDUM

Marsel Charles Washing & Mars

4/19/06

TO:

Zahar Billah, Section Chief

Bureau of Solid & Hazardous Waste North Division of Solid and Hazardous Waste

THRU:

4/10/2006 Greg Toffoli, Section Chief

Office of Data Quality

Division of Remediation Management and Response

·FROM:

Kathleen M. Grimes, Research Scient

Office of Data Quality

Division of Remediation Management and Response

SUBJECT:

Review of the August 31, 2005 Letter in Response to July 6, 2005, Technical NOD, Subpart X Permit Application, U.S. Army Armanent Research Development and Engineering Center, Picatinny Arsenal, Morris County, USEPA ID No. NJ3 210 020

.704.

The Office of Data Quality, Division Remediation Management and Response has reviewed the August 31, 2005 letter from the facility and is submitting the following comments. The Bureau of Radiation Protection and the Office of Quality Assurance also provided assistance with this response.

Page 1 of 23

For the exotic explosive compounds that were analyzed by Crane Naval Warfare Center, the facility stated in the meeting of June 9, 2005 that the data had been submitted properly. The re-review of the document submittals (various dates) submitted by the facility and all of the reviews conducted by this Office clearly indicated that only summary data was submitted. No analytical data packages were ever submitted for validation. Requests were made by this Office in every memorandum that full regulatory deliverable packages must be submitted for validation. As the required analytical data packages were never submitted, the statements made by the facility cannot be verified. The option exists for the facility to submit this data to the Department in the proper full regulatory format and have the data validated. The issue regarding whether or not the data meet the regulatory requirements will then be determined by the permit writer after the data is validated.

Page 2 of 23

The facility states that there are a few analytes in which there are no certified methods and/or certified laboratory for the analyte. (e.g., diphenylamine, zirconium and uranium isotopes). In this case we request

> Picatinny Arsenal Response to August 31, 2005 letter Page 1 of 9

that a Shaw Environmental chemist be permitted to speak directly to your laboratory certification and data quality personnel.

Diphenylamine

The Office of Quality Assurance has been offering certification for diphenylamine since 1997 under USEPA SW846 Method 8270C certification code SHW07.05020. Currently there are at least 42 laboratories certified for this compound. STL North Canton has been certified for this compound since July 1, 2003.

Based on the attached chart submitted by the facility, the facility wants to use a modification of USEPA SW846 Method 8330 (HPLC technique) for the analysis of diphenylamine. The laboratory chosen by the facility would have to request certification for this compound by this method from the Office of Quality Assurance. The laboratory needs to contact their Office of Quality Assurance Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, the method can be used for the analysis of this compound.

Zirconlum

The Office of Quality Assurance has been offering certification for zirconium since July 2003 as an "Other Picatinny Arsenal Project" specific compound by USEPA SW846 Method 6020. Effective July 2005 zirconium has been offered as a routine parameter. STL-North Canton, Ohio, which is identified by the facility for this analysis, has been certified for this method since July 2003 as an "Other Picatinny Arsenal Project". This office agrees with the facility that if a search is conducted for this analyte using the NJDEP OQA website, it returns the search as no laboratory found. However, since the facility had used this laboratory for the previous sampling events at the site, they could have asked the laboratory directly if they were certified.

Uranium isotopes

The Plan states that they could not locate labs certified for Uranium-235 and URANIUM-238. The certification offered by OQA lists the uranium isotopes and Total Uranium instead of listing the isotopes individually. Where the technique is indicated as alpha spectrometry, it denotes isotopic speciation, in this case Uranium-234, -U235 and Uranium-238.

The facility requests the use of certified drinking water analytical methods to analyze non potable well water from the ODA in cases where a certified method does not exist for non-potable water (e.g. perchlorate, cebalt-60).

Cobalt-60

The Office of Quality Assurance has been offering certification for cobalt-60 under the Water Pollution certification since 2003 under certification code WPP09.03290. The currently listed required method is USEPA Method 901.1 using the gamma spectrometry. There are two additional methods which are considered equivalent to USEPA 901.1 which are currently acceptable to NJDEP that are not listed in Part III of the application. The methods are ASTM D3649 and Standard Method 7120. There are currently two laboratories certified for the Method 901.1 under this certification code. The use of a laboratory certified for this parameter under Drinking Water or Solid or Hazardous Waste is not acceptable. If the facility has a designated laboratory that it wants to use that is currently certified under the drinking water category, that laboratory must obtain certification for cobalt-60 under the Water Pollution category. The laboratory must contact their Certification Officer for the procedures to obtain certification.

Also if the facility wants to propose another method for the analysis of cobalt-50, their designated laboratory needs to contact their Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quellity Assurance, this method can be used for the analysis of this compound.

Perchlorate

The facility was informed in the meeting of June 9, 2005, that the use of USEPA Method 314.0 for perchlorate will be acceptable for analysis of monitoring well water and a modified method for the soil matrix will be acceptable for soils. The Office of Quality Assurance has already developed a certification code for perchlorate in soils. To use this method in soils, their laboratory must request certification approval from the Office of Quality Assurance for the use of this method in the Water Pollution category. Additionally, the Department is currently in the regulatory process of proposing a Drinking Water Criteria for Perchlorate. This will lead to a Ground Water Criteria for Perchlorate. The facility's laboratory must provide a current Method Detection Limit study that includes their Reporting Limit, so it can be compared to the current standards.

Tentatively identified Compound Reporting

Tentatively identified Compounds reporting are required for both the Volatile Organics by USEPA SW846 Method 8260B and USEPA SW846 Method 8270C. Up to thirty (30) non-target compounds are to be reported for each fraction.

Table I.C.3. Ground Water

Page 5 of 23

Trans-1,2-dichloroethene

There is a note on trans-1,2-dichloroethene that is not defined.

Xylenes

The total xylenes must be reported separately as m& p-xylenes and o-xylene. The laboratory may report a total xylene concentration as well as the other two concentrations. STL-North Canton is certified for the individual xylenes under a "Picatinny Arsenal Project User Defined" since July 1, 2004. The Office of Quality Assurance has certified for individual xylene isomers since July 1, 2004.

Page 6 of 23

Tert-butyl Alcohol

STL-North Canton is certified for tert-butyl alcohol by the Office of Quality Assurance as a under a "Picatinny Arsenal Project User Defined" since July 1, 2004. The Office of Quality Assurance has certified for tert-butyl alcohol under USEPA Method SW846 8260B since July 1, 2004.

Page 11 of 23

Diphenylamine - See the comment above. ...

JUN 06 2006 16:20 FR TO 919737245398 P.07/1

Page 14 of 23

Nitrocellulose

The facility states that a modified of USEPA Method 353.2 will be used for this analysis. The laboratory designated by the facility for this analysis must obtain certification from the Office of Quality Assurance for this modification. Their designated laboratory needs to contact their Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, this method can be used for the analysis of this parameter.

Page 15 of 23

Nitroguanidine

The facility states that a modified of USEPA SW846 Method 8330 will be used for this analysis. The laboratory designated by the facility for this analysis must obtain certification from the Office of Quality Assurance for this modification. Once a laboratory is designated for this analysis, the laboratory needs to contact their Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, this method can be used for the analysis of this parameter.

Page 18 of 23

Strontium

The facility states that modification of USEPA SW846 methods 3005 and Method 6020 are required for this analyte to be certified. STL North Canton has held certification for this analyte since July 1, 2003 as a under a "Picatinny Arsenal Project User Defined". In July 2005, the Office of Quality offered certification for this parameter as a "Picatinny Arsenal Project User Defined" for USEPA SW846 Method 6020 and regular certification for USEPA SW846 Method 6010. As of July 2005, the Office of Quality Assurance offers regular certification for this parameter under Method 6020 and certification by two other methods. Please note that Strontium-89/90 analysis will be required under the Radiological parameters.

Zirconium- See comment above.

Silicon

The table indicates in the first column that Silicon analysis is being required and the second column specifics USEPA SW846 Method 3005 for the digestion followed by USEPA SW846 Method 6010B for the preparation. The last column of this row then states that a "User Defined Method For Picatinny Arsenal No labs listed in NJDEP data base as of 8/20/05. Request analysis of Silica (SiO2) instead of Silicon (Si)."

The Office of Quality Assurance was contacted regarding these issues and the following was determined.

The proposal of the facility to use USEPA SW846 Method 3005 (Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy) is not rigorous enough to break apart the silica matrix to make all of the Silicon available for measurement.

Currently OQA offers Certification under the Drinking Water category for silica and under the Water Pollution category Silica Dissolved. OQA can offer certification for USEPA SW846 Method 6010 if there is a request from a laboratory. The laboratory would have to apply for certification for this compound and submit all the supporting documentation. Additionally, since the actual measurement obtained will be silica, the laboratory will have to determine by stlochlometry, the concentration of Silicon in the sample. This calculation will have to be submitted as part of the laboratory's Standard Operating Procedure.

Silica (undissolved) is not a certification currently offered under the Water Pollution Category. If the laboratory wishes to pursue certification for silica using Method 200.7, the laboratory must apply for certification for this compound and submit all of the supporting documentation. In addition, the concentration of Silicon would have to be determined by stiochiometry.

Page 20 of 23

Pesticide Compounds

Report alpha and gamma chlordane in addition to Technical Chlordane. STL-North Canton is certified for both alpha and gamma chlordane.

Endosulfan A must be reported as Endosulfan I

Endosulfan B must be reported as Endosulfan II.

Page 21 of 23

Ammonia

The method citations are incorrect. The use of USEPA Method 350.3 as a stand-alone method for this determination is not acceptable.

Page 22 of 23

Perchlorate - See comment above:

Uranium -See comments on Radiological Analysis below.

Page 23 of 23

Uranium - See comments on Radiological Analysis below.

Cobalt -- 60 - See comment above.

Analyze Immediately Parameters

The table does not address the "analyze immediately" parameters that are required for the sampling of the monitoring wells. The following parameters if they are being determined must be addressed: dissolved oxygen, temperature, pH, and specific conductance.

Radiological Analysis

The Office of Quality Assurance (OQA) offers certification for various approved radiological methods in the Drinking Water, Water Pollution and Solid and Hazardous Waste Categories. OQA is aware that there are other methods than what NJDEP have listed that may be appropriate for the determination of radiological parameters. In recognition of this fact, if the facility's laboratory wants to use another method and it involves an analytical technique for which it currently certified, the laboratory must request certification from the Office of Quality Assurance for the other method. The laboratory requesting certification must contact the Office of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance an initial Demonstration of Capability (IDOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. An IDOC study must be conducted for each project.

Additionally, OQA has determined that since different methods using the same analytical technique are certified in the three-certification categories, the laboratories may propose using a method approved in one category for another matrix, such as proposing the use of a drinking water method for non-potable ground water. However, certain requirements must be met for this to be allowed. The laboratory requesting certification must contact the Office of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance a current Minimum Demonstration of Capability (DOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. The Office of Quality Assurance makes the final determination as to method acceptability. The DOC study must be conducted for each project.

A laboratory that is not currently certified for a method in a category and is not certified for it in another category must request certification in the required category. The laboratory requesting certification must contact the Office of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance a current Minimum Demonstration of Capability (DOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. The MDC study must be conducted for each project.

Laboratories that are currently certified by OQA in an approved method and are currently designated for this project, must submit DOC data for the required matrices for review and approval in the next submittal.

Radiological Project Regulrements

The Bureau of Environmental Radiation has established various Minimum Detectable Concentrations (MDC) that must be met for this project for both groundwater and soils analyses. Soils are being addressed in this memorandum. As the facility is proposing groundwater analysis for various radiological compounds, the future soil analyses will be critical in determining a potential contamination source. The future soil sampling analyses are the same radiochemical/radiological compounds that are required in the groundwater sampling plan. Based on those requirements, the analytical methods and/or techniques that are currently certified are listed. Options are provided where the facility's laboratory can propose other methods. Please be advised that laboratory certification must be obtained prior to the analysis of environmental samples. These methods should be able to meet the MDC requirements, however the laboratory is required to determine each MDC for the appropriate matrix.

The table indicates that total uranium as well as the Isotopes Uranium-235 and Uranium-238 are being analyzed for in this project. Total uranium can be determined by USEPA Method 200.8 as stated in the plan. The Plan states that they could not locate labs certified for Uranium-235 and Uranium-238. The certification offered by OQA lists the uranium isotopes as Uranium instead of listing the Isotopes individually. The alpha spectrometry technique listed in the certification database

Picatinny Arsenal Response to August 31, 2005 letter Page 6 of 9 is for speciation of isotopic uranium. The fluorometry technique is for the determination of total uranium.

Ground Water Analysis

Gross Alpha & Beta

The gross alpha MDC must not exceed 3 pCI/L.

The gross beta MDC must not exceed 4 pCI/L.

The certified methods in the water pollution category and the drinking water category are the same except for the required 48 Hour Rapid Gross Alpha Test. The 48 Hour Rapid Gross Alpha Test (N.J.A.C 7:18-6) is required for the determination of gross alpha in the ground water. A laboratory certified in category SDW07.01001 is required.

The laboratory can chose a method from either category for the gross beta determination.

Total Uranium

The MDC for total Uranium must be below 3 ug/L.

Uranium-235 and Uranium-238

Since the facility is proposing to analyze for these isotopes in groundwater, an alpha spectrometry technique should be proposed.

Cesium 134/137

The Cesium 134 MDC must not exceed 5 pCi/L. The Cesium 137 MDC must not exceed 10 pCi/L.

Both Isotopes of cesium must be determined and the results reported separately. The required technique is gamma spectrometry. OQA offers certification as Cesium 134/137.

Radium

Radium-226

The Radium -226 MDC must not exceed 1.0 pCi/L. The method cited in the table USEPA Method 903.1 (radiochemical method) is acceptable.

Radium-228

The Radium -228 MDC must not exceed 1.0 pCi/L. The method cited in the table USEPA Method 904 (radiochemical method) is acceptable.

Cobalt- 60

The Cobalt-60 MDC must not exceed 10 pCi/L.

Picatinny Arsenal Response to August 31, 2005 letter Page 7 of 9 OQA offers certification by gamma spectrometry for cobalt-60 in both the drinking water category and the water pollution category by USEPA Method 901.1, which is also a gamma spectrometry method. The laboratory must be certified in either category.

Strontium 89/90

The plan states that Strontium is being analyzed for using USEPA Method 200.8. USEPA Method 200.8 is not acceptable for the determination of Strontium for the determination of radiological components. In addition, strontium-89 and strontium-90 is required since the standards are based on the isotopes.

The strontium-89 MDC must not exceed 10 pCl/L.

The strontium-90 MDC must not exceed 2 pCi/L.

OQA offers certification for various methods for these two compounds in both the Drinking Water and Water Poliution Categories. The laboratory must be certified in either category.

Soils Analysis

Uranium

The MDC for Uranium-234 must be below 1 pCi/g for gamma spectrometry and 0.5 pCi/g if alpha spectrometry is used.

The MDC for Uranium-235 must be below 1 pCi/g for gamma spectrometry.

The MDC for Uranium-238 must be below 1 pCl/g for gamma spectrometry and 0.5 pCl/g if alpha spectrometry is used.

Please note that currently OQA only offers certification for alpha spectrometry (DOE Method U-02) under the Solid and Hazardous Waste Categories. If the facility's laboratory wants to use gamma spectrometry for the reporting of these compounds a certification request is required.

Cesium 134/137

The Cesium 134 MDC must not exceed 0.5 pCi/g.

The Cesium 137 MDC must not exceed 0.5 pCl/g.

OQA offers certification as Cesium 134/137. Both isotopes of cesium must be determined and the results reported separately. The required technique is gamma spectrometry by DOE Method 4.5.2.3 in the Solid and Hazardous Waste Category. If the facility's laboratory wants to use USEPA Method 901.1, which is also a gamma spectrometry method, a certification request must be made to OQA.

Radium

Radium-226

The Radium-226 MDC must not exceed 1.0 pCi/g.

The certified methods in the Solid and Hazardous Waste Category are Radon Emanation or precipitation technique. If the facility's laboratory wants to use another method, a certification request is required. If the facility's laboratory wants to use gamma spectrometry for the soils analysis, the samples must be dried and sealed for 21 days before counting. The Bi-214 and Pb-214 gamma energies are used for determining the radium-226.

Radium-228

The Radium-228 MDC must not exceed 0.5 pCi/g.

The certified methods in the Solid and Hazardous Waste Category is a precipitation technique. If the facility's laboratory wants to use another method, a certification request is required. If the facility's laboratory wants to use gamma spectrometry for the solls analysis, the samples must be dried and sealed for 21 days before counting. The Ac-228 gamma energy is used for determining the radium-228.

Cobalt-60

The cobalt- 60 MDC must not exceed 0.5 pCl/g.

OQA offers certification in the Solid and Hazardous Waste Category by gamma spectrometry for cobalt-60 by DOE Method 4.5.2.3. If the facility's laboratory wants to use USEPA Method 901.1, which is also a gamma spectrometry method, a certification request is required.

Strontium 89/90

The strontium-89 MDC must not exceed 0.5 pCl/g.

· The strontium-90 MDC must not exceed 0.5 pCVg.

OQA offers certification by precipitation/beta counting for these two compounds in the Solid and Hazardous Waste Category. If the facility's laboratory wants to use another method, a certification request is required

If you have any questions, please do not hesitate to contact this office at 633-0752 or via email at kathleen.grimes@dep.state.nj.us

c: Jenny Goodman, BRP
Sreenivas Komanduri, OQA
Stu Nagnourney, OQA
Robert Royce, OQA
Joseph Marchanesi, BGWPA

Picatinny Arsenal Response to August 31, 2005 letter Page 9 of 9 . .

	,	·		
			·	
		· · ·		
•				

			·				÷.
					•		
		•					
					÷		
	4						
			·			•	• *
	4						
		•			·		
,		,					
		•					
				·			·

REPLY TO ATTENTION OF

DEPARTMENT OF THE ARMY UNITED STATES ARMY INSTALLATION MANAGEMENT AGENCY NORTHEAST REGIONAL OFFICE GARRISON PICATINNY ARSENAL, NEW JERSEY 07806-5000

July 28, 2006

SUBJECT: Response to Comments on August 31st submittal regarding groundwater monitoring at the Open Detonation Area, U.S. Army Armament Research Development and Engineering Center, Picatinny Arsenal, Morris County, EPA ID No. NJ3 210 020 704

Mr. Anthony Fontana, Chief
Bureau of Solid and Hazardous Waste Permitting North
New Jersey Department of Environmental Protection
Solid and Hazardous Waste Program
401 East State Street
P.O. Box 414
Trenton, New Jersey 08625-0414

Dear Mr. Fontana:

Enclosed please find responses to your comments relating to our August 31, 2005 submittal that addressed the groundwater monitoring aspects related to the Open Detonation Subpart X application.

We are asking for a written concurrence as soon as possible to implement the quarterly groundwater monitoring program minus the four parameters noted in the table attached and the exotic explosives formerly analyzed for by Crane Naval Warfare Center. The program would use labs that were certified for over 95% of the required parameters and clearly all the critical ones. The wells have not been sampled as you know for a number of years. The certification process may take many months to resolve; thus logic and stewardship suggests that NJDEP concur that the groundwater sampling program for the certified parameters should begin.

There are no laboratories that are presently certified for the analysis of silicon, nitrocellulose, nitroguanidine, and diphenylamine by the proposed methods. These parameters were all analyzed in previous four quarters of groundwater sampling; they were never detected although a certified laboratory for those parameters was not used. These four parameters, however, should not be considered critical to the program.

Once the laboratories are certified for these methods for these parameters, we will add them to the list of parameters in the quarterly program at that point. Our contractor will work

directly with your Office of Data Quality to get selected labs certified ensure that the Analyze Immediately Parameters are performed by a certified program before sampling occurs as discussed in the responses.

As your office of Data Quality has requested, we have also enclosed the data packages from Crane Naval Warfare Center from the previous four quarters of results in order to data validate. The results were all non-detects for the following five parameters: diethyleneglycol dinitrate (DEGDN), triethyleneglycol dinitrate (TEGDN), trimethyleneglycol dinitrate (TMEDN), 1,3-diamino-2, 4,6-trinitrobenzene (DATB); and 2'4,4,'6,6'-hexanitrostilbene (HNS.) We trust that NJDEP's validation of the data packages from Crane Naval Warfare Center finds the data acceptable.

We also ask that the NJDEP project managers consider the five Crane parameters not critical to the program and the previous four quarters of results adequate - independent of the results of the validation.

If you have any questions please feel free to contact me at 973-724-5818 or Fred Sanchez at 973-724-5948.

Sincerely,

For Thomas J. Solecki

Director, Environmental Affairs
Directorate

Enclosures:

Copy Furnished:

Barry Tornick, EPA, Chief, NJS, RPB, DEPP

Response to NJDEP Comments on the Groundwater Analytical Program for the Open Detonation Area at Picatinny Arsenal Dated May 31, 2006

Comments from the Office of Data Quality

Comment 1: Page 1 of 23

For the exotic explosive compounds that were analyzed by Crane Naval Warfare Center, the facility stated in the meeting of June 9, 2005 that the data had been submitted properly. The re-review of the document submittals (various dates) submitted by the facility and all of the reviews conducted by this Office clearly indicated that only summary data was submitted. No analytical data packages were ever submitted for validation. Requests were made by this Office in every memorandum that full regulatory deliverable packages must be submitted for validation. As the required analytical data packages were never submitted, the statements made by the facility cannot be verified. The option exists for the facility to submit this data to the Department in the proper full regulatory format and have the data validated. The issue regarding whether or not the data meet the regulatory requirements will then be determined by the permit writer after the data is validated.

Response 1:

The analytical data packages provided to Picatinny Arsenal by Crane Naval Warfare Center (CNWC) for the exotic explosive analyses performed quarterly from June 2001 to April 2002 is being submitted to NJDEP for validation as part of this response. The full data packages from CNWC are provided in a separate binder.

Comment 2a: Page 2 of 23

The facility states that there are a few analytes in which there are no certified methods and/or certified laboratory for the analyte (e.g., diphenylamine, zirconium and uranium isotopes). In this case we request that a Shaw Environmental chemist be permitted to speak directly to your laboratory certification and data quality personnel.

Diphenlylamine

The Office of Quality Assurance has been offering certification for diphenylamine since 1997 under USEPA SW846 Method 8270C certification code SHW07.05020. Currently there are at least 42 laboratories certified for this compound. STL North Canton has been certified for this compound since July 1, 2003.

Based on the attached chart submitted by the facility, the facility wants to use a modification of USEPA SW846 Method 8330 (HPLC technique) for the analysis of diphenylamine. The laboratory chosen by the facility would have to request certification for this compound by this method from the Office of Quality Assurance. The laboratory needs to contact their Office of Quality Assurance Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, the method can be used for the analysis of this compound.

Response 2a: Picatinny Arsenal originally intended to perform diphenylamine (DPA) analysis under Method 8270C. However, NJDEP stated in the NOD dated July 6, 2005 that DPA must be analyzed by HPLC to "obtain the accurate concentration of the compound." Using 8270C, DPA cannot be distinguished from N-Nitroso-diphenylamine. If analysis of DPA by Method 8270C is acceptable to NJDEP, as suggested by the comment, Picatinny would utilize the 8270C certified method. If analysis of

DPA by Method 8270C is unacceptable to NJDEP, the selected laboratory will submit the required documentation and fees along with their request for certification.

Comment 2b: Zirconium

The Office of Quality Assurance has been offering certification for zirconium since July 2003 as an "Other Picatinny Arsenal Project" specific compound by USEPA SW846 Method 6020. Effective July 2005 zirconium has been offered as a routine parameter. STL-North Canton, Ohio, which is identified by the facility for this analysis, has been certified for this method since July 2003 as an "Other Picatinny Arsenal Project". This office agrees with the facility that if a search is conducted for this analyte using the NJDEP OQA website, it returns the search as a no laboratory found. However, since the facility had used this laboratory for the previous sampling events at the site, they could have asked the laboratory directly if they were certified.

Response 2b: Picatinny Arsenal will use Severn Trent Laboratories or another certified laboratory listed on the NJDEP OQA website and crosschecked against the current Fiscal Year laboratory-specific NJDEP Certification Statement for the analysis of zirconium.

Comment 2c: Uranium Isotopes

The Plan states that they could not locate labs certified for Uranium-235 and Uranium-238. The certification offered by OQA lists the uranium isotopes and Total Uranium, instead of listing the Isotopes individually. Where the technique is indicated as alpha spectrometry, it denotes isotopic speciation, in this case Uranium-234, -U235 and Uranium-238.

Response 2c: Picatinny Arsenal will use a certified laboratory listed on the NJDEP OQA website and crosschecked against the current Fiscal Year laboratory-specific NJDEP Certification Statement for the analysis of the uranium isotopes.

Comment 3a:

The facility requests the use of certified drinking water analytical methods to analyze non potable well water from the ODA in cases where a certified method does not exist for non-potable water (e.g. perchlorate, cobalt-60).

Cobalt-60

The Office of Quality Assurance has been offering certification for cobalt-60 under the Water Pollution certification since 2003 under certification code WPP09.03200. The currently listed required method is USEPA Method 901.1 using the gamma spectrometry. There are two additional methods which are considered equivalent to USEPA 901.1 which are currently acceptable to NJDEP that are not listed in Part III of the application. The methods are ASTM D3649 and Standard Method 7120. There are currently two laboratories certified for the Method 901.1 under this certification code. The use of a laboratory certified for this parameter under Drinking Water or Solid or Hazardous Waste is not acceptable. If the facility has a designated laboratory that it wants to use that is currently certified under the drinking water category, that laboratory must obtain certification for cobalt-60 under the Water Pollution category. The laboratory must contact their Certification Officer for the procedures to obtain certification.

Also if the facility wants to propose another method for the analysis of cobalt-60, their designated laboratory needs to contact their Certification Officer to find out the required documentation and fees

that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, this method can be used for the analysis of this compound.

Response 3a: Picatinny Arsenal will use a certified laboratory listed on the NJDEP OQA website under the Water Pollution certification and crosschecked against the current Fiscal Year laboratory-specific NJDEP. Certification Statement for the analysis of cobalt-60.

Comment 3b: *Perchlorate*

The facility was informed in the meeting of June 9, 2005, that 'the use of USEPA Method 314.0 for perchlorate will be acceptable for analysis of monitoring well water and a modified method for the soil matrix will be acceptable for soils. The Office of Quality Assurance has already developed a certification code for perchlorate in soils. To use this method in soils, their laboratory must request certification approval from the Office of Quality Assurance for the use of this method in the Water Pollution category. Additionally, the Department is currently in the regulatory process of proposing a Drinking Water Criteria for Perchlorate. This will lead to a Ground Water Criteria for Perchlorate. The facility's laboratory must provide a current Method Detection Limit study that includes their Reporting Limit, so it can be compared to the current standards.

Response 3b: Picatinny Arsenal will use a certified laboratory listed on the NJDEP OQA website and crosschecked against the current Fiscal Year laboratory-specific NJDEP Certification Statement for the analysis of perchlorate.

As stated by NJDEP, Picatinny Arsenal will use USEPA Method 314 under the certification: Knoxville TN001, SDW02.31120 for the analysis of non-potable monitoring well water. In addition, current Method Detection Limit study data and the associated Reporting Limit will be submitted to NJDEP in order to verify compliance with the proposed drinking water criterion.

For soil analysis, as necessary, the retained laboratory will obtain certification for soils under SHW10.30025 which is inclusive of obtaining certification under the Water Pollution Category (WPP).

Comment 4: Tentatively Identified Compound Reporting

Tentatively Identified Compounds reporting are required for both the Volatile Organics by USEPA SW846 Method 8260B and USEPA SW846 Method 8270C. Up to thirty (30) non-target compounds are to be reported for each fraction.

Response 4: Tentatively identified compounds will be reported for the proposed volatile organics analyses.

Table I.C.3, Ground Water

Page 5 of 23

Comment 5a: Trans-1,2-dichloroethene

There is a note on trans-1,2-dichloroethene that is not defined.

Response 5a: The note on trans-1,2-dichloroethene will be removed from the table.

Comment 5b: Xylenes

The total xylenes must be reported separately as m& p-xylenes and o-xylene. The laboratory may report a total xylene concentration as well as the other two concentrations. STL-North Canton is certified for the individual xylenes under a "Picatinny Arsenal Project User Defined" since July 1, 2004. The Office of Quality Assurance has certified for individual xylene isomers since July 1, 2004.

Response 5b: Xylenes will be reported as total xylenes as well as separately as m&p-xylenes and o-xylene. STL-North Canton will be used to perform the xylenes analysis.

Page 6 of 23

Comment 6: Tert-butyl Alcohol

STL-North Canton is certified for tert-butyl alcohol by the Office of Quality Assurance as a under a "Picatinny Arsenal Project User Defined" since July 1, 2004. The Office of Quality Assurance has certified for tert-butyl alcohol under USEPA Method SW846 8260B since July 1, 2004.

Response 6: Picatinny Arsenal will use STL-North Canton for the analysis of tert-butyl alcohol under certified USEPA Method SW846 8260B.

Page 11 of 23

Comment 7: Diphenylamine - See the comment above.

Response 7: See response to Comment 2a above.

Page 14 of 23

Comment 8: Nitrocellulose

The facility states that a modified of USEPA Method 353.2 will be used for this analysis. The laboratory designated by the facility for this analysis must obtain certification from the Office of Quality Assurance for this modification. Their designated laboratory needs to contact their Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, this method can be used for the analysis of this parameter.

Response 8: If no certified method or certified laboratory exists for the analysis of nitrocellulose, the intended laboratory, STL-Knoxville, will obtain certification for nitrocellulose under the approved methodology using a modification of USEPA Method 353.2.

Page 15 of 23

Comment 9: Nitroguanidine

The facility states that a modified of USEPA SW846 Method 8330 will be used for this analysis. The laboratory designated by the facility for this analysis must obtain certification from the Office of Quality Assurance for this modification. Once a laboratory is designated for this analysis, the laboratory needs to contact their Certification Officer to find out the required documentation and fees that must accompany their request for certification. Once certification is granted by the Office of Quality Assurance, this method can be used for the analysis of this parameter.

Response 9: If no certified method or certified laboratory exists for the analysis of nitroguanidine, the intended laboratory, STL-Knoxville, will obtain certification for a modification of USEPA SW846 Method 8330 for the analysis.

Page 18 of 23

Comment 10: Strontium

The facility states that modification of USEPA SW846 methods 3005 and Method 6020 are required for this analyte to be certified. STL North Canton has held certification for this analyte since July 1, 2003 as a under a "Picatinny Arsenal Project User Defined". In July 2005, the Office of Quality offered certification for this parameter as a "Picatinny Arsenal Project User Defined" for USEPA SW846 Method 6020 and regular certification for USEPA SW846 Method 6010. As of July 2005, the Office of Quality Assurance offers regular certification for this parameter under Method 6020 and certification by two other methods. Please note that Strontium-89/90 analysis will be required under the Radiological parameters.

Response 10: Picatinny Arsenal will use Severn Trent Laboratories or another certified laboratory listed on the NJDEP OQA website and crosschecked against the current Fiscal Year laboratory-specific NJDEP Certification Statement for the analysis of strontium.

See response to Comment 9 (Page 11) from the Office of Data Quality and the Bureau of Radiation Protection regarding the radioanalysis of Strontium-89/90.

Comment 11: Zirconium - See comment above.

Response 11: See response to Comment 2b above.

Comment 12: Silicon

The table indicates in the first column that Silicon analysis is being required and the second column specifics USEPA SW846 Method 3005 for the digestion followed by USEPA SW846 Method 6010B for the preparation. The last column of this row then states that a "User Defined Method For Picatinny Arsenal No labs listed in NJDEP data base as of 8/20/05. Request analysis of Silica (SiO2) Instead of Silicon (SI)."

The Office of Quality Assurance was contacted regarding these issues and the following was determined.

The proposal of the facility to use USEPA SW846 Method 3005 (Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy) is not rigorous enough to break apart the silica matrix to make all of the Silicon available for measurement.

Currently OQA offers Certification under the Drinking Water category for silica and under the Water Pollution category Silica Dissolved. OQA can offer certification for USEPA SW846 Method 6010 if there is a request from a laboratory. The laboratory would have to apply for certification for this compound and submit all the supporting documentation. Additionally, since the actual measurement obtained will be silica, the laboratory will have to determine by

stiochlometry, the concentration of Silicon in the sample. This calculation will have to be submitted as part of the laboratory's Standard Operating Procedure.

Silica (undissolved) is not a certification currently offered under the Water Pollution Category. If the laboratory wishes to pursue certification for silica using Method 200.7, the laboratory must apply for certification for this compound and submit all of the supporting documentation. In addition, the concentration of Silicon would have to be determined by stiochlometry.

Response 12: Picatinny Arsenal will use a certified method for the analysis of Silica Dissolved under the Water Pollution category followed by the use of stiochlometry to determine the concentration of silicon in the samples.

Page 20 of 23

Comment 13: Pesticide Compounds

Report alpha and gamma chlordane in addition to Technical Chlordane. STL-North Canton is certified for both alpha and gamma chlordane.

Endosulfan A must be reported as Endosulfan I Endosulfan B must be reported as Endosulfan II

Response 13: Alpha and gamma chlordane will be reported in addition to technical chlordane. STL North Canton will be utilized for the analysis. Endosulfan A and Endosulfan B will be reported as Endosulfan I and Endosulfan II, respectively.

Page 21 of 23

Comment 14: Ammonia

The method citations are incorrect. The use of USEPA Method 350.3 as a stand-alone method for this determination is not acceptable.

Response 14: STL North Canton will utilize the appropriate SOP as certified under NPW: WPP02.03500. The certified method would be inclusive of both USEPA 350.2, distillation, and USEPA 350.3, electrode. These methods were referenced in the table.

Page 22 of 23

Comment 15: Perchlorate - see comment above.

Response 15: See response to Comment 3b above.

Comment 16: Uranium - See comments on Radiological Analysis below.

Response 16: See response to Comments 4 and 10 from the Office of Data Quality and the Bureau of Radiation Protection.

Page 23 of 23

Comment 17: Uranium - See comments on Radiological Analysis below.

Response 17: See response to Comments 4 and 10 from the Office of Data Quality and the Bureau of Radiation Protection.

Comment 18: Cobalt-60 - See comment above. Response 18: See response to Comment 3a above.

Comment 19: Analyze Immediately Parameters

The table does not address the "analyze immediately" parameters that are required for the sampling of the monitoring wells. The following parameters if they are being determined must be addressed: dissolved oxygen, temperature, pH, and specific conductance.

Response 19: Picatinny's contractor, Shaw Environmental (SHAW) intends to utilize their certified laboratory in Lawrenceville, NJ as the base for the "analyze immediately" certification. The required documentation and associated deliverables will be provided by SHAW and Picatinny through the Lawrenceville laboratory.

Response to NJDEP Comments on the Groundwater Analytical Program for the Open Detonation Area at Picatinny Arsenal Dated May 31, 2006

Comments from the Office of Quality Assurance and the Bureau of Radiation Protection

Comment 1: Radiological Analysis

The Office of Quality Assurance (OW) offers certification for various approved radiological methods in the Drinking Water, Water Pollution and Solid and Hazardous Waste Categories. OQA is aware that there are other methods than what NJDEP have listed that may be appropriate for the determination of radiological parameters. In recognition of this fact, if the facility's laboratory wants to use another method and it involves an analytical technique for which it currently certified, the laboratory must request certification from the Office of Quality Assurance for the other method. The laboratory requesting certification must contact the Office of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance an Initial Demonstration of Capability (IDOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. An IDOC study must be conducted for each project.

Additionally, OQA haS determined that since different methods using the same analytical technique are certified in the three-certification categories, the laboratories may propose using a method approved in one category for another matrix, such as proposing the use of a drinking water method for non-potable ground water. However, certain requirements must be met for this to be allowed. The laboratory requesting certification must contact the Office' of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance a wrrent Minimum Demonstration of Capability (DOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. The Office of Quality Assurance makes the final determination as to method acceptability. The DOC study must be conducted for each project.

A laboratory that is not currently certified for a method in a category and is not certified for it in another category must request certification in the required category. The laboratory requesting certification must contact the Office of Quality Assurance certification officer responsible for the radiological laboratories for complete requirements. At a minimum, the laboratory must conduct and submit to the Office of Quality Assurance a current Minimum Demonstration of Capability (DOC) Study in the matrix requested. A current Standard Operating Procedure must be submitted and address the matrix being analyzed. The MDC study must be conducted for each project.

Laboratories that are currently certified by OQA in an approved method and are currently designated for this project, must submit DOC data for the required matrices for review and approval in the next submittal.

Response 2: Picatinny is requesting clarification of the Initial Demonstration of Capability (IDOC) and Minimum Demonstration of Capability (DOC) study requirements for certified laboratories and the different matrices. Picatinny's contractor Shaw Environmental (SHAW) intends to use approved NJDEP-certified radiological methods as verified by the NJDEP Database and the laboratory-specific certifications; therefore, do we have to complete the IDOC and DOC requirements?

Comment 2: Radiological Project Requirements

The Bureau of Environmental Radiation has established various Minimum Detectable Concentrations (MDC) that must be met for this project for both groundwater and soils analyses. Soils are being addressed in this memorandum. As the facility is proposing groundwater analysis for various radiological compounds, the future soil analyses will be critical in determining a potential contamination source. The future soil sampling analyses are the same radiochemical/radiological compounds that are required in the groundwater sampling plan. Based on those requirements, the analytical methods and/or techniques that are currently certified ate listed. Options are provided where the facility's laboratory can propose other methods. Please be advised that laboratory certification must be obtained prior to the analysis of environmental samples. These methods should be able to meet the MDC requirements, however the laboratory is required to determine each MDC for the appropriate matrix.

The table indicates that total uranium as well as the Isotopes Uranium-235 and Uranium-238 are, being analyzed for in this project. Total uranium can be determined by USEPA Method 200.8 as stated in the plan. The Plan states that they could not locate labs certified for Uranium-235 and Uranium-238. The certification offered by OQA lists the uranium isotopes as Uranium instead of listing the isotopes individually. The alpha spectrometry technique listed in the certification database is for speciation of isotopic uranium. The fluorometry technique is for the determination of total uranium.

Response 2: What is the laboratory's requirement to document compliance with the MDC for each analyte for each matrix? If the method is certified, associated documentation for the MDCs should have been provided and approved.

Picatinny did not propose to analyze for all the same parameters in the soil as in the groundwater investigation, because a previous characterization survey conducted at the site only identified the decay products of the uranium-238 series and the decay products of the radium-226 series to be present at the site. It does not seem prudent to investigate the soil for a potential source, before it is determined whether there is any groundwater contamination from radioanalytes.

Picatinny will utilize a certified alpha spectroscopy method for the analysis of the specific uranium isotopes.

Ground Water Analysis

Comment 3: Gross Alpha & Beta

The gross alpha MDC must not exceed 3 pCi/L.

The gross beta MDC must not exceed 4 pCi/L.

The certified methods in the water pollution category and the drinking water category are the same except for the required 48 Hour Rapid Gross Alpha Test. The 48 Hour Rapid Gross Alpha Test (N.J.A.C 7:18-6) is required for the determination of gross alpha in the ground water. A laboratory certified in category SDW07.01001 is required.

The laboratory can chose a method from either category for the gross beta determination.

Response 3: Picatinny is requesting clarification of the radiological analyses being requested by NJDEP and the rationale for the radioanalytes such as gross alpha and gross beta. There has been neither historical data nor any indication from the "waste stream" to the ODA for the presence of beta emitters. In addition, all the soil samples are proposed for alpha spectroscopy.

Comment 4: Total Uranium

The MDC for total Uranium must be below 3 ug/L.

Response 4: Picatinny will retain a laboratory which is certified and can attain the required MDC (i.e., less than 3 µg/L for total uranium).

For uranium the MDC value is given in ug/L versus pCi/L. Please clarify.

Comment 5: Uranium-235 and Uranium-238

Since the facility is proposing to analyze for these isotopes in groundwater, an alpha spectrometry technique should be proposed.

Response 5: Picatinny will utilize a certified alpha spectroscopy method for the analysis of the specific uranium isotopes.

Comment 6: Cesium 134/137

The Cesium 134 MDC must not exceed 5 pCi/L. The Cesium 137 MDC must not exceed 10 pCi/L.

Both isotopes of cesium must be determined and the results reported separately. The required technique is gamma spectrometry. OQA offers certification as Cesium 134/137.

Response 6: Picatinny will retain a laboratory which is certified and has the required MDCs for cesium 134 and cesium 137. The results of each isotope will be reported separately.

Comment 7: Radium

Radium-226

The Radium -226 MDC must not exceed 1.0 pCi/L. The method cited in the table USEPA Method 903.1 (radiochemical method) is acceptable.

Radium-228

The Radium -228 MDC must not exceed 1.0 pCi/L. The method cited in the table USEPA Method 904 (radiochemical method) is acceptable.

Response 7: Picatinny will retain a laboratory which is certified and has the required MDCs for radium-226 and radium-228.

Comment 8: Cobalt-60

The Cobalt-60 MDC must not exceed 10 pCi/L.

OQA offers certification by gamma spectrometry for cobalt-60 in both the drinking water category and the water pollution category by USEPA Method 901.1, which is also a gamma spectrometry method. The laboratory must be certified in either category.

Response 8: Picatinny will retain a laboratory which is certified under the water pollution category and has the required MDC (i.e., less than 10 pCi/L for cobalt-60).

Comment 9: Strontium 89/90

The plan states that Strontium is being analyzed for using USEPA Method 200.8. USEPA Method 200.8 is not acceptable for the determination of Strontium for the determination of radiological components. In addition, strontium-89 and strontium-90 is required since the standards are based on the isotopes.

The strontium-89 MDC must not exceed 10 pCi/L.

The strontium-90 MDC must not exceed 2 pCi/L.

OQA offers certification for various methods for these two compounds in both the Drinking Water and Water Pollution Categories. The laboratory must be certified in either category.

Comment 9: Picatinny is requesting clarification of the radiological analyses being requested by NJDEP and the rationale for the radioanalytes such as Strontium-89/90. There has been neither historical data nor any indication from the "waste stream" to the ODA for the presence of Strontium-89/90. If necessary, Picatinny will retain a laboratory which is certified under the water pollution category and has the required MDCs for strontium-89 and strontium-90.

Soils Analysis

Comment 10: Uranium

The MDC for Uranium-234 must be below 1 pCi/g for gamma spectrometry and 0.5 pCi/g if alpha spectrometry is used.

The MDC for Uraniuin-235 must be below 1 pCi/g for gamma spectrometry.

The MDC for Uranium-238 must be below 1 pCi/g for gamma spectrometry and 0.5 pCi/g if alpha spectrometry is used.

Please note that currently OQA only offers certification for alpha spectrometry (DOE Method U-02) under the Solid and Hazardous Waste Categories. If the facility's laboratory wants to use gamma spectrometry for the reporting of these compounds a certification request is required.

Response 10: Picatinny will retain a laboratory which is certified for alpha spectroscopy and can meet the required MDCs for uranium-234, uranium-235 and uranium-238.

Comment 11: *Cesium 134/137*

The Cesium 134 MDC must not exceed 0.5 pCi/g.

The Cesium 137 MDC must not exceed 0.5 pCi/g.

OQA offers certification as Cesium 134/137. Both isotopes of cesium must be determined and the results reported separately. The required technique is gamma spectrometry by DOE Method 4.5.2.3 in the Solid and Hazardous Waste Category. If the facility's laboratory wants to use USEPA Method 901.1, which is also a gamma spectrometry method, a certification request must be made to OOA.

Response 11: Picatinny will retain a laboratory which is certified and can meet the required MDCs for cesium 134 and cesium 137. The results of each isotope will be reported separately.

Comment 12: Radium

Radium-226

The Radium-226 MDC must not exceed 1.0 pCi/g.

The certified methods in the Solid and Hazardous Waste Category are Radon Emanation or precipitation technique. If the facility's laboratory wants to use another method, a certification request is required. If the facility's laboratory wants to use gamma spectrometry for the soils analysis, the samples must be dried and sealed for 21 days before counting. The Bi-214 and Pb-214 gamma energies are used for determining the radium-226.

Radium-228

The Radium-228 MDC must not exceed 0.5 pCi/g.

The certified methods in the Solid and Hazardous Waste Category is a precipitation technique. If the facility's laboratory wants to use another method, a certification request is required. If the facility's laboratory wants to use gamma spectrometry for the soils analysis, the samples must be dried and sealed for 21 days before counting. The Ac-228 gamma energy is used for determining the radium-228.

Response 12: Picatinny will retain a laboratory which is certified and can meet the required MDCs for radium-226 and radium-228. The soil samples will be dried and sealed for 21 days before counting.

Comment 13: Cobalt-60

The cobalt-60 MDC must not exceed 0.5 pCi/g.

OQA offers certification in the Solid and Hazardous Waste Category by gamma spectrometry for cobalt-60 by DOE Method 4.5.2.3. If the facility's laboratory wants to use USEPA Method 901.1, which is also a gamma spectrometry method, a certification request is required.

Response 13: Picatinny will retain a laboratory which is certified in the Solid and Hazardous Waste category for gamma spectroscopy by DOE Method 4.5.2.3 and has the required MDC (i.e., less than 0.5 pCi/g for cobalt-60).

Comment 14: Strontium 89/90

The strontium-89 MDC must not exceed 0.5 pCi/g.

The strontium-90 MDC must not exceed 0.5 pCi/g.

OQA offers certification by precipitation/beta counting for these two compounds in the Solid and Hazardous Waste Category. If the facility's laboratory wants to use another method, a certification request is required.

Response 14: See response to Comment 9 above.

Table I.C-3 Groundwater
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

		Certification required prior to sampling	Certification required prior to sampling	Certification required prior to sampling	Certification required prior to sampling	60kg	Oheok Karanan	CCL Semivolatiles; with the exception of the referenced analyte below NUDER Cettiled per 6/30/06/Cettilication Statement and NUDER Offine Database Cettilication	27 m + 24 Cl 20 24 27 Cl 20 24 27 28 28 28 28 24 24 28 28 28 28 28 28 28 28 28 28 28 28 28	alvie below nubep centited per 6/30/06 centification Statement and Nuber online Database Centification.			TAL Metals with the exception of the referenced analytebelow. NUDER Centilication Solve Centilication Statement and NUDER Online Database Centilication Check
Eligibioro:Reportinu Data:		No	No	No	No	aser Certification Ch	abase Geriffication of the contraction	atement and NODE	No	rement and NUDER	No O	No	itandinudeponin
ication		None	None	None	None	P.⊙nlinelDatab	JOEP Online Dat	6 Genilication Si	None	Certification Sta	None	None	ication Statemer
NJDEP Certification	Analyze Immediately Parameters	Not Certified	Not Certified	Not Certified	Not Certified	r.6/36/06 Certification Statementand NUDEP Online Database Certification Check	per 6/30/06/Gentification/Statementrand/NUDEP Online Database/Centification/Oheo ///Contracting/16/multiple/STE transforces	EP. Cerillad para (30/0 Chack	Not Certified	P. certified bet.6/30/06 check	Not Certified	Not Certified	field plen 6/30/06 Certi
Aitelysis	Analyzellmmec	EPA 360.1: Electrode	EPA 170.1: Thermometric	EPA 150.1: Electrometric	EPA 120.1: Wheatstone Bridge	r 6/30/06 Certification	per 6/30/06/6ertillea «Gomhaeimano	halwebelow Nuble	SW-846 8321A, Rev. 0, 9/94 (modified)	alyterbelowNUDEP	USEPA 353.2 (modified)	SW-846 8330, Rev. 0, 9/94 (modified)	below NUDEP Cem
Analytical Wethod		N/A	N/A	N/A	N/A	IDER Gertilled be	NUDEP.Centifed	he referenceda	N/A	e referenced an	N/A	N/A .	stenced analyte
Extraction		N/A	N/A	N/A	N/A	TCL Volatiles: NJDEB.Certiled be	Additional Alcohols, NUDER Cettified	ne exception of	SW-846 8321A, Rev. 1, 12/96 (modified)	e exception of th	USEPA 353.2 (modified)	SW-846 8330, Rev. 0, 9/94 (modified)	ileji etili joi ileji de
p.//ip.lly/		Dissolved Oxygen	Temperature	Hd	Specific Conductance		Ma	rcu semivolātilāsi, with	Diphenylamine (LC/MS)	Explosives Listwith the exception of the referenced at	Nitrocellulose	Nitroguanidine	TAL Metals with the exc

Table I.C.3 Groundwater (continued) Picatinny Burning Ground Subpart X Permit Groundwater Monitoring NPW Certification Analytical Parameters

Contraction		·			ation Check	eroniorate	As per NJDEP, Method 314 is acceptable for the analysis of Groundwater	Statement and NJDEP Online Darabase Certification Check, multiple laboratories contracted as referenced		USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680	USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680
Eligible to Report Nu Data		No	Certification Check	TCL Pesticides/PCBs:tNuDEP certified per 6/30/06/Certification Statementand NUDEP Online Database Certification Check	Gentinediber 6/30/06: Gentification Statement and NUDER Online Database Centification Check	ertification Statement and NJDEP Online Batabases Gertification Ghecklinelliding Perchlorate	Yes	ck multiple laboratorie	Yes	Yes	Yes
cation	LabilD	None	Online Database	VDEP Online D	t and NUDER O	utabases@enfiloa	STL Knoxville TN001	Sertification Che	STL St. Louis . MO002	USACE FUSRAP Lab 02022	USACE FUSRAP Lab 02022
NUDEP Certification	Matrix: Analyte Gode.	Not Certified	30/06 Certification Statement and NVDEP Online Databaser Certification Check	cation Statement and b	Geriffcation Statemen	and Nuber online D	SDW:SDW02.31120	EP.Online Database	NPW: WPP04.52500	NPW:SHW09.60310	NPW:SHW09.60310
p	Analysis	To be Determined	/30/06 Gertification S	ed per,6/30/06/0ertifi	Gentified per 6/30/06		EPA 314.0		EPA 200.8	DOE U-02	DOE U-02
Analytical Metho	r Cléan-up	N/A	Cyanide: INUDER Certified per 6	S"NUDEP Certifi	iicides: NJDEP	od per 6/30/06/0	N/A	30/06 Celtification	N/A	N/A	N/A
	Extraction	Ţo be Determined	Cyanide: NUB	Pesticides/PCB	Organophosphorous Pesticides NIDEP	Anions List NUDEP Centiled per 6/39/06 G	EPA 314.0	EP.Cartified perf6	EPA 200.8	DOE U-02	DOE U-02
Analyte		Silicon (ICP)			Organoph	Anions	Perchlorate	Depleted Uranium (NAIDER Certified per 8/30/06 Certification	Total Uranium (mass)	Uranium -238 (radiological)	Uranium -234 (radiological)

Picatinny Subpart X Permit Page 3 of 3

Table I.C.3 Groundwater (continued)
Picatinny Burning Ground
Subpart X Permit
Groundwater Monitoring NPW Certification
Analytical Parameters

USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680	Yes	USACE FUSRAP Lab 02022	NPW; SHW09,60130	DOE 4.5.2.3	N/A	DOE 4.5.2.3
USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680	Yes	USACE FUSRAP Lab 02022	NPW: SHW09.60110	SW-846 9320, Rev. 0, 9/86	NS.	N/A SW
SC&A SOUTHEASTERN ENVIRONMENTAL LABORATORY 1000 Monticello Ct Montgomery, Al 36117 334-272-2234	Yes	SC&A Lab AL001	NPW: SHW09.60105	EPA 903.1		N/A
USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680	Yes	USACE FUSRAP Lab 02022	NPW: SHW09.60120	DOE 4.5.2.3	Δ	N/A D
erenened in the second	NIDEP Onine Database Optification Oheck multiple laboratories contracted as left inced	kimultiple labora	ase Gertification Cheo	aonine Datab	TOTAL MARKET	Radiological Analysis NUDEP Centification DE
USACE FUSRAP Maywood Laboratory 100 West Hunter Ave. Maywood, NJ 07607 201-226-6680	Yes	USACE FUSRAP Lab 02022	NPW:SHW09.60310	DOE U-02		N/A
Comment	Eligible to Reporting	cation	NUDEP Gertification Matrix: Analyte Code	Analysis		Analytical/Wethod

į

APPENDIX T-1

HYDROGEOLOGIC INVESTIGATION REPORT OPEN DETONATION AREA – PICATINNY ARSENAL

		·
·		
.*		
·		
		•
	•	1

APPENDIX T-1

HYDROGEOLOGIC INVESTIGATION REPORT OPEN DETONATION AREA – PICATINNY ARSENAL

TABLE OF CONTENTS

SectionPage

1.0	INTRODUC	CTION	1
	1.1 SITE I 1.2 SITE I	LOCATIONDESCRIPTION AND HISTORY	1 1
2.0	REGIONAL	PHYSICAL CHARACTERISTICS	6
	2.1 CLIMA	ATOLOGY	6
	2.2 PHYS	SIOGRAPHY AND TOPOGRAPHY	6
•	2.3 SURF	ACE WATER HYDROLOGY	6
	2.4 SUILS	S	······ 7
	2.6 HYDR	ROGEOLOGY	10
3.0	SITE SPEC	CIFIC PHYSICAL CHARACTERISTICS	11
	3.1 TOPO	OGRAPHY/SURFACE WATER HYDROLOGY	11
	3.2 GEOL	.OGY	11
		ROGEOLOGY	
4.0	WELL INS	TALLATION AND GROUNDWATER INVESTIGATION	14
	4.1 MONI	TORING WELL INSTALLATION	14
		UXO Avoidance Survey	
		Monitoring Well Installation and Development	
		UNDWATER PURGING AND SAMPLING - 1999	
		UNDWATER PURGING AND SAMPLING - 2001 AND 2002	
	4.5 QUAL	ITY CONTROL SAMPLES	15
5.0	CHEMICA	L ANALYTICAL RESULTS	17
		ODUCTION	
		OSIVES ANALYTICAL RESULTS	
		ALS ANALYTICAL RESULTS	
	5.4 OTHE	ER ANALYTICAL RESULTS	

LIST OF FIGURES

Figur	re .	Page
1-1	Arsenal Location Map	2
1-2	Study Area Map	3
1-3	Site Location Map	4
1-4	Open Detonation and Monitoring Well Location Map	5
3-1	Potentiometric Surface Map	12

LIST OF TABLES

Table		Page
2-1	Generalized Stratigraphic Sequence at PTA	9
5-1 Quart	Summary of Chemicals Detected in Groundwater – 1999 terly Sampling	19
5-2 Lead	Summary of Chemicals Detected in Groundwater -Confirmatory Sampling, 2000	23
5-3 Quart	Summary of Chemicals Detected in Groundwater – 2001 to 2002 terly Sampling	24

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L.... micrograms per liter

ASTM...... American Society for Testing and Materials

FID Flame Ionization Detector

ft bgs..... feet below ground surface

ft msl..... feet mean sea level

ft/day..... feet per day

ft²/day square feet per day

gpm..... gallons per minute

ICFKE ICF Kaiser Engineers

MS/MSD Matrix Spike/Matrix Spike Duplicate

NJDEP...... New Jersey Department of Environmental Protection

NOAA National Oceanic and Atmospheric Administration

OD Open Detonation

PIDPhotoionization Detector

PTA Picatinny Arsenal

PVC.....polyvinyl chloride

QA/QC quality assurance/quality control

QC quality control

RCRA...... Resource Conservation and Recovery Act

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USEPA U.S. Environmental Protection Agency

USGS...... United States Geological Survey

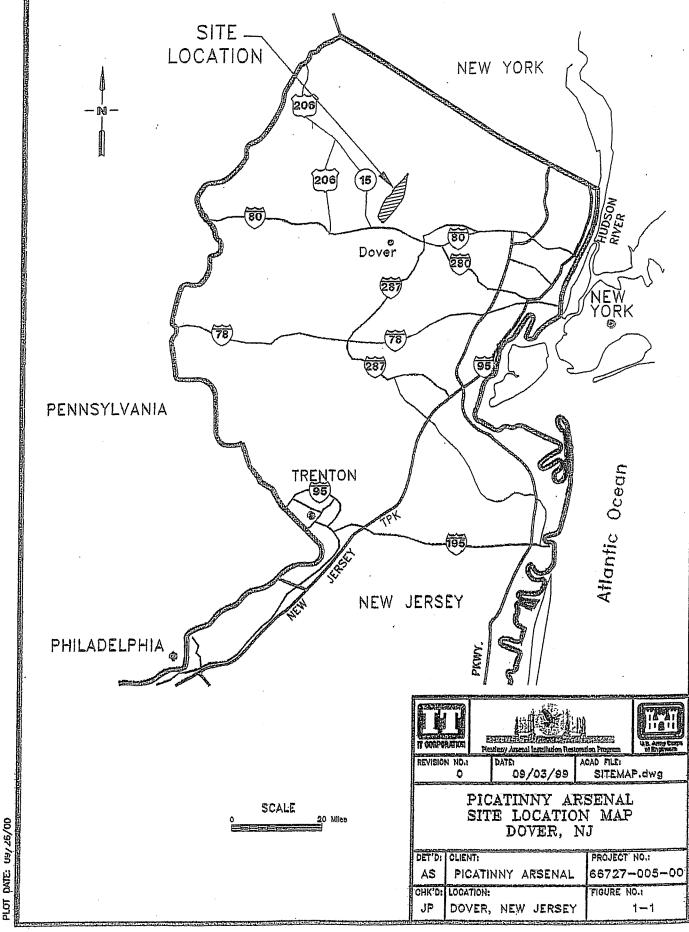
UXO unexploded ordnance

VOC Volatile Organic Compound

110 INTRODUCTION

This Hydrogeologic Investigation Report was developed in support of the Subpart X permit application for the Open Detonation (OD) in the Gorge area. Information presented in this report was compiled from groundwater investigations at nearby sites, well boring logs, published regional geologic data, and analysis of data from groundwater sampling at the OD area.

Four monitoring wells (OD-1A through OD-4A) were installed in the OD area on November 17-19, 1993. Two additional wells were installed on December 9-10, 1998 to complete the monitoring well network designed to monitor groundwater conditions at the OD area. The wells have been sampled eight times since the installation of the complete monitoring network. Groundwater sampling was conducted in January, April, July, and October of 1999. Another four quarters of sampling were completed in June and September of 2001 and January and April of 2002.


1.1 SITE LOCATION

Picatinny Arsenal (PTA) is located in the New Jersey Highlands physiographic province in north central New Jersey, approximately four miles north of the city of Dover in Rockaway Township, Morris County (Figure 1-1). Major roadways adjacent to the Installation include State Route 15, which skirts the southern boundary of the installation, and Interstate 80, which is located 1 mile to the southeast of the main gate.

The OD area, is located along Gorge Road approximately 1.5 miles west of Lake Denmark. The site is situated in an alluvial valley bordered by Green Pond Mountain to the west and Copperas Mountain to the east (**Figure 1-2**). This area is located in the northern most area of the arsenal and is very remote from other facilities (**Figure 1-3**). The OD area is an approximately 1/3 acre area surrounded by a sand berm in the four acre Gorge area.

1.2 SITE DESCRIPTION AND HISTORY

The Gorge area is approximately four acres in size and is used to test large caliber weapons, ammunition and various explosive devices as well as to open detonate waste ordnance and explosives. The OD activities are conducted in a large sand pit along the eastern side of the Gorge area. The sand pit is surrounded by an eight foot high sand berm. The entire OD area is approximately 100 feet by 150 feet, including a 30 foot buffer zone for metal debris. (Figure 1-4).

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER ($\mu g/L$) FIRST AND SECOND CONFIRMATORY LEAD SAMPLING - OD AREA RCRA PERMIT MONITORING **TABLE 5-2**

Well ID Rater Standards Groundwater	<u> </u>	RCRA Maximum Concentration G	₩6-00								
Water Standards	Ц.		- ۵				-		÷	÷	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-		· · · · · · · · · · · · · · · · · · ·	OD-2A	OD-2A	OD-2A	OD-4A			<u>+</u>	¥
_			WOD-2A GW	70D-2A1 G	WOD-2A2 C	WOD-2A3	GWOD-4A	GWOD-2A GWOD-2A1 GWOD-2A2 GWOD-2A3 GWOD-4A GWOD-4ADUP GWOD-4A1 GWOD-4A1 GWOD-4A2 GWOD-4A3	GWOD-4A1	GWOD-4A2	GWOD-4A3
Sample ID (a) Stalldald				i			000,000	0000,00,0	0000,00,1	0000000	00000000
Sample Date McI Quality Criteria	aria PQL	Limit (c)	3/20/2000 4/2	50/2000	7/2000 4/20/2000 4/20/2000 4/20/2000 3/20/2000	4/20/2000	3/20/2000	3/20/2000	4/20/2000	4/20/2000 4/20/2000 4/20/2000	4/20/2000
1011					The state of the s	TO PROPERTY OF THE REAL	は、神をいなるできるというないがあるというないと	THE PARTY OF THE P	AND SHAPE OF THE PARTY OF THE P	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN THE PERSON	記述が世界がおはない
										を受ける。	ながのなどのでは、
	The state of the s	The state of the s	-			-	, 00	007		c	= C
15 5	<u>و</u>	50	2.6 B	 B.6:	2	ND.	66.1	12.5	4.5	3.4 0.0	0.4

ND = Not Detected.

MCL = Maximum Contaminant Level.

PQL = Practical Quantitation Limit.

(a) = USEPA (1996a).

(b) = NJDEP (1992, 1993).

(c) = Maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94. B = Value is estimated.

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L) ROUND D - OD AREA RCRA PERMIT MONITORING TABLE 5-1 (CONTINUED)

Well ID	Federal Drinking	New Jersey	ey ter		OD-1A	OD-2A	OD-3A **	OD-4A	OD-4A *	OD-5A	OD-6A	RINSATE
Sample ID	(a)	Standards (b)	(<u>a</u>)	Concentration	G08D01A	.G08D02A	GOBDO3A		G08D04AD		G08D06A	GW012199R1
Sample Date	MCL	Quality Criteria	Pal	Limit (c)	10/6/1999	10/6/1999	10/6/1999	10/6/1999	10/6/1999	10/6/1999	10/6/1999	1/21/1999
Metals												
Arsenic	. 50	0.02	8	50.0	9	3.2 B	9	10.2	Q.	9	2	ND
Barium	2,000	2,000	200	1,000	57.1 B	197 B	6.4B	76.2 B	62.7 B	76.8 B	41.2 B	16.0
Cadmium	÷	4	0	100	2	1.9 B	2	4.1	4	2	0.70 B	N O N
Chromium	100	100	유	50	3.1B	2	2	4.5 B	1.4 B	9	2	Q.
Lead	15	ည	9	50	3.6	28.9	2	7112	112	9	2	N
Mercury	2	α	0.5	2.0	2	0.40	2	2	S	2	2	S S
Selenium	20	20	우	10	9	2	욷	9	2	2	2	S
Silver	NA	NA	2	50	Q	1.0 B	Q.	Q.	ND	R	Q.	Q
Explosives												
НМХ	NA	NA	NA	NA	0.37 J	4.5	9.0	2.6	2.7	4	0.24 J	QN
RDX	NA	NA A	ΑĀ	NA	0.14 J	3.6	0.28 J	4.8	4.8	2.3	0.22 J	S
2, 4, 6-TNT	NA	N A N	A A	AN	2	2	2	2	2	2	2	2
2, 4-DNT	NA	0.05	10	NA	2	2	2	<u>Q</u>	9	2	2	2
2; 6-DNT	AN	0.05	9	AN	2	2	2	9	2	2	9	S
Picric Acid	NA	NA	NA	NA	9	2	2	Q.	2	2	2	2
Nitrate + Nitrite												
(as Nitrogen)	10,000	10,000	NA	NA	20 B	60 B	Ð	100	100	30 B	60 B	ND
NIA ALL A II - L. I.	1,1											

NA = Not Available.

ND = Not Detected.

MCL = Maximum Contaminant Level.

PQL = Practical Quantitation Limit.

(a) = USEPA (1996a).

(b) = NJDEP (1992, 1993).

(c) = Maximum concentration criteria established in 40 CFR Part 264 Subpart F 264,94,

Indicates exceedance of maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94,

= Duplicate.

** = MS/MSD analysis performed at this location.

B = Value is estimated. J = Value is estimated.

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L) ROUND C - OD AREA RCRA PERMIT MONITORING TABLE 5-1 (CONTINUED)

Well ID	Federal Drinking Water Standards	New Jersey Groundwater	sey	BCBA Maximum	OD-2A **	OD-3A	OD-4A	OD-5A	OD-6A	OD-6A	RINSATE
Sample ID	(a)	Standards (b)	(a) s	Concentration	G08C02A	G08C03A	G08C04A	G08C05A	G08C06A	G08C06A dup	GW012199R1
Sample Date	MCL	Quality Criteria	. PQL	Limit (c)	//14/1999	1/14/1999 Mark Mark 1999	1123	// 14/ 1999	1114/1939	71 141 1333 Server of the Parket Server Serv	12 II 23 C
Metals											
Arsenic	.50	0.02	89	50.0	25.7	2	3.1B	4.3 B	6.9 B	7.2 B	2
Barium	2,000	2,000	200	1,000	440	4.3 B	107B	81.3B	75.7 B	76.4 B	16.0
Cadmium	ເດ	4	2	100	7.3	9	7.6	2	2	2	2
Chromium	100	100	9	20	27.5	Ω	6.6	4.5 B	8.0	8.3	2
Lead	15	ß	우	20	139	2	101	4.1	11.6	11.6	2
Mercury	23	CI	0.5	2.0	1.00	9	0.19B	2	2	g	2
Selenium	20	20	9	10	2	2	Ω	2	2	2	2
Silver	NA	¥.	7	50	2.7 B	Q	1.1B	ND	Q	Ω	S
Explosives											
HMX	NA	NA	NA	NA	2.3	0.72	2.4	0.49 J	0.84 J	0.26 J	2
RDX	NA	<u>N</u>	Ν	AN AN	0.32 J	0.40 J	5.5	1.3	8.	0.32 J	2
Nitrobenzene	NA		우	N A	<u>Q</u>	2	₽.	2	9	0.069 J	2
2. 4. 6-TNT	NA	A N	N A	AN	2	2	2	2	운	2	9
2, 4-DNT	AN	0.05	우	AN	2	9	2	2	9	Q N	2
2, 6-DNT	AN	0.05	우	NA	2	0.067 J	2	2	2	2	9
Tetryl	NA	A N	NA	NA AN	2	2	2	2	0.044 J	0.091 J	2
2-Nitrotoluene	NA	AN	N A	AN	0.11 J	2	0.071 J	2	2	2	2
4-Nitrotoluene	NA	A'N	N A	AN AN	2	2	0.18 J	2	9	0.15 J	9
4-Amino-2,6-DNT	N AN	NA	N	N A	2	S N	9	2	0.13 J	0.37	9
Picric Acid	NA	NA	NA	NA	ON	DN	N N	QN	Q	Ω.	S
Nitrate + Nitrite											
(as Nitrogen)	10,000	10,000	NA	NA	N N	ND	80 B	- QN	g	60 B	N N
NA - Not Available											

NA = Not Available.

ND = Not Detected.

MCL = Maximum Contaminant Level.

PQL = Practical Quantitation Limit.

(a) = USEPA (1996a).

(b) = NJDEP (1992, 1993).

(c) = Maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94.

Indicates exceedance of maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94.

B = Value is estimated.

J = Value is estimated.

^{* =} Duplicate.

^{** =} MS/MSD analysis performed at this location.

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L) ROUND B - OD AREA RCRA PERMIT MONITORING TABLE 5-1 (CONTINUED)

																				
RINSATE	GW012199R1 1/21/1999		ND	16.0	8	2	ND	8	- Q	QN.		ON	Q	N O	QN.	2	Q.		. QN	
OD-6A	0.4		S	44.0 B	2	2	9	2	2	2		0.26 J	0.32 J	2	2	8	Ω N		50 B	-
OD-5A	G08B05A 4/15/1999		N	77.9 B	9	0.9	5.3	2	2	2		0.84 J	 8.	2	2	2	QN N		30 B	
0D-4A *	G08A04AD 4/15/1999		8.8 B	148 B	4.7	16.1	691	0.99	QN	2.9 B		2.3	4.4	g	Q.	9	ΩN		100	
OD-4A	G08B04A 4/15/1999		9.0 B	147 B	3.5	18.4	128	1.0	Q.	2.9 B		2.3	4.7	Q.	Q.	2	2		100	
OD-3A	G08B03A 4/15/1999		2	6.9 B	2	2	2	9	2	ND		0.93 J	0.46 J	2	2	8	9		80 B	
OD-2A **	G08B02A 4/15/1999		7.9 B	158 B	0.81 B	16.2	57.2	0.40	Ω	1.0B		3.3	2.9	2	2	2	2		30 B	
OD-1A	G08B01A 4/15/1999		9	22.8 B	9	2	2	2	2	Q		2	2	2	S S	8	9		20 B	
RCRA Maximum	Concentration Limit (c)		50.0	1,000	100	20	50	2.0	10	50		NA	NA	NA	NA	NA	NA		NA	
ersey water	ds (b) PQL		80	200	7	우	우	0.5	우	2		ΝΑ	¥.	A A	10	9	NA		NA	
New Jersey Groundwater	Standards (b) Quality Criteria PC		0.02	2,000	4	100	വ	Ø	50	NA		NA	A A	Υ Υ	0.05	0.05	NA		10,000	
Federal Drinking Water Standards	(a) MCL		20	2,000	വ	100	15		20	NA		- NA	A	A N	AN A	AN	NA		10,000	
Well ID	Sample ID Sample Date	Metals	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Explosives	НМХ	XOX	2, 4, 6-TNT	2, 4-DNT	2, 6-DNT	Picric Acid	Vitrate + Nitrite	as Nitrogen)	oldolion Apple Al

NA = Not Available.

ND = Not Detected.

MCL = Maximum Contaminant Level.

PQL = Practical Quantitation Limit.

(a) = USEPA (1996a).

(b) = NJDEP (1992, 1993).

(c) = Maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94.

= Indicates exceedance of maximum concentration criteria established in 40 CFR Part 264 Subpart F. 264.94.

= Duplicate.

** = MS/MSD analysis performed at this location.

B = Value is estimated.

J = Value is estimated.

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L) ROUND A - OD AREA RCRA PERMIT MONITORING TABLE 5-1

Well ID	Federal Drinking	New Jersey Groundwater		BCBA Maximum	OD-1A	OD-1A*	OD-2A	OD-3A**	OD-4A	OD-5A	OD-6A	RINSATE
Sample ID	(a)) sp	7		G08A01A	G08A01AD	G08A02A	G08A03A	G08A04A	G08A05A	G08A06A	GW012199R1
Sample Date	MCL	Quality Criteria	רער 	Limit (c)	10001177	1211 1323	C/C 11 1303	C	2511122		Tage Hard	
Metals			No. of Particular Property of the Particular Pro						在在在时间		PROPERTY CONTRACTOR	
Arsenic	50	0.02	8	50.0	2	2	9	2.4	22.0	2	2	2
Barium	2.000	2,000	200	1,000	17.0	2	64.0	34.0	330.0	28.0	62.0	16.0
Cadmium	, ro	. 4	2	100	9	8	2	1.5	15.0	2	2	2
Chromitim	100	100	. 10	20	1.7	2	2.4	3.1	46.0	2	7.8	2
l ead	7.		9	20	2	2	5.9	14.0	0.065	2	6.3	2
Mercury	٠ د	· 0	0.5	2.0.	9	2	<u>Q</u>	2	38	2	2	S
Selenium	ı Ç	20	9	10	2	2	2	9	2.2	Q.	2	2
Silver	e Z) A	ે ત	20	2	9	Q.	Q	9.4	Q	N ON	ND
Explosines												
HMX	AN	NA N	NAN	NA	0.92	1.0	1.9	0.90	2.0	1.6	1.0	N N
RDX	Y Z	. ₹	A A	AN	1.0	1.0	4.	0.56	4.8	7:	3.2	2
2, 4, 6-TNT	NA	AN AN	A A	Ϋ́Z	Q	2	2	9	9	9	2	Q N
2, 4-DNT	NA	0.05	10	A N	9	2	2	2	9	9	2	2
2, 6-DNT	AN	0.05	10	AN	2	2	2	9	2	9	2	2 :
Picric Acid	NA	NA	NA	NA	QN	ND	B	Q.	Q	QN	ND	QN
Nitrate + Nitrite												
(as Nitrogen)	10,000	10,000	NA	NA	S	160.0	ND	67.0	72.0	QN	370.0	ND
oldelieve Arold - Aid	hla											

NA = Not Available. ND = Not Detected.

MCL = Maximum Contaminant Level.

PQL = Practical Quantitation Limit.

(a) = USEPA (1996a).

(b) = NJDEP (1992, 1993).

(c) = Maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94.

Indicates exceedance of maximum concentration criteria established in 40 CFR Part 264 Subpart F 264.94.

* = Duplicate.

** = MS/MSD analysis performed at this location.

66.1 μ g/L in the original sample and a concentration of 12.6 μ g/l in the duplicate sample for an average concentration of 39.5 μ g/L

The two wells were then re-sampled in April 2000 with a representative of NJDEP present. Each well was sampled at three different screen intervals, as requested by the NJDEP representative. The results for well OD-2A indicated lead concentrations of 1.9 μ g/L, ND, and ND at the three different screen intervals. The results for well OD-4A indicated lead concentrations of 3.4 μ g/L, 6.0 μ g/L and 3.4 μ g/L. All concentrations of lead in the two re-sampling events were below the RCRA maximum concentration limit of 50 g/L (Table 5-2).

During the four subsequent sampling events, low-flow sampling produced similar metals results. No samples contained metals concentrations in excess of the RCRA MCLs. The maximum lead concentration detected in the six wells was 8.3 μ g/L in downgradient well OD-4A. Aluminum, iron and manganese were identified in excess of their LOCs. LOC exceedances for these three metals were reported in all wells with the exception of OD-3A. These three inorganic compounds are common naturally occurring metals that are detected throughout Picatinny Arsenal at elevated levels in the soil and groundwater. The levels are believed to be related to the weathering of the local bedrock and are not likely site-related.

5.4 OTHER ANALYTICAL RESULTS

During the 2001 and 2002 sampling events, numerous other analytes were added to the monitoring program including VOCs, SVOCs, pesticides, PCBs and perchlorates. Volatile organic compound ethylene oxide was the only compound of these additional analytes detected above a LOC. Ethylene oxide was identified at 780 μ g/L in one well (OD-2A) during a single sampling event (LOC = 0.023 μ g/L). Perchlorate was detected in three of the six wells at concentrations ranging from 4.8 μ g/l to 11.6 μ g/L.

For the following compounds no concentrations were detected above the estimated quantitation limits: diphenylamine, aniline, carbazole, PCBs, TCL pesticides, mirex, organophosphorous pesticides, and cyanides. For TCL VOCs, SVOCs and anions, no concentrations were reported in excess of LOCs.

5.5 SUMMARY

In the initial four rounds of sampling (1999), lead and mercury were detected exceeding the RCRA maximum concentration limits. For these groundwater samples collected by bailers with associated high turbidity, all four rounds had lead exceedances in the downgradient wells. Mercury was detected slightly exceeding the RCRA limit. Sampling with low-flow techniques, which reduce turbidity, resulted in lead and mercury concentrations below their RCRA limits. These results would indicate that the lead detected in the groundwater samples is not dissolved lead but more likely colloidal or particulate lead entrained with fine sediments.

There were detections of HMX and RDX in both upgradient and downgradient wells with a maximum concentration of HMX of 9.0 μ g/L and RDX of 23 μ g/L. All concentrations of RDX and HMX were below the proposed permit criterion of 35.0 μ g/L. There were also trace detections of other explosive compounds such as DNT and TNT. These results would indicate that the only compounds that warrant continued compliance monitoring are explosives and perchlorates.

5:0 CHEMICAL ANALYTICAL RESULTS

5.1 INTRODUCTION

The eight rounds of chemical analytical results, collected and analyzed in accordance with the groundwater monitoring program, were evaluated by comparing groundwater constituent concentrations with several sources of established groundwater quality standards. This was conducted to contrast upgradient and downgradient location constituent concentrations with administrated maximum contaminant concentration limits. In addition, several compounds, for which no groundwater constituent level of concern exists, were detected at low concentrations in the overburden aquifer. **Table 5-1** presents a summary of the chemical analytical results from the four rounds of groundwater sampling conducted between February 21, and October 6, 1999. **Table 5-3** presents a summary of the chemical analytical results for the four rounds of groundwater sampling conducted between June 2001 and April 2002.

5.2 EXPLOSIVES ANALYTICAL RESULTS

HMX and RDX were the two explosive compounds most commonly detected during groundwater sampling. As presented in **Tables 5-1 and 5-3**, low concentrations of HMX and RDX have been detected in various wells, both upgradient and downgradient of the OD area during all eight rounds of groundwater sampling.

In upgradient wells OD-1A, OD-5A and OD-6A, concentrations of HMX ranged from non-detect (0.5 μ g/L – detection limit) to 8.0 μ g/L. RDX was detected in concentrations from non-detect (0.5 μ g/L – detection limit) to 3.5 μ g/L in the same wells. In downgradient wells OD-2A, OD-3A and OD-4A, similar concentrations of HMX were identified ranging from 0.45 μ g/L to 9.0 μ g/L. RDX concentrations in downgradient wells ranged from 0.19 to 23 μ g/L.

All other explosive compounds were non-detects except for an estimated concentration of 2,6-DNT at 0.067 μ g/L in well OD-3A detected during a single event and a concentration of 2,4,6-TNT at 2.0 μ g/L in well OD-2A during a single sampling event.

Nitroesters – nitrocellulose, nitroguanidine and nitroglycerin were not detected in the 2001 and 202 sampling events.

5.3 METALS ANALYTICAL RESULTS

During the initial four sampling events conducted in 1999, the bailer sampling method produced elevated metals concentrations. However, only two metals, lead and mercury, were detected at concentrations above applicable comparison criteria in the four rounds of groundwater sampling.

Mercury was reported once in well OD-4A, during the first round of sampling, at a concentration of 3.8 μ g/L. Lead was detected in downgradient wells at concentrations above applicable comparison criteria during all four rounds of sampling. Lead was detected in all four rounds of sampling in well OD-4A ranging on concentrations from 112 to 390 μ g/L. Lead was identified in well OD-2A during the second and third rounds at concentrations of 57.2 and 139 μ g/L, respectively.

The elevated concentrations of lead detected in the two downgradient wells may be attributable to exceptionally high turbidity levels observed during sampling activities. Although turbidity levels markedly decreased at the end of purging, the samples from these wells contained a visibly higher percentage of suspended load particles when compared with the other OD area wells.

As a check, wells OD-2A and OD-4A were re-sampled for lead analysis using the low-flow sampling technique. This method of groundwater sampling has been accepted by both the U.S. Environmental Protection Agency and the NJDEP for use at PTA. The two wells were re-sampled in March 2000. The concentration of lead in well OD-4A was 2.6 µg/L. Well OD-4A had a concentration of

 A Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample was submitted for laboratory quality assurance/quality control (QA/QC). to sampling during the four sampling events conducted in 1999. In order to minimize drawdown and prevent turbulent groundwater flow into the well casing during purging, purge rates were maintained at an average 0.5 to 0.75 gpm range. Monitoring wells were purged by removing water from the top of the water column, allowing groundwater indigenous to the aquifer to enter the well casing. The efficiency of stagnant casing water removal from the well was monitored throughout the purge by evaluating the stability of groundwater quality parameters obtained using a Hydrolab water quality analyzer. The parameters collected before and during groundwater evacuation included pH, temperature, specific conductance, oxidation/reduction potential, dissolved oxygen, and turbidity. Evacuation of the well continued until a minimum of 3 volumes of standing well water were removed, and groundwater quality parameters were stabilized, indicating water representative of the aquifer was being obtained.

Groundwater samples were collected using dedicated Teflon bailers equipped with Teflon-coated stainless steel leaders. The samples were obtained by lowering the bailer until it was completely submerged and then immediately retrieving it with minimal aeration and disturbance. Pre-preserved, laboratory-supplied sample bottles were filled and immediately chilled at 4°C in laboratory-supplied sample coolers for shipment.

4.4 GROUNDWATER PURGING AND SAMPLING - 2001 and 2002

Adjustable rate, stainless steel submersible pumps, attached to dedicated Teflon-lined polyethylene tubing, were utilized to remove the required groundwater volume from the wells prior to sampling during the four sampling events conducted in 2001 and 2002. In order to minimize drawdown and prevent turbulent groundwater flow into the well casing during purging, purge rates were maintained at an average of 500 ml/min. Monitoring wells were purged by removing water from the center of the water column or screened interval, allowing groundwater indigenous to the aquifer to enter the well. The efficiency of stagnant casing water removal from the well was monitored approximately every five minutes throughout the purge by evaluating the stability of groundwater quality parameters obtained using a YSI water quality analyzer. The parameters collected before and during groundwater evacuation included pH, temperature, specific conductance, dissolved oxygen (DO), oxidation/reduction potential (ORP), and turbidity. A summary of the groundwater quality measurements for each location is provided in Table 3-1. Evacuation of the well continued until the water quality parameters stabilized for three successive readings as follows: 10% for DO, ORP and turbidity; 3% for specific conductance; 5% for pH (Puls et al, 1992), and 1% for temperature, indicating water representative of the aquifer was being obtained.

Groundwater samples were collected directly from the Teflon-lined tubing at a flow rate of 100 to 250 ml/min. Pre-preserved, laboratory-supplied sample bottles were filled and immediately chilled at 4°C in laboratory-supplied sample coolers for shipment. Severn Trent Laboratories (STL), an NJDEP-certified laboratory, performed all the analyses with the exception of the exotic explosives. Crane Naval Surface Warfare Center (NSWC) in Crane Indiana, a Department of Defense Laboratory, was the only laboratory identified to be proficient in the analysis of the exotic explosive compounds. All samples were shipped overnight delivery to Crane NSWC and STL in Canton, Ohio (VOCs, SVOCs, pesticides, metals, and anions); Knoxville, Tennessee (explosives analyses); Earth City, Missouri (radiological analyses) and Sacramento, California (thallium and perchlorate analyses).

4.5 QUALITY CONTROL SAMPLES

Quality Control (QC) samples were collected during each round of sampling to check for cross-contamination during the handling of sampling materials, as well as monitor the performance of analytical contracting services. The following QC samples were collected during each round of sampling.

- A rinsate blank sample was collected by pouring analyte-free water through a Teflon bailer, into the applicable sample containers.
- A replicate sample was collected for duplicate analysis.

4:0. WELLINSTALLATION AND GROUNDWATER INVESTIGATION

4.1 MONITORING WELL INSTALLATION

4.1.1 UXO Avoidance Survey

UXO avoidance techniques were performed for monitoring well installation in accordance with the procedures and guidelines detailed in the approved Picatinny Arsenal Facility-Wide Field Sampling Plan, (ICF KE, 1997). Qualified UXO technicians, subcontracted by ICFKE, were responsible for UXO clearance and avoidance during monitoring well installation in the OD area. Hand augers and shovels were utilized by UXO personnel to clear monitoring well locations to a minimum depth of six feet below ground surface (bgs) in preparation of drill rig boring activities. UXO clearance was performed during borehole advancement through the subsurface fill material every two feet, to a minimum depth of ten feet (bgs). UXO did not impede the field investigation or require relocation of the monitoring wells from their designated positions per the approved workplan.

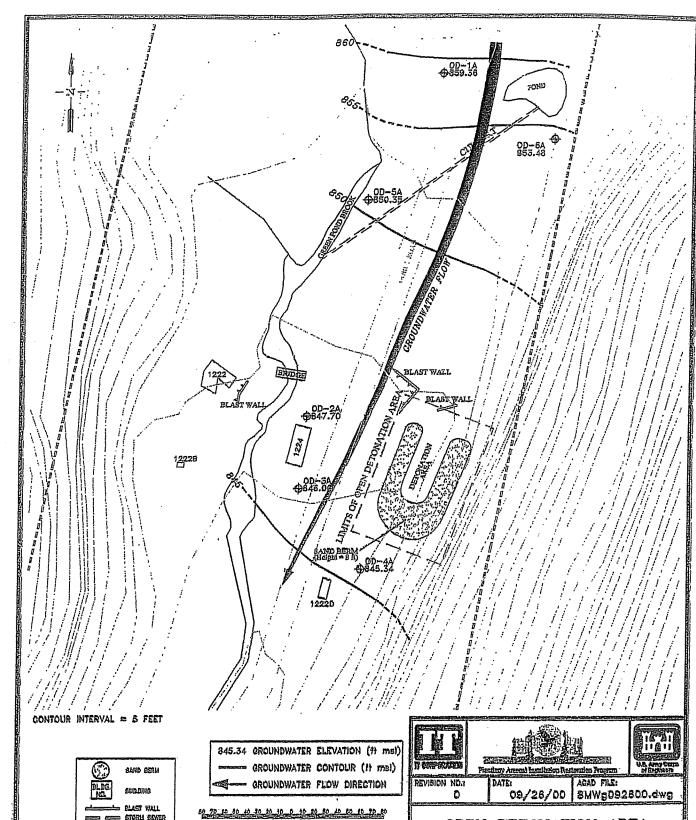
4.1.2 Monitoring Well Installation and Development

Borehole advancement for monitoring well installation was performed utilizing air rotary drilling with temporary casing advancement (ODEX) technology. This drilling method simultaneously advances six-inch carbon steel casing along with specially designed drill bits, preventing cave-in of subsurface soils, cobbles, and boulders. Boreholes were advanced with this method to twenty feet bgs at each location for the placement of the two wells. Monitoring wells were comprised of 2-inch by 10.0 foot, schedule 40, 0.010-inch slot, PVC well screens, and 2-inch PVC riser pipe. Both monitoring wells were completed above ground surface and protected with concrete-filled steel posts. Well development was performed within 48 hours of well installation with the use of centrifugal pumps and dedicated black polyethylene ASTM drinking water grade tubing equipped with foot valves. Well development was also performed on the four pre-existing wells located in the Gorge per the approved workplan. Groundwater quality parameters were monitored for stability and five volumes of standing well water were removed from each well during development activities. Monitoring well construction diagrams are provided in Appendix T-1.A. Locations of the six monitoring wells are presented in Figure 3-1.

4.2 GROUNDWATER SAMPLING FIELD MEASUREMENTS

Prior to each round of sampling, the six wells were opened and the headspaces were immediately screened using an 11.7eV lamp Photoionization Detector (PID) and MicroFID Flame Ionization Detector (FID) to identify the presence of Volatile Organic Compounds (VOCs) in the wells. A sustained VOC reading above background from the well head into breathable air space would constitute an upgrade in personal respiratory protective equipment. At no time during the eight sampling events were VOCs detected in breathable air space.

Physical measurements of groundwater level, well depth, and PVC well casing height were collected using a decontaminated electronic water level indicator. This information was recorded onto pre-sample purge forms, used in calculating the volume of standing water present in the casing and granular filter pack. These measurements were used to determine the minimum required volume of groundwater to remove from the well prior to sample collection. Potentiometric surface maps were generated from these measurements in order to evaluate groundwater flow direction and gradient (Figure 3-1).


4.3 GROUNDWATER PURGING AND SAMPLING – 1999

Centrifugal pumps, attached to dedicated black polyethylene ASTM drinking water grade tubing equipped with foot valves, were utilized to remove the required groundwater volume from the wells prior

This formula utilizes a correlation coefficient of 0.67 for the empirical relationship between transmissivity and specific capacity, which is derived from the flow rate and drawdown data of the wells. Gorge area well data applied to this formula yielded transmissivity values ranging from 246.1 square feet per day (ft²/day) from OD-5A, to 618.3 ft²/day from OD-2A. Hydraulic conductivity values, based on these transmissivity results and a theoretical aquifer thickness of 30 feet, ranged from 8.20 feet per day (ft/day) at OD-5A, to 20.61 ft/day at OD-2A. Monitoring wells OD-3A and OD-4A did not exhibit any drawdown during development, at purge rates equal to those used on the other Gorge wells applied to the formula. Therefore, transmissivity and hydraulic conductivity values are presumably higher since purge rates of equal magnitude failed to drawdown the standing water column in the well. Although accurate calculations could not be performed for these wells, transmissivity and hydraulic conductivity values are not likely to exceed 1,000 ft²/day and 33.33 ft/day respectively, based on the subsurface lithology at these locations.

In summation, the OD area overburden aquifer characteristics are approximated at 8.20 ft/day to 33.33 ft/day for hydraulic conductivity, and 246.1 ft²/day to 1,000 ft²/day for aquifer transmissivity. These values are typical for the types of sediments identified during borehole advancement of the monitoring wells located in the area, and are representative of values that are anticipated for wells with yields such as those observed at the site.

.

NOTES:—Site features have not been surveyed to verify coordinate accuracy, but relative locations of site features have been verified by field measurements. Water levels are based on measurements taken on 02/21/2000.

EXISTING SAMPLING LOCATIONS

MONITORING WELL

OPEN DETONATION AREA POTENTIOMETRIC SURFACE MAP

i		
DET'D:	CLIENT:	PROJECT NO.:
AS	PICATINNY ARSENAL	66727-005-00
CHK'D:	LOGATION:	FIGURE NO.:
JP	DOVER, NEW JERSEY	3-1

3.1 TOPOGRAPHY/SURFACE WATER HYDROLOGY

The OD area lies in a flat bottomed gorge, bordered by steeply sloping ridges of Green Pond Mountain to the west and undifferentiated metamorphic/igneous rock to the east (Copperas Mountain). These ridges reach an average elevation of 1,000 to 1,100 ft msl within 500 feet of the valley axis. The elevation of the Gorge area varies from 840 to 870 ft msl and averages 200 to 500 feet in width. The surface water from this region flows down the steep valley walls via a number of small, unnamed, streams, ditches, and culverts to the valley axis where it contributes to the base flow of Green Pond Brook. Green Pond Brook in this area averages 5 to 10 feet in width and approximately 2 to 3 feet in depth. Green Pond Brook flows to the south along the valley axis at a steep (approx. 9:1 feet) gradient to the confluence with Burnt Meadow Brook in the main valley of PTA where it eventually discharges to the southwest into Picatinny Lake.

3.2 GEOLOGY

The geology of the OD area was determined by reviewing lithologic boring logs recorded during. the advancement of the six wells installed for the Resource Conservation and Recovery Act (RCRA) Subpart X permit monitoring program. Bedrock compositions in this area were interpreted through outcrop observations and confirmed with the use of geologic maps published on the regional geology. The lithologic boring logs indicate that the overburden is composed of a poorly sorted heterogeneous mixture of boulders and gravel in a silty sand matrix, with varying trace amounts of clay. This variable sedimentary sequence is a function of the complex geomorphic conditions in the Gorge resulting from the redistribution of glacial, talus, and stream related sediments that occur in the valley. The low occurrence of clay in the interval investigated (0-20 feet below ground surface [ft bgs]) and relatively high hydraulic conductivity observed in the aquifer (Section 3.3) suggest that fluvial processes were the primary mechanism in the redistribution and deposition of sediments in the Gorge. The boring logs reveal that a maximum of 3 to 10 feet of artificial fill composed of varying amounts of sand, gravel, cobbles, boulders, and rubble covers the entire Site. Bedrock was not encountered during the advancement of borings in the OD area; therefore, accurate depth to bedrock and overburden thickness estimations could not be As a result, identification and placement of the fault transecting the valley was determined. indeterminable from the limited subsurface investigation. Bedrock composition west of the fault is described from outcrops as oxidized quartz pebble conglomerate of the Greenpond Syncline. Undifferentiated granitic gneiss composed of varying degrees of hornblende, quartz, plagioclase feldspar, potassium feldspar, and mica is identified in outcrops east of the fault.

3.3 HYDROGEOLOGY

Two aquifers are presumed to exist in the Gorge area: an overburden aquifer and a bedrock aquifer. The hydrogeology of the OD area was determined through the evaluation of well development data from the six Gorge area wells installed into the unconfined overburden aquifer. Potentiometric surface gradients and groundwater flow directions were determined using static water level measurements collected from the wells (Figure 3-1). The horizontal hydraulic gradient along the flow axis between monitoring well OD-1A and OD-3A was measured at 0.037. No wells were installed into the fractured bedrock aquifer underlying the OD area, therefore, accurate estimations of fractured bedrock aquifer characteristics were indeterminable.

Overburden aquifer characteristics were estimated using measurements obtained during well development of the wells. Flow rate (Q) and drawdown ($h_0 - h$) data, from the wells which exhibited equilibrium of these variables during purging, were applied to the Razack and Huntley (1991) partially penetrating well equation to determine a transmissivity value for the Gorge area aquifer.

$$T = 33.6 \left(\frac{Q}{h_0 - h}\right)^{0.67}$$

The nature and thickness of the glacial deposits vary substantially at PTA. Relatively impermeable till is found both in the moraines and in patches against the sides and bottom of the valley. Stratified drift, deposited by the retreating glaciers behind the moraines, fills the valley underlying PTA. The drift is thickest above the axis of the valley, and thins rapidly off axis, pinching out against the valley slopes. Seismic studies indicate that the maximum drift thickness (along the valley axis) varies from about 50 feet near Picatinny Lake to over 300 feet near the southwestern boundary of PTA (Lacombe et al., 1986).

Classification of the glacial deposits into separate and homogeneous units is complex at PTA. The United States Geological Survey (USGS, 1993) reported the glacial deposits as five permeable layers represented as aquifers and three low permeability layers represented as confining units in the southern portion of the Arsenal, south of Picatinny Lake. In contrast, Dames and Moore (1995) reported three permeable layers in the same area. In the middle portion of the Arsenal, ICF Kaiser Engineers (ICFKE) separated the glacial deposits into two aquifer units.

2.6 HYDROGEOLOGY

The principal source of groundwater in the Green Pond Valley is local precipitation. The low-permeability and the steep slopes of Green Pond Mountain and Copperas Mountain restrict the infiltration of precipitation into these mountains. Most of the precipitation that falls on the mountains flows overland to their bases and into the highly permeable glacial sediments. The small amount of precipitation that enters Green Pond and Copperas Mountains flows down through shallow fractures to the glacial sediments in the valley. Effectively, all discharge from the groundwater system flows to surface water bodies, primarily the Rockaway River and Green Pond Brook (USGS, 1991a).

Groundwater occurs in both the valley glacial materials and in the bedrock at PTA. South of Picatinny Lake, where the hydrogeology has been studied in detail, the bedrock and glacial sediments at PTA were divided into a sequence of six permeable layers and five intervening, low-permeability layers on the basis of the general hydraulic properties of the sediments (USGS, 1991a). Sand units exceeding 10 feet in thickness can act as pathways for contaminants and, therefore, were designated as permeable layers. Confining units, such as thick clay units, do not appear to be present at PTA; however, units containing clay and/or silt that impede the flow of groundwater are present. The designation of a layer as a low-permeability or permeable layer was made solely on the basis of the layer's ability to transmit water, and thus may not correspond to time- or rock-stratigraphic designations.

The thickness of the weathered zone of the bedrock was determined from drilling logs. The thickness of the weathered zone ranges from 24 feet at well 27-84 near Picatinny Lake to 136 feet at well 27-250 near the southern boundary of the arsenal. The bedrock beneath the glacial sediments at PTA weathers to a clay, which fills the fractures in the bedrock and impedes the flow of water. Therefore, the weathered zone of the bedrock was designated as a low-permeability layer.

TABLE 2-1
GENERALIZED STRATIGRAPHIC SEQUENCE AT PTA

-Stratigraphic System	- Geologic Unit	Max: Thickness- (ff)	Lithology	Hydrogeology
Cenozoic Era		i para para manggal i sesarah ara a pada can taka a se	il de la suit de la Constant de Servicion de Servicio de la Constant de Constant de la Constant de Constant de	
Holocene	Alluvium	10	Ranges from silty loam in the valley to stoney gravel on the hillsides	Too thin to be tapped
,	Swamp Deposits	30	Dark organic material	High permeability among layers
Pleistocene	Stratified Drift	200+	Present as glaciofluvial and glaciolacustrine deposits; mostly sand- to clay-sized sediments; exhibits stratifactions and some rhythmic lamination	Yields vary widely: well-sorted coarse- grained deposits are good aquifiers and can yield up to 2,200 gal/min; silt and clay deposits are unsuitable as auifers
	Unstratified Drift	100+	Present as ground, terminal, and recessional moraine; deposits are generally tight-packed and poorly sorted: grain sizes range from boulders to clay	Yields depend on sorting and packing; generally low yields
Paleozoic Era				
Silurian	Green Pond Conglomerate	1400	Unconformity. Coarse quartz conglomerate interbedded with and grading upward into quartzite and sandstone; mostly massive and red with some white and green beds	Generally yields small amounts of water from fractures and joints
Cambrian	Leithsville Formation	500-700	Uncomformity . Present mostly as gray, microcrystalline, locally stylolithic rock to fissile, silicious to dolomitic micrite rock; often weathered to yellow silty clay	Contains water- bearing fractures and cavities that generally have moderate yields of up to 380 gal/min.
	Hardyston Quartzite	100	Gradational contact. Orthoquartzite is conglomerate; generally well indurated	Generally few fractures; yields small amounts of water
Precambrian Era				-
	Alaskite	Basement	Granitiod gneiss composed principally of microperthite, quartz, and oligoclase (<5% mafic minerals); locally contains microantiperthite granite and granite pegmatite	Groundwater occurs in fractures and joints; yields are generally low, ranging from 26-75 gal/min.
·	Homblende granite		Granitoid gneiss composed principally of microperthite, quartz, olioclase, and homblende; locally contains biotite granite, homblende granite gneiss, granodiorite, and granite pegmatite	
	Biotite gneiss		Varying composition of gneiss; predominant facies is composed of biotite, quartz, and oligoclase; minor facies are characterized by abundant garnet and micropertite, with local silimanite and grapite	·

Sources: (ANL, 1991), (Sims, 1958), (Gill and Vecchioli, 1985), (Vowinkel et al., 1985), and (Drake, 1969)

southwest to east-southeast across PTA south of Lake Picatinny. The Mount Hope Fault dips about 60 degrees to the southwest, with a net slip of 300 feet (Sims, 1958).

Four bedrock formations underlie PTA: Precambrian Basement and three lower Paleozoic sedimentary formations - the Hardyston Quartzite, the Leithsville Formation, and the Green Pond Conglomerate. The overlying valley fill is composed of Pleistocene glacial deposits and minor amounts of The stratigraphic units recognized at PTA and their hydrologic properties are recent alluvium. summarized in Table 2-1. Several uncertainties exist regarding the state of geologic knowledge at PTA. The vast majority of the geologic characterization at PTA has been performed in the southwestern half of the facility. The geologic descriptions provided here rely primarily on this work and on regional studies. Hence, the variability/uncertainty of the geology increases to the northeast. Second, the environmental investigations at PTA to date have focused on hydrogeologic studies of the stratified drift. Much less work has been done characterizing the bedrock formations and their weathered zones. Most deep borings and wells have been terminated at refusal, or at best, advanced only a few tens of a foot into bedrock (Harte et al., 1986). Because boulder beds have been encountered in the lower portions of the drift, bedrock elevations and overburden thicknesses determined by drilling refusal may be locally uncertain (Vowinkel et al., 1985). Finally, the apparent thickness of the bedrock formations is both erosionally and fault controlled, and varies widely both at PTA and regionally. The Precambrian section is composed of highly metamorphosed meta-sedimentary and intrusive igneous rocks variously referred to as the Byram intrusive suite (Sims, 1958) or Losee Formation. The oldest basement unit is a metasedimentary sequence of biotite-quartz-plagioclase gneiss and amphibolite, which crops out in a band extending northeast from Lake Denmark (Sims, 1958). The majority (75%) of the basement complex consists of aneissic hornblende granite and alaskite known as the Byram intrusive suite. The granites are primarily composed of microperthite, quartz, hornblende, and plagioclase and contain abundant xenoliths and pegmatites. The alaskite facies (granite lacking mafic minerals) is closely associated with large magnetite ore deposits (Sims, 1958). These metamorphosed intrusive rocks show a strong gneissic structure and have been mapped in the past as gneiss (Sims, 1958).

The Early Cambrian age Hardyston Quartzite unconformably overlies the Precambrian basement bedrock. It is composed of well-cemented thin- to medium-bedded feldspathic quartzite with interbeds of arkose, quartz-pebble conglomerate, and silty shale, becoming more calcareous in the upward direction. The Hardyston Formation has a maximum thickness of 100 feet and underlies a narrow ridge on the eastern flank of the valley, south of Picatinny Lake (Lytle and Epstein, 1987).

The Leithsville Formation is an Early to Middle Cambrian age dolomite that underlies the western part of Picatinny Lake and much of the valley fill sediments to the southwest. It gradationally overlies the Hardyston Quartzite (Harte et al., 1986). The Leithsville Formation has also been referred to as the Kittatinny Dolomite (Barnett, 1976). The Leithsville Formation has three members: the (basal) Califon member, which consists of about 100 feet of dolomite; the Hamburg member, which consists of 35-100 feet of interbedded sandstone, siltstone, shale, and dolomite; and the (upper) Wallkill member, which consists of 350-500 feet of dark gray, patchy dolomite (Markewicz and Dalton, 1980).

Green Pond Conglomerate is a Silurian age conglomerate that makes up most of Green Pond and Copperas Mountains. It is composed of well-cemented coarse red and grey sandstone with white quartz pebbles and accessory grey, green, yellow, and red chert, red shale, and red sandstone pebbles and cobbles (Barnett, 1976). At PTA, the lower contact of the Green Pond Conglomerate has been cut out by the Green Pond Fault, which places the Green Pond Conglomerate over the Leithsville Formation south of Picatinny Lake, and over the Precambrian basement north of Picatinny Lake. The thickness of the Green Pond Conglomerate at PTA is fault controlled, ranging from about 1,000 to 1,400 feet (Lytle and Epstein, 1987).

Unconsolidated glacial deposits overlie the Precambrian and lower Paleozoic age bedrock at PTA. The glacial materials consist mostly of till and stratified drift deposited during the Wisconsin glacial event. The terminal moraine of the Wisconsin glaciation, a 25-40 foot high mound of tightly packed till consisting of unsorted particles ranging in size from clay to boulders, roughly coincides with the southwest boundary of PTA (Harte et al., 1986). A smaller recessional moraine is located just south of Picatinny Lake. Stratified drift, consisting of interbedded layers of sand, silt, and clay, were deposited behind these moraines as the glaciers retreated.

Three gauging stations are located on Green Pond Brook: just north of Picatinny Lake, at the Picatinny Lake outfall, and approximately 100 feet upstream of the southwestern border of PTA. Base flow discharge data indicate that Green Pond Brook is a gaining stream (Vowinkel et al., 1985).

Bear Swamp Brook, with a width of 3 to 7 feet and a maximum depth of 2 feet, is a tributary to Green Pond Brook. Bear Swamp Brook starts as a spring on Green Pond Mountain on the western side of the installation. This brook drains the area southwest of Picatinny Lake and south of Green Pond Mountain before entering Green Pond Brook approximately 1 mile south of Picatinny Lake. The flat valley bottom near the southern portion of PTA is drained by a network of man-made drainage ditches that discharge into Green Pond Brook.

Ames Brook drains several small streams and man-made reservoirs which are located along the eastern portion of an unnamed ridge located on the southeast side of the site. The top of the unnamed ridge is a water divide with all drainage to the east flowing southeast, rather than west to the installation valley. Ames Brook exits the installation and drains into the valley to the southeast. Robinson Run and several unnamed tributaries drain the southeastern central portion of PTA. Robinson Run and its tributaries discharge into Green Pond Brook to the northwest. Numerous other small ponds and reservoirs which serve as collection basins, also influence local drainage patterns at PTA.

2.4 SOILS

The soils at PTA can be categorized into two major types: 1.) Soils highly disturbed by human influence; and 2.) Soils exhibiting characteristics of past glacial activity. The Soil Survey of Morris County, New Jersey identifies 27 different soil types at PTA. Four of the soils identified on the Arsenal (Ma, Ps, Ua, UrD) are classified as disturbed areas as a result of human activities. The majority of these soils are mapped in the central and southwestern portion of the Arsenal where extensive filling activities have occurred in areas which were previously somewhat poorly to very poorly drained.

The remainder of the soils mapped at PTA are closely related to the underlying geologic formations and past glacial influences. The Hibernia, Netcong, Ridgebury, Rockaway, and Whitman soils were formed from glacial till deposits and contain a high amount of stone and/or gravel content. The remaining glaciated soils mapped at PTA derived either from organic and mineral deposition of proglacial lakes and kettles or glacial outwash.

The hydric soils mapped at PTA include the Adrian muck, Carlisle muck, Preakness, Ridgebury, and Whitman soils. The hydric soils present at PTA are derived either from organic or mineral deposition. The organic hydric soils (Ad, Cm) commonly occupy the position of former depressions where the deposition of organic and mineral sediment have completely or partially filled in lakes and ponds. The hydric mineral soils (PvA, Pw, RgA, RIB, Wm) commonly occur in various landscape positions including outwash plains, kettles, and undrained depressions. The Hibernia and Pompton soils are considered non-hydric with hydric inclusions, indicating that small areas of hydric soils are included in the mapping units.

2.5 GEOLOGY

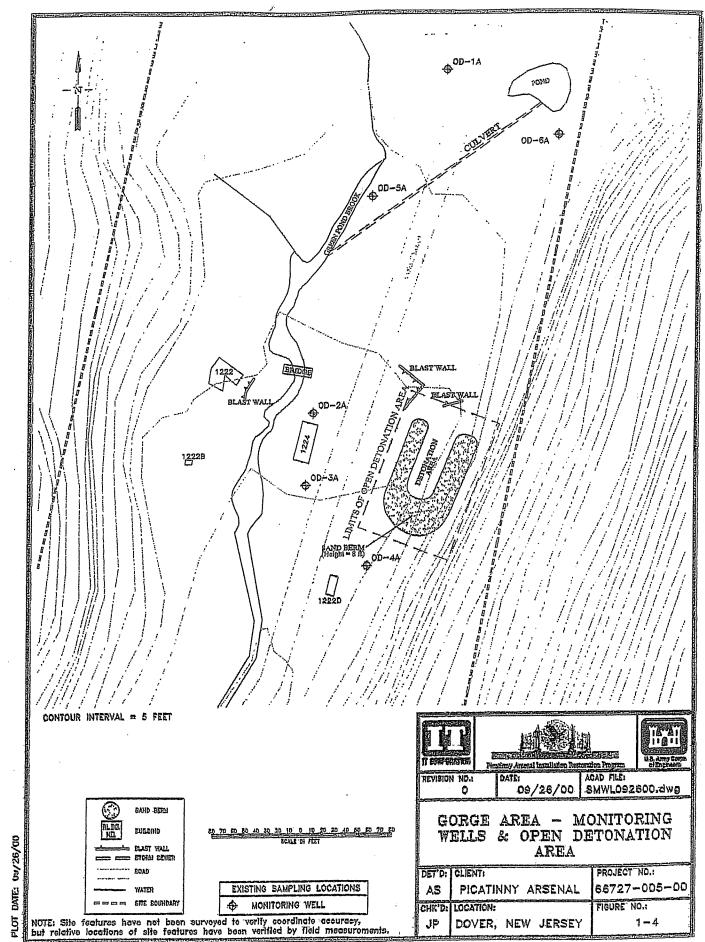
The Green Pond syncline is a narrow northeast-trending fault-breached syncline. The syncline is covered by lower Paleozoic sedimentary rocks, which unconformably overlie the Precambrian basement on the eastern limb of the syncline, and are faulted out to the east by the Green Pond Fault, which places the Green Pond Conglomerate over the basement (Lytle and Epstein, 1987). The Green Pond Fault trends northeast up the valley on the west side of Lake Picatinny and Lake Denmark, and is sub-vertical to steeply west-dipping. The Green Pond Fault is downthrown to the east, with an estimated vertical displacement of 800 feet and a poorly constrained strike-slip displacement (Barnett, 1976). A tight, asymmetrical syncline, presumably a fault-drag fold, parallels the Green Pond Fault to the east between the fault and Lake Denmark (Barnett, 1976). A larger anticline parallels the Green Pond Fault to the west, with dips increasing westward to a maximum of 55 degrees to the northwest near the PTA boundary (Sims, 1958). The Mount Hope Fault is a high-angle fault, downthrown to the south, which trends west-

2 r

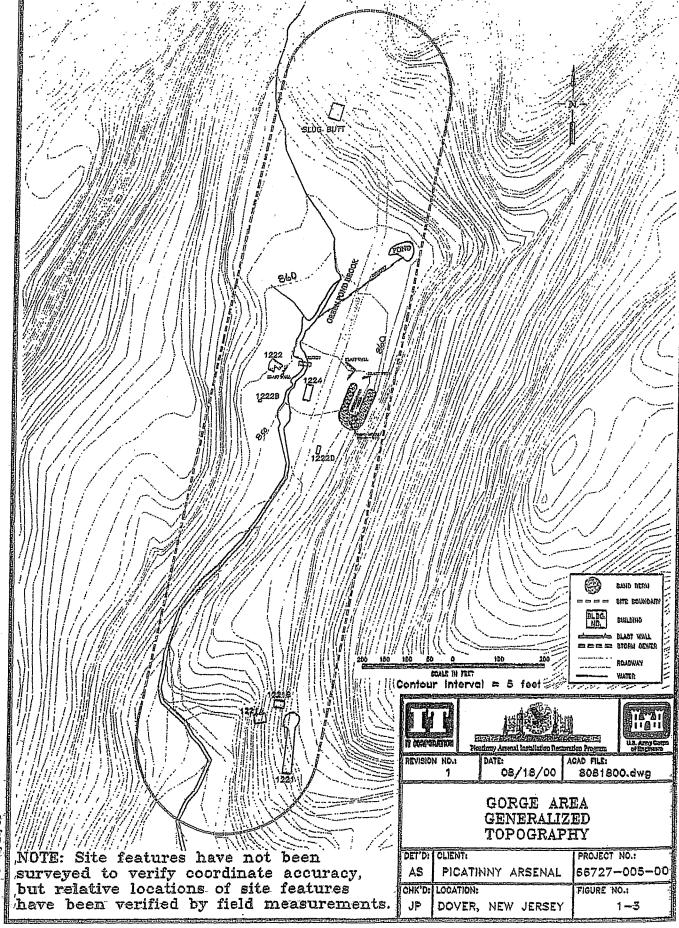
2.1 CLIMATOLOGY

Northern New Jersey has a continental temperate climate, which is controlled by weather patterns from the continental interior. The prevailing winds blow from the northwest from October to April and from the southwest from May to September (Gill and Vecchioli, 1985). The average monthly temperature ranges from a high of approximately 72°F in July to approximately 27°F in January/February (National Oceanic and Atmospheric Administration [NOAA], 1982). The average date of the last freeze of spring and the first freeze of fall are May 2 and October 8, respectively (Eby, 1976). Located approximately 8 miles southeast of PTA, the average annual precipitation at the Boonton monitoring station from 1980 to 1990 was 47.19 inches. The least amount of precipitation occurs during February (2.79 inches) while the greatest amount of precipitation occurs during June (5.41 inches) (NOAA, 1982).

2.2 PHYSIOGRAPHY AND TOPOGRAPHY


PTA is located in the New Jersey Highlands physiographic province, which ranges from 12 - 18 miles wide and is located between the Appalachian Piedmont physiographic province to the southeast and the Valley and Ridge province to the northwest. The New Jersey Highlands is the southernmost extension of the New England sub-province (Reading Prong) of the Appalachian Highland physiographic province (Gill and Vecchioli, 1985). The area is characterized by broad, rounded, or flat-topped northeast-southwest trending ridges, and deep and generally narrow valleys that are controlled by the northeast-trending folds and faults of the underlying bedrock.

The valley in which PTA resides has a broad and relatively flat floor, which slopes gently to the southwest. The valley varies from 1,000 to 4,000 feet in width. Elevations within the valley floor range from approximately 800 feet mean sea level (ft msl) at the northeastern boundary to approximately 700 ft msl at the southwestern boundary. The main valley of PTA is bounded to the northwest by Green Pond and Copperas Mountains and to the southeast by an unnamed ridge. Green Pond and Copperas Mountains are rugged and steeply sloped with a maximum elevation of about 1,250 ft msl. The southeastern ridge is less steep with a maximum elevation of about 1,150 ft msl and contains small elevated plateaus. Marshy areas at the southern end of PTA and north of Lake Denmark are very flat with minor relief.


2.3 SURFACE WATER HYDROLOGY

PTA is located in the upper part of the Passaic River drainage basin. Green Pond Brook, which is the primary drainage feature of PTA, joins the Rockaway River approximately one mile south of PTA. From this confluence, the Rockaway River flows east through the Boonton Reservoir, an 8.5-billion gallon water source for Jersey City. The Rockaway River then flows southeast, merging with the Passaic River, which discharges into Newark Bay at Elizabeth, New Jersey.

At PTA, surface water generally flows down to the valley axis via a number of small, unnamed streams and ditches, and then to the southwest via Burnt Meadow Brook and Green Pond Brook. The northeast portion of PTA is drained by Burnt Meadow Brook, which has an average width of 3 to 4 feet and a maximum depth of 1 foot. Burnt Meadow Brook discharges into Lake Denmark in the northeastern portion of the installation (U.S. Army Toxic and Hazardous Materials Agency [USATHAMA], 1976). Lake Denmark discharges by a continuation of Burnt Meadow Brook into Green Pond Brook, the principal drainage feature for PTA. Green Pond Brook then flows southwestward into Picatinny Lake. Located in the geographic center of PTA, Picatinny Lake is approximately 5,300 feet long, an average of 1,000 feet wide (108 acres), with a maximum depth of 20 feet (165 million gallons) (USATHAMA, 1976). Green Pond Brook, with a width of 10 to 30 feet and a maximum depth of 5 feet, continues southwestward from Picatinny Lake through the center of the valley, and discharges into the Rockaway River about one mile southeast of PTA.

.

PLOT DATE: 49/26/0

Table T-3
ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

							(μg/L)								
				ARARs				TBCs	3				Level of Concern		
		2	nking Water ards (b)	New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA F	Region III Tap V	Vater RBCs (d)		Site Characterization/ Prioritization		
Chemical	! .	MCL	MCLG	NJMCL	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen		
Volatiles =															
Acetone		·			6,000	10		5,500			N	6,000	Quality Criteria		
Acetonitrile						da Vento	•	120			N	120	TWRBC		
Acrolein					4 .	5	***	0.042			N	5	NJPQL .		
Acrylonitrile	;	,			0.06	2			0.037	3.7	С	2	NJPQL		
Benzene		5	0	1	0.2	1			0.34	34	С	1	NJMCL, NJPQL		
Bromodichloromethane (f)		80	0		0.6	1 .			0.17	17	С	1.	NJPQL		
Bromoform (f)		80	0		4	0.8			8.5	850	С	. 4	Quality Criteria		
Bromomethane	:				10	1	10	8.5			N	10 [:]	Quality Criteria		
2-Butanone	•				300	2	4,000	7,000			N	300	Quality Criteria		
tert-Butylalcohol					100	2					-	100	Quality Criteria		
Butyl benzene											-				
tert-Butylbenzene											-				
sec-Butylbenzene										****	-				
Carbon disulfide					700	1	·	1,000			N	700	Quality Criteria		
Carbon tetrachloride	•	5	0	2	0.4	1			0.16	16	С	1	NJPQL		
Chlorobenzene	•	100	100	50	50	1	100	110			N	50	NJMCL, Quality Criteria		
Chlorobromomethane							90				1 - 1	90	НА		
Chloroethane						***	***		3.6	360	С	3.6	TWRBC		
2-Chloroethyl vinyl ether											_		·		
Chloroform (f)		80	70 ·		70	1	70		0.15	15	С	70	Quality Criteria, MCLG		
Chloromethane						. ,	30	190	:		N	30	НА		
2-Chlorotoluene							100	120			N	100	НА		
4-Chlorotoluene (g)						,	100	120			N	100	НА		
Cymene					i						-				
Dibromochloromethane (f)	•	80	60		0.4	1	60		0.13	13	С	1 .	NJPQL		
1,2-Dibromoethane		0.05	0		0.0004	0.03			0.0053	0.53	С	0.03	NJPQL		
Dichlorodifluoromethane	·				1,000	2	. 1,000	350			N	1,000	Quality Criteria		
1,1-Dichloroethane				50	50	1		900			N	50	NJMCL, Quality Criteria		
1,2-Dichloroethane		5	0	2.	0.3	2			0.12	12	С	2	NJMCL, NJPQL		
1,1-Dichloroethene		7	7	2	1	. 1		350			. N	1	Quality Criteria, NJPQL		
1,2-Dichloroethene (total) (h)					70		70	55		44 54-44	N	70	Quality Criteria		
cis-1,2-Dichloroethene (i)	•	70	70		70 ,	1	70	55			N	70	MCL, Quality Criteria, MCLG		
trans-1,2-Dichloroethene		100	100		100	1	100	110			N	100	MCL, Quality Criteria, MCLG		
1,2-Dichloropropane		5	0		0.5	1	****		0.16	16	С	1	NJPQL		
1,3-Dichloropropane (j)			•		0.5	***	••••		0.16	16	С	0.5	Quality Criteria		
2,2-Dichloropropane (j)	•				0.5	W = 12			0.16	16	С	0.5	Quality Criteria		
1,1-Dichloropropene (k)					0.4				0.44	44	С	0.4	Quality Criteria		
1,3-Dichloropropene					0.4	1			0.44	44	С	1	NJPQL		
cis-1,3-Dichloropropene (I)	**************************************				0.4	1			0.44	44	C	1	NJPQL		
trans-1,3-Dichloropropene (I)					0.4	1			0.44	44	C	1	NJPQL		

Page 1 of 11

Table T-3

ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

	· · · · · · · · · · · · · · · · · · ·					idered for Picatinny Arse (µg/L)						
•			ARARs				TBC	S				Level of Concern
		rinking.Water dards (b)	New Jersey Drinking Water	New Jersey Gr	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA I	Region III Tap I	Water RBCs (d)		Site Characterization/ Prioritization
Chemical	MCL	MCLG	NJMCL	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen	C/N	LOC (e)	LOC Chosen
Ethane	, 									T		
Ethanol .						***				1-1	-	
Ethene										┼╌┨		
Ethyl benzene	700	700		700.	2	700	1,300	***				
Ethylene oxide							1,300	0.000		N	700	MCL, Quality Criteria, MCLG
2-Hexanone	1		•			, , , , , , , , , , , , , , , , , , , ,		0.023	2.3	C	0.023	TWRBC
Isobutanol							1 000	***		1	***	
Isopropanol							1,800			N	1,800	TWRBC
Isopropylbenzene				700	1					1-1		
Methane :				;			660			N ·	700	Quality Criteria
Methanol				4,000	70		40.000					
4-Methyl-2-pentanone (MIBK)				*,,000			18,000		***	N ·	4,000	Quality Criteria
Methylene bromide							6,300			N	6,300	TWRBC
Methylene chloride	5.	0	3	3	1		61			N	61	TWRBC
Methyl tert-Butyl ether			70	70	1	:		4.1	410	С	3	NJMCL, Quality Criteria
Monobromobenzene				•		,		2.6	260	C	70	NJMCL, Quality Criteria
n-Propylbenzene)	·		***			-		
Styrene	100	100		100						-		
1,1,1,2-Tetrachloroethane (m)			4	· 100	2	100	1,600		***	N	100	MCL, Quality Criteria, MCLG
1,1,2,2-Tetrachloroethane	. <u></u> -		1	1	1	į. 70		0.41	41	С	1	NJMCL, Quality Criteria, NJPQL
Tetrachloroethene	. 5	0	1		1 :	0.3		0.053	5.3	С	11	NJMCL, Quality Criteria, NJPQL
Tetrahydrofuran			·	0.4	1	10		0.10	10	С	1	NJMCL, NJPQL
Toluene	1,000	1,000	***	10.	10			8.8	880	С	10	Quality Criteria, NJPQL
1,1,1-Trichloroethane .	200	200		1,000	1	1,000	2,300	***		N	1,000	MCL, Quality Criteria, MCLG
1,1,2-Trichloroethane	5	3	30	30 .	1	200	1,700		***	N	30	NJMCL, Quality Criteria
Trichloroethene	5	***************************************	3	3 ·	2 .	3		0.19	19	С	3,	NJMCL, Quality Criteria, MCLG
Frichlorofluoromethane		0	1	1	1			0.026	2.6	С	.1	NJMCL, Quality Criteria, NJPQL
1,2,3-Trichloropropane			:	2,000	1	2,000	1,300	***		N	2,000	Quality Criteria
1,1,2-Trichloro-1,2,2-trifluoroethane	****		i -	0.005	0.03	40		0.0053	0.53	С	0.03	NJPQL
1,2,4-Trimethylbenzene	****			***		****	59,000			N	59,000	TWRBC
,3,5-Trimethylbenzene	***	*				4444				-		
/inyl acetate										-		
/inyl chloride	,			7,000	5		410		mes.	N	7,000	Quality Criteria
o-Xylene (n)	2	0		80.0	1		***	0.015	1.5	С	1	NJPQL ·
n-Xylene (n)	'		1,000	1,000			210			N	1,000	NJMCL, Quality Criteria
			1,000	1,000			210			N	1,000	NJMCL, Quality Criteria
n+p-Xylenes (n) Kylenes			1,000	1,000			210		***	N	1,000	NJMCL, Quality Criteria
	10,000	10,000	1,000	1,000	2		210	***		Ν	1,000	NJMCL, Quality Criteria
mivolatiles												Tomoz, quality Oriena
Acenaphthene			****	400	10	60 to	370			Ν	400	Quality Criteria
Acenaphthylene (o)		***		200	0.1		180	** =	***	N	200	Quality Criteria
Aniline				6	2			12	1,200	С	6	Quality Criteria

Table T-3
ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)
(μg/L)

							(µg/L)						
				ARARs		- !		TBCs					Level of Concern
	F	ederal Drir Standa	nking Water rds (b)	New Jersey Drinking Water	New Jersey Gr	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA F	Region III Tap \	Vater RBCs (c	1)		Site Characterization/ Prioritization
Chemical .	·	MCĹ :	MCLG	NJMCL	Quality Criteria	NJPQL	. HA	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen
Anthracene					2,000	10		1,800			N	2,000	Quality Criteria
Atrazine		3	3		3	0.1		+	0.30	30	С	3	MCL, Quality Criteria, MCLG
Benz(a)anthracene			er-a ==		0.05	0.1	V		0.092	9.2	С	0.1	NJPQL
Benzidine :		'	***		0.0002	20			0.00029	0.029	С	20	NJPQL
Benzo(a)pyrene	.	0.2	0		0.005	0.1			0.0092	0.92	С	0.1	NJPQL
Benzo(b)fluoranthene		,			0.05	0.2			0.092	9.2	С	0.2	NJPQL
Benzo(g,h,i)perylene (o)			A		200;	0.1		180			N	200	Quality Criteria
Benzo(k)fluoranthene	÷				0.5	0.3	***		0.92	92	С	0.5	Quality Criteria
Benzoic Acid					30,000	50		150,000			N	30,000	Quality Criteria
Benzyl alcohol		:			2,000	20	***	11,000			N	2,000.	Quality Criteria
Bromacil	: .						. 90				-	90	HA
4-Bromophenyl phenyl ether					*						- 1		
di-n-Butylphthalate					700	1		3,700			N	700	Quality Criteria
Butylbenzyl phthalate					100	1	***		35	3,500	С	100	Quality Criteria
Carbazole					•				3.3	330	C	3.3	TWRBC '
4-Chloroaniline					30.	10	water	150			N	30	Quality Criteria
bis(2-Chloroethoxy)methane					'								
bis(2-Chloroethyl)ether					0.03	. 7			0.0096	0.96	С	7	NJPQL
bis(2-Chloroisopropyl)ether			***		. 300	10	300		0.26	26	C	300	Quality Criteria
4-Chloro-3-methylphenol					:								
2-Chloronaphthalene					600	10		490			N	600	Quality Criteria
2-Chlorophenol			***		40:	20	40	30			N	40	Quality Criteria
p-Chlorophenylmethyl sulfide											<u> </u>		
p-Chlorophenylmethyl sulfone							===				-	'	
p-Chlorophenylmethyl sulfoxide			***						***				
4-Chlorophenyl phenyl ether			***				44 ma 69				1 - 1		
Chrysene					5	0.2	po prim		9.2	920	c	5	Quality Criteria
Dibenz(a,h)anthracene			***		0.005	0.3			0.0092	0.92	С	0.3	NJPQL
Dibenzofuran			***										
Dibromochloropropane		0.2	0	:	0.02	0.02	65 M cs		0.047	4.7	С	0.02	Quality Criteria, NJPQL
Dichlorobenzenes (p)	·		***		75		, 75		0.47	4.7	c	75	Quality Criteria
1,2-Dichlorobenzene		600	600		600	5	600	270			N	600	MCL, Quality Criteria, MCLG
1,3-Dichlorobenzene				600	600	5	600	18			N	600	NJMCL, Quality Criteria
1,4-Dichlorobenzene		75	75		75	5	75	ļ ————————————————————————————————————	 		-	****	
3,3'-Dichlorobenzidine					0.08	30	. 75		0.47	47	C	75	MCL, Quality Criteria, MCLG
2,4-Dichlorophenol					20	10	20	110		15	C	30	NJPQL Overlite Octoberie
Diethylphthalate					6,000			110			N	20	Quality Criteria
Diisopropyl methylphosphonate				***		1		29,000			N	6,000	Quality Criteria
			***				600	2,900			N	600	HA
Dimethylmethylphosphonate	<u> </u>						100					100	HA
2,4-Dimethylphenol	·				100	20		730			N	100	Quality Criteria
Dimethylphthalate											<u> </u>	***	

Table T-3
ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)
(μα/L)

	•					(µg/L)							
			ARARs				TBCs	3				Level of Concern	
	1	nking Water ards (b)	New Jersey Drinking Water	New Jersey Gr	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPAI	Region III Tap \	Vater RBCs (d	(F		Site Characterization/ Prioritization	
Chemical	MCL	MCLG	NJMCL	Quality Criteria	NJPQL	HA	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen	
2,6-Dinitroaniline										1-1			
3,5-Dinitroaniline										1.1			
2,4-Dinitrophenol	<u> </u>			10	40		73			N	40	NJPQL	
Diphenylamine				200	20		910			N	200	Quality Criteria	
1,2-Diphenylhydrazine				0.04	20	***		0.084	8.4	С	20	NJPQL	
Dithiane (q)					,	-80	370			N	80	HA	
bis(2-Ethylhexyl)phthalate	. 6-	0		2	3			4.8	480	С	3	NJPQL	
Fluoranthene				300	10 ·		1,500			N	300	Quality Criteria	
Fluorene	:			300	1		240			N	300	Quality Criteria	
Hexachlorobenzene :	1	0 .		0.02	0.02			0.042	4.2	C·	0.02	Quality Criteria, NJPQL	
Hexachlorobutadiene				0.4	1	1		0.86	86	C	1	NJPQL	
Hexachlorocyclopentadiene	50]	50		40	0.5		220			N	40	Quality Criteria	
Hexachloroethane	•			2 ,	7	1		4.8	480	C	7	NJPQL	
Indeno(1,2,3-c,d)pyrene				0.05	0.2	***		0.092	9.2	C	0.2	NJPQL	
Isophorone				40	10	100		70	7,000	C	40		
2-Methylnaphthalene							24			N	24	Quality Criteria	
2-Methylphenol .				***			1,800			N		· TWRBC	
4-Methylphenol					,		180			 	1,800	TWRBC	
4,6-dinitro-2-Methylphenol					,		3.7			N	180	TWRBC	
Naphthalene			300	300.	2	100	· 6.5			N	3.7	TWRBC	
2-Nitroaniline (r)						. 100	0.5	3.3		N	300	NJMCL, Quality Criteria	
3-Nitroaniline									330	·C	3.3	TWRBC	
4-Nitroaniline								3.3	330	C	3.3	TWRBC	
2-Nitrophenol					!			3.3	330	С	3.3	TWRBC	
4-Nitrophenol			-			60				-			
n-Nitrosodimethylamine				0.0007	0.8					-	60	HA	
n-Nitroso-di-n-propylamine			I	0.005	10			0.0013	0.13	С	8.0	NJPQL	
n-Nitrosodiphenylamine			1	7	10			0.0096	0.96	С	10	NJPQL	
di-n-Octylphthalate				100	· · · · · · · · · · · · · · · · · · ·	,		14	1,400	С	10	NJPQL	
1,4-Oxathiane			1		10					-	100	Quality Criteria	
Parathion				4	0.00	***				-			
Pentachlorophenol ·	1	0		0.3	0.08		220			N	4	Quality Criteria	
Phenanthrene (o)			1	ļ	0.1	*****		0.56	56	С	0.3	Quality Criteria	
Phenol				200	0.1		180			N	200	Quality Criteria	
Pyrene				2,000	10	2,000	11,000			N	2,000	Quality Criteria	
Supona				200	0.1		180			N	200	Quality Criteria	
1,2,3-Trichlorobenzene (s)		***				***				-			
	70		9			40	7.2			N	9	NJMCL	
1,2,4-Trichlorobenzene	70	70	9	9	1	70	7.2			N	9	NJMCL, Quality Criteria	
2,3,6-Trichlorophenol (t)	***			1				6.1	610	С	1	Quality Criteria	
2,4,5-Trichlorophenol				700	10	****	3,700			Ν	700	Quality Criteria	
2,4,6-Trichlorophenol				1	20	, 		6.1	610	С	20	NJPQL	

Table T-3

ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

(uc/L)

						(µg/L)								
			ARARs				TBCs					Level of Concern		
		nking Water ards (b)	New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA R	Region III Tap V	Vater RBCs (d	i)		Site Characterization/ Prioritization		
Chemical	MCL	MCLG	· NJMCL	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen		
Pesticides														
Aldrin				0.002	0.04	***		0.0039	0.39	С	0.04	NJPQL		
alpha-BHC (u)				0.006	0.02	0.2		0.011	1.1	С	0.02	NJPQL		
beta-BHC (u)				0.02	0.04	0.2		0.037	3.7	С	0.04	NJPQL		
delta-BHC (u,v)				0.006		0.2		0.011	1.1	С	0.006	Quality Criteria		
gamma-BHC (Lindane)	0.2	0.2		0.03	0.02	0.2 .		0.052	5.2	С	0.03	Quality Criteria		
Chlordane	. 2	0	0.5	0.01	0.5			0.19	19	С	′ 0.5	NJMCL, NJPQL		
alpha-Chlordane (w)	;		0.5	0.01		***		0.19	19	С	0.01	Quality Criteria		
gamma-Chlordane (w)	:		0.5.	0.01	***			0.19	19	С	. 0.01,	Quality Criteria		
4,4'-DDD	,		<u></u>	0.1	0.02			0.28	28	С	0.1	Quality Criteria		
4,4'-DDE	:			0.1	0.01			0.20	20	С	0.1	Quality Criteria		
4,4'-DDT	;			0.1	0.1			0.20	20	С	0.1	Quality Criteria, NJPQL		
Diazinon	<u></u>					0.6	33			N	0.6	НА		
Dieldrin				0.002	0.03			0.0042	0.42	С	0.03	NJPQL		
Endosulfan I (x)	ļ			40 :	0.02		220			N	40	Quality Criteria		
Endosulfan II (x)				40	0.04		220			N	40	Quality Criteria		
Endosulfan sulfate (x)				. 40	0.02		220			N	40	Quality Criteria		
Endrin	2 '.	2		2 '	0.03	2	11			N	2	MCL, Quality Criteria, MCLG		
Endrin aldehyde (y)				. 2 ·		2	11		***	N	2	Quality Criteria		
Endrin ketone (y)				2		2	11			N	2	Quality Criteria		
Heptachlor ;	0.4	0		800.0	0.05			0.015	1.5	C	0.05	NJPQL		
Heptachlor epoxide	. 0.2	0		0.004	0.2		<u> </u>	0.0074	0.74	C	0.2	MCL, NJPQL		
Isodrin Malathion				100	0.6	400	700	***		-	400	Overlibe Order de		
Methoxychlor	40	40		40 :	0.1	100	730 180			N	100	Quality Criteria		
Mirex	40	40		0.1	0.08	40	7.3	***		N	40	MCL, Quality Criteria, MCLG		
Toxaphene	3	0		0.03	2		7.0	0.061	6.1	C	0.1 2	Quality Criteria NJPQL		
Vapona								0.061	23	C	0.23	TWRBC		
PCBs(z)							<u> </u>							
Aroclor 1016	0.5	0		0.02	0.5	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		0.96	96	С	0.5	MCL, NJPQL		
Aroclor 1221	0.5	. 0		0.02	0.5	<u></u>		0.033	3.3	С	0.5	MCL, NJPQL		
Aroclor 1232	0.5	0		0.02	0.5			0.033	3.3	C	0.5	MCL, NJPQL		
Aroclor 1242	0.5	0		0.02	0.5	·		0.033	3.3	С	0.5	MCL, NJPQL		
Aroclor 1248	0.5	0		0.02	0.5			0.033	3.3	C	0.5	MCL, NJPQL		
Aroclor 1254	0.5	0		0.02	0.5			0.033	3.3	С	0.5	MCL, NJPQL		
Aroclor 1260 :	0.5	0	***	0.02	0.5			0.033	3.3	С	0.5	MCL, NJPQL		
Explosives				1										
1,3-Diamino-2,4,6-trinitrobenzene										-				
Diethyleneglycol dinitrate				der für det						-				
1,3-Dinitrobenzene		20 cm cm		NO 100 AC		1	3.7			N	1	НА		
2,4-Dinitrotoluene (aa)				0.05	10		73		***	N	10	NJPQL		

Table T-3

ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

						(μg/L)						
			ARARs	T			TBCs					Level of Concern
		nking Water ards (b)	New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA F	Region III Tap V	Vater RBCs (c	i)		Site Characterization/ Prioritization
: Chemical	MCL	MCLG	NJMCL	Quality Criteria	NJPQL	,, HA	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen
2,6-Dinitrotoluene (aa)				0.05	10		37			N	10	NJPQL
2-amino-4,6-Dinitrotoluene				<u> </u>								Not QL
4-amino-2,6-Dinitrotoluene				:	,					_		
Amino DNT's					·		****				1,	
DNX	,											
2,2',4,4',6,6'-Hexanitrostilbene					;							
HMX	:					400	1,800			N	400	HA HA
MNX ·	·					:						. 111
Nitrobenzene				4 '	6		3.5			N	6	NJPQL
Nitrocellulose												NJFQL
Nitroglycerin	***				·			***			:	
Nitroguanidine :				'	·	700	3,700			N	700	 HA
2-Nitrotoluene				`			61			N	61	TWRBC
2- and 4-Nitrotoluene (ab)				;		***************************************	61			N.	61	TWRBC
3-Nitrotoluene (ab)	••••			:			61			N	61	TWRBC
4-Nitrotoluene (ab)				 ;.		***	61			N	61	TWRBC '
PETN					1					- 1	. 01	
Picric acid				·						_		
RDX				;	'	2		0.61	61	С	0.61	TWDDO
Tetrazene :				·		•					0.01	TWRBC
Tetryl							150			N	150	TWRBC
Thiodiglycol				;						"		
TNX									4.0-2	_		
Triethyleneglycol dinitrate				:							-	
Trimethylol ethylmethane trinitrate		****				÷ ·				- 1	===	
1,3,5-Trinitrobenzene :							1,100			Ŋ		TWDDO
2,4,6-Trinitrotoluene	444			, (//	. 2	1,100	2.2	220	C	1,100 2	TWRBC
Herbicides											2	HA
2,4'-D	70	· 70	1	70.	. 2	70	370			N	70	MCL, Quality Criteria, MCLG
Dalapon	200	200	1	200	0.1	200	1,100			N	200	MCL, Quality Criteria, MCLG
2,4'-DB				:			290			N	290	TWRBC
Dicamba						200	1,100			N	200	HA
Dichloroprop				-4-						- 14		
Dinoseb	7	7		7	2	. 7	37			N	7	MCI Cuellin Citatio MCI C
2,4,5-T						70	370			N		MCL, Quality Criteria, MCLG
2,4,5-TP (Silvex)	50	50		60 ·	0.6	50	290		****	N	70 50	HA MOLO
lioxins/Eurans (ac)							230			IN I	50	MCL, MCLG
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin								0.000045	0.0045	С		
Total heptachlorodibenzo-p-dioxins								0.000045		-	0.000045	TWRBC
1,2,3,4,6,7,8-Heptachlorodibenzofuran							***	0.000045	0.0045			TWODO
1,2,3,4,7,8,9-Heptachlorodibenzofuran			1					0.000045	0.0045	С	0.000045	TWRBC

Table T-3

ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

(µg/L)

						(µg/L)								
			ARARs				TBCs					Level of Concern		
	Federal Drir Standa		New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA R	Region III Tap V	Vater RBCs (c	1)		Site Characterization/ Prioritization		
Chemical	MCL	MCLG	NJMCL	Quality Criteria	NJPQL	. НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen		
Total heptachlorodibenzofurans										- 1	·			
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin		***			***			0.0000045	0.00045	С	0.0000045	TWRBC		
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin				;				0.0000045	0.00045	С	0.0000045	TWRBC		
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin							, 	0.0000045	0.00045	С	0.0000045	TWRBC		
Total hexachlorodibenzo-p-dioxins	'				***					-	***			
1,2,3,4,7,8-Hexachlorodibenzofuran					***	·		0.0000045	0.00045	С	0.0000045	TWRBC		
1,2,3,6,7,8-Hexachlorodibenzofuran					, ,			0.0000045	0.00045	С	0.0000045	TWRBC		
1,2,3,7,8,9-Hexachlorodibenzofuran				:	•••	·		0.0000045	0.00045	С	0.0000045	TWRBC		
2,3,4,6,7,8-Hexachlorodibenzofuran				;				0.0000045	0.00045	С	0.0000045	TWRBC		
Total hexachlorodibenzofurans				:						-				
Octachlorodibenzodioxin ·				:		***		0.0045	0.45	С	0.0045	TWRBC		
Octachlorodibenzofuran				:		·		0.0045	0.45	С	0.0045	TWRBC		
1,2,3,7,8-Pentachlorodibenzo-p-dioxin								0.00000045	0.000045	С	0.00000045	· TWRBC		
Total pentachlorodibenzo-p-dioxins				:						-	. 1			
1,2,3,7,8-Pentachlorodibenzofuran			<u> </u>	'				0.0000090	0.00090	С	0.0000090	TWRBC		
2,3,4,7,8-Pentachlorodibenzofuran					*			0.00000090	0.000090	С	0.00000090	TWRBC		
Total pentachlorodibenzofurans										-				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.00003	0		0.0000002	0.00001			0.00000045	0.000045	C.	0.00001	NJPQL		
Total tetrachlorodibenzo-p-dioxins		B-10-00			*					-				
2,3,7,8-Tetrachlorodibenzofuran				W-142 AP		9000		0.0000045	0.00045	С	0.0000045	TWRBC		
Total tetrachlorodibenzofurans						Facility VI				-				
Glycols														
Ethylene glycol				300	200	14,000	73,000			N	300	Quality Criteria		
Hydrogen														
Hydrogen			<u></u>							-				
Hydrazines														
Hydrazine								0.022	2.2	С	0.022	TWRBC		
Monomethyl hydrazine		*****	<u></u>		***		<u> </u>			-				
Unsymmetrical dimethyl hydrazine			<u> </u>				<u> </u>			<u> </u> -				
Volatile Fatty Acids														
Acetic acid				:						-				
Propionic acid									<u> </u>					
Inorganics														
Aluminum	· -,			200	30					1	200	Quality Criteria		
Antimony	6	6		6	3	6	15		***	N	6 .	MCL, Quality Criteria, MCLG		
Arsenic	10	0	5	0.02	3		<u> </u>	0.045	4.5	С	3 `	NJPQL		
Barium	2,000	2,000		2,000	200	2,000	7,300			N	2,000	MCL, Quality Criteria, MCLG		
Beryllium	4	4		1 :	1		73			N	1 .	. Quality Criteria, NJPQL		
Boron	•=•					600	7,300			N	600	НА		
Cadmium	5	5		4	0.5	5	18			N	4	Quality Criteria		
Calcium (ad)							500,000				500,000	ADI		

Table T-3
ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

	1		ARARs			(μg/L) -	TBCs		<u>i</u>			
•.		nking Water ards (b)	New Jersey Drinking Water	New Jerşey Gr	oundwater (c)	Federal Drinking Water Health Advisories (b)		Region III Tap \	Vater RBCs (d	1)		Level of Concern Site Characterization/ Prioritization
Chemical	MCL	MCLG	NJMĊL	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen
Chromium (ae)	100	100		70	1		110			N	70	Quality Criteria
Cobalt												
Copper (af)	1,300	1,300		1,300	4		1,500			N	1,300	MCL, Quality Criteria, MCLG
Cyanide	200	200	,	100	6	200	730			N	100	Quality Criteria
Ferrous Iron								***		- 1		
Iron	1			300-	20 (*	11,000	***		N	300	Quality Criteria
Lead (af)	15	. 0		5	5		. 15	15	15	-	;5	Quality Criteria, NJPQL
Magnesium (ad)						44.4	175,000				175,000	ADI
Manganese (ag)		·		50	0.4	300	730			N	50	
Mercury (ah)	2	. 2		2	0.05	2	3.7			N		Quality Criteria
Molybdenum				40	2	40	180			N	2	MCL, Quality Criteria, MCLG
Nickel (ai)				100	4	100 -	730			1	40	Quality Criteria
Potassium (ad)	·			·				***		N	100	Quality Criteria
Selenium (aj)	50	50	1	40	4		1,000,000		***	-	1,000,000	ADI
Silica					27.99	50	180			N	. 40	Quality Criteria
Silicon												· ·
Silver · `												
Sodium (ad)	·		1	50,000	1 ;	100	180			N	40	Quality Criteria
Strontium				50,000	400		20,000				50,000	Quality Criteria
Tellurium		·	<u></u> .		'	4,000	22,000			N	4,000	НА
Thallium										-		
Tin	2	0.5		0.5	2	0.5	2.6			N	0.5	MCLG
Titanium			·		1		22,000			N	22,000	TWRBC
			<u></u>		;					-		-
Tungsten					3:					-	·	
Vanadium					()		37	***		N	37	TWRBC
Zinc		· ·		2,000	10	2,000	11,000			N	2,000	Quality Criteria
Zirconium	Menagera and Paragraph and Andreas				\					-		-
nions												
Ammonia	:		+	3,000	200	30,000	210			N	3,000	Quality Criteria
Chloride				250,000	2,000	***	'			-	250,000	Quality Criteria
Fluoride (ak)	4,000	4,000		2,000	500 :-		2,200			N	2,000	Quality Criteria
Nitrate	10,000	10,000		10,000	100		58,000			N	10,000	MCL, Quality Criteria, MCLG
Nitrate/Nitrite - nonspecific (al)	10,000	10,000		10,000	10	770	3,700			N	10,000	MCL, Quality Criteria, MCLG
Nitrite	1,000	1,000	-+-	1,000	10		3,700			N	1,000	MCL, Quality Criteria, MCLG
Perchlorate (am)							18	18	18	- 1	18	AL
Phosphate										-	****	
Phosphorus (ad)							600,000			-	600,000	ADI
Sulfate	500,000	500,000		250,000	5,000			***		_	250,000	Quality Criteria
Sulfide	W1994									┟ <u>╶</u> ╂	230,000	
ield Parameters										have ye		
Alkalinity		1		The state of the s	The same of the sa	amora and and amount of the control	MADE TO STATE OF THE STATE OF T	STATE OF THE PROPERTY OF THE PARTY OF THE PA	Maria Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Car	EXPANSE.	THE REPORT OF THE PARTY OF THE	

Table T-3

ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

						(µg/L)								
			ARARs				TBCs					Level of Concern		
	1	nking Water ards (b)	New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)	USEPA F	Region III Tap V	Vater RBCs (d)		Site Characterization/ Prioritization		
Chemical	MCL	MCLG	, N'IWCF	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen		
Carbon										_				
Dissolved Oxygen		***		,	****					_		•••		
Dissolved organic carbon										_				
Hardness				250,000	10,000					-	250,000	Quality Criteria		
Total Dissolved Solids			·	500,000	10,000					-	500,000	Quality Criteria		
Total organic carbon					***					-				
Total Suspended Solids	}					===				-				
Fuel Related Contaminants														
Diesel Range Organics	:									-				
GRO	:					40 m 444								
Total Volatile Petroleum Hydrocarbons				:		****				-				
Total Extractable Petroleum										-				
Total Recoverable Petroleum										-				
TPH	:			:										
TPH, aviation gas fraction										-				
Radiological Parameters (an)														
Americium-241	;	4		:	'	·				-				
Bismuth-212							·			-				
Bismuth-214						••••				-				
Cerium-143							·			-				
Cesium-134	:		·						·	-				
Cesium-137		***		***						-				
Cobalt-60										-				
Gross alpha	15!	0								-	15	MCL		
Gross beta	;			:			ļ <u></u>			-				
Krypton-85	!						<u> </u>			-	*****			
Lead-212	<u>:</u>			<u> </u>		***		<u> </u>		-				
Lead-214										-				
Molybdenum-99			;								.,			
Potassium-40			40.00.00	ļ										
Radium-224	:													
Radium-226 (ao)	5 :	0	*****							-	5	MCL		
Radium-228 (ao)	5	0			****					-	5	MCL		
Uranium (ap)	30	0					7.3			N	30	MCL		
Uranium-234						<u></u>				-	***			
Uranium-235	ļ				***					-				
Uranium-238					****					-		***		
Zinc-65										-				
Asbestos (aq)						T								
Actinolite	7,000,000	7,000,000	***	7,000,000	100,000					-	7,000,000	MCL, Quality Criteria, MCLG		
Amosite	7,000,000	7,000,000		7,000,000	100,000		<u> </u>			<u> </u>	7,000,000	MCL, Quality Criteria, MCLG		

Table T-3 ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

			ARARs			(µg/L)							
			1				TBCs	<u> </u>			Level of Concern		
		Federal Drinking Water Standards (b) New Jersey Drinking Water New Jersey G		New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)		PA Region III Tap Water RBCs (d)		1)	Site Characterization/ Prioritization		
Chemical	MCL	MCLG	. NJMCL	Quality Criteria	NJPQL	НА	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen	C/N	LOC (e)	LOC Chosen	
Anthopyllite	7,000,000	7,000,000		7,000,000	100,000					O/IV			
Asbestos	7,000,000	7,000,000		7,000,000	100,000				***	-	7,000,000	MCL, Quality Criteria, MCLG	
Chrysotile	7,000,000	7,000,000								-	7,000,000	MCL, Quality Criteria, MCLG	
Crocidolite				7,000,000	100,000	*				- 1	7,000,000	MCL, Quality Criteria, MCLG	
Tremolite	7,000,000	7,000,000		7,000,000	100,000					_	7,000,000	MCL, Quality Criteria, MCLG	
	7,000,000	7,000,000		7,000,000	100,000	***		***			7,000,000		
Tremolite/Actinolite	7,000,000	7,000,000		7,000,000	100,000	•••						MCL, Quality Criteria, MCLG	
DI = Allowable Daily Intake										-	7,000,000	MCL, Quality Criteria, MCLG	

AL = Action Level

ARAR = Applicable or Relevant and Appropriate Requirement

C/N = Carcinogenic or noncarcinogenic according to USEPA (2005).

HA = Health Advisory

LOC = Level of Concern

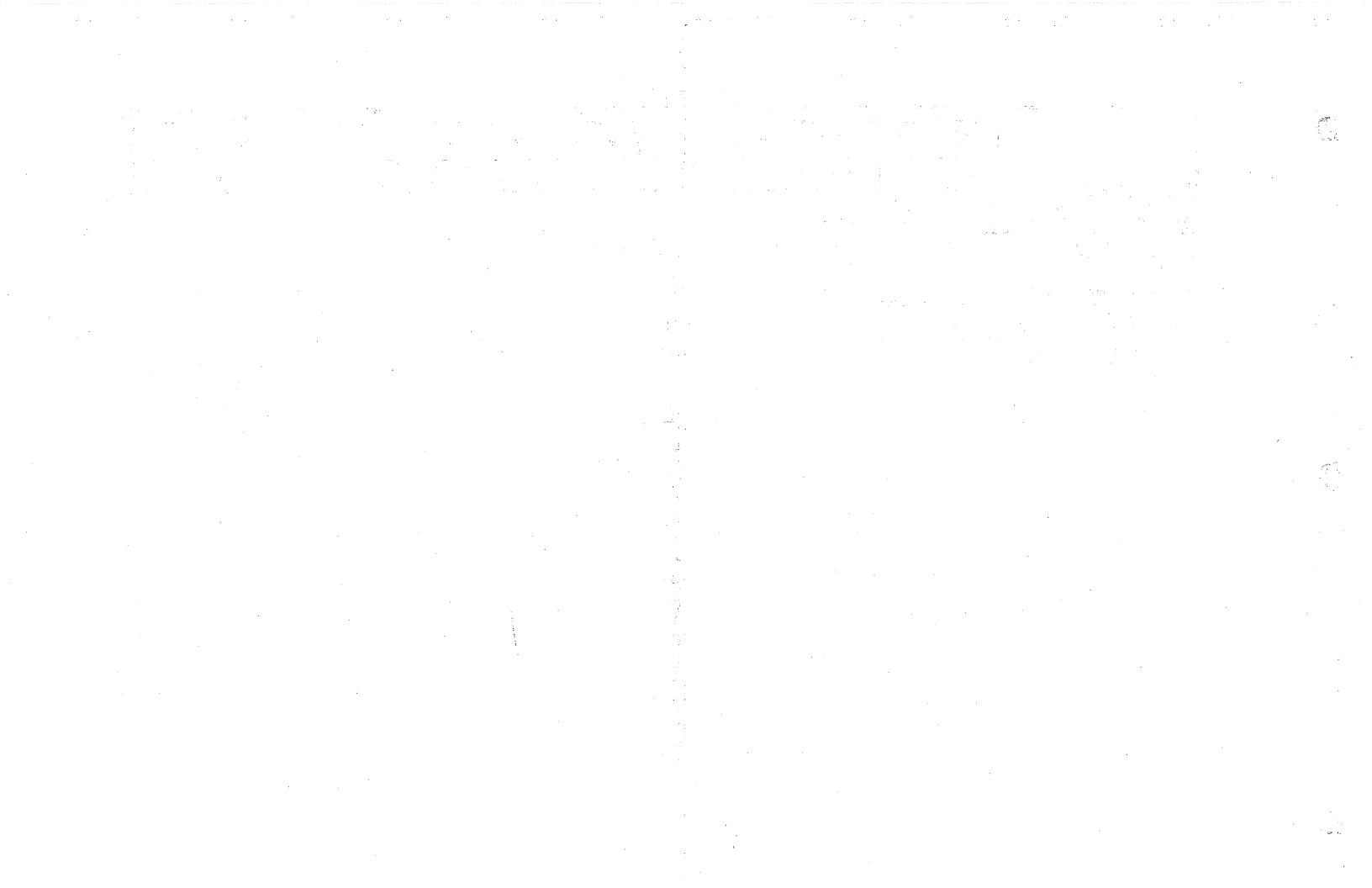
MCL = Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

NJMCL = New Jersey Maximum Contaminant Level (2005)

PQL = Practical Quantitation Limit

TBC = To Be Considered


TWRBC = Tap Water Risk Based Concentration

- --- = No value available.
- (a) Note that chemicals without guidance values are presented in this table.
- (b) USEPA Drinking Water Standards and Health Advisories (Winter 2004) Publication #EPA 822-R-04-005.
- (c) NJDEP (2005).
- (d) USEPA (2005). Residential exposure based on ingestion of tap water and inhalation while showering for 350 days. A hazard index of 1 was used for noncarcinogenic RBCs.
- (e) LOC for PTA groundwater are based on the lower of the following values: (1) Federal MCLs, (2) New Jersey State MCLs,
- (3) New Jersey Groundwater Quality Criteria (QC) or PQLs (whichever is higher), and (4) any non-zero Federal MCLGs. If none of the above criteria are available, the groundwater LOC will be based on the lower of the following: Federal Drinking Water Health Advisories or USEPA Region III Tap Water RBCs.
- (f) MCL value is based on trihalomethanes.
- (g) The RBC value for 2-chlorotoluene was used.
- (h) The QC value for cis-1,2-dichloroethene was used.
- (i) The RBC value for 1,2-dichloroethene (total) was used.
- (j) Values for 1,2-dichloropropane were used.
- (k) Values for 1,3-dichloropropene were used.
- (I) The RBC value for 1,3-dichloropropene was used.
- (m) The NJMCL value for 1,1,2,2-tetrachloroethane was used.
- (n) The values for xylenes (total) were used.
- (o) The values for pyrene were used for noncarcinogenic polycyclic aromatic hydrocarbons (PAHs) lacking RBCs and NJ criteria.
- (p) Values for 1,4-dichlorobenzene were used.
- (q) The values for 1,4-dithiane was used.
- (r) The value for 3-nitroaniline was used.
- (s) The NJMCL and RBC values for 1,2,4-trichlorobenzene and the HA value for 1,3,5-trichlorobenzene were used.
- (t) The values for 2,4,6-trichlorophenol were used.
- (u) The HA value for gamma-BHC (lindane) was used.
- (v) The QC and RBC values for alpha-BHC were used.
- (w) The values for chlordane were used.
- (x) The RBC value for endosulfan was used.
- (y) The values for endrin were used.
- (z) The Federal MCLs and NJ values for PCBs were used.
- (aa) The value for 2,4-dinitrotoluene and 2,6-dinitrotoluene mixture was used for the QC and the PQL values.
- (ab) The RBC value for 2-nitrotoluene was used.
- (ac) USEPA Region III RBC values for PCDD/PCDF congeners were derived using toxicity criterion for 2,3,7,8-TCDD modified by toxic equivalency factors (TEFs) (USEPA 2000).

Table T-3 ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater (a)

						(μg/L)						
·			ARARs				TBCs			T		Level of Concern
	Federal Drir Standa	-	New Jersey Drinking Water	New Jersey Gro	oundwater (c)	Federal Drinking Water Health Advisories (b)		Region III Tap V	Vater RBCs (d)		Site Characterization/ Prioritization
Chemical	MCL	MCLG		Quality Criteria	NJPQL	HA .	Non- carcinogen	Carcinogen 1x10 ⁻⁶	Carcinogen 1x10 ⁻⁴	C/N	LOC (e)	LOC Chosen
(ad) The value presented in the BBC column is an	allawahla dailu i	ntoko (ADI) lou	al for assential bu		***************************************							

- presented in the RBC column is an allowable daily intake (ADI) level for essential human nutrients.
- (ae) The value for total chromium was used for Federal and NJ criteria and the value for Chromium VI was used for the RBC.
- (af) Federal and State MCLs are based on action levels for these chemicals. Lead does not have an RBC, however the 15 µg/L action level (USEPA 1996a) is presented in the RBC column.
- (ag) The non-food RBC value for manganese was used.
- (ah) The value for inorganic mercury was used for the federal criteria, the value for total mercury was used for the NJ criteria and the RBC value was based on methyl mercury.
- (ai) The value for soluble salts was used for the NJ criteria and the PQL.
- (aj) The NJ value for total selenium was used.
- (ak) The RBC value for fluorine was used.
- (al) The RBC value for nitrite was used.
- (am) Perchlorate does not have an RBC, however the 18 µg/L action level (USEPA 1998) is presented in the RBC column.
- (an) The values for radiological parameters are in units of pCi/L, except where noted below.
- (ao) The value for combined radium-226 and radium-228 was used.
- (ap) Uranium is in units of $\mu g/L$. The RBC for the most conservative soluble salts was used.
- (aq) The values for asbestos are based on units of fibers/L>10µm.

	1	·		·		. Р	ICATI	NNY AR	SENA	<u>AL</u>																	
		0												An	alytical R								·				
		Sample ID: Date Sampled:		1	OD-1 06/25/					OD-2A 06/21/0					OD-3A 06/20/0					OD-4A 06/21/0					OD-5/ 06/20/0		
,		Depth Sampled (ft):			2.85 - 1				:	2.45 - 12.					1.24 - 11.					2.30 - 12					9.55 - 19		
	1.00 (*)		RCRA Maximum						·T					П		, , , , , , , , , , , , , , , , , , ,								Π		.	
Chemical	LOC (a):	Source	Concentration Limit (b): .	Result	RLÆQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	sqL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Volatiles																											
Acetone	700	QC .	. NA	1.30	J 10.0	0.510	QT	10.0	UJ	10.0	0.510	QT	10.0	IJ	10.0	0.510	QT	8.10	JD	100	5.10	QT	10.0	UJ	10.0	0.510	QT
Carbon disulfide :	1,000	RBC -	NA ·	3.50	1.00	0.200	QT	1.00	U	1.00	0.200	QT	1.00	U	1.00	0.200	QT	10.0	UD	10.0	2.00	QT	1.00	U	1.00	0.200	QT
Toluene	1,000	MCL, QC, MCLG	NA .	1.00	J 1.00	0.180	QT	0.250	اد	1.00	0.180	QT	1.00	U	1.00	0.180	QT	10.0	UD	10.0	1.80	QT	1.00	U	1.00	0.180	QT
1,1,2-Trichloro-1,2,2-trifluoroethane	59,000	RBC	NA NA	1.00	J 1.00	0.320	QT	6.50		1.00	0.320	QT	7.90		1.00	0.320	QT	190	D	10.0	3.20\	QT	1.00	U	1.00	0.320	QT
Semivolatiles																											
bls(2-Ethylhexyl)phthalate	6	MCL	NA :	40.0	J 10.0	2.70	QT	10.0	υl	10.0	2.70	QT	4.20	IJ	10.0	2.70	QT	2.80	J	10.0	2.70	QT	10.0	U	10.0	2.70	QT
Pesticides																											
PGBs Explosives																											
HMX	400				.1				<u></u>	1	1		I I	······································	1		~~				T		1 0 400	 	0.500	0.100	
RDX	400	HA RBC	NA ·	0.500	0.500	0.100	QT"	9.00	D	1.50	0.300	QT	0.600		0.500	0.100	QT	2.10		0.500	0.100	QT	0.130	1 U	0,500	0.100 0.130	QT
Inorganics	0.61	I HBC	NA NA	0.500	J 0.500	0.130	QT	23.0	D.	1.50	0.390	QT	0.210	7]	0.500	0.130	QT	3.40		0.500	0.130	QT	0.500	ال	0.500	0.130	
Aluminum	200	; QC, NJPQL	L NA	1		00.0		00.0	-, T	02.0		OT	400	7.1	00.0	00.0	OT				20.0	QT	680		92.0	28.0	QT
Barium	2,000	MCL. QC. MCLG	, NA	1,100	92.0	28.0	QT	83.0 30.0	-	.92.0	28.0	QT	100	-	92.0	28.0	QT	1,100		92.0	28.0	QT	38.0		200	3.00	QT
Beryllium	· 2,000		1,000	37.0	J 200	3.00	QT	l	ان	200	3.00	QT	4.80		200	3.00	QT	10.0	U	200	3.00	 	2.00	U	2.00	0.540	QT
Boron	600	MCL, MCLG HA	. NA	2.00	2.00	0.540	QT	. 2.00		2.00	0.540	QT	2.00	-	2.00	0.540	QT	2.00		2.00	0.540	QT	î	-	200	21.0	QT
Cadmium	4	QC .		31.0	J 200	21.0	QT	68.0	٠.	200	21.0	QT	71.0	11	200	21.0	QT	46.0	U	200	21.0	QT	75.0 2.00	U	2.00	0.280	QT
Calcium	400,000	ADI	100	2.00	2.00	0.280	QT	2.00	Ÿ	2.00	0.280	QT	2.00	-	2.00	0.280	QT	2.00	,	2.00	0.280 250	QT	4,000	٠,	5,000	250	QT
Chromium	100	MCL, QC, MCLG	NA - 50	3,800	J 5,000	250	QT QT	8,000	Ü	5,000	250 1.40	QT QT	7,100	J	5,000	250 1.40	QT QT	6,400 10.0	٦	5,000 10.0	1.40	QT	10.0	11	10.0	1.40	QT
Cobalt	2,200	RBC	.NA·	1.80	J 10.0 J 50.0	1.40	QT	10.0 50.0	U	50.0	1.30	QT	10.0 50.0		50.0	1.40	QT	50.0	U	50.0	1.30	QT	50.0	11	50.0	1.30	QT
Copper	1,000	QC, NJPQL	. NA	9,00	9.00	4.20	QT	5.00	+	9.00	4.20	QT	9.00	,,	9.00	4.20	QT	9.10	1	9.00	4.20	QT	11.0	+	9.00	4.20	QT
Iron	300	. QC	· NA	9.00	100	88.0	QT	100		100	. 88.0	QT	100	-	100	88.0	QT	1,500		100	88.0	QT	2,900		100	88.0	QT
Lead	10	NJPQL	50	3.00	3.00	2.50	QT	3.00	끍	3.00	2.50	QT	3.00	11	3.00	2.50	QT	5.00	1	3.00	2.50	QT	4.50	S S S S S S S S S S S S S S S S S S S	3.00	2.50	QT
Magnesium	80,500	ADI	. NA	1,100	J 5,000	30.0	QT	2,400	1	5,000	30.0	QT	1,500		5,000	30.0	QT	1,600	 	5,000	30.0	QT	1,100	1.1	5,000	30.0	QT
Manganese	50	: QC	, NA	99.0	15.0	0.900	QT	210	ښt	15.0	0.900	QT	1,500		15.0	0.900	QT	54.0		15.0	0.900	QT	530		15.0	0.900	QT
Mercury	2 .	MCL, QC, MCLG	2.0	0.0920	0.0920	0.0690	QT	0.0920	****	0.0920	0.0690	QT	0.0920	11	0.0920	0.0690	QT	0.0860		0.0920	0.0690	QT	0.0920		0.0920	0.0690	QT
Molybdenum	40	HA	· NA	1.00	J 1.00	0.600	QT	1.00		1.00	0.600	QT	1.00		1.00	0.600	QT	1.00	U	1.00	0.600	QT	1.00	U	1.00	0.600	QT
Nickel	100	QG	NA ·	6.40	J 40.0	2.20 ·	QT	40.0	ü	40.0	2.20	QT	40.0	iil	40.0	2.20	QT	6.60	1.1	40.0	2.20	QT	40.0	111	40.0	2.20	QT
Potassium	100,000	ADI .	· NA	550	J 5,000	41.0	QT	670	,	5,000	41.0	QT	540	ار	5,000	41.0	QT	730	.,	5,000	41.0	QT	660	.,	5,000	41.0	QT
Silicon	. NA		· NA	3,850	J 500	38.0	QT	. 3,870	il	500	38.0	QT	4,900	i	500	38.0	QT	5,800	1.1	500	38.0	QT	3,330	1.	500	38.0	ΩТ
Sodium	50,000	QC -	NA NA	1,200	J 5,000	630	QT	3,900	ij	5,000	630	Qĩ	1	ij	5,000	630	QT	2,200	J	5,000	630	QT	5,300		5,000	630	QT
Strontium :	4,000	HA	. NA	17.0	J 5.00	0.280	QT	29.0		5.00	0,280	QT	17.0		5.00	0.280	QT		1	5.00	0.280	QT	22.0	<u> </u>	5.00	0.280	QT
Tin ·	22,000	RBC	NA NA	10.0	J 10.0	1.40	QT	10.0	-	10.0	1.40	QT	10.0	U	10.0	1.40	QT	10.0	U	10.0	1.40	QT	10.0	U	1	1.40	QT
Titanium .	150,000	RBC	NA NA	16.0	J 50.0	6.30	QT	50.0	·il	50.0	6.30	QT	50.0	U	50.0	6.30	QT	22.0		50.0	6.30	QT	50.0		1	6.30	QT
Tungsten	' NA	NDO	NA NA	5.00	J 5.00	1.00	QT	1.50	끍	5.00	1.00	QT	1.70		5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.30	1.1	5.00	1.00	QT
Vanadium	· 260	RBC	NA NA	1.30	J 50.0	0.820	QT	50.0	.	50.0	0.820	QT	50.0	U	50.0	0.820	QT	1.10	J	50.0	0.820	QT	0.940	1	50.0	0.820	QT
Zinc	5,000	QC	NA NA	60.0	J 20.0	12.0	QT	60.0	┽	20.0	12.0	QT	20.0	U	20.0	12.0	QT	15.0	1	20.0	12.0	QT	73.0		20.0	12.0	QT
Zirconium	5,000 NA		NA NA	5.00	J 5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT		U	5.00	1.00	QT	1.90		5.00	1.00	QT
Listinuiti	I IVA	***	L NA	5.00	01.00	1.00	UI.	5,00	<u> </u>	5.00	1.00	<u>u</u> i	5.00	ا ت	5,00	1.00	्र	5.00	ΙŪ	5.00	1 1.00	1 41	1.90	1,	J 3.00	1.00	<u>. ~'</u>]

			PICATINNY ARSENAL	1			Ā	\nalvtic	al Result	s			 -
		Sample ID:				OD-5AD			I		OD-6/		-
		Date Sampled: Depth Sampled (ft):				06/20/0			Í		06/25/0		1
		Deput Sampled (it):	DODIN.	 	_	9.55 - 19).55	т			10.22 - 20	0.22	
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	0	RL/EQL	SQL	Lab
Volatiles				•						<u> ~</u>	INDEGE	OQL	
Acetone	700	QC	NA ·	10.0	IJ	10.0	0.510	QT	10.0	U	10.0	0,510	QT
Carbon disulfide	1,000	RBC	NA	1.00	U	1.00	0.200	QT	1.00	U	1.00	0.200	QT
Toluene	1,000	MCL, QC, MCLG	NA	1.00	U	1.00	0.180	QT	1.00	U	1.00	0.180	QT
1,1,2-Trichloro-1,2,2-trilluoroethane	59,000	RBC	NA .	1.00	U	1.00	0.320	QT	1.00	U	1.00	0.320	QT
Semivolatiles											^		
bis(2-Ethylhexyl)phthalate	6	MCL	NA .	3.30	J	10.0	2.70	QT	10.0	U	10.0	2.70	QT
Pasticides		**********											
PGBs Explosives													
HMX	400										r	r	
RDX	400	HA	NA			NT		 .	0.290	J	0.500	.0.100	QT
Inorganics	0.61	RBC	NA NA			NT	***************************************		0.190	J	0.500	0.130	QT
Aluminum	200	OC NIDOL						,,,,,,,,,			,,,,,,,,,,		
Barium	2,000	QC, NJPQL	, NA	2,100	at.	92.0	28.0	QT	470	J	92.0	28.0	QT
Beryllium	. 4	MCL, QC, MCLG	1,000	49.0	J	200	3.00	QT	44.0	J	200	3.00	QT
Boron	600	MCL, MCLG HA	. NA	2.00	U	2.00	0.540	QT	1.10	J	2.00	0.540	QT
Cadmium	4		NA 100	69.0	J	200	21.0	QT	28.0	J	200	21.0	QT
Calcium	400,000	QC ADI	100	2.00	U	2.00	0.280	QT	0.620	J	2.00	0.280	QT
Chromium	100	MCL, QC, MCLG	NA SO	4,600	J	5,000	250	QT	1,900	J	5,000	250	QT
Cobalt	2,200	RBC	50	2.60	J	10.0	1.40	QT .	10.0	U	10.0	1.40	QT
Copper	1,000	QC, NJPQL	; NA	2.20	<u>ال</u>	50.0	1.30	QT ·	24.0	J	50.0	1.30	QT
Iron	300	QC QC	: NA	14.0	,	9.00	4.20	QT	14.0	J	9.00	4.20	QT
Lead	10	NJPQL	NA FO	4,600	*	100	88.0	QT	1,000	J	100	0.88	QT
Magnesium	80,500	ADI	. 50 NA	3.00	U	3.00	2.50	QT	2.90	J	3.00	2.50	QT
Manganese	50	QC	NA NA	1,400	J	5,000	30.0	QT	600	J	5,000	30.0	QT
Mercury	. 2	MCL, QC, MCLG	2.0	620		15.0	0.900	QT	850		15.0	0.900	QT
Molybdenum	. 40	HA	NA	0.0860	-	0.0920	0.0690	QT	0.0920	U	0.0920	0.0690	QT
Nickel	100	QC	NA NA	1.00	U	1.00	0.600	QT	0.800	J	1.00	0.600	QT
Potassium	100,000	ADI .	NA NA	4,00	-	40.0	2.20	QT	5.70	J	40.0	2.20	QT
Silicon	100,000 NA	AUI .	. NA	970	붜	5,000	41.0	QT	360	J	5,000	41.0	QT
Sodium	50,000	QC	NA NA	3,140	J	500	38.0	QT	2,820	J	500	38.0	QT
Strontium	4,000	HA	NA NA		J	5,000	630	QT	1,100	J	5,000	630	QT
Tin	22,000	RBC		21.0	J	5.00	0.280	QT	12.0	J	5.00	0.280	QT
Titanium	150,000	RBC	NA Na	3.90	J	10.0	1.40	QT	10.0	U	10.0	1.40	QT
Tungsten	130,000 NA	, , , , , , , , , , , , , , , , , , , ,	NA NA	19.0	-	50.0	6.30	QT	50.0	U	50.0	6.30	QT .
Vanadium	260	RBC	NA NA	3.10	J	5.00	1.00	QT	5.00	U	5.00	1.00	QT
Zinc	5,000		NA NA	3.10	J	50.0	0.820	QT	50.0	U	50.0	0.820	QT
Zirconium	5,000 NA	QC	NA NA	93.0	J	20.0	12.0	QT	84.0	J	20.0	12.0	QT
	L 14/1		NA NA	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT

			7						IN I VIVI		44 44																	
															An	nalytical I	Results				,		***************************************					
		Sample ID:				OD-1/	•				OD-2A					OD-3/	4				OD-4/	4		[OD-5	Ā	
		Date Sampled:		I		06/25/0					06/21/0	-				06/20/0	01		l		06/21/0	01		1		06/20/0	01	
·		Depth Sampled (ft):			,	2.85 - 12	2.85				2.45 - 12	45				1.24 - 11	.24				2.30 - 12	2.30		l		9.55 - 19	∌. 55	
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	o	BL/FOI	SQL	Lab	Result	0	RL/EQL	SQL	l ah	Result		DI ÆOI	SQL	Lob	Result		RLÆQL	SQL	Lab	Descrit		RL/EQL	SQL	
Anions						***********							******				***********			I Q	INDEGL	SQL	Lab	nesuit	I Q	nt/EQL	SQL	Lab
Ammonia	500	QC	NA NA	200	υ	200	19.0	QT	46.0	J	200	19.0	QΤ	200	R	200	19.0	QT	59.0		200	19.0	QT	200	6	200	19.0	QT
Chloride	250,000	. QC	NA	829	J	1,000	130	QT	2.080	 	1,000	130	QT	2,380	∺	1,000	130	QT	1,300	+ -	1,000	130	OT	4,480	-	1.000	13.0	QT
Fluoride	2,000	QC	NA	110	IJ	1,000	17.0	QT	70.0		1,000	17.0	QT	50.0	,†	1,000	17.0	QT	50.0	+-	1,000	17.0	OT	50.0	+-	1,000	17.0	QT
Nitrate	10,000	MCL, QC, MCLG	NA	500	υ	500	15.0	QT	30.0	J	500	15.0	QT	500	ü	500	15.0	QT	40.0	1	500	15.0	OT	500	11	500	15.0	QT
Perchlorate	. 18	AL	.NA	5.00	U	5.00	2.00	QT	5,00	U	5.00	2.00	QT	5.00	ü	5.00	2.00	QT	11.6	"	5,00	2.00	OT	5.00	1	5.00	2.00	QT
Phosphorus	NA	•••	NA NA	100	U	100	16.0	QT	100	U	100	16.0	QT	100	<u></u>	100	16.0	QŤ	140	+	100	16.0	OT	110	۲	100	16.0	QT
Sulfate	250,000	QC ·	NA NA	9,120		1,000	150	QT	9,400	† <u> </u>	1,000	150	QT	10,900	Ť	1.000	150		11,900	+	1.000	150	OT	6,370		1,000	150	QT
Sulfide	: NA		NA .	1,000	U	1,000	920	QT	1,000	U	1,000	• 920	QT	1.100		1,000	920	QT	1,000	li	1,000	920	OT.	1,000	1.	1.000	920	QT

			FICATION ANSEMAL										
							A	nalytic	al Result:	s			
		Sample ID:				OD-5AD	UP				OD-6A		
		Date Sampled:				06/20/0	1				06/25/0	1	
		Depth Sampled (ft):				9.55 - 19	.55				10.22 - 20	.22	ŀ
Chernical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RLÆQL	SQL	Lab
Amons		****											
Àmmonia	. 500	; QC	NA	250		200	19.0	QT	200	υ	200	19.0	QΤ
Chloride	250,000	QC	NA	4,300		1,000	130	QT	873	J	1,000	130	QT
Fluoride	2,000	QC	NA NA	50.0	J	1,000	17.0	QT	140	J	1,000	17.0	QT
Nitrate .	10,000	MCL, QC, MCLG	NA	500	U	500	15.0	QT	500	U	500	15.0	QT
Perchlorate Perchlorate	. 18	AL	NA	5.00	υ	5.00	2.00	QŤ	5.00	U	5.00	2.00	QT
Phosphorus	· NA	•	NA	79.0	J	100	16.0	QT	100	U	100	16.0	QT
Sulfate	250,000	QC	NA NA	6,240		1,000	150	QT	10,400		1,000	150	QT
Sulfide	NA	· :	NA NA	1,000	U	1,000	920	QT	1,000	U	1,000	920	QT

(a) See the "ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater" table for a complete list of LOC values. Groundwater samples were compared to the lower of the Federal MCLs, the New Jersey State MCLs, the New Jersey Groundwater Quality Criteria or PQLs (whichever is higher), or any non-zero Federal MCLG. If the above are not available, groundwater comparison criteria are based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA Region III Tap Water (noncarcinogenic or carcinogenic 10-6) RBCs.

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC).

ADI = Allowable Daily Intake

AL = Action Level

CNSWC = Crane Naval Surface Warfare Center

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal

NA = No value available.

NJMCL = New Jersey State Maximum Contaminant Level

NJPQL = New Jersey State Practical Quantitation Limit

NT = Not tested.

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

(U) = Non-detect, chemical was detected in blank.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit / Estimated Quantitation Limit

SQL = Sample Quantitation Limit

	7							PICA	IINNY	ARSEN	AL																
														Anal	lytical Res	sults											
		Sample ID: Date Sampled:	!		OD-1/	-				OD-2A					OD-3A				.,	OD-4A					OD-5A		
	'	Date Sampled: Depth Sampled (ft):	i		09/27/0 5.0 - 10					09/25/01 10.0 - 15.0	•				09/26/01	,				09/25/01					09/26/01		
			<u> </u>		3.0 - 10	.v		 	 	10.0 - 15.0		7			10.0 - 15.0)		<u> </u>		10.0 - 15.0				1 1	10.0 - 15.0	U T	
	100 (5)	0	RCRA Maximum				Ì												l. I								
	LOC (a):	Source	Concentration	:						•																	
Chemical	1.		Limit (b):	Result	Q RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Volatiles	1																										
Acetone ' :	. 700	QC .	ŅA	10.0 (U) 10.0	0.510	QT	17.0	(ก)าต	17.0	0.850	QT	10.0	(U)	10.0	0.510	QT	120	(Ü)D	. 120	6.40	QT:	10.0	(U)	10.0	0.510	QT
Ethylene Oxide	0.023	RBC	NA	1,000	JJ 1,000	0.250	QT	780		1,000	0.250	QT	. 1,000	บป	1,000	0.250	QT	1,000	UJ	1,000	0.250	. QT	1,000	UJ	1,000	0.250	QT
1,1,2-Trichloro-1,2,2-trifluoroethane	59,000	RBC .	NA ·	1.00	U 1:00	0.320	QT	40.0	D	1.70	. 0.530	QT	13.0		1.00	0.320	QT	300	D:	12.0	4.00	QT	1.00	U	1.00	0.320	QT
Semivolatiles	, 																										
2,4-Dimethylphenol	100	QC	ŅA	10.0	U 10.0	0.850	QT	10.0	. U	10.0	0.850	QT	10.0	U	10.0	0.850	QT	10.0	U	10.0	0.850	QT	10.0	U	10.0	0.850	QT
bis(2-Ethylhexyl)phthalate	6	MCL	NA	10.0	U 10.0	2.70	QT	10.0	U	10.0	2.70	QT	5.30	J	10.0	2.70	QT	10.0	U	10.0	2.70	QT.	10.0	U	10.0	2.70	QT
Pesticides																		•									
PCBs																											
Explosives	T																										
HMX	400	HA ·	ŅA	7.60	0.500	0.100	QT	3.70		0.500	0.100	QT	0.880		0.500	0.100	QT	2.90		0.500	0.100	QT	-0.500	U	0.500	0.100	QT
RDX	0.61	RBC	NA	3.50	0.500	0.130	QT	7.90		0.500	0.130	QT	0.250	J	0.500	0.130	QT	4.50		0.500	0.130	QT	0.500	U	0.500	0.130	.QT
Inorganics	T																										
Aluminum	; 200	QC, NJPQL	NA	190	J 92.0	28.0	QT ·	92.0 😥	U	92.0	28.0	QT	92.0	U	92.0	28.0	QT	260		92.0	28.0	QT.	260	1.0	92.0	28.0	QT
Barium	2,000	MCL, QC, MCLG	1,000	57.0	J 200	3.00	QT	140	J	200	3,00	QT	5.90	J	200	3.00	QT	6.90	J	200	3.00	QT.	40.0	J	200	3.00	QT
Boron	600	. HA	. NA	140	J 200	21.0	QT	81.0	J	. 200	21.0	QT	69.0	J	200	21.0	QT	80.0	J	.200	21.0	QT	73.0	J	200	21.0	QT
Cadmium	. 4	QC	. 100	0.340	J 2.00	0.280	QT	0.640	J	2.00	0.280	QT	2.00	Ü	2.00	0.280	QT	2.00	U	2.00	0.280	QT	2.00	U	2.00	0.280	QT
Calcium	.400,000	ADI	NA	6,300	5;000	250	QT	9,600		5,000	250	QŢ	7,200	1	5,000	250	QT	5,900		5,000	250	QT	3,100	J	5,000	250	QT
Cobalt	2,200	RBC	NA	50.0	50.0	1.30	QT	3.10	J	50.0	1.30	QT	50,0	U	50.0	1.30	QT	50.0	U	50.0	1.30	QT.	2.90	J	50.0	1.30	QT
Copper	.1,000	QC, NJPQL	NA	9.00	9.00	4.20	QT	4.50	J	9.00	4.20	QT	9.00	U	9.00	4.20	QT	5.20		9.00	4.20	QT	6.80	J	9.00	4.20	QT
Iron	. 300	QC	NA	160	100	88.0	QT	1,300		100	88:0	QT	100	T _U	100	88.0	QT	390		100	88.0	QT	3,300		100	88.0	QT
Magnesium	80,500	ADI	ŅA -	2,100	5,000	30.0	QT	3,700	J	5,000	30,0	QT	1,600	+-+	5,000	30.0	QT	1,500		5,000	30.0	QT	1,200	J	5.000	30.0	QT
Manganese . `	50	QC ·	ŅA	78.0	15.0	0.900	QT	1.900		15.0	0.900	QT	15.0	† † †	15.0	0.900	QT	22.0		15.0	0.900	QT	920		15.0	0.900	
Nickel	100	QC	NA	7.30	40,0	2.20	QT	40.0	U	40.0	2.20	QT	40.0		40.0	2.20	QT	40.0	111	40.0	2.20	QT	2.20		40.0	2.20	QT
Potassium	100,000	ADI	Ν̈́Α	470	5.000	41.0	QT	990	1	5,000	41:.0	QT	600	171	5,000	41.0		630					650	1	5,000	41.0	QT
Silicon ·	: NA		ŇΑ	4,230	500	38.0	QT	4,510		500	38.0	QT	5,130	╫	5000		QT		J	5,000	41.0	QT	·		500	 	
Sodium	50,000	QC	ŇA	2,600	5,000	630	QT	4,300	,	5,000	630	 		+,+		38.0	QT	5,990	+.	500	38.0	QT	3,420	+-		38.0	QT
Strontium	4,000	· HA .	NA ·	28.0	5.00	0.280	QT	36.0				QT	2,100		5,000	630	QT	1,600	J	5,000	630	QT	4,000		5,000	630	QT
Titanii	150,000	RBC	. NA	50.0	50.0	6.30	QT	50.0	U	5.00 50.0	0.280	QT. QT	15.0	+	5.00	0.280	QT	14.0	+	5.00	0.280	QT	17.0	-	5,00	0.280	
Titanium .					5000	i 630	i ()	500		FO 0	E 20	: /ST B	- En n	1 1 1 1	50.0	6.30	QT	7.50		50.0	6.30		50.0	1 1 1 1	50.0	6.30	QT
Zinc	5,000	QC	Ν̈́Α	48.0	20.0	.12.0	QT	55.0	-	20.0	6.30 12.0	QT	50.0 20.0	U	20.0	12.0	QT	14.0		20.0	12.0	QT QT	26.0		20.0	12.0	QT

		,		Analy	tical Results			
		Sample ID: Date Sampled:	1	OD-5ADUP		OD-6A		
:		Depth Sampled (ft):	·	09/26/01 10.0 - 15.0	,	09/27/01 10.0 - 20.0	,	
				10.0 75.0		10.0 - 20.0	,	
	LOC (a):	Source	RCRA Maximum					
Chemical	1		Concentration Limit (b):	Result Q RL/EQL SQL Lab	Result Q	RL/EQL	SQL	Lob
Volatiles				Tresuit Q TIDEQE SQL Lab	nesuit Q	INDEGL	SUL	Lab
Acetone	700	QC	NA	NT	10.0 (U)	10.0	0,510	QT
Ethylene Oxide	0:023	: RBC	NA	NT	1,000 UJ		0.250	QT
1,1,2-Trichloro-1,2,2-trifluoroethane	59,000	: RBC	NA	NT	1.00 U		0.320	QT
Semivolatiles						•		
2,4-Dimethylphenol	100	: QC	. NA	. NT	10.0 (U)	10.0	0.850	QT
bis(2-Ethylhexyl)phthalate	6	, MCL	NA	NT	10.0 UJ	10.0	2.70	QT
Pesticides								
PCBs Explosives								
HMX	400	: НА	. NA	0.500 11 0.500 1 0.000 1 0.5		T		
RDX	0,61	RBC	NA NA	0.500 U 0.500 0.100 QT 0.500 U 0.500 0.130 QT	0:500 U	0.500	0.100	QT
Inorganics	0.01	, NBO	NA .	0.500 U 0.500 0.130 QT	0.500 U	0.500	0.130	QT

Aluminum	200	QC, NJPQL	NA	NT	80.0 J	920	28.0	ОТ
Aluminum Barium	200 2,000	QC, NJPQL MCL, QC, MCLG	NA 1,000	NT NT	80.0 J 34.0 J	92.0	28.0	QT OT
	l			NT NT NT	34.0 J	200	3.00	QT
Barium	2,000	MCL, QC, MCLG	1,000	NT		1	3.00 21.0	QT QT
Barium Boron	2,000 600	MCL, QC, MCLG HA	1,000 NA	NT NT	34.0 J 120 J	200	3.00	QT
Barium Boron Cadmium	2,000 600 4	MCL, QC, MCLG HA QC	1,000 NA 100	NT NT NT	34.0 J 120 J 2.00 U	200 200 2.00	3.00 21.0 0.280	QT QT QT
Barium Boron Cadmium Calcium	2,000 600 4 400,000	MCL, QC, MCLG : HA , QC ! ADI	1,000 NA 100 NA	NT NT NT NT	34.0 J 120 J 2.00 U 5,700	200 200 2.00 5,000	3.00 21.0 0.280 250	QΤ QΤ QΤ QΤ
Barium Boron Cadmium Calcium Cobalt	2,000 600 4 400,000 2,200	MCL, QC, MCLG HA QC ADI RBC	1,000 NA 100 NA NA	NT NT NT NT NT	34.0 J 120 J 2.00 U 5,700 6.00 J	200 200 2.00 5,000 50.0	3.00 21.0 0.280 250 1.30	QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper	2,000 600 4 400,000 2,200 1,000	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL	1,000 NA 100 NA NA	NT NT NT NT NT NT NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U	200 200 2.00 5,000 50.0 9.00	3.00 21.0 0.280 250 1.30 4.20	QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper	2,000 600 4 400,000 2,200 1,000 300	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC	1,000 NA 100 NA NA NA	NT NT NT NT NT NT NT NT NT NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800	200 200 2.00 5,000 50.0 9.00	3.00 21:0 0.280 250 1.30 4.20 88.0	QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium	2,000 600 4 400,000 2,200 1,000 300 80,500	MCL, QC, MCLG : HA . QC . ADI RBC : QC, NJPQL . QC ADI	1,000 NA 100 NA NA NA NA	NT NT NT NT NT NT NT NT NT NT NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J	200 200 2.00 5,000 50.0 9.00 100 5,000	3.00 21:0 0.280 250 1.30 4.20 88.0 30.0	ατ ατ ατ ατ ατ ατ ατ ατ
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium Manganese	2,000 600 4 400,000 2,200 1,000 300 80,500 50	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC ADI QC	1,000 NA 100 NA NA NA NA NA NA NA NA NA	NT NT NT NT NT NT NT NT NT NT NT NT NT N	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J	200 200 2.00 5,000 50.0 9.00 100 5,000 15.0	3.00 21:0 0.280 250 1.30 4.20 88.0 30.0	QT QT QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium Manganese Nickel	2,000 600 4 400,000 2,200 1,000 300 80,500 50	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC ADI QC QC	1,000 NA 100 NA NA NA NA NA NA NA NA NA	NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J 1,000 J	200 200 2.00 5,000 50.0 9.00 100 5,000 15.0 40.0	3.00 21.0 0.280 250 1.30 4.20 88.0 30.0 0.900 2.20	QT QT QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	2,000 600 4 400,000 2,200 1,000 300 80,500 50 100 100,000	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC ADI QC ADI QC ADI	1,000 NA 100 NA NA NA NA NA NA NA NA NA	NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J 1,000 J 7,30 J 650 J	200 200 2.00 5,000 50.0 9.00 100 5,000 15.0 40.0	3.00 21:0 0.280 250 1.30 4.20 88.0 30.0 0.900 2.20 41.0	QT QT QT QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silicon	2,000 600 4 400,000 2,200 1,000 300 80,500 50 100 100,000 NA	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC ADI QC ADI QC ADI ——	1,000 NA 100 NA NA NA NA NA NA NA NA NA	NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J 1,000 J 7,30 J 650 J	200 2.00 5,000 50.0 9.00 100 5,000 15.0 40.0 5,000	3.00 21:0 0.280 250 1.30 4.20 88.0 30.0 0.900 2.20 41.0 38.0	QT QT QT QT QT QT QT QT QT QT
Barium Boron Cadmium Calcium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silicon Sodium	2,000 600 4 400,000 2,200 1,000 300 80,500 50 100 100,000 NA 50,000	MCL, QC, MCLG HA QC ADI RBC QC, NJPQL QC ADI QC ADI QC ADI QC QC ADI QC ADI QC	1,000 NA 100 NA NA NA NA NA NA NA NA NA	NT	34.0 J 120 J 2.00 U 5,700 6.00 J 9.00 U 3,800 J 2,300 J 1,000 J 7,30 J 650 J 6,490 2,200 J	200 200 2.00 5,000 50.0 9.00 100 5,000 15.0 40.0 5,000 500	3.00 21.0 0.280 250 1.30 4.20 88.0 30.0 0.900 2.20 41.0 38.0 630	QT QT QT QT QT QT QT QT QT QT

			 						11 W. L. A																		
														Ana	lytical Res	ults											
		Sample ID:			OD-1A	-			0	D-2A					OD-3A					OD-4A					OD-5A		1
		Date Sampled:	,		09/27/01				09	9/25/01					09/26/01					09/25/01					09/26/01		
		Depth Sampled (ft):			5.0 - 10.0	,			10.0	0 - 15.0				•	10.0 - 15.0					10.0 - 15.0)				10.0 - 15.0)	
	LOC (a):	Source	RCRA Maximum	·							;																
	LOO (a).	Source	Concentration							ŀ			:														1 1
Chemical	·		Limit (b):	Result. C	RL/EQL	SQL	Lab	Result	QR	L/EQL	SQL	·Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	. SQL	Lab
Anions																											
Ammonia	· 500	QC .	NA .	200 F	200	19.0	QT	200	R	200	19.0	QT	200	R	200	19.0	QT	200	R	200	19.0	QT	250	R	200	19.0	QT
Chloride	250,000	QC	NA	3,120	1,000	170	QT	4,370		1,000	170	QT	2,470		1,000	170	QT	1,220		1,000	170	QT	3,720		1,000	170	QT
Fluoride	2,000	QC ·	ŅA	.130 J	1,000	15.0	QT	60.0	J .	1,000	15.0	QT	50.0	J.	1,000	15.0	QT	50.0	j	1,000	15.0	QT	50.0	J	1,000	15.0	QT
Nitrate	10,000	MCL, QC, MCLG	NA NA	500 U	500	20.0	QT	50.0	J ·	500	20.0	QT	.500	U	· 500	20.0	QT	30.0	J	500	20.0	:QT	500	U	500	20.0	QT
Perchlorate .	. 18	AL	ŅA	10.2	5.00	2.0p	QT	5.00	U	5.00	2.00	QT	5.00	U	5.00	2.00	QT ·	9.00		5.00	2.00	QT	5.00	U	5.00	2.00	QT
Phosphorus	. NA	·	NA	100 U	100	11.0	QT	. 100	U;	100	11.0	QT	35.0	J.	100	11.0	QT	100	U	100	.11.0	QT	63	J	100	11.0	QT
Sulfate	. 250,000	QC	NA	14,800	1,000	38Ò	QT [.]	6,690		1,000	380	.QT	9,590		1,000	380	QT	11,000		1,000	380	QT	7,680		1,000	380	QT
Sulfide	· NA	 .	ŅĀ.	1,000 U	1,000	920	QT	1;000	U ·	1,000	.920	QT	-2,500		1,000	920	QT	1,000	U	1,000	920	QT	2,700		1,000	920	QT

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L)

PICATINNY ARSENAL

								Analyt	ical Results	;			
		Sample ID: Date Sampled: Depth Sampled (ft):				OD-5AD 09/26/0 10.0 - 1	1				OD-6A 09/27/01 10.0 - 20.0)	
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Antons													
Ammonia	500	QC	NA ·			NT			200	R	200	19.0	QT
Chloride	250,000	·· QC	NA			NT		•	1,180		1,000	170	ΩТ
Fluoride	2,000	. QC	NA			ŅT			65.0	J	1,000	15.0	QT
Nitrate ·	10,000	MCL, QC, MCLG	NA			NT:			500	U	500	20.0	QT
Perchlorate	18	· AL	. NA			NT			5.00	U	5,00	2.00	QT
Phosphorus	NA		NĄ			NT			130		100	11.0	QT
Sulfate	250,000	. QC	NA			NT			7,050		1,000	380	QT
Sulfide	NA	40 An ea	NA			NT			1,000	U	1,000	920	QT.

(a) See the "ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater" table for a complete list of LOC values. Groundwater samples were compared to the lower of the Federal MCLs, the New Jersey State MCLs, the New Jersey Groundwater Quality Criteria or PQLs (whichever is higher), or any non-zero Federal MCLG. If the above are not available, groundwater comparison criteria are based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA Region III Tap Water (noncarcinogenic or carcinogenic 10°6) RBCs.

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC).

ADI = Allowable Daily Intake

AL = Action Level

CNSWC = Crane Naval Surface Warfare Center

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal

NA = No value available.

NJMCL = New Jersey State Maximum Contaminant Level

NJPQL = New Jersey State Practical Quantitation Limit

NT = Not tested.

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

(U) = Non-detect, chemical was detected in blank.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit/Estimated Quantitation Limit

SQL = Sample Quantitation Limit

						PICA	A. YNNIT	RSENA	L	·							<u> </u>						
		Sample ID:				OD-1A			<u> </u>	***************************************	05.51		Analytic	al Results									
		Date Sample				01/16/0					OD-2A 01/16/02					OD-3A 01/15/0					OD-4A 01/15/02	.	
·		Depth Sampled				7.36 - 15	.8				4.90 - 14					2.09 - 13					3.98 - 13.9		
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Volatiles Pesticides																							
Explasives																							
НМХ	400	НА	NA	0.460	J	0.500	0.100	αт	4.90	D	2.50	0,100	QT	0.680		0.500	0.100	QT	2.70		0.500	0.100	ОТ
RDX	0.61	RBC	NA ·	0.500	U	0.500	0.130	QT	22.0	D	2.50	0.130	QT	0.250	J	0.500	0.130	QT	3.90		0.500	0.130	QT
Inorganics																	1					1	
Aluminum	200	Quality Criteria, NJPQL	NA NA	170		92.0	28.0	QT	110		92.0	28.0	QT	40.0	J	92.0	28.0	QT	1,300		92.0	28.0	QT
Arsenic	5	MCL .	50.0	3.90	U	3.90	3.90	. QT	3.90	U	3.90	3.90	QT	3.90	U	3.90	- 3.90	QT	3.90	U	3.90	3.90	QT
Barium	2,000	MCL, Quality Criteria, MCLG	1,000	23.0	J	200	3.00	QT	60,0 [:]	J	200	3.00	QT	6.00	J	200	3.00	QT	14.0	J	200	3.00	QT
Beryllium	4	MCL, MCLG	NA [:]	2.00	U	2.00	0.540	QT	2.00	U	2.00	0.540	QT	2.00	U	2.00	0.540	QT	2.00	U	2.00	0.540	QT
Boron	600	. HA	NA :	43.0	J.	200	21.0	QT	48.0.	J	200	21.0	QT	76.0	J	200	21.0	QT	83.0	J	200	21.0	QT
Cadmium	·4	Quality Criteria	100	2.00	U	2.00	0.280	QT	0.320	J	2.00	0.280	QT	2.00	U	2.00	0.280	QT	0.450	J	2.00	0.280	QT
Calcium	400,000	ADI	NA .	3,400	J	5,000	250	QT	6,600		5,000	250	QT	7,400		5,000	250	QT	6,700		5,000	250	QT
Chromium	100	MCL, Quality Criteria, MCLG	50	1.40	J	10.0	1.40	QT	10.0	U	10.0	1.40	QT	10.0	U	· 10.0	1.40	QT	15.0		10.0	1.40	QT
Cobalt	2,200	NCARC_RBC	NA	1.30	J	50.0	1.30	QT	50.0	U.	50.0	1.30	QT	50.0	U	50.0	1.30	QT	2.80	J	50.0	1.30	QT
Copper .	1,000	Quality Criteria, NJPQL	NA .	9.00	U	9.00	4.20	QT	4. 80.	J	9.00	4.20	QT	9.00	U	9.00	4.20	QT	17.0		9.00	4.20	QT
Iron .	300	Quality Criteria	NA	100	U	100	88.0	QT	620		100	88.0	QT	100	U	100	88.0	QT	1,900		100	88.0	QT
Lead	10	NJPQL	50	3.00	U	3.00	2.50	QT	3.00	U	3.00	2.50	QT	3.00	U	3.00	2.50	QT	8.30		3.00	2.50	QT
Magnesium	80,500	ADI	NA -	1,000	J	5,000	30.0	QT	2,400	J	5,000	30.0	QT	1,600	J	5,000	30.0	QT	1,900	J	5,000	30.0	QT
Manganese	50	Quality Criteria	NA :	8.10	J	15.0	0.900	QT	270		15.0	0.900	QT	15.0	U	15.0	0.900	QT	96.0		15.0	0.900	QT
Molybdenum .	40	НА	NA	1.00	U	1.00	0.600	QT	1.00	U	1.00	0.600	QT	1.00	U	1.00	0.600	QT	1.30		1.00	0.600	QT
Nickel	100	Quality Criteria	. NA	5.30	J	40.0	2.20	QT	40.0	U	40.0	2.20	QT	40.0	U	40.0	2.20	QT	11.0	J	40.0	2.20	QT
Potassium	100,000	ADI	NA	. 380	J	5,000	41.0	QT	540	J	5,000	41.0	QT	550	J	5,000	41.0	QT	870	J	5,000	41.0	QT
Selenium	50	MCL, Quality Criteria, MCLG	10	4.60	J	5.00	4.50	QT	5.00	U	5.00	4.50	QT	5.00	U	5.00	4.50	QT	5.00	U	5.00	4.50	QT
Silicon '		· NA	NA	2,710		500	42.3	QT	2,990		500	42.3	QT	5,420		500	42.3	QT	6,820		500	42.3	QT
Sodium	50,000	Quality Criteria	NA NA	1,000	J	5,000	630	QT	2,900	J	5,000	630	QT	2,700	J	5,000	630	QT	2,300	J	5,000	630	QT
Strontium	4,000	НА	NA	15.0		5.00	0.280	QT	25.0		5.00	0.280	QT	17.0		5.00	0.280	QT	16.0		5.00	0.280	QT
Tin ;	22,000	NCARC_RBC	NA :	1.90	J	10.0	1.40	QT	10.0	U	10.0	1.40	QT	10.0	U	10.0	1.40	QT	10.0	U	10.0	1.40	ОТ
Titanium	150,000	NCARC_RBC	NA	50.0	U	50.0	6.30	QT	50.0	U	50.0	6.30	QT	50.0	U	50.0	6.30	QT	39.0	J	50.0	6.30	QT
Tungsten		NA	NA	4.50	J	5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT	15.0		5.00	1.00	QT
Vanadium	260	NCARC_RBC	NA	50.0	U	50.0	0.820	QT	50.0	U	50.0	0.820	QT	50.0	U	50.0	0.820	QT	2.00	J	50.0	0.820	QT

			FICATINIT ARSENA					Analytic	al Results				
	1	Sample ID: Date Sample				OD-5A					OD-6A		
		Depth Sampled				01/16/02 6.20 - 21.5					01/17/02 11.0 - 23.8		
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Volatiles													
Pesticides													
Explosives				1	ī	T		ı	•	ı	1		
HMX :	400 0.61	HA RBC	NA NA	0.500	U	0.500	0.100	QT	0.500	U	0.500	0.100	QT
Inorganics	0.01	HBC	NA	0.500	U	0,500	0.130	QT	0.500	U	0.500	. 0.130	QT
Aluminum	200	Quality Criteria, NJPQL	NA	4,300		92.0	20.0	O.T.			00.0	00.0	
Arsenic	5	MCL	50.0	4.50		3.90	28.0 3.90	QT QT	360 3,90	U	92.0 3.90	28.0 3.90	QT
Barium	2,000	MCL, Quality Criteria, MCLG	1,000	60.0	J	200	3.00	QT	27.0	J	200	3.90	QT QT
Beryllium	4	MCL, MCLG	NA NA	2.00	U	2.00	0,540	QT	0.750	J	2.00	0.540	QT
Boron	600	HA :	NA .	47.0	J	200	21.0	QT	70.0	J	200	21.0	QT
- Cadmium	4	Quality Criteria	100	0.370	J	2.00	0.280	QT	0.280	J	2.00	0.280	QT
Calcium	400,000	ADI	NA	3,800	J	5,000	250	QT	2,500	J	5,000	250	QT
Chromium	100	MCL, Quality Criteria, MCLG	50	5.80	J	10.0	1.40	QT	10.0	U	10.0	1.40	QT
Cobalt	2,200	NCARC_RBC	NA	6.00	J	50.0	1.30	QT	6.90	J	50.0	1.30	QT
Copper	1,000	Quality Criteria, NJPQL	NA	19.0		9.00	4.20	QT	5,50	J	9.00	4.20	QT
· Iron	300	Quality Criteria	NA	8,000		100	88.0	QT	6,500		100	88.0	QT
Lead	10	NJPQL	_e 50	3.80		3.00	2.50	QT	3.00	U	3.00	2.50	QT
Magnesium	80,500	ADI	· NA	2,100	J	5,000	. 30.0	QT	900	J	5,000	30.0	QT
Manganese	50	Quality Criteria	. NA	970		15.0	0.900	QT	83.0		15.0	0.900	QT.
Molybdenum	40	HA	NA	1.00	U	1.00	0.600	QT	1.00	U	1.00	0.600	QT
Nickel	100	Quality Criteria	NA	9.10	J	40.0	2.20	QT	4.40	J	40.0	2.20	QT
Potassium	100,000	ADI	NA	1,400	J	5,000	41.0	QT	400	J	5,000	41.0	QT
Selenium	50	MCL, Quality Criteria, MCLG	10	4.80	J	5.00	4.50	QT	5.00	U	5.00	4.50	QT
Silicon		: NA	NA	6,010		500	42.3	QT	3,110		500	42.3	QT
Sodium ·	50,000	Quality Criteria	, NA	7,400		5,000	630	QT	1,200	J	5,000	630	QT
Strontium	4,000	НА	· NA	18.0		5.00	0.280	QT	12.0		5.00	0.280	QT
Tin	22,000	NCARC_RBC	NA	2.10	J	10.0	1.40	QT	10.0	U	10.0	1.40	QT
Titanium	150,000	NCARC_RBC	NA	45.0	j	50.0	6.30	QT	50.0	U	50.0	6.30	QT
Tungsten		. NA	NA	7.20		5.00	1.00	QT	5.40		5,00	1.00	QT
Vanadium	260	NCARC_RBC	NA	7.00	J	50.0	0.820	QT	50.0	U	50.0	0.820	QT

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L)

PICATINNY ARSENAL

							- 4					•	Analytic	al Results									
,		Sample ID: Date Sample	d:			OD-1A 01/16/02					OD-2A 01/16/02					OD-3A 01/15/02	2				OD-4A 01/15/02		
	•	Depth Sampled				7.36 - 15.	.8				4.90 - 14.	5				2.09 - 13.	.5				3.98 - 13.9	95	
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab
Anions																							
Chloride .	250,000	Quality Criteria	NA ·	1,000		1,000	170	QT	2,850		1,000	170	QT	2,470		1,000	170	QT	1,080		1,000	170	QΤ
Fluoride	2,000	'Quality Criteria	NA	100 [.]	J	1,000	15.0	QT	50.0	J	1,000	15.0	QT	60.0	J	1,000	15.0	QT	40.0	J	1,000	15.0	· QT
Nitrate	10,000	MCL, Quality Criteria, MCLG	NA	80.0	. J	500	20.0	QT	210	J	500	20.0	QT	500	U	500	20.0	QT	500	U	500	20.0	QT
Perchlorate	18	AL	NA .	5.00	U	5.00	2.00	QT	5.90		5.00	2.00	QT	5.00	U	5.00	2.00	QT	5.00		5.00	2.00	QT
Phosphorus		: NA	NA i	100	U	100	11.0	QT	100	U	100	11.0	QT	100	U	100	11.0	QT	100	υ	100	11.0	QT
Sulfate	250,000	Quality Criteria	NA .	8,440		1,000	380	QT	9,530		1,000	380	QT	9,510		1,000	380	QT	10,900		1,000	380	QT
Sulfide		NA	NA į	1,000	U÷	1,000	920	QT	1,000	U	1,000	920	QT	1,100		1,000	920	QT	1,000	U	1,000	920	QT
Fladiologica <u>is</u>																							

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L) PICATINNY ARSENAL

			PICATINNY ARSENAI														
			Analytical Results														
		Sample ID:			OD-5A		OD-6A										
		Date Sample			01/16/02	2	01/17/02										
		Depth Sampled			6.20 - 21.9	95			11.0 - 23.8	31	i						
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL:	SQL	Lab				
Anions																	
Chloride	250,000	Quality Criteria	NA	5,230		1,000	170	QT	950	J	1,000	170	QT				
Fluoride ·	2,000	Quality Criteria	NA NA	40.0	J	1,000	15.0	QT	30.0	J	1,000	15.0	QT				
Nitrate	10,000	MCL, Quality Criteria, MCLG	NA .	500	U	500	20.0	QT	150	J	500	20.0	QT				
Perchlorate	18	. AL .	NA	5.00	U	5.00	2.00	QT	5.00	U	5.00	2.00	QT				
Phosphorus	·	NA .	NA.	140		100	11.0	QT	200		100	11.0	QT				
Sulfate	250,000	Quality Criteria	NA .	9,170		1,000	380	QT	8,610		1,000	380	QT				
Sulfide		. NA	NA .	1,000	U	1,000	920	QT	1,000	U	1,000	920	QT				
Radiologicals																	

(a) See the "ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater" table for a complete list of LOC values. Groundwater samples were compared to the lower of the Federal MCLs, the New Jersey State MCLs, the New Jersey Groundwater Quality Criteria or PQLs (whichever is higher), or any non-zero Federal MCLG. If the above are not available, groundwater comparison criteria are based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA Region III Tap Water (noncarcinogenic or carcinogenic 10-6) RBCs.

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC).

ADI = Allowable Daily Intake

AL = Action Level

CNSWC = Crane Naval Surface Warfare Center

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal

NA = No value available.

NJMCL = New Jersey State Maximum Contaminant Level

NJPQL = New Jersey State Practical Quantitation Limit

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit/Estimated Quantitation Limit

SQL = Sample Quantitation Limit

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L) PICATINNY ARSENAL

		:					t	PICATINI	AYA	HSENA	L																1
		Sam	ple ID:		OD-1/	Λ		T	Automorphismoso	OD-2A			<u> </u>	Ana	OD-2AD					OD-3/	^		1	****	OD-4A		
	1		Sampled:		04/17/0	-				04/16/02			04/16/02					00-3A 04/16/02							04/16/02		
	:		ampled (ft):		5.0 - 10					10.0 - 15					10.0 - 15					10.0 - 18					10.0 - 15		
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q F	RL/EQL	SQL	Lab
Volatiles																											
Pesticides																											
Explosives	le ·	ī				1.																					
2,2',4,4';6,6'-Hexanitrostilbene	ر _{ر ن} .	NA	NA .	5;400 UJ	5,400	400	CNSWC	5,400	UJ	5,400	400	CNSWC	5,400		5,400	400	CNSWC	5,400	ΝJ	5,400	400	CNSWC	5,400	บป	5,400	400	CNSWC
HMX	400	, HA	_ <u>· NA</u>	1.10	0.500	0.100	·QT	. 5.90	D	1.50	0.300	QT	5.30	D	1.50	0.300	· QT	0.540		0.500	0.100	QT	1.90		0.500	0.100	QT
RDX	0.61	RBC	, NA	2.20	0.500	: 0.130 [.]	QT	22.0	D	1.50	0.390	QT	21.0	D	1.50	0.390	QT	0.210	J	0.500	0.130	QT	2.40		0.500	0.130	QT
2,4,6-Trinitrotoluene	2	: HA	NA .	-0.200 : U	0.200	0.0800	QT	3.40	D	0.600	0.240	QT	0.560	JD	0.600	0.240	QT	0.200	U	0.200	0.0800	QT	0.200	U	0.200	0.0800	QT
Inorganics																											
Aluminum	200.	QC, NJPQL	: NA :	300 J	92.0	, 28.0	QT ·	970		92.0	28.0	QT .	250		92.0	28.0	QT	92.0	U	92.0	28.0	QT	720		92.0	28.0	QT
Barium	2,000	MCL, QC, MCLG	1,000-	23.0 J	200	3.00	QT	43.0	J	200	3.00	QT	40.0	J	200	3.00	QT	6.20	J	200	3.00	QT	13.0	J	200	3.00	QT
·Beryllium ·	4	MCL, MCLG	! NA	2.00 'U'	2.00	0.540	QT	2.00	U.	2.00	0.540	QT	2.00	U	2.00	0.540	QT	2.00	U	2.00	0.540	QT	0.560	J	2.00	0.540	QT
Boron	600	HA	NA	24.0 J	200	. 21.0	QT	33.0	j	200	21.0	QT	35.0	J	200	21.0	QT	34.0	J	200	21.0	QT	. 32.0	J	200	21.0	QΤ
Cadmium	· · 4	QC	100	0.390 J	2.00	0.280	QT	0.490	j	2.00	0.280	QT ·	2.00	·U	2.00	0.280	QT	2.00	U	2.00	0.280	QT	0.390	J	2.00	0.280	QT
Calcium ·	400,000	ADI	. NA	3,400 J	5,000	250	QT	7,400	J	5,000	250	QT	7,100	J	5,000	250	QT	7,800	J	5,000	250	QT	6,800	J	5,000	250	QT
Chromium	100	MCL, QC, MCLG	; 5 0	10.0 UJ	10.0	1.40	QT	2.10	J	10.0	1.40	QT	10.0	UJ	10.0	1.40	QT	10.0	UJ	10.0	1.40	QT	. 21.0	J	10.0	1.40	QT
Cobalt	2,200	RBC	, NA	50.0 UJ	50.0	1.30	QŢ	50.0	UJ	50.0 . ,	1.30	QΤ	50.0	υJ	50.0	1.30	QT	50.0	UJ	50.0	1.30	QT	1.70	J	50.0	1.30	QT
Copper	. 1,000	QC, NJPQL	. NA	9.00 U	9.00	4.20	QT	. 28.0	_J	9.00 .	4.20	QT	11.0	J	9.00	4.20	QT	9.00	U	9.00	4.20	QT	13.0		9.00	4.20	QT
Iron	300	QC	NA NA	140	100	: 88.0	QT	4,400	J	100	88.0	QT	1,400	1	100	88.0	QT	100	U	100	88.0	QT	1,500		100	88.0	QT
Lead	10	NJPQL	50	3.00 U	3.00	2.50	QT	5.10		3.00	2.50	QT	3.00	U	3.00	2.50	QT	3.00	U	3.00	2.50	QT	5.70		3.00	2.50	QT
Magnesium	80,500	ADI:	NA	930 J	5,000	30.0	QT	2,400	j	5,000	30.0	QT	2,300	J	5,000	30.0	QŤ	1,600	J	5,000	30.0	QT	1,800	J	5,000	30.0	QT
Manganese	: 50	QC	NA	5.80 J.	15.0	0.900	QT	110	J.	15.0	0.900	QT	64.0	1	15.0	0.900	QT	1.00	J	15.0	0.900	QT	100		15.0	.0,900	QT
Mercury .	2	MCL, QC, MCLG	2.0	0.0920 U	0.0920	0.0690	QT	0.0920	U	0.0920	0.0690	QT	0.0920	U	0.0920	0.0690	QT	0.230	J	0.0920	0.0690	QT	0.370	J	0.0920	0.0690	QT
Nickel ·	100	QC .	NA	· 2.50 J	40.0	2.20	QT	40.0	U	40.0	2.20	QΤ	40.0	U	40.0	2.20	QT :	40.0	U	40.0	2.20	QT	16.0	J	40.0	2.20	QT
Potassium	:100;000	ADI	¹ NA	970 J	5,000	41.0	QT	830	J	5,000	41.0	QT	650	J	5,000	41.0	QT	550	J	5,000	41.0	QT	750	J	5,000	41.0	QT
Silicon	<u>:</u>	NA	. NA	3,510	500	42.3	QT	4,700		500	.42.0	QT	3,900		500	42.0	QT	5,100		500	42.0	QT ·	5,700		500	42.0	QT
Sodium .	:50,000	QC	. NA	1,400 J	5,000	630		2,100	J	5,000	630		2,000	J	5,000	630		2,600	J	5,000	630			J	5,000	630	QT
Strontium	4,000	НА	NA	16.0	5.00	. 0.280	QT	21.0		5.00	0.280	QT	22.0		5.00	0.280	QT :	I	\sqcap	5.00	0.280		19.0		5.00	0.280	QT
Titanium	150,000	RBC	' NA	50.0 U	50.0	6.30	QT	38.0	J	50.0	6.30	QT	12.0	j	50.0	6.30	QT	50.0	U	50.0	6.30	T	40.0	J	50.0	6.30	QT
Tungsten		: NA	. NA	1.00 J	5.00	1.00		5.00	U	5.00	1.00		5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00		5.60	\prod	5.00	1.00	QT
Vanadium	260	RBC	NA	50.0 U	50.0	0.820	QT	3.20	J	50.0	0.820	QT	1.50	J	50.0	0.820	QT	1.50	J	50.0	0.820		3.50	J	50.0	0.820	QT
Zinc	5,000	· QC	NA	25.0 J	20.0	12.0	QT	110		20.0	12.0	QT	82.0		20.0	12,0	QT	20.0	U	20.0	12.0	QT	16.0	J	20.0	12.0	QT
Zirconium		NA	. : NA	5.00 U	5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT	5.00	U	5.00	1.00	QT

			FICATIVITI ANSE				1	Analytica	al Results	s								
			nple ID: Sampled:			OD-5			OD-6A									
	-	Depth S			04/17/0 10.0 - 1			04/17/02 10.0 - 20.0										
Chemical	LOC (a):		RCRA Maximum Concentration Limit (b):	Result		RL/EQL	SQL	Lob	Decuit				:					
Volatiles	1	L	(-):	nesuit	ĮΨ	Lunear	JOUL	Lab	Result	Įά	RL/EQL	SQL	Lab					
Pesticides																		
Explosives																		
2,2',4,4',6,6'-Hexanitrostilbene	:	: NA	· : NA	5,400	UJ	5,400	400	CNSWC	5,400	บา	5,400	400	CNSWC					
HMX	400	HA	NA	0.500	U	0.500	0.100	QT	0.270	J	0.500	0.100	QT					
RDX .*	· 0.61	RBC	. NA	0.500	U	0.500	0.130	QT	0.330	J	0.500	0.130	QT					
2,4,6-Trinitrotoluene	2	: HA	' NA	0.200	U	0.200	0.0800	QT	0.200	U	0.200	0.0800	· QT					
Inorganics	· 1.	T .					1											
Aluminum	200	QC, NJPQL =	. NA	7,300		92.0	28.0	QT	340	J	92.0	28.0	· QT					
Barium	2,000	MCL, QC, MCLG	1,000	68.0	J	.200	3.00	QT	40.0	J	200	3.00	QT					
Beryllium	4	MCL, MCLG	NA NA	0.640	J	2.00	0.540	QT	0.740	J	2.00	0.540	QT					
Boron	600	HA.	NA NA	26.0	J	200	21.0	QT	25.0	J	200	21.0	QT					
Cadmium	4	QC .	100	0.280	J	2.00	0.280	QT	0.550	J	2.00	0.280	QT					
Calcium .	400,000	. :ADI	· NA	3,200	J	5,000	250	QT	-2,500	J	5,000	250	QT					
Chromium	100	MCL, QC, MCLG	50	10:0	J	10.0	1.40	QT	6.00	J	10.0	1.40	QT					
Cobalt	2,200	, RBC	NA .	7.30	J	50.0	1.30	QT	3.80	J	50.0	1:30	QT					
Copper	4,000	QC, NJPQL	NA .	19.0		9.00	4.20	QT	6.40	J	9.00	4.20	QT					
Iron	. 300	: QC	NA	12,700		100	88.0	QT	540		100	88.0	QT					
Lead	, 10	NJPQL	50	5.00		3.00	2.50	QT	3.00	U	3.00	2.50	QT					
Magnesium	80,500	ADI	NA	2,800	J	5,000	30.0	QT	·760	J	5,000	30.0	QT					
Manganese	. 50	QC	NA NA	910	J.	15.0	0.900	QT	38.0	J	15.0	0.900	QT					
Mercury	. 2	MCL, QC, MCLG	2.0	0.0920	U	0.0920	0.0690	QT	0.0920	U	0.0920	0.0690	QT					
Nickel	. 100 .	. QC	NA NA	14.0	J	40.0	2.20	QT	9.00	.J	40.0	2.20	QT					
Potassium	100,000	ADI	NA	2,000	J.	5,000	41.0	QT	530	J	5,000	41.0	QT					
Silicon		NA	NA	7,350		500	42.3	QT	2,850		500	42.3	QT					
Sodium	50,000	QC .	NA	4,100	J	5,000	630	QŤ	1,000	J	5,000	630	QT					
Strontium	4,000	HA	NA .	21.0		5.00	0.280	QT	14.0		5.00	0.280	QT					
Titanium	150,000	RBC	. NA	69.0		50.0	6.30	QT	50.0	U	50.O	6.30	· QT					
Tungsten		NA	NA	1.90	J	5.00	1.00	QT	1.20	J	5.00	1.00	QT					
Vanadium	260	RBC	NA	11.0	J	50.0	0.820	QT	50.0	U	50.0	0.820	QT					
Zinc	5,000	. QC	NA	60.0	J	20.0	12.0	QT	75.0	j	20.0	12.0	QT					
Zirconium		NA	NA	2.70	J	5.00	1.00	QT	5.00	U	5.00	1.00	QT					

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L) PICATINNY ARSENAL

									10/(111)		TIOLITA																	
	I .		_												Ana	alytical R	esults											
		Sam	ple ID:			OD-1/	4				OD-2A	\				OD-2AD	UP				OD-3A	1				OD-4A	,	
·			Sampled:			04/17/0	02				04/16/0	2				04/16/0	2				04/16/0	2				04/16/0		- 1
		Depth Sa	ampled (ft):			5.0 - 10	0.0				10.0 - 15	5.0				10.0 - 15	5.0				10.0 - 15	5.0				10.0 - 15	0	
Chemical	LOC (a):	: Source	RCRA Maximum Concentration Limit (b):	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab	Result	Q	RĻ/EQL	SQL	Lab
Anions																		-										
Chloride	250,000	QC	NA	1,000		1,000	<u>170</u>	QŤ	1,730		1,000	170	QT	1,730		1,000	170	QT	2,410		1,000	170	QT ·	1,180		1,000	170	QT
Fluoride	2,000	QC	. NA	107	J	1,000	15.0	QT	63.2	J	1,000	15.0	QT	63.2	J	1,000 .	15.0	QT	65.1	J	1,000	15.0	QT	45.5	J	1,000	1 5.0	QT
Nitrate	10,000	MCL, QC, MCLG	NA	67.0	J	500	20.0	QT	. 160	J	500	20.0	QT	140	J	500	20.0	QT	71.5	J	500	20.0	QT	80.6	J	500	20.0	QT
Perchlorate	; 18	AL .	NA	√5,00	υ	5.00	2.00	QŤ	5.20		5.00	2.00	QT	4.40	J	5.00	2.00	QT.	5.00	U	5.00	2.00	QT	5.00	U	5.00	2.00	QT
Phosphorus	i 	NA	· NA	·100	U	100"	11.0	QŤ	120	R	100	11.0	QT	38.0	R	100	11.0	QT	19.0	R	100	11.0	QT	230	J	100	11.0	QT
Sulfate	250,000	QC	NA NA	8,040		1,000	380	QT	10,400		1,000	380	QT	10,300		1,000	380	QT	9,730		1,000	380	QT .	10;300		1,000	380	QT
Radiologicals																												
Uranium-234		NA	NA	0.111	J	0.0920	0.0920	QT :	0.160	J	0.150	0.150	QT	0.0170	U	0.100	0.100	QT	0.0500	U	0.130	0.130	QT	0.620	J	0.140	0.140	QT
Uranium-238		NA	NA .	0.0650	U	0.120	0.120	QT	· 0.0610	U	0.170	0.170	QT	0.0930	U	0.130	0.130	QT	0.110	U	0.130	0.130	QT	1.21		0.0800	0.0800	QT

TABLE 5-3 (CONTINUED)

GORGE QUARTERLY SAMPLING

SUMMARY OF CHEMICALS DETECTED IN GROUNDWATER (µg/L; Rads - pCi/L) PICATINNY ARSENAL

			FICATION ANDE						1.5								
	:	Date S	ple ID: Sampled: ampled (ft):			OD-5/ 04/17/0 10.0 - 15	A 02	nalytica	OD-6A 04/17/02 10.0 - 20.0								
Chemical	LOC (a):	Source	RCRA Maximum Concentration Limit (b):	Result	Q	:RL/EQL	SQL	Lab	Result	Q	RL/EQL	SQL	Lab				
Anions																	
Chloride	250,000	QC,	NA	2,480		1,000	170	QT	1,080		1,000	170	QT				
Fluoride	. 2,000	, dc	NA	51.5	J	1,000	15.0	QT	67.6	J	1,000	15.0	QT				
Nitrate	, 10,000	MCL, QC, MCLG	NA	500	Ū	500	20.0	QT	21.3	J	500	20.0	QT				
Perchlorate: .	, 18	, AL	NA	5.00	U	5.00	2.00	QT	5.00	U	5.00	2.00	QT				
Phosphorus		NA	NA.	180		100	11.0	QT	22.0	J	100	11.0	QT				
Sulfate	250,000	QC	. NA	9,270		1,000	380	QT ·	8,120		1,000	. 380	QT				
Radiologicals												,					
Uranium-234	1. 	· NA	:. NA :	0.0650	j	0,0590	0.0590	QT	0,300	J	0.250	0.250	QT				
Uranium-238		NA	NA	0.0430	U	0.0580	0.0580	QT	0.0800	U	0.200	0.200	QT				

⁽a) See the "ARARs and Other Guidance to be Considered for Picatinny Arsenal Groundwater" table for a complete list of LOC values. Groundwater samples were compared to the lower of the Federal MCLs, the New Jersey State MCLs, the New Jersey Groundwater Quality Criteria or PQLs (whichever is higher), or any non-zero Federal MCLG. If the above are not available, groundwater comparison criteria are based on the lower of the following TBC: Federal Drinking Water Health Advisories or USEPA Region III Tap Water (noncarcinogenic or carcinogenic 10⁻⁶) RBCs.

(b) Maximum concentration criteria established in 40 CFR Part 264 Subpart 264.94.

Bolded and shaded values indicate the detected result is above the Level of Concern (LOC).

ADI = Allowable Daily Intake

AL = Action Level.

CNSWC = Crane Naval Surface Warfare Center

HA = Federal Drinking Water Standards and Health Advisories

MCL = Federal Maximum Contaminant Level

MCLG = Federal Maximum Contaminant Level Goal

NA = No value available.

NJPQL = New Jersey State Practical Quantitation Limit

Q = Flags/Qualifiers (QA/QC):

D = Result was obtained from the analysis of a dilution.

J = Detect, value is an estimate of the concentration.

R = Rejected result, value should not be used for any purpose.

U = Non-detect, value is the detection limit.

QC = New Jersey Groundwater Quality Criteria

QT = Quanterra Laboratories, Inc.

RBC = USEPA Region III Tap Water Risk Based Concentration

RL/EQL = Reporting Limit/Estimated Quantitation Limit

SQL = Sample Quantitation Limit